]> git.proxmox.com Git - qemu.git/blob - qemu-options.hx
block: Fix multiwrite with overlapping requests
[qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5 HXCOMM option structures, enums and help message.
6 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
7
8 DEFHEADING(Standard options:)
9 STEXI
10 @table @option
11 ETEXI
12
13 DEF("help", 0, QEMU_OPTION_h,
14 "-h or -help display this help and exit\n")
15 STEXI
16 @item -h
17 Display help and exit
18 ETEXI
19
20 DEF("version", 0, QEMU_OPTION_version,
21 "-version display version information and exit\n")
22 STEXI
23 @item -version
24 Display version information and exit
25 ETEXI
26
27 DEF("M", HAS_ARG, QEMU_OPTION_M,
28 "-M machine select emulated machine (-M ? for list)\n")
29 STEXI
30 @item -M @var{machine}
31 Select the emulated @var{machine} (@code{-M ?} for list)
32 ETEXI
33
34 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35 "-cpu cpu select CPU (-cpu ? for list)\n")
36 STEXI
37 @item -cpu @var{model}
38 Select CPU model (-cpu ? for list and additional feature selection)
39 ETEXI
40
41 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42 "-smp n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
43 " set the number of CPUs to 'n' [default=1]\n"
44 " maxcpus= maximum number of total cpus, including\n"
45 " offline CPUs for hotplug etc.\n"
46 " cores= number of CPU cores on one socket\n"
47 " threads= number of threads on one CPU core\n"
48 " sockets= number of discrete sockets in the system\n")
49 STEXI
50 @item -smp @var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
51 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
52 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
53 to 4.
54 For the PC target, the number of @var{cores} per socket, the number
55 of @var{threads} per cores and the total number of @var{sockets} can be
56 specified. Missing values will be computed. If any on the three values is
57 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
58 specifies the maximum number of hotpluggable CPUs.
59 ETEXI
60
61 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
62 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
63 STEXI
64 @item -numa @var{opts}
65 Simulate a multi node NUMA system. If mem and cpus are omitted, resources
66 are split equally.
67 ETEXI
68
69 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
70 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n")
71 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
72 STEXI
73 @item -fda @var{file}
74 @item -fdb @var{file}
75 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
76 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
77 ETEXI
78
79 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
80 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n")
81 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
82 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
83 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n")
84 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
85 STEXI
86 @item -hda @var{file}
87 @item -hdb @var{file}
88 @item -hdc @var{file}
89 @item -hdd @var{file}
90 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
91 ETEXI
92
93 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
94 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
95 STEXI
96 @item -cdrom @var{file}
97 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
98 @option{-cdrom} at the same time). You can use the host CD-ROM by
99 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
100 ETEXI
101
102 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
103 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
104 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
105 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
106 " [,addr=A][,id=name][,aio=threads|native]\n"
107 " use 'file' as a drive image\n")
108 DEF("set", HAS_ARG, QEMU_OPTION_set,
109 "-set group.id.arg=value\n"
110 " set <arg> parameter for item <id> of type <group>\n"
111 " i.e. -set drive.$id.file=/path/to/image\n")
112 DEF("global", HAS_ARG, QEMU_OPTION_global,
113 "-global driver.property=value\n"
114 " set a global default for a driver property\n")
115 STEXI
116 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
117
118 Define a new drive. Valid options are:
119
120 @table @option
121 @item file=@var{file}
122 This option defines which disk image (@pxref{disk_images}) to use with
123 this drive. If the filename contains comma, you must double it
124 (for instance, "file=my,,file" to use file "my,file").
125 @item if=@var{interface}
126 This option defines on which type on interface the drive is connected.
127 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
128 @item bus=@var{bus},unit=@var{unit}
129 These options define where is connected the drive by defining the bus number and
130 the unit id.
131 @item index=@var{index}
132 This option defines where is connected the drive by using an index in the list
133 of available connectors of a given interface type.
134 @item media=@var{media}
135 This option defines the type of the media: disk or cdrom.
136 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
137 These options have the same definition as they have in @option{-hdachs}.
138 @item snapshot=@var{snapshot}
139 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
140 @item cache=@var{cache}
141 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
142 @item aio=@var{aio}
143 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
144 @item format=@var{format}
145 Specify which disk @var{format} will be used rather than detecting
146 the format. Can be used to specifiy format=raw to avoid interpreting
147 an untrusted format header.
148 @item serial=@var{serial}
149 This option specifies the serial number to assign to the device.
150 @item addr=@var{addr}
151 Specify the controller's PCI address (if=virtio only).
152 @end table
153
154 By default, writethrough caching is used for all block device. This means that
155 the host page cache will be used to read and write data but write notification
156 will be sent to the guest only when the data has been reported as written by
157 the storage subsystem.
158
159 Writeback caching will report data writes as completed as soon as the data is
160 present in the host page cache. This is safe as long as you trust your host.
161 If your host crashes or loses power, then the guest may experience data
162 corruption. When using the @option{-snapshot} option, writeback caching is
163 used by default.
164
165 The host page cache can be avoided entirely with @option{cache=none}. This will
166 attempt to do disk IO directly to the guests memory. QEMU may still perform
167 an internal copy of the data.
168
169 Some block drivers perform badly with @option{cache=writethrough}, most notably,
170 qcow2. If performance is more important than correctness,
171 @option{cache=writeback} should be used with qcow2.
172
173 Instead of @option{-cdrom} you can use:
174 @example
175 qemu -drive file=file,index=2,media=cdrom
176 @end example
177
178 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
179 use:
180 @example
181 qemu -drive file=file,index=0,media=disk
182 qemu -drive file=file,index=1,media=disk
183 qemu -drive file=file,index=2,media=disk
184 qemu -drive file=file,index=3,media=disk
185 @end example
186
187 You can connect a CDROM to the slave of ide0:
188 @example
189 qemu -drive file=file,if=ide,index=1,media=cdrom
190 @end example
191
192 If you don't specify the "file=" argument, you define an empty drive:
193 @example
194 qemu -drive if=ide,index=1,media=cdrom
195 @end example
196
197 You can connect a SCSI disk with unit ID 6 on the bus #0:
198 @example
199 qemu -drive file=file,if=scsi,bus=0,unit=6
200 @end example
201
202 Instead of @option{-fda}, @option{-fdb}, you can use:
203 @example
204 qemu -drive file=file,index=0,if=floppy
205 qemu -drive file=file,index=1,if=floppy
206 @end example
207
208 By default, @var{interface} is "ide" and @var{index} is automatically
209 incremented:
210 @example
211 qemu -drive file=a -drive file=b"
212 @end example
213 is interpreted like:
214 @example
215 qemu -hda a -hdb b
216 @end example
217 ETEXI
218
219 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
220 "-mtdblock file use 'file' as on-board Flash memory image\n")
221 STEXI
222
223 @item -mtdblock @var{file}
224 Use @var{file} as on-board Flash memory image.
225 ETEXI
226
227 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
228 "-sd file use 'file' as SecureDigital card image\n")
229 STEXI
230 @item -sd @var{file}
231 Use @var{file} as SecureDigital card image.
232 ETEXI
233
234 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
235 "-pflash file use 'file' as a parallel flash image\n")
236 STEXI
237 @item -pflash @var{file}
238 Use @var{file} as a parallel flash image.
239 ETEXI
240
241 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
242 "-boot [order=drives][,once=drives][,menu=on|off]\n"
243 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
244 STEXI
245 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
246
247 Specify boot order @var{drives} as a string of drive letters. Valid
248 drive letters depend on the target achitecture. The x86 PC uses: a, b
249 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
250 from network adapter 1-4), hard disk boot is the default. To apply a
251 particular boot order only on the first startup, specify it via
252 @option{once}.
253
254 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
255 as firmware/BIOS supports them. The default is non-interactive boot.
