]> git.proxmox.com Git - qemu.git/blob - qemu-timer.c
x86: Properly reset PAT MSR
[qemu.git] / qemu-timer.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
29
30 #include "hw/hw.h"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
41
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
50
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
55
56 #include "qemu-timer.h"
57
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
66
67 /***********************************************************/
68 /* guest cycle counter */
69
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
77
78 TimersState timers_state;
79
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
82 {
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99 }
100
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
103 {
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111 }
112
113 static int64_t qemu_icount_delta(void)
114 {
115 if (use_icount == 1) {
116 /* When not using an adaptive execution frequency
117 we tend to get badly out of sync with real time,
118 so just delay for a reasonable amount of time. */
119 return 0;
120 } else {
121 return cpu_get_icount() - cpu_get_clock();
122 }
123 }
124
125 /* enable cpu_get_ticks() */
126 void cpu_enable_ticks(void)
127 {
128 if (!timers_state.cpu_ticks_enabled) {
129 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
130 timers_state.cpu_clock_offset -= get_clock();
131 timers_state.cpu_ticks_enabled = 1;
132 }
133 }
134
135 /* disable cpu_get_ticks() : the clock is stopped. You must not call
136 cpu_get_ticks() after that. */
137 void cpu_disable_ticks(void)
138 {
139 if (timers_state.cpu_ticks_enabled) {
140 timers_state.cpu_ticks_offset = cpu_get_ticks();
141 timers_state.cpu_clock_offset = cpu_get_clock();
142 timers_state.cpu_ticks_enabled = 0;
143 }
144 }
145
146 /***********************************************************/
147 /* timers */
148
149 #define QEMU_CLOCK_REALTIME 0
150 #define QEMU_CLOCK_VIRTUAL 1
151 #define QEMU_CLOCK_HOST 2
152
153 struct QEMUClock {
154 int type;
155 int enabled;
156 /* XXX: add frequency */
157 };
158
159 struct QEMUTimer {
160 QEMUClock *clock;
161 int64_t expire_time;
162 QEMUTimerCB *cb;
163 void *opaque;
164 struct QEMUTimer *next;
165 };
166
167 struct qemu_alarm_timer {
168 char const *name;
169 int (*start)(struct qemu_alarm_timer *t);
170 void (*stop)(struct qemu_alarm_timer *t);
171 void (*rearm)(struct qemu_alarm_timer *t);
172 void *priv;
173
174 char expired;
175 char pending;
176 };
177
178 static struct qemu_alarm_timer *alarm_timer;
179
180 int qemu_alarm_pending(void)
181 {
182 return alarm_timer->pending;
183 }
184
185 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
186 {
187 return !!t->rearm;
188 }
189
190 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
191 {
192 if (!alarm_has_dynticks(t))
193 return;
194
195 t->rearm(t);
196 }
197
198 /* TODO: MIN_TIMER_REARM_NS should be optimized */
199 #define MIN_TIMER_REARM_NS 250000
200
201 #ifdef _WIN32
202
203 static int win32_start_timer(struct qemu_alarm_timer *t);
204 static void win32_stop_timer(struct qemu_alarm_timer *t);
205 static void win32_rearm_timer(struct qemu_alarm_timer *t);
206
207 #else
208
209 static int unix_start_timer(struct qemu_alarm_timer *t);
210 static void unix_stop_timer(struct qemu_alarm_timer *t);
211
212 #ifdef __linux__
213
214 static int dynticks_start_timer(struct qemu_alarm_timer *t);
215 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
216 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
217
218 static int hpet_start_timer(struct qemu_alarm_timer *t);
219 static void hpet_stop_timer(struct qemu_alarm_timer *t);
220
221 static int rtc_start_timer(struct qemu_alarm_timer *t);
222 static void rtc_stop_timer(struct qemu_alarm_timer *t);
223
224 #endif /* __linux__ */
225
226 #endif /* _WIN32 */
227
228 /* Correlation between real and virtual time is always going to be
229 fairly approximate, so ignore small variation.
