]> git.proxmox.com Git - qemu.git/blob - qemu-timer.c
virtio-console: notify backend of guest open / close
[qemu.git] / qemu-timer.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
29
30 #include "hw/hw.h"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
41
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
50
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
55
56 #include "qemu-timer.h"
57
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
66
67 /***********************************************************/
68 /* guest cycle counter */
69
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
77
78 TimersState timers_state;
79
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
82 {
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99 }
100
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
103 {
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111 }
112
113 #ifndef CONFIG_IOTHREAD
114 static int64_t qemu_icount_delta(void)
115 {
116 if (!use_icount) {
117 return 5000 * (int64_t) 1000000;
118 } else if (use_icount == 1) {
119 /* When not using an adaptive execution frequency
120 we tend to get badly out of sync with real time,
121 so just delay for a reasonable amount of time. */
122 return 0;
123 } else {
124 return cpu_get_icount() - cpu_get_clock();
125 }
126 }
127 #endif
128
129 /* enable cpu_get_ticks() */
130 void cpu_enable_ticks(void)
131 {
132 if (!timers_state.cpu_ticks_enabled) {
133 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
134 timers_state.cpu_clock_offset -= get_clock();
135 timers_state.cpu_ticks_enabled = 1;
136 }
137 }
138
139 /* disable cpu_get_ticks() : the clock is stopped. You must not call
140 cpu_get_ticks() after that. */
141 void cpu_disable_ticks(void)
142 {
143 if (timers_state.cpu_ticks_enabled) {
144 timers_state.cpu_ticks_offset = cpu_get_ticks();
145 timers_state.cpu_clock_offset = cpu_get_clock();
146 timers_state.cpu_ticks_enabled = 0;
147 }
148 }
149
150 /***********************************************************/
151 /* timers */
152
153 #define QEMU_CLOCK_REALTIME 0
154 #define QEMU_CLOCK_VIRTUAL 1
155 #define QEMU_CLOCK_HOST 2
156
157 struct QEMUClock {
158 int type;
159 int enabled;
160
161 QEMUTimer *warp_timer;
162 };
163
164 struct QEMUTimer {
165 QEMUClock *clock;
166 int64_t expire_time; /* in nanoseconds */
167 int scale;
168 QEMUTimerCB *cb;
169 void *opaque;
170 struct QEMUTimer *next;
171 };
172
173 struct qemu_alarm_timer {
174 char const *name;
175 int (*start)(struct qemu_alarm_timer *t);
176 void (*stop)(struct qemu_alarm_timer *t);
177 void (*rearm)(struct qemu_alarm_timer *t);
178 void *priv;
179
180 char expired;
181 char pending;
182 };
183
184 static struct qemu_alarm_timer *alarm_timer;
185
186 int qemu_alarm_pending(void)
187 {
188 return alarm_timer->pending;
189 }
190
191 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
192 {
193 return !!t->rearm;
194 }
195
196 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
197 {
198 if (!alarm_has_dynticks(t))
199 return;
200
201 t->rearm(t);
202 }
203
204 /* TODO: MIN_TIMER_REARM_NS should be optimized */
205 #define MIN_TIMER_REARM_NS 250000
206
207 #ifdef _WIN32
208
209 static int win32_start_timer(struct qemu_alarm_timer *t);
210 static void win32_stop_timer(struct qemu_alarm_timer *t);
211 static void win32_rearm_timer(struct qemu_alarm_timer *t);
212
213 #else
214
215 static int unix_start_timer(struct qemu_alarm_timer *t);
216 static void unix_stop_timer(struct qemu_alarm_timer *t);
217
218 #ifdef __linux__
219
220 static int dynticks_start_timer(struct qemu_alarm_timer *t);
221 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
222 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
223
224 static int hpet_start_timer(struct qemu_alarm_timer *t);
225 static void hpet_stop_timer(struct qemu_alarm_timer *t);
226
227 static int rtc_start_timer(struct qemu_alarm_timer *t);
228 static void rtc_stop_timer(struct qemu_alarm_timer *t);
229
230 #endif /* __linux__ */
231
232 #endif /* _WIN32 */
233
234 /* Correlation between real and virtual time is always going to be
235 fairly approximate, so ignore small variation.
