]> git.proxmox.com Git - qemu.git/blob - qemu-options.hx
net: import linux tap ioctl definitions
[qemu.git] / qemu-options.hx
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5 HXCOMM option structures, enums and help message.
6 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
7
8 DEFHEADING(Standard options:)
9 STEXI
10 @table @option
11 ETEXI
12
13 DEF("help", 0, QEMU_OPTION_h,
14 "-h or -help display this help and exit\n")
15 STEXI
16 @item -h
17 Display help and exit
18 ETEXI
19
20 DEF("version", 0, QEMU_OPTION_version,
21 "-version display version information and exit\n")
22 STEXI
23 @item -version
24 Display version information and exit
25 ETEXI
26
27 DEF("M", HAS_ARG, QEMU_OPTION_M,
28 "-M machine select emulated machine (-M ? for list)\n")
29 STEXI
30 @item -M @var{machine}
31 Select the emulated @var{machine} (@code{-M ?} for list)
32 ETEXI
33
34 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35 "-cpu cpu select CPU (-cpu ? for list)\n")
36 STEXI
37 @item -cpu @var{model}
38 Select CPU model (-cpu ? for list and additional feature selection)
39 ETEXI
40
41 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42 "-smp n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
43 " set the number of CPUs to 'n' [default=1]\n"
44 " maxcpus= maximum number of total cpus, including\n"
45 " offline CPUs for hotplug etc.\n"
46 " cores= number of CPU cores on one socket\n"
47 " threads= number of threads on one CPU core\n"
48 " sockets= number of discrete sockets in the system\n")
49 STEXI
50 @item -smp @var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
51 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
52 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
53 to 4.
54 For the PC target, the number of @var{cores} per socket, the number
55 of @var{threads} per cores and the total number of @var{sockets} can be
56 specified. Missing values will be computed. If any on the three values is
57 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
58 specifies the maximum number of hotpluggable CPUs.
59 ETEXI
60
61 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
62 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
63 STEXI
64 @item -numa @var{opts}
65 Simulate a multi node NUMA system. If mem and cpus are omitted, resources
66 are split equally.
67 ETEXI
68
69 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
70 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n")
71 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
72 STEXI
73 @item -fda @var{file}
74 @item -fdb @var{file}
75 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
76 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
77 ETEXI
78
79 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
80 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n")
81 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
82 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
83 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n")
84 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
85 STEXI
86 @item -hda @var{file}
87 @item -hdb @var{file}
88 @item -hdc @var{file}
89 @item -hdd @var{file}
90 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
91 ETEXI
92
93 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
94 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
95 STEXI
96 @item -cdrom @var{file}
97 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
98 @option{-cdrom} at the same time). You can use the host CD-ROM by
99 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
100 ETEXI
101
102 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
103 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
104 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
105 " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
106 " [,addr=A][,id=name][,aio=threads|native]\n"
107 " use 'file' as a drive image\n")
108 DEF("set", HAS_ARG, QEMU_OPTION_set,
109 "-set group.id.arg=value\n"
110 " set <arg> parameter for item <id> of type <group>\n"
111 " i.e. -set drive.$id.file=/path/to/image\n")
112 STEXI
113 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
114
115 Define a new drive. Valid options are:
116
117 @table @option
118 @item file=@var{file}
119 This option defines which disk image (@pxref{disk_images}) to use with
120 this drive. If the filename contains comma, you must double it
121 (for instance, "file=my,,file" to use file "my,file").
122 @item if=@var{interface}
123 This option defines on which type on interface the drive is connected.
124 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
125 @item bus=@var{bus},unit=@var{unit}
126 These options define where is connected the drive by defining the bus number and
127 the unit id.
128 @item index=@var{index}
129 This option defines where is connected the drive by using an index in the list
130 of available connectors of a given interface type.
131 @item media=@var{media}
132 This option defines the type of the media: disk or cdrom.
133 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
134 These options have the same definition as they have in @option{-hdachs}.
135 @item snapshot=@var{snapshot}
136 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
137 @item cache=@var{cache}
138 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
139 @item aio=@var{aio}
140 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
141 @item format=@var{format}
142 Specify which disk @var{format} will be used rather than detecting
143 the format. Can be used to specifiy format=raw to avoid interpreting
144 an untrusted format header.
145 @item serial=@var{serial}
146 This option specifies the serial number to assign to the device.
147 @item addr=@var{addr}
148 Specify the controller's PCI address (if=virtio only).
149 @end table
150
151 By default, writethrough caching is used for all block device. This means that
152 the host page cache will be used to read and write data but write notification
153 will be sent to the guest only when the data has been reported as written by
154 the storage subsystem.
155
156 Writeback caching will report data writes as completed as soon as the data is
157 present in the host page cache. This is safe as long as you trust your host.
158 If your host crashes or loses power, then the guest may experience data
159 corruption. When using the @option{-snapshot} option, writeback caching is
160 used by default.
161
162 The host page cache can be avoided entirely with @option{cache=none}. This will
163 attempt to do disk IO directly to the guests memory. QEMU may still perform
164 an internal copy of the data.
165
166 Some block drivers perform badly with @option{cache=writethrough}, most notably,
167 qcow2. If performance is more important than correctness,
168 @option{cache=writeback} should be used with qcow2.
169
170 Instead of @option{-cdrom} you can use:
171 @example
172 qemu -drive file=file,index=2,media=cdrom
173 @end example
174
175 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
176 use:
177 @example
178 qemu -drive file=file,index=0,media=disk
179 qemu -drive file=file,index=1,media=disk
180 qemu -drive file=file,index=2,media=disk
181 qemu -drive file=file,index=3,media=disk
182 @end example
183
184 You can connect a CDROM to the slave of ide0:
185 @example
186 qemu -drive file=file,if=ide,index=1,media=cdrom
187 @end example
188
189 If you don't specify the "file=" argument, you define an empty drive:
190 @example
191 qemu -drive if=ide,index=1,media=cdrom
192 @end example
193
194 You can connect a SCSI disk with unit ID 6 on the bus #0:
195 @example
196 qemu -drive file=file,if=scsi,bus=0,unit=6
197 @end example
198
199 Instead of @option{-fda}, @option{-fdb}, you can use:
200 @example
201 qemu -drive file=file,index=0,if=floppy
202 qemu -drive file=file,index=1,if=floppy
203 @end example
204
205 By default, @var{interface} is "ide" and @var{index} is automatically
206 incremented:
207 @example
208 qemu -drive file=a -drive file=b"
209 @end example
210 is interpreted like:
211 @example
212 qemu -hda a -hdb b
213 @end example
214 ETEXI
215
216 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
217 "-mtdblock file use 'file' as on-board Flash memory image\n")
218 STEXI
219
220 @item -mtdblock @var{file}
221 Use @var{file} as on-board Flash memory image.
222 ETEXI
223
224 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
225 "-sd file use 'file' as SecureDigital card image\n")
226 STEXI
227 @item -sd @var{file}
228 Use @var{file} as SecureDigital card image.
229 ETEXI
230
231 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
232 "-pflash file use 'file' as a parallel flash image\n")
233 STEXI
234 @item -pflash @var{file}
235 Use @var{file} as a parallel flash image.
236 ETEXI
237
238 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
239 "-boot [order=drives][,once=drives][,menu=on|off]\n"
240 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
241 STEXI
242 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
243
244 Specify boot order @var{drives} as a string of drive letters. Valid
245 drive letters depend on the target achitecture. The x86 PC uses: a, b
246 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
247 from network adapter 1-4), hard disk boot is the default. To apply a
248 particular boot order only on the first startup, specify it via
249 @option{once}.