256
257 @example
258 # try to boot from network first, then from hard disk
259 qemu -boot order=nc
260 # boot from CD-ROM first, switch back to default order after reboot
261 qemu -boot once=d
262 @end example
263
264 Note: The legacy format '-boot @var{drives}' is still supported but its
265 use is discouraged as it may be removed from future versions.
266 ETEXI
267
268 DEF("snapshot", 0, QEMU_OPTION_snapshot,
269 "-snapshot write to temporary files instead of disk image files\n")
270 STEXI
271 @item -snapshot
272 Write to temporary files instead of disk image files. In this case,
273 the raw disk image you use is not written back. You can however force
274 the write back by pressing @key{C-a s} (@pxref{disk_images}).
275 ETEXI
276
277 DEF("m", HAS_ARG, QEMU_OPTION_m,
278 "-m megs set virtual RAM size to megs MB [default=%d]\n")
279 STEXI
280 @item -m @var{megs}
281 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
282 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
283 gigabytes respectively.
284 ETEXI
285
286 DEF("k", HAS_ARG, QEMU_OPTION_k,
287 "-k language use keyboard layout (for example 'fr' for French)\n")
288 STEXI
289 @item -k @var{language}
290
291 Use keyboard layout @var{language} (for example @code{fr} for
292 French). This option is only needed where it is not easy to get raw PC
293 keycodes (e.g. on Macs, with some X11 servers or with a VNC
294 display). You don't normally need to use it on PC/Linux or PC/Windows
295 hosts.
296
297 The available layouts are:
298 @example
299 ar de-ch es fo fr-ca hu ja mk no pt-br sv
300 da en-gb et fr fr-ch is lt nl pl ru th
301 de en-us fi fr-be hr it lv nl-be pt sl tr
302 @end example
303
304 The default is @code{en-us}.
305 ETEXI
306
307
308 #ifdef HAS_AUDIO
309 DEF("audio-help", 0, QEMU_OPTION_audio_help,
310 "-audio-help print list of audio drivers and their options\n")
311 #endif
312 STEXI
313 @item -audio-help
314
315 Will show the audio subsystem help: list of drivers, tunable
316 parameters.
317 ETEXI
318
319 #ifdef HAS_AUDIO
320 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
321 "-soundhw c1,... enable audio support\n"
322 " and only specified sound cards (comma separated list)\n"
323 " use -soundhw ? to get the list of supported cards\n"
324 " use -soundhw all to enable all of them\n")
325 #endif
326 STEXI
327 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
328
329 Enable audio and selected sound hardware. Use ? to print all
330 available sound hardware.
331
332 @example
333 qemu -soundhw sb16,adlib disk.img
334 qemu -soundhw es1370 disk.img
335 qemu -soundhw ac97 disk.img
336 qemu -soundhw all disk.img
337 qemu -soundhw ?
338 @end example
339
340 Note that Linux's i810_audio OSS kernel (for AC97) module might
341 require manually specifying clocking.
342
343 @example
344 modprobe i810_audio clocking=48000
345 @end example
346 ETEXI
347
348 STEXI
349 @end table
350 ETEXI
351
352 DEF("usb", 0, QEMU_OPTION_usb,
353 "-usb enable the USB driver (will be the default soon)\n")
354 STEXI
355 USB options:
356 @table @option
357
358 @item -usb
359 Enable the USB driver (will be the default soon)
360 ETEXI
361
362 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
363 "-usbdevice name add the host or guest USB device 'name'\n")
364 STEXI
365
366 @item -usbdevice @var{devname}
367 Add the USB device @var{devname}. @xref{usb_devices}.
368
369 @table @option
370
371 @item mouse
372 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
373
374 @item tablet
375 Pointer device that uses absolute coordinates (like a touchscreen). This
376 means qemu is able to report the mouse position without having to grab the
377 mouse. Also overrides the PS/2 mouse emulation when activated.
378
379 @item disk:[format=@var{format}]:@var{file}
380 Mass storage device based on file. The optional @var{format} argument
381 will be used rather than detecting the format. Can be used to specifiy
382 @code{format=raw} to avoid interpreting an untrusted format header.
383
384 @item host:@var{bus}.@var{addr}
385 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
386
387 @item host:@var{vendor_id}:@var{product_id}
388 Pass through the host device identified by @var{vendor_id}:@var{product_id}
389 (Linux only).
390
391 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
392 Serial converter to host character device @var{dev}, see @code{-serial} for the
393 available devices.
394
395 @item braille
396 Braille device. This will use BrlAPI to display the braille output on a real
397 or fake device.
398
399 @item net:@var{options}
400 Network adapter that supports CDC ethernet and RNDIS protocols.
401
402 @end table
403 ETEXI
404
405 DEF("device", HAS_ARG, QEMU_OPTION_device,
406 "-device driver[,options] add device\n")
407 STEXI
408 @item -device @var{driver}[,@var{option}[,...]]
409 Add device @var{driver}. Depending on the device type,
410 @var{option} (typically @var{key}=@var{value}) may be useful.
411 ETEXI
412
413 DEF("name", HAS_ARG, QEMU_OPTION_name,
414 "-name string1[,process=string2] set the name of the guest\n"
415 " string1 sets the window title and string2 the process name (on Linux)\n")
416 STEXI
417 @item -name @var{name}
418 Sets the @var{name} of the guest.
419 This name will be displayed in the SDL window caption.
420 The @var{name} will also be used for the VNC server.
421 Also optionally set the top visible process name in Linux.
422 ETEXI
423
424 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
425 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
426 " specify machine UUID\n")
427 STEXI
428 @item -uuid @var{uuid}
429 Set system UUID.
430 ETEXI
431
432 STEXI
433 @end table
434 ETEXI
435
436 DEFHEADING()
437
438 DEFHEADING(Display options:)
439
440 STEXI
441 @table @option
442 ETEXI
443
444 DEF("nographic", 0, QEMU_OPTION_nographic,
445 "-nographic disable graphical output and redirect serial I/Os to console\n")
446 STEXI
447 @item -nographic
448
449 Normally, QEMU uses SDL to display the VGA output. With this option,
450 you can totally disable graphical output so that QEMU is a simple
451 command line application. The emulated serial port is redirected on
452 the console. Therefore, you can still use QEMU to debug a Linux kernel
453 with a serial console.
454 ETEXI
455
456 #ifdef CONFIG_CURSES
457 DEF("curses", 0, QEMU_OPTION_curses,
458 "-curses use a curses/ncurses interface instead of SDL\n")
459 #endif
460 STEXI
461 @item -curses
462
463 Normally, QEMU uses SDL to display the VGA output. With this option,
464 QEMU can display the VGA output when in text mode using a
465 curses/ncurses interface. Nothing is displayed in graphical mode.
466 ETEXI
467
468 #ifdef CONFIG_SDL
469 DEF("no-frame", 0, QEMU_OPTION_no_frame,
470 "-no-frame open SDL window without a frame and window decorations\n")
471 #endif
472 STEXI
473 @item -no-frame
474
475 Do not use decorations for SDL windows and start them using the whole
476 available screen space. This makes the using QEMU in a dedicated desktop
477 workspace more convenient.
478 ETEXI
479
480 #ifdef CONFIG_SDL
481 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
482 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
483 #endif
484 STEXI
485 @item -alt-grab
486
487 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
488 ETEXI
489
490 #ifdef CONFIG_SDL
491 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
492 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n")
493 #endif
494 STEXI
495 @item -ctrl-grab
496
497 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt).