236 When the guest is idle real and virtual time will be aligned in
237 the IO wait loop. */
238 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
239
240 static void icount_adjust(void)
241 {
242 int64_t cur_time;
243 int64_t cur_icount;
244 int64_t delta;
245 static int64_t last_delta;
246 /* If the VM is not running, then do nothing. */
247 if (!vm_running)
248 return;
249
250 cur_time = cpu_get_clock();
251 cur_icount = qemu_get_clock_ns(vm_clock);
252 delta = cur_icount - cur_time;
253 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
254 if (delta > 0
255 && last_delta + ICOUNT_WOBBLE < delta * 2
256 && icount_time_shift > 0) {
257 /* The guest is getting too far ahead. Slow time down. */
258 icount_time_shift--;
259 }
260 if (delta < 0
261 && last_delta - ICOUNT_WOBBLE > delta * 2
262 && icount_time_shift < MAX_ICOUNT_SHIFT) {
263 /* The guest is getting too far behind. Speed time up. */
264 icount_time_shift++;
265 }
266 last_delta = delta;
267 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
268 }
269
270 static void icount_adjust_rt(void * opaque)
271 {
272 qemu_mod_timer(icount_rt_timer,
273 qemu_get_clock_ms(rt_clock) + 1000);
274 icount_adjust();
275 }
276
277 static void icount_adjust_vm(void * opaque)
278 {
279 qemu_mod_timer(icount_vm_timer,
280 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
281 icount_adjust();
282 }
283
284 int64_t qemu_icount_round(int64_t count)
285 {
286 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
287 }
288
289 static struct qemu_alarm_timer alarm_timers[] = {
290 #ifndef _WIN32
291 #ifdef __linux__
292 {"dynticks", dynticks_start_timer,
293 dynticks_stop_timer, dynticks_rearm_timer, NULL},
294 /* HPET - if available - is preferred */
295 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
296 /* ...otherwise try RTC */
297 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
298 #endif
299 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
300 #else
301 {"dynticks", win32_start_timer,
302 win32_stop_timer, win32_rearm_timer, NULL},
303 {"win32", win32_start_timer,
304 win32_stop_timer, NULL, NULL},
305 #endif
306 {NULL, }
307 };
308
309 static void show_available_alarms(void)
310 {
311 int i;
312
313 printf("Available alarm timers, in order of precedence:\n");
314 for (i = 0; alarm_timers[i].name; i++)
315 printf("%s\n", alarm_timers[i].name);
316 }
317
318 void configure_alarms(char const *opt)
319 {
320 int i;
321 int cur = 0;
322 int count = ARRAY_SIZE(alarm_timers) - 1;
323 char *arg;
324 char *name;
325 struct qemu_alarm_timer tmp;
326
327 if (!strcmp(opt, "?")) {
328 show_available_alarms();
329 exit(0);
330 }
331
332 arg = qemu_strdup(opt);
333
334 /* Reorder the array */
335 name = strtok(arg, ",");
336 while (name) {
337 for (i = 0; i < count && alarm_timers[i].name; i++) {
338 if (!strcmp(alarm_timers[i].name, name))
339 break;
340 }
341
342 if (i == count) {
343 fprintf(stderr, "Unknown clock %s\n", name);
344 goto next;
345 }
346
347 if (i < cur)
348 /* Ignore */
349 goto next;
350
351 /* Swap */
352 tmp = alarm_timers[i];
353 alarm_timers[i] = alarm_timers[cur];
354 alarm_timers[cur] = tmp;
355
356 cur++;
357 next:
358 name = strtok(NULL, ",");
359 }
360
361 qemu_free(arg);
362
363 if (cur) {
364 /* Disable remaining timers */
365 for (i = cur; i < count; i++)
366 alarm_timers[i].name = NULL;
367 } else {
368 show_available_alarms();
369 exit(1);
370 }
371 }
372
373 #define QEMU_NUM_CLOCKS 3
374
375 QEMUClock *rt_clock;
376 QEMUClock *vm_clock;
377 QEMUClock *host_clock;
378
379 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
380
381 static QEMUClock *qemu_new_clock(int type)
382 {
383 QEMUClock *clock;
384 clock = qemu_mallocz(sizeof(QEMUClock));
385 clock->type = type;
386 clock->enabled = 1;
387 return clock;
388 }
389
390 void qemu_clock_enable(QEMUClock *clock, int enabled)
391 {
392 clock->enabled = enabled;
393 }
394
395 static int64_t vm_clock_warp_start;
396
397 static void icount_warp_rt(void *opaque)
398 {
399 if (vm_clock_warp_start == -1) {
400 return;
401 }
402
403 if (vm_running) {
404 int64_t clock = qemu_get_clock_ns(rt_clock);
405 int64_t warp_delta = clock - vm_clock_warp_start;
406 if (use_icount == 1) {
407 qemu_icount_bias += warp_delta;
408 } else {
409 /*
410 * In adaptive mode, do not let the vm_clock run too
411 * far ahead of real time.