230 When the guest is idle real and virtual time will be aligned in
231 the IO wait loop. */
232 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
233
234 static void icount_adjust(void)
235 {
236 int64_t cur_time;
237 int64_t cur_icount;
238 int64_t delta;
239 static int64_t last_delta;
240 /* If the VM is not running, then do nothing. */
241 if (!vm_running)
242 return;
243
244 cur_time = cpu_get_clock();
245 cur_icount = qemu_get_clock(vm_clock);
246 delta = cur_icount - cur_time;
247 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
248 if (delta > 0
249 && last_delta + ICOUNT_WOBBLE < delta * 2
250 && icount_time_shift > 0) {
251 /* The guest is getting too far ahead. Slow time down. */
252 icount_time_shift--;
253 }
254 if (delta < 0
255 && last_delta - ICOUNT_WOBBLE > delta * 2
256 && icount_time_shift < MAX_ICOUNT_SHIFT) {
257 /* The guest is getting too far behind. Speed time up. */
258 icount_time_shift++;
259 }
260 last_delta = delta;
261 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
262 }
263
264 static void icount_adjust_rt(void * opaque)
265 {
266 qemu_mod_timer(icount_rt_timer,
267 qemu_get_clock(rt_clock) + 1000);
268 icount_adjust();
269 }
270
271 static void icount_adjust_vm(void * opaque)
272 {
273 qemu_mod_timer(icount_vm_timer,
274 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
275 icount_adjust();
276 }
277
278 int64_t qemu_icount_round(int64_t count)
279 {
280 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
281 }
282
283 static struct qemu_alarm_timer alarm_timers[] = {
284 #ifndef _WIN32
285 #ifdef __linux__
286 {"dynticks", dynticks_start_timer,
287 dynticks_stop_timer, dynticks_rearm_timer, NULL},
288 /* HPET - if available - is preferred */
289 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
290 /* ...otherwise try RTC */
291 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
292 #endif
293 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
294 #else
295 {"dynticks", win32_start_timer,
296 win32_stop_timer, win32_rearm_timer, NULL},
297 {"win32", win32_start_timer,
298 win32_stop_timer, NULL, NULL},
299 #endif
300 {NULL, }
301 };
302
303 static void show_available_alarms(void)
304 {
305 int i;
306
307 printf("Available alarm timers, in order of precedence:\n");
308 for (i = 0; alarm_timers[i].name; i++)
309 printf("%s\n", alarm_timers[i].name);
310 }
311
312 void configure_alarms(char const *opt)
313 {
314 int i;
315 int cur = 0;
316 int count = ARRAY_SIZE(alarm_timers) - 1;
317 char *arg;
318 char *name;
319 struct qemu_alarm_timer tmp;
320
321 if (!strcmp(opt, "?")) {
322 show_available_alarms();
323 exit(0);
324 }
325
326 arg = qemu_strdup(opt);
327
328 /* Reorder the array */
329 name = strtok(arg, ",");
330 while (name) {
331 for (i = 0; i < count && alarm_timers[i].name; i++) {
332 if (!strcmp(alarm_timers[i].name, name))
333 break;
334 }
335
336 if (i == count) {
337 fprintf(stderr, "Unknown clock %s\n", name);
338 goto next;
339 }
340
341 if (i < cur)
342 /* Ignore */
343 goto next;
344
345 /* Swap */
346 tmp = alarm_timers[i];
347 alarm_timers[i] = alarm_timers[cur];
348 alarm_timers[cur] = tmp;
349
350 cur++;
351 next:
352 name = strtok(NULL, ",");
353 }
354
355 qemu_free(arg);
356
357 if (cur) {
358 /* Disable remaining timers */
359 for (i = cur; i < count; i++)
360 alarm_timers[i].name = NULL;
361 } else {
362 show_available_alarms();
363 exit(1);
364 }
365 }
366
367 #define QEMU_NUM_CLOCKS 3
368
369 QEMUClock *rt_clock;
370 QEMUClock *vm_clock;
371 QEMUClock *host_clock;
372