498 ETEXI
499
500 #ifdef CONFIG_SDL
501 DEF("no-quit", 0, QEMU_OPTION_no_quit,
502 "-no-quit disable SDL window close capability\n")
503 #endif
504 STEXI
505 @item -no-quit
506
507 Disable SDL window close capability.
508 ETEXI
509
510 #ifdef CONFIG_SDL
511 DEF("sdl", 0, QEMU_OPTION_sdl,
512 "-sdl enable SDL\n")
513 #endif
514 STEXI
515 @item -sdl
516
517 Enable SDL.
518 ETEXI
519
520 DEF("portrait", 0, QEMU_OPTION_portrait,
521 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n")
522 STEXI
523 @item -portrait
524
525 Rotate graphical output 90 deg left (only PXA LCD).
526 ETEXI
527
528 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
529 "-vga [std|cirrus|vmware|xenfb|none]\n"
530 " select video card type\n")
531 STEXI
532 @item -vga @var{type}
533 Select type of VGA card to emulate. Valid values for @var{type} are
534 @table @option
535 @item cirrus
536 Cirrus Logic GD5446 Video card. All Windows versions starting from
537 Windows 95 should recognize and use this graphic card. For optimal
538 performances, use 16 bit color depth in the guest and the host OS.
539 (This one is the default)
540 @item std
541 Standard VGA card with Bochs VBE extensions. If your guest OS
542 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
543 to use high resolution modes (>= 1280x1024x16) then you should use
544 this option.
545 @item vmware
546 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
547 recent XFree86/XOrg server or Windows guest with a driver for this
548 card.
549 @item none
550 Disable VGA card.
551 @end table
552 ETEXI
553
554 DEF("full-screen", 0, QEMU_OPTION_full_screen,
555 "-full-screen start in full screen\n")
556 STEXI
557 @item -full-screen
558 Start in full screen.
559 ETEXI
560
561 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
562 DEF("g", 1, QEMU_OPTION_g ,
563 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n")
564 #endif
565 STEXI
566 ETEXI
567
568 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
569 "-vnc display start a VNC server on display\n")
570 STEXI
571 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
572
573 Normally, QEMU uses SDL to display the VGA output. With this option,
574 you can have QEMU listen on VNC display @var{display} and redirect the VGA
575 display over the VNC session. It is very useful to enable the usb
576 tablet device when using this option (option @option{-usbdevice
577 tablet}). When using the VNC display, you must use the @option{-k}
578 parameter to set the keyboard layout if you are not using en-us. Valid
579 syntax for the @var{display} is
580
581 @table @option
582
583 @item @var{host}:@var{d}
584
585 TCP connections will only be allowed from @var{host} on display @var{d}.
586 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
587 be omitted in which case the server will accept connections from any host.
588
589 @item unix:@var{path}
590
591 Connections will be allowed over UNIX domain sockets where @var{path} is the
592 location of a unix socket to listen for connections on.
593
594 @item none
595
596 VNC is initialized but not started. The monitor @code{change} command
597 can be used to later start the VNC server.
598
599 @end table
600
601 Following the @var{display} value there may be one or more @var{option} flags
602 separated by commas. Valid options are
603
604 @table @option
605
606 @item reverse
607
608 Connect to a listening VNC client via a ``reverse'' connection. The
609 client is specified by the @var{display}. For reverse network
610 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
611 is a TCP port number, not a display number.
612
613 @item password
614
615 Require that password based authentication is used for client connections.
616 The password must be set separately using the @code{change} command in the
617 @ref{pcsys_monitor}
618
619 @item tls
620
621 Require that client use TLS when communicating with the VNC server. This
622 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
623 attack. It is recommended that this option be combined with either the
624 @option{x509} or @option{x509verify} options.
625
626 @item x509=@var{/path/to/certificate/dir}
627
628 Valid if @option{tls} is specified. Require that x509 credentials are used
629 for negotiating the TLS session. The server will send its x509 certificate
630 to the client. It is recommended that a password be set on the VNC server
631 to provide authentication of the client when this is used. The path following
632 this option specifies where the x509 certificates are to be loaded from.
633 See the @ref{vnc_security} section for details on generating certificates.
634
635 @item x509verify=@var{/path/to/certificate/dir}
636
637 Valid if @option{tls} is specified. Require that x509 credentials are used
638 for negotiating the TLS session. The server will send its x509 certificate
639 to the client, and request that the client send its own x509 certificate.
640 The server will validate the client's certificate against the CA certificate,
641 and reject clients when validation fails. If the certificate authority is
642 trusted, this is a sufficient authentication mechanism. You may still wish
643 to set a password on the VNC server as a second authentication layer. The
644 path following this option specifies where the x509 certificates are to
645 be loaded from. See the @ref{vnc_security} section for details on generating
646 certificates.
647
648 @item sasl
649
650 Require that the client use SASL to authenticate with the VNC server.
651 The exact choice of authentication method used is controlled from the
652 system / user's SASL configuration file for the 'qemu' service. This
653 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
654 unprivileged user, an environment variable SASL_CONF_PATH can be used
655 to make it search alternate locations for the service config.
656 While some SASL auth methods can also provide data encryption (eg GSSAPI),
657 it is recommended that SASL always be combined with the 'tls' and
658 'x509' settings to enable use of SSL and server certificates. This
659 ensures a data encryption preventing compromise of authentication
660 credentials. See the @ref{vnc_security} section for details on using
661 SASL authentication.
662
663 @item acl
664
665 Turn on access control lists for checking of the x509 client certificate
666 and SASL party. For x509 certs, the ACL check is made against the
667 certificate's distinguished name. This is something that looks like
668 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
669 made against the username, which depending on the SASL plugin, may
670 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
671 When the @option{acl} flag is set, the initial access list will be
672 empty, with a @code{deny} policy. Thus no one will be allowed to
673 use the VNC server until the ACLs have been loaded. This can be
674 achieved using the @code{acl} monitor command.
675
676 @end table
677 ETEXI
678
679 STEXI
680 @end table
681 ETEXI
682
683 DEFHEADING()
684
685 #ifdef TARGET_I386
686 DEFHEADING(i386 target only:)
687 #endif
688 STEXI
689 @table @option
690 ETEXI
691
692 #ifdef TARGET_I386
693 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
694 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n")
695 #endif
696 STEXI
697 @item -win2k-hack
698 Use it when installing Windows 2000 to avoid a disk full bug. After
699 Windows 2000 is installed, you no longer need this option (this option
700 slows down the IDE transfers).
701 ETEXI
702
703 #ifdef TARGET_I386
704 HXCOMM Deprecated by -rtc
705 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "")
706 #endif
707
708 #ifdef TARGET_I386
709 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
710 "-no-fd-bootchk disable boot signature checking for floppy disks\n")
711 #endif
712 STEXI
713 @item -no-fd-bootchk
714 Disable boot signature checking for floppy disks in Bochs BIOS. It may
715 be needed to boot from old floppy disks.
716 ETEXI
717
718 #ifdef TARGET_I386
719 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
720 "-no-acpi disable ACPI\n")
721 #endif
722 STEXI
723 @item -no-acpi
724 Disable ACPI (Advanced Configuration and Power Interface) support. Use
725 it if your guest OS complains about ACPI problems (PC target machine
726 only).
727 ETEXI
728
729 #ifdef TARGET_I386
730 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
731 "-no-hpet disable HPET\n")
732 #endif
733 STEXI
734 @item -no-hpet
735 Disable HPET support.
736 ETEXI
737
738 #ifdef TARGET_I386
739 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
740 "-balloon none disable balloon device\n"
741 "-balloon virtio[,addr=str]\n"
742 " enable virtio balloon device (default)\n")
743 #endif
744 STEXI
745 @item -balloon none
746 Disable balloon device.
747 @item -balloon virtio[,addr=@var{addr}]
748 Enable virtio balloon device (default), optionally with PCI address
749 @var{addr}.