412 */
413 int64_t cur_time = cpu_get_clock();
414 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
415 int64_t delta = cur_time - cur_icount;
416 qemu_icount_bias += MIN(warp_delta, delta);
417 }
418 if (qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
419 qemu_get_clock_ns(vm_clock))) {
420 qemu_notify_event();
421 }
422 }
423 vm_clock_warp_start = -1;
424 }
425
426 void qemu_clock_warp(QEMUClock *clock)
427 {
428 int64_t deadline;
429
430 if (!clock->warp_timer) {
431 return;
432 }
433
434 /*
435 * There are too many global variables to make the "warp" behavior
436 * applicable to other clocks. But a clock argument removes the
437 * need for if statements all over the place.
438 */
439 assert(clock == vm_clock);
440
441 /*
442 * If the CPUs have been sleeping, advance the vm_clock timer now. This
443 * ensures that the deadline for the timer is computed correctly below.
444 * This also makes sure that the insn counter is synchronized before the
445 * CPU starts running, in case the CPU is woken by an event other than
446 * the earliest vm_clock timer.
447 */
448 icount_warp_rt(NULL);
449 if (!all_cpu_threads_idle() || !active_timers[clock->type]) {
450 qemu_del_timer(clock->warp_timer);
451 return;
452 }
453
454 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
455 deadline = qemu_next_icount_deadline();
456 if (deadline > 0) {
457 /*
458 * Ensure the vm_clock proceeds even when the virtual CPU goes to
459 * sleep. Otherwise, the CPU might be waiting for a future timer
460 * interrupt to wake it up, but the interrupt never comes because
461 * the vCPU isn't running any insns and thus doesn't advance the
462 * vm_clock.
463 *
464 * An extreme solution for this problem would be to never let VCPUs
465 * sleep in icount mode if there is a pending vm_clock timer; rather
466 * time could just advance to the next vm_clock event. Instead, we
467 * do stop VCPUs and only advance vm_clock after some "real" time,
468 * (related to the time left until the next event) has passed. This
469 * rt_clock timer will do this. This avoids that the warps are too
470 * visible externally---for example, you will not be sending network
471 * packets continously instead of every 100ms.