373 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
374
375 static QEMUClock *qemu_new_clock(int type)
376 {
377 QEMUClock *clock;
378 clock = qemu_mallocz(sizeof(QEMUClock));
379 clock->type = type;
380 clock->enabled = 1;
381 return clock;
382 }
383
384 void qemu_clock_enable(QEMUClock *clock, int enabled)
385 {
386 clock->enabled = enabled;
387 }
388
389 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
390 {
391 QEMUTimer *ts;
392
393 ts = qemu_mallocz(sizeof(QEMUTimer));
394 ts->clock = clock;
395 ts->cb = cb;
396 ts->opaque = opaque;
397 return ts;
398 }
399
400 void qemu_free_timer(QEMUTimer *ts)
401 {
402 qemu_free(ts);
403 }
404
405 /* stop a timer, but do not dealloc it */
406 void qemu_del_timer(QEMUTimer *ts)
407 {
408 QEMUTimer **pt, *t;
409
410 /* NOTE: this code must be signal safe because
411 qemu_timer_expired() can be called from a signal. */
412 pt = &active_timers[ts->clock->type];
413 for(;;) {
414 t = *pt;
415 if (!t)
416 break;
417 if (t == ts) {
418 *pt = t->next;
419 break;
420 }
421 pt = &t->next;
422 }
423 }
424
425 /* modify the current timer so that it will be fired when current_time
426 >= expire_time. The corresponding callback will be called. */
427 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
428 {
429 QEMUTimer **pt, *t;
430
431 qemu_del_timer(ts);
432
433 /* add the timer in the sorted list */
434 /* NOTE: this code must be signal safe because
435 qemu_timer_expired() can be called from a signal. */
436 pt = &active_timers[ts->clock->type];
437 for(;;) {
438 t = *pt;
439 if (!t)
440 break;
441 if (t->expire_time > expire_time)
442 break;
443 pt = &t->next;
444 }
445 ts->expire_time = expire_time;
446 ts->next = *pt;
447 *pt = ts;
448
449 /* Rearm if necessary */
450 if (pt == &active_timers[ts->clock->type]) {
451 if (!alarm_timer->pending) {
452 qemu_rearm_alarm_timer(alarm_timer);
453 }
454 /* Interrupt execution to force deadline recalculation. */
455 if (use_icount)
456 qemu_notify_event();
457 }
458 }
459
460 int qemu_timer_pending(QEMUTimer *ts)
461 {
462 QEMUTimer *t;
463 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
464 if (t == ts)
465 return 1;
466 }
467 return 0;
468 }
469
470 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
471 {
472 if (!timer_head)
473 return 0;
474 return (timer_head->expire_time <= current_time);
475 }
476
477 static void qemu_run_timers(QEMUClock *clock)
478 {
479 QEMUTimer **ptimer_head, *ts;
480 int64_t current_time;
481
482 if (!clock->enabled)
483 return;
484
485 current_time = qemu_get_clock (clock);
486 ptimer_head = &active_timers[clock->type];
487 for(;;) {
488 ts = *ptimer_head;
489 if (!ts || ts->expire_time > current_time)
490 break;
491 /* remove timer from the list before calling the callback */
492 *ptimer_head = ts->next;
493 ts->next = NULL;
494
495 /* run the callback (the timer list can be modified) */
496 ts->cb(ts->opaque);
497 }
498 }
499
500 int64_t qemu_get_clock(QEMUClock *clock)
501 {
502 switch(clock->type) {
503 case QEMU_CLOCK_REALTIME:
504 return get_clock() / 1000000;
505 default:
506 case QEMU_CLOCK_VIRTUAL:
507 if (use_icount) {
508 return cpu_get_icount();
509 } else {
510 return cpu_get_clock();
511 }
512 case QEMU_CLOCK_HOST:
513 return get_clock_realtime();
514 }
515 }
516
517 int64_t qemu_get_clock_ns(QEMUClock *clock)
518 {
519 switch(clock->type) {
520 case QEMU_CLOCK_REALTIME:
521 return get_clock();
522 default:
523 case QEMU_CLOCK_VIRTUAL:
524 if (use_icount) {
525 return cpu_get_icount();
526 } else {
527 return cpu_get_clock();
528 }