250
251 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
252 as firmware/BIOS supports them. The default is non-interactive boot.
253
254 @example
255 # try to boot from network first, then from hard disk
256 qemu -boot order=nc
257 # boot from CD-ROM first, switch back to default order after reboot
258 qemu -boot once=d
259 @end example
260
261 Note: The legacy format '-boot @var{drives}' is still supported but its
262 use is discouraged as it may be removed from future versions.
263 ETEXI
264
265 DEF("snapshot", 0, QEMU_OPTION_snapshot,
266 "-snapshot write to temporary files instead of disk image files\n")
267 STEXI
268 @item -snapshot
269 Write to temporary files instead of disk image files. In this case,
270 the raw disk image you use is not written back. You can however force
271 the write back by pressing @key{C-a s} (@pxref{disk_images}).
272 ETEXI
273
274 DEF("m", HAS_ARG, QEMU_OPTION_m,
275 "-m megs set virtual RAM size to megs MB [default=%d]\n")
276 STEXI
277 @item -m @var{megs}
278 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
279 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
280 gigabytes respectively.
281 ETEXI
282
283 DEF("k", HAS_ARG, QEMU_OPTION_k,
284 "-k language use keyboard layout (for example 'fr' for French)\n")
285 STEXI
286 @item -k @var{language}
287
288 Use keyboard layout @var{language} (for example @code{fr} for
289 French). This option is only needed where it is not easy to get raw PC
290 keycodes (e.g. on Macs, with some X11 servers or with a VNC
291 display). You don't normally need to use it on PC/Linux or PC/Windows
292 hosts.
293
294 The available layouts are:
295 @example
296 ar de-ch es fo fr-ca hu ja mk no pt-br sv
297 da en-gb et fr fr-ch is lt nl pl ru th
298 de en-us fi fr-be hr it lv nl-be pt sl tr
299 @end example
300
301 The default is @code{en-us}.
302 ETEXI
303
304
305 #ifdef HAS_AUDIO
306 DEF("audio-help", 0, QEMU_OPTION_audio_help,
307 "-audio-help print list of audio drivers and their options\n")
308 #endif
309 STEXI
310 @item -audio-help
311
312 Will show the audio subsystem help: list of drivers, tunable
313 parameters.
314 ETEXI
315
316 #ifdef HAS_AUDIO
317 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
318 "-soundhw c1,... enable audio support\n"
319 " and only specified sound cards (comma separated list)\n"
320 " use -soundhw ? to get the list of supported cards\n"
321 " use -soundhw all to enable all of them\n")
322 #endif
323 STEXI
324 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
325
326 Enable audio and selected sound hardware. Use ? to print all
327 available sound hardware.
328
329 @example
330 qemu -soundhw sb16,adlib disk.img
331 qemu -soundhw es1370 disk.img
332 qemu -soundhw ac97 disk.img
333 qemu -soundhw all disk.img
334 qemu -soundhw ?
335 @end example
336
337 Note that Linux's i810_audio OSS kernel (for AC97) module might
338 require manually specifying clocking.
339
340 @example
341 modprobe i810_audio clocking=48000
342 @end example
343 ETEXI
344
345 STEXI
346 @end table
347 ETEXI
348
349 DEF("usb", 0, QEMU_OPTION_usb,
350 "-usb enable the USB driver (will be the default soon)\n")
351 STEXI
352 USB options:
353 @table @option
354
355 @item -usb
356 Enable the USB driver (will be the default soon)
357 ETEXI
358
359 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
360 "-usbdevice name add the host or guest USB device 'name'\n")
361 STEXI
362
363 @item -usbdevice @var{devname}
364 Add the USB device @var{devname}. @xref{usb_devices}.
365
366 @table @option
367
368 @item mouse
369 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
370
371 @item tablet
372 Pointer device that uses absolute coordinates (like a touchscreen). This
373 means qemu is able to report the mouse position without having to grab the
374 mouse. Also overrides the PS/2 mouse emulation when activated.
375
376 @item disk:[format=@var{format}]:@var{file}
377 Mass storage device based on file. The optional @var{format} argument
378 will be used rather than detecting the format. Can be used to specifiy
379 @code{format=raw} to avoid interpreting an untrusted format header.
380
381 @item host:@var{bus}.@var{addr}
382 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
383
384 @item host:@var{vendor_id}:@var{product_id}
385 Pass through the host device identified by @var{vendor_id}:@var{product_id}
386 (Linux only).
387
388 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
389 Serial converter to host character device @var{dev}, see @code{-serial} for the
390 available devices.
391
392 @item braille
393 Braille device. This will use BrlAPI to display the braille output on a real
394 or fake device.
395
396 @item net:@var{options}
397 Network adapter that supports CDC ethernet and RNDIS protocols.
398
399 @end table
400 ETEXI
401
402 DEF("device", HAS_ARG, QEMU_OPTION_device,
403 "-device driver[,options] add device\n")
404 DEF("name", HAS_ARG, QEMU_OPTION_name,
405 "-name string1[,process=string2] set the name of the guest\n"
406 " string1 sets the window title and string2 the process name (on Linux)\n")
407 STEXI
408 @item -name @var{name}
409 Sets the @var{name} of the guest.
410 This name will be displayed in the SDL window caption.
411 The @var{name} will also be used for the VNC server.
412 Also optionally set the top visible process name in Linux.
413 ETEXI
414
415 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
416 "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
417 " specify machine UUID\n")
418 STEXI
419 @item -uuid @var{uuid}
420 Set system UUID.
421 ETEXI
422
423 STEXI
424 @end table
425 ETEXI
426
427 DEFHEADING()
428
429 DEFHEADING(Display options:)
430
431 STEXI
432 @table @option
433 ETEXI
434
435 DEF("nographic", 0, QEMU_OPTION_nographic,
436 "-nographic disable graphical output and redirect serial I/Os to console\n")
437 STEXI
438 @item -nographic
439
440 Normally, QEMU uses SDL to display the VGA output. With this option,
441 you can totally disable graphical output so that QEMU is a simple
442 command line application. The emulated serial port is redirected on
443 the console. Therefore, you can still use QEMU to debug a Linux kernel
444 with a serial console.