472 */
473 qemu_mod_timer(clock->warp_timer, vm_clock_warp_start + deadline);
474 } else {
475 qemu_notify_event();
476 }
477 }
478
479 QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
480 QEMUTimerCB *cb, void *opaque)
481 {
482 QEMUTimer *ts;
483
484 ts = qemu_mallocz(sizeof(QEMUTimer));
485 ts->clock = clock;
486 ts->cb = cb;
487 ts->opaque = opaque;
488 ts->scale = scale;
489 return ts;
490 }
491
492 void qemu_free_timer(QEMUTimer *ts)
493 {
494 qemu_free(ts);
495 }
496
497 /* stop a timer, but do not dealloc it */
498 void qemu_del_timer(QEMUTimer *ts)
499 {
500 QEMUTimer **pt, *t;
501
502 /* NOTE: this code must be signal safe because
503 qemu_timer_expired() can be called from a signal. */
504 pt = &active_timers[ts->clock->type];
505 for(;;) {
506 t = *pt;
507 if (!t)
508 break;
509 if (t == ts) {
510 *pt = t->next;
511 break;
512 }
513 pt = &t->next;
514 }
515 }
516
517 /* modify the current timer so that it will be fired when current_time
518 >= expire_time. The corresponding callback will be called. */
519 static void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
520 {
521 QEMUTimer **pt, *t;
522
523 qemu_del_timer(ts);
524
525 /* add the timer in the sorted list */
526 /* NOTE: this code must be signal safe because
527 qemu_timer_expired() can be called from a signal. */
528 pt = &active_timers[ts->clock->type];
529 for(;;) {
530 t = *pt;
531 if (!t)
532 break;
533 if (t->expire_time > expire_time)
534 break;
535 pt = &t->next;
536 }
537 ts->expire_time = expire_time;
538 ts->next = *pt;
539 *pt = ts;
540
541 /* Rearm if necessary */
542 if (pt == &active_timers[ts->clock->type]) {
543 if (!alarm_timer->pending) {
544 qemu_rearm_alarm_timer(alarm_timer);
545 }
546 /* Interrupt execution to force deadline recalculation. */
547 qemu_clock_warp(ts->clock);
548 if (use_icount) {
549 qemu_notify_event();
550 }
551 }
552 }
553
554 /* modify the current timer so that it will be fired when current_time
555 >= expire_time. The corresponding callback will be called. */
556 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
557 {
558 qemu_mod_timer_ns(ts, expire_time * ts->scale);
559 }
560
561 int qemu_timer_pending(QEMUTimer *ts)
562 {
563 QEMUTimer *t;
564 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
565 if (t == ts)
566 return 1;
567 }
568 return 0;
569 }
570
571 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
572 {
573 if (!timer_head)
574 return 0;
575 return (timer_head->expire_time <= current_time * timer_head->scale);
576 }
577
578 static void qemu_run_timers(QEMUClock *clock)
579 {
580 QEMUTimer **ptimer_head, *ts;
581 int64_t current_time;
582
583 if (!clock->enabled)
584 return;
585
586 current_time = qemu_get_clock_ns(clock);
587 ptimer_head = &active_timers[clock->type];
588 for(;;) {
589 ts = *ptimer_head;
590 if (!ts || ts->expire_time > current_time)
591 break;
592 /* remove timer from the list before calling the callback */
593 *ptimer_head = ts->next;
594 ts->next = NULL;
595
596 /* run the callback (the timer list can be modified) */
597 ts->cb(ts->opaque);
598 }
599 }
600
601 int64_t qemu_get_clock_ns(QEMUClock *clock)
602 {
603 switch(clock->type) {
604 case QEMU_CLOCK_REALTIME:
605 return get_clock();
606 default:
607 case QEMU_CLOCK_VIRTUAL:
608 if (use_icount) {
609 return cpu_get_icount();
610 } else {
611 return cpu_get_clock();
612 }
613 case QEMU_CLOCK_HOST:
614 return get_clock_realtime();
615 }
616 }
617
618 void init_clocks(void)
619 {
620 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
621 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
622 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
623
624 rtc_clock = host_clock;
625 }
626
627 /* save a timer */
628 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
629 {
630 uint64_t expire_time;
631
632 if (qemu_timer_pending(ts)) {
633 expire_time = ts->expire_time;
634 } else {
635 expire_time = -1;
636 }
637 qemu_put_be64(f, expire_time);
638 }
639
640 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
641 {
642 uint64_t expire_time;
643
644 expire_time = qemu_get_be64(f);
645 if (expire_time != -1) {
646 qemu_mod_timer_ns(ts, expire_time);
647 } else {
648 qemu_del_timer(ts);
649 }
650 }
651
652 static const VMStateDescription vmstate_timers = {
653 .name = "timer",
654 .version_id = 2,
655 .minimum_version_id = 1,
656 .minimum_version_id_old = 1,
657 .fields = (VMStateField []) {
658 VMSTATE_INT64(cpu_ticks_offset, TimersState),
659 VMSTATE_INT64(dummy, TimersState),
660 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
661 VMSTATE_END_OF_LIST()
662 }
663 };
664
665 void configure_icount(const char *option)
666 {
667 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
668 if (!option)
669 return;
670
671 #ifdef CONFIG_IOTHREAD
672 vm_clock->warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
673 #endif
674
675 if (strcmp(option, "auto") != 0) {
676 icount_time_shift = strtol(option, NULL, 0);
677 use_icount = 1;
678 return;
679 }
680
681 use_icount = 2;
682
683 /* 125MIPS seems a reasonable initial guess at the guest speed.