529 case QEMU_CLOCK_HOST:
530 return get_clock_realtime();
531 }
532 }
533
534 void init_clocks(void)
535 {
536 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
537 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
538 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
539
540 rtc_clock = host_clock;
541 }
542
543 /* save a timer */
544 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
545 {
546 uint64_t expire_time;
547
548 if (qemu_timer_pending(ts)) {
549 expire_time = ts->expire_time;
550 } else {
551 expire_time = -1;
552 }
553 qemu_put_be64(f, expire_time);
554 }
555
556 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
557 {
558 uint64_t expire_time;
559
560 expire_time = qemu_get_be64(f);
561 if (expire_time != -1) {
562 qemu_mod_timer(ts, expire_time);
563 } else {
564 qemu_del_timer(ts);
565 }
566 }
567
568 static const VMStateDescription vmstate_timers = {
569 .name = "timer",
570 .version_id = 2,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .fields = (VMStateField []) {
574 VMSTATE_INT64(cpu_ticks_offset, TimersState),
575 VMSTATE_INT64(dummy, TimersState),
576 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
577 VMSTATE_END_OF_LIST()
578 }
579 };
580
581 void configure_icount(const char *option)
582 {
583 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
584 if (!option)
585 return;
586
587 if (strcmp(option, "auto") != 0) {
588 icount_time_shift = strtol(option, NULL, 0);
589 use_icount = 1;
590 return;
591 }
592
593 use_icount = 2;
594
595 /* 125MIPS seems a reasonable initial guess at the guest speed.
596 It will be corrected fairly quickly anyway. */
597 icount_time_shift = 3;
598
599 /* Have both realtime and virtual time triggers for speed adjustment.
600 The realtime trigger catches emulated time passing too slowly,
601 the virtual time trigger catches emulated time passing too fast.
602 Realtime triggers occur even when idle, so use them less frequently
603 than VM triggers. */
604 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
605 qemu_mod_timer(icount_rt_timer,
606 qemu_get_clock(rt_clock) + 1000);
607 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
608 qemu_mod_timer(icount_vm_timer,
609 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
610 }
611
612 void qemu_run_all_timers(void)
613 {
614 alarm_timer->pending = 0;
615
616 /* rearm timer, if not periodic */
617 if (alarm_timer->expired) {
618 alarm_timer->expired = 0;
619 qemu_rearm_alarm_timer(alarm_timer);
620 }
621
622 /* vm time timers */
623 if (vm_running) {
624 qemu_run_timers(vm_clock);
625 }
626
627 qemu_run_timers(rt_clock);
628 qemu_run_timers(host_clock);
629 }
630
631 static int64_t qemu_next_alarm_deadline(void);
632
633 #ifdef _WIN32
634 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
635 #else
636 static void host_alarm_handler(int host_signum)
637 #endif
638 {
639 struct qemu_alarm_timer *t = alarm_timer;
640 if (!t)
641 return;
642
643 #if 0
644 #define DISP_FREQ 1000
645 {
646 static int64_t delta_min = INT64_MAX;
647 static int64_t delta_max, delta_cum, last_clock, delta, ti;
648 static int count;
649 ti = qemu_get_clock(vm_clock);
650 if (last_clock != 0) {
651 delta = ti - last_clock;
652 if (delta < delta_min)
653 delta_min = delta;
654 if (delta > delta_max)
655 delta_max = delta;
656 delta_cum += delta;
657 if (++count == DISP_FREQ) {
658 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
659 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
660 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