750 ETEXI
751
752 #ifdef TARGET_I386
753 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
754 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
755 " ACPI table description\n")
756 #endif
757 STEXI
758 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
759 Add ACPI table with specified header fields and context from specified files.
760 ETEXI
761
762 #ifdef TARGET_I386
763 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
764 "-smbios file=binary\n"
765 " Load SMBIOS entry from binary file\n"
766 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
767 " Specify SMBIOS type 0 fields\n"
768 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
769 " [,uuid=uuid][,sku=str][,family=str]\n"
770 " Specify SMBIOS type 1 fields\n")
771 #endif
772 STEXI
773 @item -smbios file=@var{binary}
774 Load SMBIOS entry from binary file.
775
776 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
777 Specify SMBIOS type 0 fields
778
779 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
780 Specify SMBIOS type 1 fields
781 ETEXI
782
783 #ifdef TARGET_I386
784 DEFHEADING()
785 #endif
786 STEXI
787 @end table
788 ETEXI
789
790 DEFHEADING(Network options:)
791 STEXI
792 @table @option
793 ETEXI
794
795 HXCOMM Legacy slirp options (now moved to -net user):
796 #ifdef CONFIG_SLIRP
797 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
798 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
799 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
800 #ifndef _WIN32
801 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
802 #endif
803 #endif
804
805 DEF("net", HAS_ARG, QEMU_OPTION_net,
806 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
807 " create a new Network Interface Card and connect it to VLAN 'n'\n"
808 #ifdef CONFIG_SLIRP
809 "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
810 " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
811 " [,hostfwd=rule][,guestfwd=rule]"
812 #ifndef _WIN32
813 "[,smb=dir[,smbserver=addr]]\n"
814 #endif
815 " connect the user mode network stack to VLAN 'n', configure its\n"
816 " DHCP server and enabled optional services\n"
817 #endif
818 #ifdef _WIN32
819 "-net tap[,vlan=n][,name=str],ifname=name\n"
820 " connect the host TAP network interface to VLAN 'n'\n"
821 #else
822 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile][,sndbuf=nbytes][,vnet_hdr=on|off]\n"
823 " connect the host TAP network interface to VLAN 'n' and use the\n"
824 " network scripts 'file' (default=%s)\n"
825 " and 'dfile' (default=%s);\n"
826 " use '[down]script=no' to disable script execution;\n"
827 " use 'fd=h' to connect to an already opened TAP interface\n"
828 " use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
829 " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
830 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag; use\n"
831 " vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
832 #endif
833 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
834 " connect the vlan 'n' to another VLAN using a socket connection\n"
835 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
836 " connect the vlan 'n' to multicast maddr and port\n"
837 #ifdef CONFIG_VDE
838 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
839 " connect the vlan 'n' to port 'n' of a vde switch running\n"
840 " on host and listening for incoming connections on 'socketpath'.\n"
841 " Use group 'groupname' and mode 'octalmode' to change default\n"
842 " ownership and permissions for communication port.\n"
843 #endif
844 "-net dump[,vlan=n][,file=f][,len=n]\n"
845 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
846 "-net none use it alone to have zero network devices; if no -net option\n"
847 " is provided, the default is '-net nic -net user'\n")
848 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
849 "-netdev ["
850 #ifdef CONFIG_SLIRP
851 "user|"
852 #endif
853 "tap|"
854 #ifdef CONFIG_VDE
855 "vde|"
856 #endif
857 "socket],id=str[,option][,option][,...]\n")
858 STEXI
859 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
860 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
861 = 0 is the default). The NIC is an e1000 by default on the PC
862 target. Optionally, the MAC address can be changed to @var{mac}, the
863 device address set to @var{addr} (PCI cards only),
864 and a @var{name} can be assigned for use in monitor commands.
865 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
866 that the card should have; this option currently only affects virtio cards; set
867 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
868 NIC is created. Qemu can emulate several different models of network card.
869 Valid values for @var{type} are
870 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
871 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
872 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
873 Not all devices are supported on all targets. Use -net nic,model=?
874 for a list of available devices for your target.
875
876 @item -net user[,@var{option}][,@var{option}][,...]
877 Use the user mode network stack which requires no administrator
878 privilege to run. Valid options are:
879
880 @table @option
881 @item vlan=@var{n}
882 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
883
884 @item name=@var{name}
885 Assign symbolic name for use in monitor commands.
886
887 @item net=@var{addr}[/@var{mask}]
888 Set IP network address the guest will see. Optionally specify the netmask,
889 either in the form a.b.c.d or as number of valid top-most bits. Default is
890 10.0.2.0/8.
891
892 @item host=@var{addr}
893 Specify the guest-visible address of the host. Default is the 2nd IP in the
894 guest network, i.e. x.x.x.2.
895
896 @item restrict=y|yes|n|no
897 If this options is enabled, the guest will be isolated, i.e. it will not be
898 able to contact the host and no guest IP packets will be routed over the host
899 to the outside. This option does not affect explicitly set forwarding rule.
900
901 @item hostname=@var{name}
902 Specifies the client hostname reported by the builtin DHCP server.
903
904 @item dhcpstart=@var{addr}
905 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
906 is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
907
908 @item dns=@var{addr}
909 Specify the guest-visible address of the virtual nameserver. The address must
910 be different from the host address. Default is the 3rd IP in the guest network,
911 i.e. x.x.x.3.
912
913 @item tftp=@var{dir}
914 When using the user mode network stack, activate a built-in TFTP
915 server. The files in @var{dir} will be exposed as the root of a TFTP server.
916 The TFTP client on the guest must be configured in binary mode (use the command
917 @code{bin} of the Unix TFTP client).
918
919 @item bootfile=@var{file}
920 When using the user mode network stack, broadcast @var{file} as the BOOTP
921 filename. In conjunction with @option{tftp}, this can be used to network boot
922 a guest from a local directory.
923
924 Example (using pxelinux):
925 @example
926 qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
927 @end example
928
929 @item smb=@var{dir}[,smbserver=@var{addr}]
930 When using the user mode network stack, activate a built-in SMB
931 server so that Windows OSes can access to the host files in @file{@var{dir}}
932 transparently. The IP address of the SMB server can be set to @var{addr}. By
933 default the 4th IP in the guest network is used, i.e. x.x.x.4.
934
935 In the guest Windows OS, the line:
936 @example
937 10.0.2.4 smbserver
938 @end example
939 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
940 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
941
942 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
943
944 Note that a SAMBA server must be installed on the host OS in
945 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
946 Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
947
948 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
949 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
950 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
951 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
952 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
953 be bound to a specific host interface. If no connection type is set, TCP is
954 used. This option can be given multiple times.
955
956 For example, to redirect host X11 connection from screen 1 to guest
957 screen 0, use the following:
958
959 @example
960 # on the host
961 qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
962 # this host xterm should open in the guest X11 server
963 xterm -display :1
964 @end example
965
966 To redirect telnet connections from host port 5555 to telnet port on
967 the guest, use the following:
968
969 @example
970 # on the host
971 qemu -net user,hostfwd=tcp::5555-:23 [...]
972 telnet localhost 5555
973 @end example
974
975 Then when you use on the host @code{telnet localhost 5555}, you
976 connect to the guest telnet server.
977
978 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
979 Forward guest TCP connections to the IP address @var{server} on port @var{port}
980 to the character device @var{dev}. This option can be given multiple times.
981
982 @end table
983
984 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
985 processed and applied to -net user. Mixing them with the new configuration
986 syntax gives undefined results. Their use for new applications is discouraged
987 as they will be removed from future versions.
988
989 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
990 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
991 the network script @var{file} to configure it and the network script
992 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
993 automatically provides one. @option{fd}=@var{h} can be used to specify
994 the handle of an already opened host TAP interface. The default network
995 configure script is @file{/etc/qemu-ifup} and the default network
996 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
997 or @option{downscript=no} to disable script execution. Example:
998
999 @example
1000 qemu linux.img -net nic -net tap
1001 @end example
1002
1003 More complicated example (two NICs, each one connected to a TAP device)
1004 @example
1005 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1006 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1007 @end example
1008
1009 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1010
1011 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1012 machine using a TCP socket connection. If @option{listen} is
1013 specified, QEMU waits for incoming connections on @var{port}
1014 (@var{host} is optional). @option{connect} is used to connect to
1015 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1016 specifies an already opened TCP socket.