684 It will be corrected fairly quickly anyway. */
685 icount_time_shift = 3;
686
687 /* Have both realtime and virtual time triggers for speed adjustment.
688 The realtime trigger catches emulated time passing too slowly,
689 the virtual time trigger catches emulated time passing too fast.
690 Realtime triggers occur even when idle, so use them less frequently
691 than VM triggers. */
692 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
693 qemu_mod_timer(icount_rt_timer,
694 qemu_get_clock_ms(rt_clock) + 1000);
695 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
696 qemu_mod_timer(icount_vm_timer,
697 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
698 }
699
700 void qemu_run_all_timers(void)
701 {
702 alarm_timer->pending = 0;
703
704 /* rearm timer, if not periodic */
705 if (alarm_timer->expired) {
706 alarm_timer->expired = 0;
707 qemu_rearm_alarm_timer(alarm_timer);
708 }
709
710 /* vm time timers */
711 if (vm_running) {
712 qemu_run_timers(vm_clock);
713 }
714
715 qemu_run_timers(rt_clock);
716 qemu_run_timers(host_clock);
717 }
718
719 static int64_t qemu_next_alarm_deadline(void);
720
721 #ifdef _WIN32
722 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
723 #else
724 static void host_alarm_handler(int host_signum)
725 #endif
726 {
727 struct qemu_alarm_timer *t = alarm_timer;
728 if (!t)
729 return;
730
731 #if 0
732 #define DISP_FREQ 1000
733 {
734 static int64_t delta_min = INT64_MAX;
735 static int64_t delta_max, delta_cum, last_clock, delta, ti;
736 static int count;
737 ti = qemu_get_clock_ns(vm_clock);
738 if (last_clock != 0) {
739 delta = ti - last_clock;
740 if (delta < delta_min)
741 delta_min = delta;
742 if (delta > delta_max)
743 delta_max = delta;
744 delta_cum += delta;
745 if (++count == DISP_FREQ) {
746 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
747 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
748 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
749 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
750 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
751 count = 0;
752 delta_min = INT64_MAX;
753 delta_max = 0;
754 delta_cum = 0;
755 }
756 }
757 last_clock = ti;
758 }
759 #endif
760 if (alarm_has_dynticks(t) ||
761 qemu_next_alarm_deadline () <= 0) {
762 t->expired = alarm_has_dynticks(t);
763 t->pending = 1;
764 qemu_notify_event();
765 }
766 }
767
768 int64_t qemu_next_icount_deadline(void)
769 {
770 /* To avoid problems with overflow limit this to 2^32. */
771 int64_t delta = INT32_MAX;
772
773 assert(use_icount);
774 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
775 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
776 qemu_get_clock_ns(vm_clock);
777 }
778
779 if (delta < 0)
780 delta = 0;
781
782 return delta;
783 }
784
785 static int64_t qemu_next_alarm_deadline(void)
786 {
787 int64_t delta;
788 int64_t rtdelta;
789
790 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
791 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
792 qemu_get_clock_ns(vm_clock);
793 } else {
794 delta = INT32_MAX;
795 }
796 if (active_timers[QEMU_CLOCK_HOST]) {
797 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
798 qemu_get_clock_ns(host_clock);
799 if (hdelta < delta)
800 delta = hdelta;
801 }
802 if (active_timers[QEMU_CLOCK_REALTIME]) {
803 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
804 qemu_get_clock_ns(rt_clock));
805 if (rtdelta < delta)
806 delta = rtdelta;
807 }
808
809 return delta;
810 }
811
812 #if defined(__linux__)
813
814 #define RTC_FREQ 1024
815