661 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
662 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
663 count = 0;
664 delta_min = INT64_MAX;
665 delta_max = 0;
666 delta_cum = 0;
667 }
668 }
669 last_clock = ti;
670 }
671 #endif
672 if (alarm_has_dynticks(t) ||
673 qemu_next_alarm_deadline () <= 0) {
674 t->expired = alarm_has_dynticks(t);
675 t->pending = 1;
676 qemu_notify_event();
677 }
678 }
679
680 int64_t qemu_next_deadline(void)
681 {
682 /* To avoid problems with overflow limit this to 2^32. */
683 int64_t delta = INT32_MAX;
684
685 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
686 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
687 qemu_get_clock_ns(vm_clock);
688 }
689 if (active_timers[QEMU_CLOCK_HOST]) {
690 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
691 qemu_get_clock_ns(host_clock);
692 if (hdelta < delta)
693 delta = hdelta;
694 }
695
696 if (delta < 0)
697 delta = 0;
698
699 return delta;
700 }
701
702 static int64_t qemu_next_alarm_deadline(void)
703 {
704 int64_t delta;
705 int64_t rtdelta;
706
707 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
708 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
709 qemu_get_clock(vm_clock);
710 } else {
711 delta = INT32_MAX;
712 }
713 if (active_timers[QEMU_CLOCK_HOST]) {
714 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
715 qemu_get_clock_ns(host_clock);
716 if (hdelta < delta)
717 delta = hdelta;
718 }
719 if (active_timers[QEMU_CLOCK_REALTIME]) {
720 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 -
721 qemu_get_clock_ns(rt_clock));
722 if (rtdelta < delta)
723 delta = rtdelta;
724 }
725
726 return delta;
727 }
728
729 #if defined(__linux__)
730
731 #define RTC_FREQ 1024
732
733 static void enable_sigio_timer(int fd)
734 {
735 struct sigaction act;
736
737 /* timer signal */
738 sigfillset(&act.sa_mask);
739 act.sa_flags = 0;
740 act.sa_handler = host_alarm_handler;
741
742 sigaction(SIGIO, &act, NULL);
743 fcntl_setfl(fd, O_ASYNC);
744 fcntl(fd, F_SETOWN, getpid());
745 }
746
747 static int hpet_start_timer(struct qemu_alarm_timer *t)
748 {
749 struct hpet_info info;
750 int r, fd;
751
752 fd = qemu_open("/dev/hpet", O_RDONLY);
753 if (fd < 0)
754 return -1;
755
756 /* Set frequency */
757 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
758 if (r < 0) {
759 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
760 "error, but for better emulation accuracy type:\n"
761 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
762 goto fail;
763 }
764
765 /* Check capabilities */
766 r = ioctl(fd, HPET_INFO, &info);
767 if (r < 0)
768 goto fail;
769
770 /* Enable periodic mode */
771 r = ioctl(fd, HPET_EPI, 0);
772 if (info.hi_flags && (r < 0))
773 goto fail;
774
775 /* Enable interrupt */
776 r = ioctl(fd, HPET_IE_ON, 0);
777 if (r < 0)
778 goto fail;
779
780 enable_sigio_timer(fd);
781 t->priv = (void *)(long)fd;
782
783 return 0;
784 fail:
785 close(fd);
786 return -1;
787 }
788
789 static void hpet_stop_timer(struct qemu_alarm_timer *t)
790 {
791 int fd = (long)t->priv;
792
793 close(fd);
794 }
795
796 static int rtc_start_timer(struct qemu_alarm_timer *t)
797 {
798 int rtc_fd;
799 unsigned long current_rtc_freq = 0;
800
801 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
802 if (rtc_fd < 0)
803 return -1;
804 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
805 if (current_rtc_freq != RTC_FREQ &&
806 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
807 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