1017
1018 Example:
1019 @example
1020 # launch a first QEMU instance
1021 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1022 -net socket,listen=:1234
1023 # connect the VLAN 0 of this instance to the VLAN 0
1024 # of the first instance
1025 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1026 -net socket,connect=127.0.0.1:1234
1027 @end example
1028
1029 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
1030
1031 Create a VLAN @var{n} shared with another QEMU virtual
1032 machines using a UDP multicast socket, effectively making a bus for
1033 every QEMU with same multicast address @var{maddr} and @var{port}.
1034 NOTES:
1035 @enumerate
1036 @item
1037 Several QEMU can be running on different hosts and share same bus (assuming
1038 correct multicast setup for these hosts).
1039 @item
1040 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1041 @url{http://user-mode-linux.sf.net}.
1042 @item
1043 Use @option{fd=h} to specify an already opened UDP multicast socket.
1044 @end enumerate
1045
1046 Example:
1047 @example
1048 # launch one QEMU instance
1049 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1050 -net socket,mcast=230.0.0.1:1234
1051 # launch another QEMU instance on same "bus"
1052 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1053 -net socket,mcast=230.0.0.1:1234
1054 # launch yet another QEMU instance on same "bus"
1055 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1056 -net socket,mcast=230.0.0.1:1234
1057 @end example
1058
1059 Example (User Mode Linux compat.):
1060 @example
1061 # launch QEMU instance (note mcast address selected
1062 # is UML's default)
1063 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1064 -net socket,mcast=239.192.168.1:1102
1065 # launch UML
1066 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1067 @end example
1068
1069 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1070 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1071 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1072 and MODE @var{octalmode} to change default ownership and permissions for
1073 communication port. This option is available only if QEMU has been compiled
1074 with vde support enabled.
1075
1076 Example:
1077 @example
1078 # launch vde switch
1079 vde_switch -F -sock /tmp/myswitch
1080 # launch QEMU instance
1081 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1082 @end example
1083
1084 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1085 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1086 At most @var{len} bytes (64k by default) per packet are stored. The file format is
1087 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1088
1089 @item -net none
1090 Indicate that no network devices should be configured. It is used to
1091 override the default configuration (@option{-net nic -net user}) which
1092 is activated if no @option{-net} options are provided.
1093
1094 @end table
1095 ETEXI
1096
1097 DEFHEADING()
1098
1099 DEFHEADING(Character device options:)
1100
1101 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
1102 "-chardev null,id=id\n"
1103 "-chardev socket,id=id[,host=host],port=host[,to=to][,ipv4][,ipv6][,nodelay]\n"
1104 " [,server][,nowait][,telnet] (tcp)\n"
1105 "-chardev socket,id=id,path=path[,server][,nowait][,telnet] (unix)\n"
1106 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
1107 " [,localport=localport][,ipv4][,ipv6]\n"
1108 "-chardev msmouse,id=id\n"
1109 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
1110 "-chardev file,id=id,path=path\n"
1111 "-chardev pipe,id=id,path=path\n"
1112 #ifdef _WIN32
1113 "-chardev console,id=id\n"
1114 "-chardev serial,id=id,path=path\n"
1115 #else
1116 "-chardev pty,id=id\n"
1117 "-chardev stdio,id=id\n"
1118 #endif
1119 #ifdef CONFIG_BRLAPI
1120 "-chardev braille,id=id\n"
1121 #endif
1122 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
1123 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
1124 "-chardev tty,id=id,path=path\n"
1125 #endif
1126 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
1127 "-chardev parport,id=id,path=path\n"
1128 #endif
1129 )
1130
1131 STEXI
1132
1133 The general form of a character device option is:
1134 @table @option
1135
1136 @item -chardev @var{backend} ,id=@var{id} [,@var{options}]
1137
1138 Backend is one of:
1139 @option{null},
1140 @option{socket},
1141 @option{udp},
1142 @option{msmouse},
1143 @option{vc},
1144 @option{file},
1145 @option{pipe},
1146 @option{console},
1147 @option{serial},
1148 @option{pty},
1149 @option{stdio},
1150 @option{braille},
1151 @option{tty},
1152 @option{parport}.
1153 The specific backend will determine the applicable options.
1154
1155 All devices must have an id, which can be any string up to 127 characters long.
1156 It is used to uniquely identify this device in other command line directives.
1157
1158 Options to each backend are described below.
1159
1160 @item -chardev null ,id=@var{id}
1161 A void device. This device will not emit any data, and will drop any data it
1162 receives. The null backend does not take any options.
1163
1164 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet]
1165
1166 Create a two-way stream socket, which can be either a TCP or a unix socket. A
1167 unix socket will be created if @option{path} is specified. Behaviour is
1168 undefined if TCP options are specified for a unix socket.
1169
1170 @option{server} specifies that the socket shall be a listening socket.
1171
1172 @option{nowait} specifies that QEMU should not block waiting for a client to
1173 connect to a listening socket.
1174
1175 @option{telnet} specifies that traffic on the socket should interpret telnet
1176 escape sequences.
1177
1178 TCP and unix socket options are given below:
1179
1180 @table @option
1181
1182 @item TCP options: port=@var{host} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
1183
1184 @option{host} for a listening socket specifies the local address to be bound.
1185 For a connecting socket species the remote host to connect to. @option{host} is
1186 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
1187
1188 @option{port} for a listening socket specifies the local port to be bound. For a
1189 connecting socket specifies the port on the remote host to connect to.
1190 @option{port} can be given as either a port number or a service name.
1191 @option{port} is required.
1192
1193 @option{to} is only relevant to listening sockets. If it is specified, and
1194 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
1195 to and including @option{to} until it succeeds. @option{to} must be specified
1196 as a port number.
1197
1198 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
1199 If neither is specified the socket may use either protocol.
1200
1201 @option{nodelay} disables the Nagle algorithm.
1202
1203 @item unix options: path=@var{path}
1204
1205 @option{path} specifies the local path of the unix socket. @option{path} is
1206 required.
1207
1208 @end table
1209
1210 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
1211
1212 Sends all traffic from the guest to a remote host over UDP.
1213
1214 @option{host} specifies the remote host to connect to. If not specified it
1215 defaults to @code{localhost}.
1216
1217 @option{port} specifies the port on the remote host to connect to. @option{port}
1218 is required.
1219
1220 @option{localaddr} specifies the local address to bind to. If not specified it
1221 defaults to @code{0.0.0.0}.
1222
1223 @option{localport} specifies the local port to bind to. If not specified any
1224 available local port will be used.
1225
1226 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
1227 If neither is specified the device may use either protocol.
1228
1229 @item -chardev msmouse ,id=@var{id}
1230
1231 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
1232 take any options.
1233
1234 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
1235
1236 Connect to a QEMU text console. @option{vc} may optionally be given a specific
1237 size.
1238
1239 @option{width} and @option{height} specify the width and height respectively of
1240 the console, in pixels.
1241
1242 @option{cols} and @option{rows} specify that the console be sized to fit a text
1243 console with the given dimensions.
1244
1245 @item -chardev file ,id=@var{id} ,path=@var{path}
1246
1247 Log all traffic received from the guest to a file.
1248
1249 @option{path} specifies the path of the file to be opened. This file will be
1250 created if it does not already exist, and overwritten if it does. @option{path}
1251 is required.
1252
1253 @item -chardev pipe ,id=@var{id} ,path=@var{path}
1254
1255 Create a two-way connection to the guest. The behaviour differs slightly between
1256 Windows hosts and other hosts:
1257
1258 On Windows, a single duplex pipe will be created at
1259 @file{\\.pipe\@option{path}}.