816 static void enable_sigio_timer(int fd)
817 {
818 struct sigaction act;
819
820 /* timer signal */
821 sigfillset(&act.sa_mask);
822 act.sa_flags = 0;
823 act.sa_handler = host_alarm_handler;
824
825 sigaction(SIGIO, &act, NULL);
826 fcntl_setfl(fd, O_ASYNC);
827 fcntl(fd, F_SETOWN, getpid());
828 }
829
830 static int hpet_start_timer(struct qemu_alarm_timer *t)
831 {
832 struct hpet_info info;
833 int r, fd;
834
835 fd = qemu_open("/dev/hpet", O_RDONLY);
836 if (fd < 0)
837 return -1;
838
839 /* Set frequency */
840 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
841 if (r < 0) {
842 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
843 "error, but for better emulation accuracy type:\n"
844 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
845 goto fail;
846 }
847
848 /* Check capabilities */
849 r = ioctl(fd, HPET_INFO, &info);
850 if (r < 0)
851 goto fail;
852
853 /* Enable periodic mode */
854 r = ioctl(fd, HPET_EPI, 0);
855 if (info.hi_flags && (r < 0))
856 goto fail;
857
858 /* Enable interrupt */
859 r = ioctl(fd, HPET_IE_ON, 0);
860 if (r < 0)
861 goto fail;
862
863 enable_sigio_timer(fd);
864 t->priv = (void *)(long)fd;
865
866 return 0;
867 fail:
868 close(fd);
869 return -1;
870 }
871
872 static void hpet_stop_timer(struct qemu_alarm_timer *t)
873 {
874 int fd = (long)t->priv;
875
876 close(fd);
877 }
878
879 static int rtc_start_timer(struct qemu_alarm_timer *t)
880 {
881 int rtc_fd;
882 unsigned long current_rtc_freq = 0;
883
884 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
885 if (rtc_fd < 0)
886 return -1;
887 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
888 if (current_rtc_freq != RTC_FREQ &&
889 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
890 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
891 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
892 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
893 goto fail;
894 }
895 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
896 fail:
897 close(rtc_fd);
898 return -1;
899 }
900
901 enable_sigio_timer(rtc_fd);
902
903 t->priv = (void *)(long)rtc_fd;
904
905 return 0;
906 }
907
908 static void rtc_stop_timer(struct qemu_alarm_timer *t)
909 {
910 int rtc_fd = (long)t->priv;
911
912 close(rtc_fd);
913 }
914
915 static int dynticks_start_timer(struct qemu_alarm_timer *t)
916 {
917 struct sigevent ev;
918 timer_t host_timer;
919 struct sigaction act;
920
921 sigfillset(&act.sa_mask);
922 act.sa_flags = 0;
923 act.sa_handler = host_alarm_handler;
924
925 sigaction(SIGALRM, &act, NULL);
926
927 /*
928 * Initialize ev struct to 0 to avoid valgrind complaining
929 * about uninitialized data in timer_create call
930 */
931 memset(&ev, 0, sizeof(ev));
932 ev.sigev_value.sival_int = 0;
933 ev.sigev_notify = SIGEV_SIGNAL;
934 ev.sigev_signo = SIGALRM;
935
936 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
937 perror("timer_create");
938
939 /* disable dynticks */
940 fprintf(stderr, "Dynamic Ticks disabled\n");
941
942 return -1;
943 }
944
945 t->priv = (void *)(long)host_timer;
946
947 return 0;
948 }
949
950 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
951 {
952 timer_t host_timer = (timer_t)(long)t->priv;
953
954 timer_delete(host_timer);
955 }
956
957 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
958 {
959 timer_t host_timer = (timer_t)(long)t->priv;
960 struct itimerspec timeout;
961 int64_t nearest_delta_ns = INT64_MAX;
962 int64_t current_ns;
963
964 assert(alarm_has_dynticks(t));
965 if (!active_timers[QEMU_CLOCK_REALTIME] &&