445 ETEXI
446
447 #ifdef CONFIG_CURSES
448 DEF("curses", 0, QEMU_OPTION_curses,
449 "-curses use a curses/ncurses interface instead of SDL\n")
450 #endif
451 STEXI
452 @item -curses
453
454 Normally, QEMU uses SDL to display the VGA output. With this option,
455 QEMU can display the VGA output when in text mode using a
456 curses/ncurses interface. Nothing is displayed in graphical mode.
457 ETEXI
458
459 #ifdef CONFIG_SDL
460 DEF("no-frame", 0, QEMU_OPTION_no_frame,
461 "-no-frame open SDL window without a frame and window decorations\n")
462 #endif
463 STEXI
464 @item -no-frame
465
466 Do not use decorations for SDL windows and start them using the whole
467 available screen space. This makes the using QEMU in a dedicated desktop
468 workspace more convenient.
469 ETEXI
470
471 #ifdef CONFIG_SDL
472 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
473 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
474 #endif
475 STEXI
476 @item -alt-grab
477
478 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
479 ETEXI
480
481 #ifdef CONFIG_SDL
482 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
483 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n")
484 #endif
485 STEXI
486 @item -ctrl-grab
487
488 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt).
489 ETEXI
490
491 #ifdef CONFIG_SDL
492 DEF("no-quit", 0, QEMU_OPTION_no_quit,
493 "-no-quit disable SDL window close capability\n")
494 #endif
495 STEXI
496 @item -no-quit
497
498 Disable SDL window close capability.
499 ETEXI
500
501 #ifdef CONFIG_SDL
502 DEF("sdl", 0, QEMU_OPTION_sdl,
503 "-sdl enable SDL\n")
504 #endif
505 STEXI
506 @item -sdl
507
508 Enable SDL.
509 ETEXI
510
511 DEF("portrait", 0, QEMU_OPTION_portrait,
512 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n")
513 STEXI
514 @item -portrait
515
516 Rotate graphical output 90 deg left (only PXA LCD).
517 ETEXI
518
519 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
520 "-vga [std|cirrus|vmware|xenfb|none]\n"
521 " select video card type\n")
522 STEXI
523 @item -vga @var{type}
524 Select type of VGA card to emulate. Valid values for @var{type} are
525 @table @option
526 @item cirrus
527 Cirrus Logic GD5446 Video card. All Windows versions starting from
528 Windows 95 should recognize and use this graphic card. For optimal
529 performances, use 16 bit color depth in the guest and the host OS.
530 (This one is the default)
531 @item std
532 Standard VGA card with Bochs VBE extensions. If your guest OS
533 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
534 to use high resolution modes (>= 1280x1024x16) then you should use
535 this option.
536 @item vmware
537 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
538 recent XFree86/XOrg server or Windows guest with a driver for this
539 card.
540 @item none
541 Disable VGA card.
542 @end table
543 ETEXI
544
545 DEF("full-screen", 0, QEMU_OPTION_full_screen,
546 "-full-screen start in full screen\n")
547 STEXI
548 @item -full-screen
549 Start in full screen.
550 ETEXI
551
552 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
553 DEF("g", 1, QEMU_OPTION_g ,
554 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n")
555 #endif
556 STEXI
557 ETEXI
558
559 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
560 "-vnc display start a VNC server on display\n")
561 STEXI
562 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
563
564 Normally, QEMU uses SDL to display the VGA output. With this option,
565 you can have QEMU listen on VNC display @var{display} and redirect the VGA
566 display over the VNC session. It is very useful to enable the usb
567 tablet device when using this option (option @option{-usbdevice
568 tablet}). When using the VNC display, you must use the @option{-k}
569 parameter to set the keyboard layout if you are not using en-us. Valid
570 syntax for the @var{display} is
571
572 @table @option
573
574 @item @var{host}:@var{d}
575
576 TCP connections will only be allowed from @var{host} on display @var{d}.
577 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
578 be omitted in which case the server will accept connections from any host.
579
580 @item unix:@var{path}
581
582 Connections will be allowed over UNIX domain sockets where @var{path} is the
583 location of a unix socket to listen for connections on.
584
585 @item none
586
587 VNC is initialized but not started. The monitor @code{change} command
588 can be used to later start the VNC server.
589
590 @end table
591
592 Following the @var{display} value there may be one or more @var{option} flags
593 separated by commas. Valid options are
594
595 @table @option
596
597 @item reverse
598
599 Connect to a listening VNC client via a ``reverse'' connection. The
600 client is specified by the @var{display}. For reverse network
601 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
602 is a TCP port number, not a display number.
603
604 @item password
605
606 Require that password based authentication is used for client connections.
607 The password must be set separately using the @code{change} command in the
608 @ref{pcsys_monitor}
609
610 @item tls
611
612 Require that client use TLS when communicating with the VNC server. This
613 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
614 attack. It is recommended that this option be combined with either the
615 @option{x509} or @option{x509verify} options.
616
617 @item x509=@var{/path/to/certificate/dir}
618
619 Valid if @option{tls} is specified. Require that x509 credentials are used
620 for negotiating the TLS session. The server will send its x509 certificate
621 to the client. It is recommended that a password be set on the VNC server
622 to provide authentication of the client when this is used. The path following
623 this option specifies where the x509 certificates are to be loaded from.
624 See the @ref{vnc_security} section for details on generating certificates.
625
626 @item x509verify=@var{/path/to/certificate/dir}
627
628 Valid if @option{tls} is specified. Require that x509 credentials are used
629 for negotiating the TLS session. The server will send its x509 certificate
630 to the client, and request that the client send its own x509 certificate.
631 The server will validate the client's certificate against the CA certificate,
632 and reject clients when validation fails. If the certificate authority is
633 trusted, this is a sufficient authentication mechanism. You may still wish
634 to set a password on the VNC server as a second authentication layer. The
635 path following this option specifies where the x509 certificates are to
636 be loaded from. See the @ref{vnc_security} section for details on generating
637 certificates.
638
639 @item sasl
640
641 Require that the client use SASL to authenticate with the VNC server.
642 The exact choice of authentication method used is controlled from the
643 system / user's SASL configuration file for the 'qemu' service. This
644 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
645 unprivileged user, an environment variable SASL_CONF_PATH can be used
646 to make it search alternate locations for the service config.