1260
1261 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
1262 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
1263 received by the guest. Data written by the guest can be read from
1264 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
1265 be present.
1266
1267 @option{path} forms part of the pipe path as described above. @option{path} is
1268 required.
1269
1270 @item -chardev console ,id=@var{id}
1271
1272 Send traffic from the guest to QEMU's standard output. @option{console} does not
1273 take any options.
1274
1275 @option{console} is only available on Windows hosts.
1276
1277 @item -chardev serial ,id=@var{id} ,path=@option{path}
1278
1279 Send traffic from the guest to a serial device on the host.
1280
1281 @option{serial} is
1282 only available on Windows hosts.
1283
1284 @option{path} specifies the name of the serial device to open.
1285
1286 @item -chardev pty ,id=@var{id}
1287
1288 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
1289 not take any options.
1290
1291 @option{pty} is not available on Windows hosts.
1292
1293 @item -chardev stdio ,id=@var{id}
1294 Connect to standard input and standard output of the qemu process.
1295 @option{stdio} does not take any options. @option{stdio} is not available on
1296 Windows hosts.
1297
1298 @item -chardev braille ,id=@var{id}
1299
1300 Connect to a local BrlAPI server. @option{braille} does not take any options.
1301
1302 @item -chardev tty ,id=@var{id} ,path=@var{path}
1303
1304 Connect to a local tty device.
1305
1306 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
1307 DragonFlyBSD hosts.
1308
1309 @option{path} specifies the path to the tty. @option{path} is required.
1310
1311 @item -chardev parport ,id=@var{id} ,path=@var{path}
1312
1313 @option{parport} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
1314
1315 Connect to a local parallel port.
1316
1317 @option{path} specifies the path to the parallel port device. @option{path} is
1318 required.
1319
1320 @end table
1321 ETEXI
1322
1323 DEFHEADING()
1324
1325 DEFHEADING(Bluetooth(R) options:)
1326
1327 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1328 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
1329 "-bt hci,host[:id]\n" \
1330 " use host's HCI with the given name\n" \
1331 "-bt hci[,vlan=n]\n" \
1332 " emulate a standard HCI in virtual scatternet 'n'\n" \
1333 "-bt vhci[,vlan=n]\n" \
1334 " add host computer to virtual scatternet 'n' using VHCI\n" \
1335 "-bt device:dev[,vlan=n]\n" \
1336 " emulate a bluetooth device 'dev' in scatternet 'n'\n")
1337 STEXI
1338 @table @option
1339
1340 @item -bt hci[...]
1341 Defines the function of the corresponding Bluetooth HCI. -bt options
1342 are matched with the HCIs present in the chosen machine type. For
1343 example when emulating a machine with only one HCI built into it, only
1344 the first @code{-bt hci[...]} option is valid and defines the HCI's
1345 logic. The Transport Layer is decided by the machine type. Currently
1346 the machines @code{n800} and @code{n810} have one HCI and all other
1347 machines have none.
1348
1349 @anchor{bt-hcis}
1350 The following three types are recognized:
1351
1352 @table @option
1353 @item -bt hci,null
1354 (default) The corresponding Bluetooth HCI assumes no internal logic
1355 and will not respond to any HCI commands or emit events.
1356
1357 @item -bt hci,host[:@var{id}]
1358 (@code{bluez} only) The corresponding HCI passes commands / events
1359 to / from the physical HCI identified by the name @var{id} (default:
1360 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
1361 capable systems like Linux.
1362
1363 @item -bt hci[,vlan=@var{n}]
1364 Add a virtual, standard HCI that will participate in the Bluetooth
1365 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
1366 VLANs, devices inside a bluetooth network @var{n} can only communicate
1367 with other devices in the same network (scatternet).
1368 @end table
1369
1370 @item -bt vhci[,vlan=@var{n}]
1371 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1372 to the host bluetooth stack instead of to the emulated target. This
1373 allows the host and target machines to participate in a common scatternet
1374 and communicate. Requires the Linux @code{vhci} driver installed. Can
1375 be used as following:
1376
1377 @example
1378 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1379 @end example
1380
1381 @item -bt device:@var{dev}[,vlan=@var{n}]
1382 Emulate a bluetooth device @var{dev} and place it in network @var{n}
1383 (default @code{0}). QEMU can only emulate one type of bluetooth devices
1384 currently:
1385
1386 @table @option
1387 @item keyboard
1388 Virtual wireless keyboard implementing the HIDP bluetooth profile.
1389 @end table
1390 @end table
1391 ETEXI
1392
1393 DEFHEADING()
1394
1395 DEFHEADING(Linux/Multiboot boot specific:)
1396 STEXI
1397
1398 When using these options, you can use a given Linux or Multiboot
1399 kernel without installing it in the disk image. It can be useful
1400 for easier testing of various kernels.
1401
1402 @table @option
1403 ETEXI
1404
1405 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1406 "-kernel bzImage use 'bzImage' as kernel image\n")
1407 STEXI
1408 @item -kernel @var{bzImage}
1409 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1410 or in multiboot format.
1411 ETEXI
1412
1413 DEF("append", HAS_ARG, QEMU_OPTION_append, \
1414 "-append cmdline use 'cmdline' as kernel command line\n")
1415 STEXI
1416 @item -append @var{cmdline}
1417 Use @var{cmdline} as kernel command line
1418 ETEXI
1419
1420 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1421 "-initrd file use 'file' as initial ram disk\n")
1422 STEXI
1423 @item -initrd @var{file}
1424 Use @var{file} as initial ram disk.
1425
1426 @item -initrd "@var{file1} arg=foo,@var{file2}"
1427
1428 This syntax is only available with multiboot.
1429
1430 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1431 first module.
1432 ETEXI
1433
1434 STEXI
1435 @end table
1436 ETEXI
1437
1438 DEFHEADING()
1439
1440 DEFHEADING(Debug/Expert options:)
1441
1442 STEXI
1443 @table @option
1444 ETEXI
1445
1446 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1447 "-serial dev redirect the serial port to char device 'dev'\n")
1448 STEXI
1449 @item -serial @var{dev}
1450 Redirect the virtual serial port to host character device
1451 @var{dev}. The default device is @code{vc} in graphical mode and
1452 @code{stdio} in non graphical mode.
1453
1454 This option can be used several times to simulate up to 4 serial
1455 ports.
1456
1457 Use @code{-serial none} to disable all serial ports.
1458
1459 Available character devices are:
1460 @table @option
1461 @item vc[:@var{W}x@var{H}]
1462 Virtual console. Optionally, a width and height can be given in pixel with
1463 @example
1464 vc:800x600
1465 @end example
1466 It is also possible to specify width or height in characters:
1467 @example
1468 vc:80Cx24C
1469 @end example
1470 @item pty
1471 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
1472 @item none
1473 No device is allocated.
1474 @item null
1475 void device
1476 @item /dev/XXX
1477 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1478 parameters are set according to the emulated ones.
1479 @item /dev/parport@var{N}
1480 [Linux only, parallel port only] Use host parallel port
1481 @var{N}. Currently SPP and EPP parallel port features can be used.
1482 @item file:@var{filename}
1483 Write output to @var{filename}. No character can be read.
1484 @item stdio
1485 [Unix only] standard input/output
1486 @item pipe:@var{filename}
1487 name pipe @var{filename}
1488 @item COM@var{n}
1489 [Windows only] Use host serial port @var{n}
1490 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1491 This implements UDP Net Console.
1492 When @var{remote_host} or @var{src_ip} are not specified
1493 they default to @code{0.0.0.0}.
1494 When not using a specified @var{src_port} a random port is automatically chosen.
1495
1496 If you just want a simple readonly console you can use @code{netcat} or
1497 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1498 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1499 will appear in the netconsole session.