808 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
809 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
810 goto fail;
811 }
812 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
813 fail:
814 close(rtc_fd);
815 return -1;
816 }
817
818 enable_sigio_timer(rtc_fd);
819
820 t->priv = (void *)(long)rtc_fd;
821
822 return 0;
823 }
824
825 static void rtc_stop_timer(struct qemu_alarm_timer *t)
826 {
827 int rtc_fd = (long)t->priv;
828
829 close(rtc_fd);
830 }
831
832 static int dynticks_start_timer(struct qemu_alarm_timer *t)
833 {
834 struct sigevent ev;
835 timer_t host_timer;
836 struct sigaction act;
837
838 sigfillset(&act.sa_mask);
839 act.sa_flags = 0;
840 act.sa_handler = host_alarm_handler;
841
842 sigaction(SIGALRM, &act, NULL);
843
844 /*
845 * Initialize ev struct to 0 to avoid valgrind complaining
846 * about uninitialized data in timer_create call
847 */
848 memset(&ev, 0, sizeof(ev));
849 ev.sigev_value.sival_int = 0;
850 ev.sigev_notify = SIGEV_SIGNAL;
851 ev.sigev_signo = SIGALRM;
852
853 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
854 perror("timer_create");
855
856 /* disable dynticks */
857 fprintf(stderr, "Dynamic Ticks disabled\n");
858
859 return -1;
860 }
861
862 t->priv = (void *)(long)host_timer;
863
864 return 0;
865 }
866
867 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
868 {
869 timer_t host_timer = (timer_t)(long)t->priv;
870
871 timer_delete(host_timer);
872 }
873
874 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
875 {
876 timer_t host_timer = (timer_t)(long)t->priv;
877 struct itimerspec timeout;
878 int64_t nearest_delta_ns = INT64_MAX;
879 int64_t current_ns;
880
881 assert(alarm_has_dynticks(t));
882 if (!active_timers[QEMU_CLOCK_REALTIME] &&
883 !active_timers[QEMU_CLOCK_VIRTUAL] &&
884 !active_timers[QEMU_CLOCK_HOST])
885 return;
886
887 nearest_delta_ns = qemu_next_alarm_deadline();
888 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
889 nearest_delta_ns = MIN_TIMER_REARM_NS;
890
891 /* check whether a timer is already running */
892 if (timer_gettime(host_timer, &timeout)) {
893 perror("gettime");
894 fprintf(stderr, "Internal timer error: aborting\n");
895 exit(1);
896 }
897 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
898 if (current_ns && current_ns <= nearest_delta_ns)
899 return;
900
901 timeout.it_interval.tv_sec = 0;
902 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
903 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
904 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
905 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
906 perror("settime");
907 fprintf(stderr, "Internal timer error: aborting\n");
908 exit(1);
909 }
910 }
911
912 #endif /* defined(__linux__) */
913
914 #if !defined(_WIN32)
915
916 static int unix_start_timer(struct qemu_alarm_timer *t)
917 {
918 struct sigaction act;
919 struct itimerval itv;
920 int err;
921
922 /* timer signal */
923 sigfillset(&act.sa_mask);
924 act.sa_flags = 0;
925 act.sa_handler = host_alarm_handler;
926
927 sigaction(SIGALRM, &act, NULL);
928
929 itv.it_interval.tv_sec = 0;
930 /* for i386 kernel 2.6 to get 1 ms */
931 itv.it_interval.tv_usec = 999;
932 itv.it_value.tv_sec = 0;
933 itv.it_value.tv_usec = 10 * 1000;
934
935 err = setitimer(ITIMER_REAL, &itv, NULL);
936 if (err)
937 return -1;
938
939 return 0;
940 }
941
942 static void unix_stop_timer(struct qemu_alarm_timer *t)
943 {
944 struct itimerval itv;
945
946 memset(&itv, 0, sizeof(itv));
947 setitimer(ITIMER_REAL, &itv, NULL);
948 }
949
950 #endif /* !defined(_WIN32) */