647 While some SASL auth methods can also provide data encryption (eg GSSAPI),
648 it is recommended that SASL always be combined with the 'tls' and
649 'x509' settings to enable use of SSL and server certificates. This
650 ensures a data encryption preventing compromise of authentication
651 credentials. See the @ref{vnc_security} section for details on using
652 SASL authentication.
653
654 @item acl
655
656 Turn on access control lists for checking of the x509 client certificate
657 and SASL party. For x509 certs, the ACL check is made against the
658 certificate's distinguished name. This is something that looks like
659 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
660 made against the username, which depending on the SASL plugin, may
661 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
662 When the @option{acl} flag is set, the initial access list will be
663 empty, with a @code{deny} policy. Thus no one will be allowed to
664 use the VNC server until the ACLs have been loaded. This can be
665 achieved using the @code{acl} monitor command.
666
667 @end table
668 ETEXI
669
670 STEXI
671 @end table
672 ETEXI
673
674 DEFHEADING()
675
676 #ifdef TARGET_I386
677 DEFHEADING(i386 target only:)
678 #endif
679 STEXI
680 @table @option
681 ETEXI
682
683 #ifdef TARGET_I386
684 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
685 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n")
686 #endif
687 STEXI
688 @item -win2k-hack
689 Use it when installing Windows 2000 to avoid a disk full bug. After
690 Windows 2000 is installed, you no longer need this option (this option
691 slows down the IDE transfers).
692 ETEXI
693
694 #ifdef TARGET_I386
695 HXCOMM Deprecated by -rtc
696 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "")
697 #endif
698
699 #ifdef TARGET_I386
700 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
701 "-no-fd-bootchk disable boot signature checking for floppy disks\n")
702 #endif
703 STEXI
704 @item -no-fd-bootchk
705 Disable boot signature checking for floppy disks in Bochs BIOS. It may
706 be needed to boot from old floppy disks.
707 ETEXI
708
709 #ifdef TARGET_I386
710 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
711 "-no-acpi disable ACPI\n")
712 #endif
713 STEXI
714 @item -no-acpi
715 Disable ACPI (Advanced Configuration and Power Interface) support. Use
716 it if your guest OS complains about ACPI problems (PC target machine
717 only).
718 ETEXI
719
720 #ifdef TARGET_I386
721 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
722 "-no-hpet disable HPET\n")
723 #endif
724 STEXI
725 @item -no-hpet
726 Disable HPET support.
727 ETEXI
728
729 #ifdef TARGET_I386
730 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
731 "-balloon none disable balloon device\n"
732 "-balloon virtio[,addr=str]\n"
733 " enable virtio balloon device (default)\n")
734 #endif
735 STEXI
736 @item -balloon none
737 Disable balloon device.
738 @item -balloon virtio[,addr=@var{addr}]
739 Enable virtio balloon device (default), optionally with PCI address
740 @var{addr}.
741 ETEXI
742
743 #ifdef TARGET_I386
744 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
745 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
746 " ACPI table description\n")
747 #endif
748 STEXI
749 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
750 Add ACPI table with specified header fields and context from specified files.
751 ETEXI
752
753 #ifdef TARGET_I386
754 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
755 "-smbios file=binary\n"
756 " Load SMBIOS entry from binary file\n"
757 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
758 " Specify SMBIOS type 0 fields\n"
759 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
760 " [,uuid=uuid][,sku=str][,family=str]\n"
761 " Specify SMBIOS type 1 fields\n")
762 #endif
763 STEXI
764 @item -smbios file=@var{binary}
765 Load SMBIOS entry from binary file.
766
767 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
768 Specify SMBIOS type 0 fields
769
770 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
771 Specify SMBIOS type 1 fields
772 ETEXI
773
774 #ifdef TARGET_I386
775 DEFHEADING()
776 #endif
777 STEXI
778 @end table
779 ETEXI
780
781 DEFHEADING(Network options:)
782 STEXI
783 @table @option
784 ETEXI
785
786 HXCOMM Legacy slirp options (now moved to -net user):
787 #ifdef CONFIG_SLIRP
788 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
789 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
790 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
791 #ifndef _WIN32
792 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
793 #endif
794 #endif
795
796 DEF("net", HAS_ARG, QEMU_OPTION_net,
797 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
798 " create a new Network Interface Card and connect it to VLAN 'n'\n"
799 #ifdef CONFIG_SLIRP
800 "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
801 " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
802 " [,hostfwd=rule][,guestfwd=rule]"
803 #ifndef _WIN32
804 "[,smb=dir[,smbserver=addr]]\n"
805 #endif
806 " connect the user mode network stack to VLAN 'n', configure its\n"
807 " DHCP server and enabled optional services\n"
808 #endif
809 #ifdef _WIN32
810 "-net tap[,vlan=n][,name=str],ifname=name\n"
811 " connect the host TAP network interface to VLAN 'n'\n"
812 #else
813 "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile][,sndbuf=nbytes]\n"
814 " connect the host TAP network interface to VLAN 'n' and use the\n"
815 " network scripts 'file' (default=%s)\n"
816 " and 'dfile' (default=%s);\n"
817 " use '[down]script=no' to disable script execution;\n"
818 " use 'fd=h' to connect to an already opened TAP interface\n"
819 " use 'sndbuf=nbytes' to limit the size of the send buffer; the\n"
820 " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0'\n"
821 #endif
822 "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
823 " connect the vlan 'n' to another VLAN using a socket connection\n"
824 "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
825 " connect the vlan 'n' to multicast maddr and port\n"
826 #ifdef CONFIG_VDE
827 "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
828 " connect the vlan 'n' to port 'n' of a vde switch running\n"
829 " on host and listening for incoming connections on 'socketpath'.\n"
830 " Use group 'groupname' and mode 'octalmode' to change default\n"
831 " ownership and permissions for communication port.\n"
832 #endif
833 "-net dump[,vlan=n][,file=f][,len=n]\n"
834 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
835 "-net none use it alone to have zero network devices; if no -net option\n"
836 " is provided, the default is '-net nic -net user'\n")
837 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
838 "-netdev ["
839 #ifdef CONFIG_SLIRP
840 "user|"
841 #endif
842 "tap|"
843 #ifdef CONFIG_VDE
844 "vde|"
845 #endif
846 "socket],id=str[,option][,option][,...]\n")
847 STEXI
848 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
849 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
850 = 0 is the default). The NIC is an e1000 by default on the PC
851 target. Optionally, the MAC address can be changed to @var{mac}, the
852 device address set to @var{addr} (PCI cards only),
853 and a @var{name} can be assigned for use in monitor commands.
854 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
855 that the card should have; this option currently only affects virtio cards; set
856 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
857 NIC is created. Qemu can emulate several different models of network card.
858 Valid values for @var{type} are
859 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
860 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
861 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
862 Not all devices are supported on all targets. Use -net nic,model=?
863 for a list of available devices for your target.
864
865 @item -net user[,@var{option}][,@var{option}][,...]