1500
1501 If you plan to send characters back via netconsole or you want to stop
1502 and start qemu a lot of times, you should have qemu use the same
1503 source port each time by using something like @code{-serial
1504 udp::4555@@:4556} to qemu. Another approach is to use a patched
1505 version of netcat which can listen to a TCP port and send and receive
1506 characters via udp. If you have a patched version of netcat which
1507 activates telnet remote echo and single char transfer, then you can
1508 use the following options to step up a netcat redirector to allow
1509 telnet on port 5555 to access the qemu port.
1510 @table @code
1511 @item Qemu Options:
1512 -serial udp::4555@@:4556
1513 @item netcat options:
1514 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1515 @item telnet options:
1516 localhost 5555
1517 @end table
1518
1519 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1520 The TCP Net Console has two modes of operation. It can send the serial
1521 I/O to a location or wait for a connection from a location. By default
1522 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1523 the @var{server} option QEMU will wait for a client socket application
1524 to connect to the port before continuing, unless the @code{nowait}
1525 option was specified. The @code{nodelay} option disables the Nagle buffering
1526 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1527 one TCP connection at a time is accepted. You can use @code{telnet} to
1528 connect to the corresponding character device.
1529 @table @code
1530 @item Example to send tcp console to 192.168.0.2 port 4444
1531 -serial tcp:192.168.0.2:4444
1532 @item Example to listen and wait on port 4444 for connection
1533 -serial tcp::4444,server
1534 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1535 -serial tcp:192.168.0.100:4444,server,nowait
1536 @end table
1537
1538 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1539 The telnet protocol is used instead of raw tcp sockets. The options
1540 work the same as if you had specified @code{-serial tcp}. The
1541 difference is that the port acts like a telnet server or client using
1542 telnet option negotiation. This will also allow you to send the
1543 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1544 sequence. Typically in unix telnet you do it with Control-] and then
1545 type "send break" followed by pressing the enter key.
1546
1547 @item unix:@var{path}[,server][,nowait]
1548 A unix domain socket is used instead of a tcp socket. The option works the
1549 same as if you had specified @code{-serial tcp} except the unix domain socket
1550 @var{path} is used for connections.
1551
1552 @item mon:@var{dev_string}
1553 This is a special option to allow the monitor to be multiplexed onto
1554 another serial port. The monitor is accessed with key sequence of
1555 @key{Control-a} and then pressing @key{c}. See monitor access
1556 @ref{pcsys_keys} in the -nographic section for more keys.
1557 @var{dev_string} should be any one of the serial devices specified
1558 above. An example to multiplex the monitor onto a telnet server
1559 listening on port 4444 would be:
1560 @table @code
1561 @item -serial mon:telnet::4444,server,nowait
1562 @end table
1563
1564 @item braille
1565 Braille device. This will use BrlAPI to display the braille output on a real
1566 or fake device.
1567
1568 @item msmouse
1569 Three button serial mouse. Configure the guest to use Microsoft protocol.
1570 @end table
1571 ETEXI
1572
1573 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1574 "-parallel dev redirect the parallel port to char device 'dev'\n")
1575 STEXI
1576 @item -parallel @var{dev}
1577 Redirect the virtual parallel port to host device @var{dev} (same
1578 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1579 be used to use hardware devices connected on the corresponding host
1580 parallel port.
1581
1582 This option can be used several times to simulate up to 3 parallel
1583 ports.
1584
1585 Use @code{-parallel none} to disable all parallel ports.
1586 ETEXI
1587
1588 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1589 "-monitor dev redirect the monitor to char device 'dev'\n")
1590 STEXI
1591 @item -monitor @var{dev}
1592 Redirect the monitor to host device @var{dev} (same devices as the
1593 serial port).
1594 The default device is @code{vc} in graphical mode and @code{stdio} in
1595 non graphical mode.
1596 ETEXI
1597 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
1598 "-qmp dev like -monitor but opens in 'control' mode.\n")
1599
1600 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
1601 "-mon chardev=[name][,mode=readline|control][,default]\n")
1602 STEXI
1603 @item -mon chardev=[name][,mode=readline|control][,default]
1604 Setup monitor on chardev @var{name}.
1605 ETEXI
1606
1607 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1608 "-pidfile file write PID to 'file'\n")
1609 STEXI
1610 @item -pidfile @var{file}
1611 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1612 from a script.
1613 ETEXI
1614
1615 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1616 "-singlestep always run in singlestep mode\n")
1617 STEXI
1618 @item -singlestep
1619 Run the emulation in single step mode.
1620 ETEXI
1621
1622 DEF("S", 0, QEMU_OPTION_S, \
1623 "-S freeze CPU at startup (use 'c' to start execution)\n")
1624 STEXI
1625 @item -S
1626 Do not start CPU at startup (you must type 'c' in the monitor).
1627 ETEXI
1628
1629 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1630 "-gdb dev wait for gdb connection on 'dev'\n")
1631 STEXI
1632 @item -gdb @var{dev}
1633 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1634 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1635 stdio are reasonable use case. The latter is allowing to start qemu from
1636 within gdb and establish the connection via a pipe:
1637 @example
1638 (gdb) target remote | exec qemu -gdb stdio ...
1639 @end example
1640 ETEXI
1641
1642 DEF("s", 0, QEMU_OPTION_s, \
1643 "-s shorthand for -gdb tcp::%s\n")
1644 STEXI
1645 @item -s
1646 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1647 (@pxref{gdb_usage}).
1648 ETEXI
1649
1650 DEF("d", HAS_ARG, QEMU_OPTION_d, \
1651 "-d item1,... output log to %s (use -d ? for a list of log items)\n")
1652 STEXI
1653 @item -d
1654 Output log in /tmp/qemu.log
1655 ETEXI
1656
1657 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1658 "-hdachs c,h,s[,t]\n" \
1659 " force hard disk 0 physical geometry and the optional BIOS\n" \
1660 " translation (t=none or lba) (usually qemu can guess them)\n")
1661 STEXI
1662 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1663 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1664 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1665 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1666 all those parameters. This option is useful for old MS-DOS disk
1667 images.
1668 ETEXI
1669
1670 DEF("L", HAS_ARG, QEMU_OPTION_L, \
1671 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n")
1672 STEXI
1673 @item -L @var{path}
1674 Set the directory for the BIOS, VGA BIOS and keymaps.
1675 ETEXI
1676
1677 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1678 "-bios file set the filename for the BIOS\n")
1679 STEXI
1680 @item -bios @var{file}
1681 Set the filename for the BIOS.
1682 ETEXI
1683
1684 #ifdef CONFIG_KVM
1685 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1686 "-enable-kvm enable KVM full virtualization support\n")
1687 #endif
1688 STEXI
1689 @item -enable-kvm
1690 Enable KVM full virtualization support. This option is only available
1691 if KVM support is enabled when compiling.
1692 ETEXI
1693
1694 #ifdef CONFIG_XEN
1695 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1696 "-xen-domid id specify xen guest domain id\n")
1697 DEF("xen-create", 0, QEMU_OPTION_xen_create,
1698 "-xen-create create domain using xen hypercalls, bypassing xend\n"
1699 " warning: should not be used when xend is in use\n")
1700 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1701 "-xen-attach attach to existing xen domain\n"
1702 " xend will use this when starting qemu\n")
1703 #endif
1704
1705 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1706 "-no-reboot exit instead of rebooting\n")
1707 STEXI
1708 @item -no-reboot
1709 Exit instead of rebooting.
1710 ETEXI
1711
1712 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1713 "-no-shutdown stop before shutdown\n")
1714 STEXI
1715 @item -no-shutdown
1716 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1717 This allows for instance switching to monitor to commit changes to the
1718 disk image.