951
952
953 #ifdef _WIN32
954
955 static int win32_start_timer(struct qemu_alarm_timer *t)
956 {
957 HANDLE hTimer;
958 BOOLEAN success;
959
960 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
961 is zero) that has already expired, the timer is not updated. Since
962 creating a new timer is relatively expensive, set a bogus one-hour
963 interval in the dynticks case. */
964 success = CreateTimerQueueTimer(&hTimer,
965 NULL,
966 host_alarm_handler,
967 t,
968 1,
969 alarm_has_dynticks(t) ? 3600000 : 1,
970 WT_EXECUTEINTIMERTHREAD);
971
972 if (!success) {
973 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
974 GetLastError());
975 return -1;
976 }
977
978 t->priv = (PVOID) hTimer;
979 return 0;
980 }
981
982 static void win32_stop_timer(struct qemu_alarm_timer *t)
983 {
984 HANDLE hTimer = t->priv;
985
986 if (hTimer) {
987 DeleteTimerQueueTimer(NULL, hTimer, NULL);
988 }
989 }
990
991 static void win32_rearm_timer(struct qemu_alarm_timer *t)
992 {
993 HANDLE hTimer = t->priv;
994 int nearest_delta_ms;
995 BOOLEAN success;
996
997 assert(alarm_has_dynticks(t));
998 if (!active_timers[QEMU_CLOCK_REALTIME] &&
999 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1000 !active_timers[QEMU_CLOCK_HOST])
1001 return;
1002
1003 nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1004 if (nearest_delta_ms < 1) {
1005 nearest_delta_ms = 1;
1006 }
1007 success = ChangeTimerQueueTimer(NULL,
1008 hTimer,
1009 nearest_delta_ms,
1010 3600000);
1011
1012 if (!success) {
1013 fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1014 GetLastError());
1015 exit(-1);
1016 }
1017
1018 }
1019
1020 #endif /* _WIN32 */
1021
1022 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1023 {
1024 if (running)
1025 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1026 }
1027
1028 int init_timer_alarm(void)
1029 {
1030 struct qemu_alarm_timer *t = NULL;
1031 int i, err = -1;
1032
1033 for (i = 0; alarm_timers[i].name; i++) {
1034 t = &alarm_timers[i];
1035
1036 err = t->start(t);
1037 if (!err)
1038 break;
1039 }
1040
1041 if (err) {
1042 err = -ENOENT;
1043 goto fail;
1044 }
1045
1046 /* first event is at time 0 */
1047 t->pending = 1;
1048 alarm_timer = t;
1049 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1050
1051 return 0;
1052
1053 fail:
1054 return err;
1055 }
1056
1057 void quit_timers(void)
1058 {
1059 struct qemu_alarm_timer *t = alarm_timer;
1060 alarm_timer = NULL;
1061 t->stop(t);
1062 }
1063
1064 int qemu_calculate_timeout(void)
1065 {
1066 int timeout;
1067 int64_t add;
1068 int64_t delta;
1069
1070 /* When using icount, making forward progress with qemu_icount when the
1071 guest CPU is idle is critical. We only use the static io-thread timeout
1072 for non icount runs. */
1073 if (!use_icount || !vm_running) {
1074 return 5000;
1075 }
1076
1077 /* Advance virtual time to the next event. */
1078 delta = qemu_icount_delta();
1079 if (delta > 0) {
1080 /* If virtual time is ahead of real time then just
1081 wait for IO. */
1082 timeout = (delta + 999999) / 1000000;
1083 } else {
1084 /* Wait for either IO to occur or the next
1085 timer event. */
1086 add = qemu_next_deadline();
1087 /* We advance the timer before checking for IO.
1088 Limit the amount we advance so that early IO
1089 activity won't get the guest too far ahead. */
1090 if (add > 10000000)
1091 add = 10000000;
1092 delta += add;
1093 qemu_icount += qemu_icount_round (add);
1094 timeout = delta / 1000000;
1095 if (timeout < 0)
1096 timeout = 0;
1097 }
1098
1099 return timeout;
1100 }
1101