866 Use the user mode network stack which requires no administrator
867 privilege to run. Valid options are:
868
869 @table @option
870 @item vlan=@var{n}
871 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
872
873 @item name=@var{name}
874 Assign symbolic name for use in monitor commands.
875
876 @item net=@var{addr}[/@var{mask}]
877 Set IP network address the guest will see. Optionally specify the netmask,
878 either in the form a.b.c.d or as number of valid top-most bits. Default is
879 10.0.2.0/8.
880
881 @item host=@var{addr}
882 Specify the guest-visible address of the host. Default is the 2nd IP in the
883 guest network, i.e. x.x.x.2.
884
885 @item restrict=y|yes|n|no
886 If this options is enabled, the guest will be isolated, i.e. it will not be
887 able to contact the host and no guest IP packets will be routed over the host
888 to the outside. This option does not affect explicitly set forwarding rule.
889
890 @item hostname=@var{name}
891 Specifies the client hostname reported by the builtin DHCP server.
892
893 @item dhcpstart=@var{addr}
894 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
895 is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
896
897 @item dns=@var{addr}
898 Specify the guest-visible address of the virtual nameserver. The address must
899 be different from the host address. Default is the 3rd IP in the guest network,
900 i.e. x.x.x.3.
901
902 @item tftp=@var{dir}
903 When using the user mode network stack, activate a built-in TFTP
904 server. The files in @var{dir} will be exposed as the root of a TFTP server.
905 The TFTP client on the guest must be configured in binary mode (use the command
906 @code{bin} of the Unix TFTP client).
907
908 @item bootfile=@var{file}
909 When using the user mode network stack, broadcast @var{file} as the BOOTP
910 filename. In conjunction with @option{tftp}, this can be used to network boot
911 a guest from a local directory.
912
913 Example (using pxelinux):
914 @example
915 qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
916 @end example
917
918 @item smb=@var{dir}[,smbserver=@var{addr}]
919 When using the user mode network stack, activate a built-in SMB
920 server so that Windows OSes can access to the host files in @file{@var{dir}}
921 transparently. The IP address of the SMB server can be set to @var{addr}. By
922 default the 4th IP in the guest network is used, i.e. x.x.x.4.
923
924 In the guest Windows OS, the line:
925 @example
926 10.0.2.4 smbserver
927 @end example
928 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
929 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
930
931 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
932
933 Note that a SAMBA server must be installed on the host OS in
934 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
935 Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
936
937 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
938 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
939 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
940 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
941 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
942 be bound to a specific host interface. If no connection type is set, TCP is
943 used. This option can be given multiple times.
944
945 For example, to redirect host X11 connection from screen 1 to guest
946 screen 0, use the following:
947
948 @example
949 # on the host
950 qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
951 # this host xterm should open in the guest X11 server
952 xterm -display :1
953 @end example
954
955 To redirect telnet connections from host port 5555 to telnet port on
956 the guest, use the following:
957
958 @example
959 # on the host
960 qemu -net user,hostfwd=tcp:5555::23 [...]
961 telnet localhost 5555
962 @end example
963
964 Then when you use on the host @code{telnet localhost 5555}, you
965 connect to the guest telnet server.
966
967 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
968 Forward guest TCP connections to the IP address @var{server} on port @var{port}
969 to the character device @var{dev}. This option can be given multiple times.
970
971 @end table
972
973 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
974 processed and applied to -net user. Mixing them with the new configuration
975 syntax gives undefined results. Their use for new applications is discouraged
976 as they will be removed from future versions.
977
978 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
979 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
980 the network script @var{file} to configure it and the network script
981 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
982 automatically provides one. @option{fd}=@var{h} can be used to specify
983 the handle of an already opened host TAP interface. The default network
984 configure script is @file{/etc/qemu-ifup} and the default network
985 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
986 or @option{downscript=no} to disable script execution. Example:
987
988 @example
989 qemu linux.img -net nic -net tap
990 @end example
991
992 More complicated example (two NICs, each one connected to a TAP device)
993 @example
994 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
995 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
996 @end example
997
998 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
999
1000 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1001 machine using a TCP socket connection. If @option{listen} is
1002 specified, QEMU waits for incoming connections on @var{port}
1003 (@var{host} is optional). @option{connect} is used to connect to
1004 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1005 specifies an already opened TCP socket.
1006
1007 Example:
1008 @example
1009 # launch a first QEMU instance
1010 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1011 -net socket,listen=:1234
1012 # connect the VLAN 0 of this instance to the VLAN 0
1013 # of the first instance
1014 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1015 -net socket,connect=127.0.0.1:1234
1016 @end example
1017
1018 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
1019
1020 Create a VLAN @var{n} shared with another QEMU virtual
1021 machines using a UDP multicast socket, effectively making a bus for
1022 every QEMU with same multicast address @var{maddr} and @var{port}.
1023 NOTES:
1024 @enumerate
1025 @item
1026 Several QEMU can be running on different hosts and share same bus (assuming
1027 correct multicast setup for these hosts).
1028 @item
1029 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1030 @url{http://user-mode-linux.sf.net}.
1031 @item
1032 Use @option{fd=h} to specify an already opened UDP multicast socket.
1033 @end enumerate
1034
1035 Example:
1036 @example
1037 # launch one QEMU instance
1038 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1039 -net socket,mcast=230.0.0.1:1234
1040 # launch another QEMU instance on same "bus"
1041 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1042 -net socket,mcast=230.0.0.1:1234
1043 # launch yet another QEMU instance on same "bus"
1044 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1045 -net socket,mcast=230.0.0.1:1234
1046 @end example
1047
1048 Example (User Mode Linux compat.):
1049 @example
1050 # launch QEMU instance (note mcast address selected
1051 # is UML's default)
1052 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1053 -net socket,mcast=239.192.168.1:1102
1054 # launch UML
1055 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
1056 @end example
1057
1058 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1059 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1060 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1061 and MODE @var{octalmode} to change default ownership and permissions for
1062 communication port. This option is available only if QEMU has been compiled
1063 with vde support enabled.
1064
1065 Example:
1066 @example
1067 # launch vde switch
1068 vde_switch -F -sock /tmp/myswitch
1069 # launch QEMU instance
1070 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1071 @end example
1072
1073 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1074 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1075 At most @var{len} bytes (64k by default) per packet are stored. The file format is
1076 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1077
1078 @item -net none
1079 Indicate that no network devices should be configured. It is used to
1080 override the default configuration (@option{-net nic -net user}) which
1081 is activated if no @option{-net} options are provided.
1082
1083 @end table
1084 ETEXI
1085
1086 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1087 "\n" \
1088 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
1089 "-bt hci,host[:id]\n" \
1090 " use host's HCI with the given name\n" \
1091 "-bt hci[,vlan=n]\n" \
1092 " emulate a standard HCI in virtual scatternet 'n'\n" \
1093 "-bt vhci[,vlan=n]\n" \
1094 " add host computer to virtual scatternet 'n' using VHCI\n" \
1095 "-bt device:dev[,vlan=n]\n" \
1096 " emulate a bluetooth device 'dev' in scatternet 'n'\n")
1097 STEXI
1098 Bluetooth(R) options:
1099 @table @option
1100
1101 @item -bt hci[...]