1719 ETEXI
1720
1721 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1722 "-loadvm [tag|id]\n" \
1723 " start right away with a saved state (loadvm in monitor)\n")
1724 STEXI
1725 @item -loadvm @var{file}
1726 Start right away with a saved state (@code{loadvm} in monitor)
1727 ETEXI
1728
1729 #ifndef _WIN32
1730 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1731 "-daemonize daemonize QEMU after initializing\n")
1732 #endif
1733 STEXI
1734 @item -daemonize
1735 Daemonize the QEMU process after initialization. QEMU will not detach from
1736 standard IO until it is ready to receive connections on any of its devices.
1737 This option is a useful way for external programs to launch QEMU without having
1738 to cope with initialization race conditions.
1739 ETEXI
1740
1741 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1742 "-option-rom rom load a file, rom, into the option ROM space\n")
1743 STEXI
1744 @item -option-rom @var{file}
1745 Load the contents of @var{file} as an option ROM.
1746 This option is useful to load things like EtherBoot.
1747 ETEXI
1748
1749 DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1750 "-clock force the use of the given methods for timer alarm.\n" \
1751 " To see what timers are available use -clock ?\n")
1752 STEXI
1753 @item -clock @var{method}
1754 Force the use of the given methods for timer alarm. To see what timers
1755 are available use -clock ?.
1756 ETEXI
1757
1758 HXCOMM Options deprecated by -rtc
1759 DEF("localtime", 0, QEMU_OPTION_localtime, "")
1760 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "")
1761
1762 #ifdef TARGET_I386
1763 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1764 "-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]\n" \
1765 " set the RTC base and clock, enable drift fix for clock ticks\n")
1766 #else
1767 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1768 "-rtc [base=utc|localtime|date][,clock=host|vm]\n" \
1769 " set the RTC base and clock\n")
1770 #endif
1771
1772 STEXI
1773
1774 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
1775 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
1776 UTC or local time, respectively. @code{localtime} is required for correct date in
1777 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
1778 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
1779
1780 By default the RTC is driven by the host system time. This allows to use the
1781 RTC as accurate reference clock inside the guest, specifically if the host
1782 time is smoothly following an accurate external reference clock, e.g. via NTP.
1783 If you want to isolate the guest time from the host, even prevent it from
1784 progressing during suspension, you can set @option{clock} to @code{vm} instead.
1785
1786 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
1787 specifically with Windows' ACPI HAL. This option will try to figure out how
1788 many timer interrupts were not processed by the Windows guest and will
1789 re-inject them.
1790 ETEXI
1791
1792 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1793 "-icount [N|auto]\n" \
1794 " enable virtual instruction counter with 2^N clock ticks per\n" \
1795 " instruction\n")
1796 STEXI
1797 @item -icount [@var{N}|auto]
1798 Enable virtual instruction counter. The virtual cpu will execute one
1799 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
1800 then the virtual cpu speed will be automatically adjusted to keep virtual
1801 time within a few seconds of real time.
1802
1803 Note that while this option can give deterministic behavior, it does not
1804 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1805 order cores with complex cache hierarchies. The number of instructions
1806 executed often has little or no correlation with actual performance.
1807 ETEXI
1808
1809 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1810 "-watchdog i6300esb|ib700\n" \
1811 " enable virtual hardware watchdog [default=none]\n")
1812 STEXI
1813 @item -watchdog @var{model}
1814 Create a virtual hardware watchdog device. Once enabled (by a guest
1815 action), the watchdog must be periodically polled by an agent inside
1816 the guest or else the guest will be restarted.
1817
1818 The @var{model} is the model of hardware watchdog to emulate. Choices
1819 for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1820 watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1821 controller hub) which is a much more featureful PCI-based dual-timer
1822 watchdog. Choose a model for which your guest has drivers.
1823
1824 Use @code{-watchdog ?} to list available hardware models. Only one
1825 watchdog can be enabled for a guest.
1826 ETEXI
1827
1828 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1829 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1830 " action when watchdog fires [default=reset]\n")
1831 STEXI
1832 @item -watchdog-action @var{action}
1833
1834 The @var{action} controls what QEMU will do when the watchdog timer
1835 expires.
1836 The default is
1837 @code{reset} (forcefully reset the guest).
1838 Other possible actions are:
1839 @code{shutdown} (attempt to gracefully shutdown the guest),
1840 @code{poweroff} (forcefully poweroff the guest),
1841 @code{pause} (pause the guest),
1842 @code{debug} (print a debug message and continue), or
1843 @code{none} (do nothing).
1844
1845 Note that the @code{shutdown} action requires that the guest responds
1846 to ACPI signals, which it may not be able to do in the sort of
1847 situations where the watchdog would have expired, and thus
1848 @code{-watchdog-action shutdown} is not recommended for production use.
1849
1850 Examples:
1851
1852 @table @code
1853 @item -watchdog i6300esb -watchdog-action pause
1854 @item -watchdog ib700
1855 @end table
1856 ETEXI
1857
1858 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1859 "-echr chr set terminal escape character instead of ctrl-a\n")
1860 STEXI
1861
1862 @item -echr @var{numeric_ascii_value}
1863 Change the escape character used for switching to the monitor when using
1864 monitor and serial sharing. The default is @code{0x01} when using the
1865 @code{-nographic} option. @code{0x01} is equal to pressing
1866 @code{Control-a}. You can select a different character from the ascii
1867 control keys where 1 through 26 map to Control-a through Control-z. For
1868 instance you could use the either of the following to change the escape
1869 character to Control-t.
1870 @table @code
1871 @item -echr 0x14
1872 @item -echr 20
1873 @end table
1874 ETEXI
1875
1876 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1877 "-virtioconsole c\n" \
1878 " set virtio console\n")
1879 STEXI
1880 @item -virtioconsole @var{c}
1881 Set virtio console.
1882 ETEXI
1883
1884 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1885 "-show-cursor show cursor\n")
1886 STEXI
1887 ETEXI
1888
1889 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1890 "-tb-size n set TB size\n")
1891 STEXI
1892 ETEXI
1893
1894 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1895 "-incoming p prepare for incoming migration, listen on port p\n")
1896 STEXI
1897 ETEXI
1898
1899 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
1900 "-nodefaults don't create default devices.\n")
1901 STEXI
1902 @item -nodefaults
1903 Don't create default devices.
1904 ETEXI
1905
1906 #ifndef _WIN32
1907 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1908 "-chroot dir Chroot to dir just before starting the VM.\n")
1909 #endif
1910 STEXI
1911 @item -chroot @var{dir}
1912 Immediately before starting guest execution, chroot to the specified
1913 directory. Especially useful in combination with -runas.
1914 ETEXI
1915
1916 #ifndef _WIN32
1917 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1918 "-runas user Change to user id user just before starting the VM.\n")
1919 #endif
1920 STEXI
1921 @item -runas @var{user}
1922 Immediately before starting guest execution, drop root privileges, switching
1923 to the specified user.
1924 ETEXI
1925
1926 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
1927 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1928 "-prom-env variable=value\n"
1929 " set OpenBIOS nvram variables\n")
1930 #endif
1931 #if defined(TARGET_ARM) || defined(TARGET_M68K)
1932 DEF("semihosting", 0, QEMU_OPTION_semihosting,
1933 "-semihosting semihosting mode\n")
1934 #endif
1935 #if defined(TARGET_ARM)
1936 DEF("old-param", 0, QEMU_OPTION_old_param,
1937 "-old-param old param mode\n")
1938 #endif
1939 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
1940 "-readconfig <file>\n")
1941 STEXI
1942 @item -readconfig @var{file}
1943 Read device configuration from @var{file}.
1944 ETEXI
1945 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
1946 "-writeconfig <file>\n"
1947 " read/write config file\n")
1948 STEXI
1949 @item -writeconfig @var{file}
1950 Write device configuration to @var{file}.
1951 ETEXI
1952
1953 HXCOMM This is the last statement. Insert new options before this line!
1954 STEXI
1955 @end table
1956 ETEXI