1102 Defines the function of the corresponding Bluetooth HCI. -bt options
1103 are matched with the HCIs present in the chosen machine type. For
1104 example when emulating a machine with only one HCI built into it, only
1105 the first @code{-bt hci[...]} option is valid and defines the HCI's
1106 logic. The Transport Layer is decided by the machine type. Currently
1107 the machines @code{n800} and @code{n810} have one HCI and all other
1108 machines have none.
1109
1110 @anchor{bt-hcis}
1111 The following three types are recognized:
1112
1113 @table @option
1114 @item -bt hci,null
1115 (default) The corresponding Bluetooth HCI assumes no internal logic
1116 and will not respond to any HCI commands or emit events.
1117
1118 @item -bt hci,host[:@var{id}]
1119 (@code{bluez} only) The corresponding HCI passes commands / events
1120 to / from the physical HCI identified by the name @var{id} (default:
1121 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
1122 capable systems like Linux.
1123
1124 @item -bt hci[,vlan=@var{n}]
1125 Add a virtual, standard HCI that will participate in the Bluetooth
1126 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
1127 VLANs, devices inside a bluetooth network @var{n} can only communicate
1128 with other devices in the same network (scatternet).
1129 @end table
1130
1131 @item -bt vhci[,vlan=@var{n}]
1132 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1133 to the host bluetooth stack instead of to the emulated target. This
1134 allows the host and target machines to participate in a common scatternet
1135 and communicate. Requires the Linux @code{vhci} driver installed. Can
1136 be used as following:
1137
1138 @example
1139 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1140 @end example
1141
1142 @item -bt device:@var{dev}[,vlan=@var{n}]
1143 Emulate a bluetooth device @var{dev} and place it in network @var{n}
1144 (default @code{0}). QEMU can only emulate one type of bluetooth devices
1145 currently:
1146
1147 @table @option
1148 @item keyboard
1149 Virtual wireless keyboard implementing the HIDP bluetooth profile.
1150 @end table
1151 @end table
1152 ETEXI
1153
1154 DEFHEADING()
1155
1156 DEFHEADING(Linux/Multiboot boot specific:)
1157 STEXI
1158
1159 When using these options, you can use a given Linux or Multiboot
1160 kernel without installing it in the disk image. It can be useful
1161 for easier testing of various kernels.
1162
1163 @table @option
1164 ETEXI
1165
1166 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1167 "-kernel bzImage use 'bzImage' as kernel image\n")
1168 STEXI
1169 @item -kernel @var{bzImage}
1170 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1171 or in multiboot format.
1172 ETEXI
1173
1174 DEF("append", HAS_ARG, QEMU_OPTION_append, \
1175 "-append cmdline use 'cmdline' as kernel command line\n")
1176 STEXI
1177 @item -append @var{cmdline}
1178 Use @var{cmdline} as kernel command line
1179 ETEXI
1180
1181 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1182 "-initrd file use 'file' as initial ram disk\n")
1183 STEXI
1184 @item -initrd @var{file}
1185 Use @var{file} as initial ram disk.
1186
1187 @item -initrd "@var{file1} arg=foo,@var{file2}"
1188
1189 This syntax is only available with multiboot.
1190
1191 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1192 first module.
1193 ETEXI
1194
1195 STEXI
1196 @end table
1197 ETEXI
1198
1199 DEFHEADING()
1200
1201 DEFHEADING(Debug/Expert options:)
1202
1203 STEXI
1204 @table @option
1205 ETEXI
1206
1207 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev, \
1208 "-chardev spec create unconnected chardev\n")
1209 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1210 "-serial dev redirect the serial port to char device 'dev'\n")
1211 STEXI
1212 @item -serial @var{dev}
1213 Redirect the virtual serial port to host character device
1214 @var{dev}. The default device is @code{vc} in graphical mode and
1215 @code{stdio} in non graphical mode.
1216
1217 This option can be used several times to simulate up to 4 serial
1218 ports.
1219
1220 Use @code{-serial none} to disable all serial ports.
1221
1222 Available character devices are:
1223 @table @option
1224 @item vc[:@var{W}x@var{H}]
1225 Virtual console. Optionally, a width and height can be given in pixel with
1226 @example
1227 vc:800x600
1228 @end example
1229 It is also possible to specify width or height in characters:
1230 @example
1231 vc:80Cx24C
1232 @end example
1233 @item pty
1234 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
1235 @item none
1236 No device is allocated.
1237 @item null
1238 void device
1239 @item /dev/XXX
1240 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1241 parameters are set according to the emulated ones.
1242 @item /dev/parport@var{N}
1243 [Linux only, parallel port only] Use host parallel port
1244 @var{N}. Currently SPP and EPP parallel port features can be used.
1245 @item file:@var{filename}
1246 Write output to @var{filename}. No character can be read.
1247 @item stdio
1248 [Unix only] standard input/output
1249 @item pipe:@var{filename}
1250 name pipe @var{filename}
1251 @item COM@var{n}
1252 [Windows only] Use host serial port @var{n}
1253 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1254 This implements UDP Net Console.
1255 When @var{remote_host} or @var{src_ip} are not specified
1256 they default to @code{0.0.0.0}.
1257 When not using a specified @var{src_port} a random port is automatically chosen.
1258
1259 If you just want a simple readonly console you can use @code{netcat} or
1260 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1261 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1262 will appear in the netconsole session.
1263
1264 If you plan to send characters back via netconsole or you want to stop
1265 and start qemu a lot of times, you should have qemu use the same
1266 source port each time by using something like @code{-serial
1267 udp::4555@@:4556} to qemu. Another approach is to use a patched
1268 version of netcat which can listen to a TCP port and send and receive
1269 characters via udp. If you have a patched version of netcat which
1270 activates telnet remote echo and single char transfer, then you can
1271 use the following options to step up a netcat redirector to allow
1272 telnet on port 5555 to access the qemu port.
1273 @table @code
1274 @item Qemu Options:
1275 -serial udp::4555@@:4556
1276 @item netcat options:
1277 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1278 @item telnet options:
1279 localhost 5555
1280 @end table
1281
1282 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1283 The TCP Net Console has two modes of operation. It can send the serial
1284 I/O to a location or wait for a connection from a location. By default
1285 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1286 the @var{server} option QEMU will wait for a client socket application
1287 to connect to the port before continuing, unless the @code{nowait}
1288 option was specified. The @code{nodelay} option disables the Nagle buffering
1289 algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1290 one TCP connection at a time is accepted. You can use @code{telnet} to
1291 connect to the corresponding character device.
1292 @table @code
1293 @item Example to send tcp console to 192.168.0.2 port 4444
1294 -serial tcp:192.168.0.2:4444
1295 @item Example to listen and wait on port 4444 for connection
1296 -serial tcp::4444,server
1297 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1298 -serial tcp:192.168.0.100:4444,server,nowait
1299 @end table
1300
1301 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1302 The telnet protocol is used instead of raw tcp sockets. The options
1303 work the same as if you had specified @code{-serial tcp}. The
1304 difference is that the port acts like a telnet server or client using
1305 telnet option negotiation. This will also allow you to send the
1306 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1307 sequence. Typically in unix telnet you do it with Control-] and then
1308 type "send break" followed by pressing the enter key.
1309
1310 @item unix:@var{path}[,server][,nowait]
1311 A unix domain socket is used instead of a tcp socket. The option works the
1312 same as if you had specified @code{-serial tcp} except the unix domain socket
1313 @var{path} is used for connections.
1314
1315 @item mon:@var{dev_string}
1316 This is a special option to allow the monitor to be multiplexed onto
1317 another serial port. The monitor is accessed with key sequence of
1318 @key{Control-a} and then pressing @key{c}. See monitor access
1319 @ref{pcsys_keys} in the -nographic section for more keys.
1320 @var{dev_string} should be any one of the serial devices specified
1321 above. An example to multiplex the monitor onto a telnet server
1322 listening on port 4444 would be:
1323 @table @code
1324 @item -serial mon:telnet::4444,server,nowait
1325 @end table
1326
1327 @item braille
1328 Braille device. This will use BrlAPI to display the braille output on a real
1329 or fake device.
1330
1331 @item msmouse
1332 Three button serial mouse. Configure the guest to use Microsoft protocol.
1333 @end table
1334 ETEXI
1335
1336 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1337 "-parallel dev redirect the parallel port to char device 'dev'\n")
1338 STEXI
1339 @item -parallel @var{dev}
1340 Redirect the virtual parallel port to host device @var{dev} (same
1341 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1342 be used to use hardware devices connected on the corresponding host
1343 parallel port.
1344
1345 This option can be used several times to simulate up to 3 parallel
1346 ports.
1347
1348 Use @code{-parallel none} to disable all parallel ports.
1349 ETEXI
1350
1351 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1352 "-monitor dev redirect the monitor to char device 'dev'\n")
1353 STEXI
1354 @item -monitor @var{dev}
1355 Redirect the monitor to host device @var{dev} (same devices as the
1356 serial port).
1357 The default device is @code{vc} in graphical mode and @code{stdio} in
1358 non graphical mode.
1359 ETEXI
1360
1361 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1362 "-pidfile file write PID to 'file'\n")
1363 STEXI
1364 @item -pidfile @var{file}
1365 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1366 from a script.
1367 ETEXI
1368
1369 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1370 "-singlestep always run in singlestep mode\n")
1371 STEXI
1372 @item -singlestep
1373 Run the emulation in single step mode.
1374 ETEXI
1375
1376 DEF("S", 0, QEMU_OPTION_S, \
1377 "-S freeze CPU at startup (use 'c' to start execution)\n")
1378 STEXI
1379 @item -S
1380 Do not start CPU at startup (you must type 'c' in the monitor).
1381 ETEXI
1382
1383 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1384 "-gdb dev wait for gdb connection on 'dev'\n")
1385 STEXI
1386 @item -gdb @var{dev}
1387 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1388 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1389 stdio are reasonable use case. The latter is allowing to start qemu from
1390 within gdb and establish the connection via a pipe:
1391 @example
1392 (gdb) target remote | exec qemu -gdb stdio ...
1393 @end example
1394 ETEXI
1395
1396 DEF("s", 0, QEMU_OPTION_s, \
1397 "-s shorthand for -gdb tcp::%s\n")
1398 STEXI
1399 @item -s
1400 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1401 (@pxref{gdb_usage}).
1402 ETEXI
1403
1404 DEF("d", HAS_ARG, QEMU_OPTION_d, \
1405 "-d item1,... output log to %s (use -d ? for a list of log items)\n")
1406 STEXI
1407 @item -d
1408 Output log in /tmp/qemu.log
1409 ETEXI
1410
1411 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1412 "-hdachs c,h,s[,t]\n" \
1413 " force hard disk 0 physical geometry and the optional BIOS\n" \
1414 " translation (t=none or lba) (usually qemu can guess them)\n")
1415 STEXI
1416 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1417 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1418 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1419 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1420 all those parameters. This option is useful for old MS-DOS disk
1421 images.
1422 ETEXI
1423
1424 DEF("L", HAS_ARG, QEMU_OPTION_L, \
1425 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n")
1426 STEXI
1427 @item -L @var{path}
1428 Set the directory for the BIOS, VGA BIOS and keymaps.
1429 ETEXI
1430
1431 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1432 "-bios file set the filename for the BIOS\n")
1433 STEXI
1434 @item -bios @var{file}
1435 Set the filename for the BIOS.
1436 ETEXI
1437
1438 #ifdef CONFIG_KVM
1439 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1440 "-enable-kvm enable KVM full virtualization support\n")
1441 #endif
1442 STEXI
1443 @item -enable-kvm
1444 Enable KVM full virtualization support. This option is only available
1445 if KVM support is enabled when compiling.
1446 ETEXI
1447
1448 #ifdef CONFIG_XEN
1449 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1450 "-xen-domid id specify xen guest domain id\n")
1451 DEF("xen-create", 0, QEMU_OPTION_xen_create,
1452 "-xen-create create domain using xen hypercalls, bypassing xend\n"
1453 " warning: should not be used when xend is in use\n")
1454 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1455 "-xen-attach attach to existing xen domain\n"
1456 " xend will use this when starting qemu\n")
1457 #endif
1458
1459 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1460 "-no-reboot exit instead of rebooting\n")
1461 STEXI
1462 @item -no-reboot
1463 Exit instead of rebooting.
1464 ETEXI
1465
1466 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1467 "-no-shutdown stop before shutdown\n")
1468 STEXI
1469 @item -no-shutdown
1470 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1471 This allows for instance switching to monitor to commit changes to the
1472 disk image.
1473 ETEXI
1474
1475 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1476 "-loadvm [tag|id]\n" \
1477 " start right away with a saved state (loadvm in monitor)\n")
1478 STEXI
1479 @item -loadvm @var{file}
1480 Start right away with a saved state (@code{loadvm} in monitor)
1481 ETEXI
1482
1483 #ifndef _WIN32
1484 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1485 "-daemonize daemonize QEMU after initializing\n")
1486 #endif
1487 STEXI
1488 @item -daemonize
1489 Daemonize the QEMU process after initialization. QEMU will not detach from
1490 standard IO until it is ready to receive connections on any of its devices.
1491 This option is a useful way for external programs to launch QEMU without having
1492 to cope with initialization race conditions.
1493 ETEXI
1494
1495 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1496 "-option-rom rom load a file, rom, into the option ROM space\n")
1497 STEXI
1498 @item -option-rom @var{file}
1499 Load the contents of @var{file} as an option ROM.
1500 This option is useful to load things like EtherBoot.
1501 ETEXI
1502
1503 DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1504 "-clock force the use of the given methods for timer alarm.\n" \
1505 " To see what timers are available use -clock ?\n")
1506 STEXI
1507 @item -clock @var{method}
1508 Force the use of the given methods for timer alarm. To see what timers
1509 are available use -clock ?.
1510 ETEXI
1511
1512 HXCOMM Options deprecated by -rtc
1513 DEF("localtime", 0, QEMU_OPTION_localtime, "")
1514 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "")
1515
1516 #ifdef TARGET_I386
1517 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1518 "-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]\n" \
1519 " set the RTC base and clock, enable drift fix for clock ticks\n")
1520 #else
1521 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1522 "-rtc [base=utc|localtime|date][,clock=host|vm]\n" \
1523 " set the RTC base and clock\n")
1524 #endif
1525
1526 STEXI
1527
1528 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
1529 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
1530 UTC or local time, respectively. @code{localtime} is required for correct date in
1531 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
1532 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
1533
1534 By default the RTC is driven by the host system time. This allows to use the
1535 RTC as accurate reference clock inside the guest, specifically if the host
1536 time is smoothly following an accurate external reference clock, e.g. via NTP.
1537 If you want to isolate the guest time from the host, even prevent it from
1538 progressing during suspension, you can set @option{clock} to @code{vm} instead.
1539
1540 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
1541 specifically with Windows' ACPI HAL. This option will try to figure out how
1542 many timer interrupts were not processed by the Windows guest and will
1543 re-inject them.
1544 ETEXI
1545
1546 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1547 "-icount [N|auto]\n" \
1548 " enable virtual instruction counter with 2^N clock ticks per\n" \
1549 " instruction\n")
1550 STEXI
1551 @item -icount [@var{N}|auto]
1552 Enable virtual instruction counter. The virtual cpu will execute one
1553 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
1554 then the virtual cpu speed will be automatically adjusted to keep virtual
1555 time within a few seconds of real time.
1556
1557 Note that while this option can give deterministic behavior, it does not
1558 provide cycle accurate emulation. Modern CPUs contain superscalar out of
1559 order cores with complex cache hierarchies. The number of instructions
1560 executed often has little or no correlation with actual performance.
1561 ETEXI
1562
1563 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1564 "-watchdog i6300esb|ib700\n" \
1565 " enable virtual hardware watchdog [default=none]\n")
1566 STEXI
1567 @item -watchdog @var{model}
1568 Create a virtual hardware watchdog device. Once enabled (by a guest
1569 action), the watchdog must be periodically polled by an agent inside
1570 the guest or else the guest will be restarted.
1571
1572 The @var{model} is the model of hardware watchdog to emulate. Choices
1573 for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1574 watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1575 controller hub) which is a much more featureful PCI-based dual-timer
1576 watchdog. Choose a model for which your guest has drivers.
1577
1578 Use @code{-watchdog ?} to list available hardware models. Only one
1579 watchdog can be enabled for a guest.
1580 ETEXI
1581
1582 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1583 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1584 " action when watchdog fires [default=reset]\n")
1585 STEXI
1586 @item -watchdog-action @var{action}
1587
1588 The @var{action} controls what QEMU will do when the watchdog timer
1589 expires.
1590 The default is
1591 @code{reset} (forcefully reset the guest).
1592 Other possible actions are:
1593 @code{shutdown} (attempt to gracefully shutdown the guest),
1594 @code{poweroff} (forcefully poweroff the guest),
1595 @code{pause} (pause the guest),
1596 @code{debug} (print a debug message and continue), or
1597 @code{none} (do nothing).
1598
1599 Note that the @code{shutdown} action requires that the guest responds
1600 to ACPI signals, which it may not be able to do in the sort of
1601 situations where the watchdog would have expired, and thus
1602 @code{-watchdog-action shutdown} is not recommended for production use.
1603
1604 Examples:
1605
1606 @table @code
1607 @item -watchdog i6300esb -watchdog-action pause
1608 @item -watchdog ib700
1609 @end table
1610 ETEXI
1611
1612 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1613 "-echr chr set terminal escape character instead of ctrl-a\n")
1614 STEXI
1615
1616 @item -echr @var{numeric_ascii_value}
1617 Change the escape character used for switching to the monitor when using
1618 monitor and serial sharing. The default is @code{0x01} when using the
1619 @code{-nographic} option. @code{0x01} is equal to pressing
1620 @code{Control-a}. You can select a different character from the ascii
1621 control keys where 1 through 26 map to Control-a through Control-z. For
1622 instance you could use the either of the following to change the escape
1623 character to Control-t.
1624 @table @code
1625 @item -echr 0x14
1626 @item -echr 20
1627 @end table
1628 ETEXI
1629
1630 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1631 "-virtioconsole c\n" \
1632 " set virtio console\n")
1633 STEXI
1634 @item -virtioconsole @var{c}
1635 Set virtio console.
1636 ETEXI
1637
1638 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1639 "-show-cursor show cursor\n")
1640 STEXI
1641 ETEXI
1642
1643 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1644 "-tb-size n set TB size\n")
1645 STEXI
1646 ETEXI
1647
1648 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1649 "-incoming p prepare for incoming migration, listen on port p\n")
1650 STEXI
1651 ETEXI
1652
1653 #ifndef _WIN32
1654 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1655 "-chroot dir Chroot to dir just before starting the VM.\n")
1656 #endif
1657 STEXI
1658 @item -chroot @var{dir}
1659 Immediately before starting guest execution, chroot to the specified
1660 directory. Especially useful in combination with -runas.
1661 ETEXI
1662
1663 #ifndef _WIN32
1664 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1665 "-runas user Change to user id user just before starting the VM.\n")
1666 #endif
1667 STEXI
1668 @item -runas @var{user}
1669 Immediately before starting guest execution, drop root privileges, switching
1670 to the specified user.
1671 ETEXI
1672
1673 STEXI
1674 @end table
1675 ETEXI
1676
1677 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
1678 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1679 "-prom-env variable=value\n"
1680 " set OpenBIOS nvram variables\n")
1681 #endif
1682 #if defined(TARGET_ARM) || defined(TARGET_M68K)
1683 DEF("semihosting", 0, QEMU_OPTION_semihosting,
1684 "-semihosting semihosting mode\n")
1685 #endif
1686 #if defined(TARGET_ARM)
1687 DEF("old-param", 0, QEMU_OPTION_old_param,
1688 "-old-param old param mode\n")
1689 #endif