966 !active_timers[QEMU_CLOCK_VIRTUAL] &&
967 !active_timers[QEMU_CLOCK_HOST])
968 return;
969
970 nearest_delta_ns = qemu_next_alarm_deadline();
971 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
972 nearest_delta_ns = MIN_TIMER_REARM_NS;
973
974 /* check whether a timer is already running */
975 if (timer_gettime(host_timer, &timeout)) {
976 perror("gettime");
977 fprintf(stderr, "Internal timer error: aborting\n");
978 exit(1);
979 }
980 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
981 if (current_ns && current_ns <= nearest_delta_ns)
982 return;
983
984 timeout.it_interval.tv_sec = 0;
985 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
986 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
987 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
988 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
989 perror("settime");
990 fprintf(stderr, "Internal timer error: aborting\n");
991 exit(1);
992 }
993 }
994
995 #endif /* defined(__linux__) */
996
997 #if !defined(_WIN32)
998
999 static int unix_start_timer(struct qemu_alarm_timer *t)
1000 {
1001 struct sigaction act;
1002 struct itimerval itv;
1003 int err;
1004
1005 /* timer signal */
1006 sigfillset(&act.sa_mask);
1007 act.sa_flags = 0;
1008 act.sa_handler = host_alarm_handler;
1009
1010 sigaction(SIGALRM, &act, NULL);
1011
1012 itv.it_interval.tv_sec = 0;
1013 /* for i386 kernel 2.6 to get 1 ms */
1014 itv.it_interval.tv_usec = 999;
1015 itv.it_value.tv_sec = 0;
1016 itv.it_value.tv_usec = 10 * 1000;
1017
1018 err = setitimer(ITIMER_REAL, &itv, NULL);
1019 if (err)
1020 return -1;
1021
1022 return 0;
1023 }
1024
1025 static void unix_stop_timer(struct qemu_alarm_timer *t)
1026 {
1027 struct itimerval itv;
1028
1029 memset(&itv, 0, sizeof(itv));
1030 setitimer(ITIMER_REAL, &itv, NULL);
1031 }
1032
1033 #endif /* !defined(_WIN32) */
1034
1035
1036 #ifdef _WIN32
1037
1038 static int win32_start_timer(struct qemu_alarm_timer *t)
1039 {
1040 HANDLE hTimer;
1041 BOOLEAN success;
1042
1043 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
1044 is zero) that has already expired, the timer is not updated. Since
1045 creating a new timer is relatively expensive, set a bogus one-hour
1046 interval in the dynticks case. */
1047 success = CreateTimerQueueTimer(&hTimer,
1048 NULL,
1049 host_alarm_handler,
1050 t,
1051 1,
1052 alarm_has_dynticks(t) ? 3600000 : 1,
1053 WT_EXECUTEINTIMERTHREAD);
1054
1055 if (!success) {
1056 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1057 GetLastError());
1058 return -1;
1059 }
1060
1061 t->priv = (PVOID) hTimer;
1062 return 0;
1063 }
1064
1065 static void win32_stop_timer(struct qemu_alarm_timer *t)
1066 {
1067 HANDLE hTimer = t->priv;
1068
1069 if (hTimer) {
1070 DeleteTimerQueueTimer(NULL, hTimer, NULL);
1071 }
1072 }
1073
1074 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1075 {
1076 HANDLE hTimer = t->priv;
1077 int nearest_delta_ms;
1078 BOOLEAN success;
1079
1080 assert(alarm_has_dynticks(t));
1081 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1082 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1083 !active_timers[QEMU_CLOCK_HOST])
1084 return;
1085
1086 nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1087 if (nearest_delta_ms < 1) {
1088 nearest_delta_ms = 1;
1089 }
1090 success = ChangeTimerQueueTimer(NULL,
1091 hTimer,
1092 nearest_delta_ms,
1093 3600000);
1094
1095 if (!success) {
1096 fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1097 GetLastError());
1098 exit(-1);
1099 }
1100
1101 }
1102
1103 #endif /* _WIN32 */
1104
1105 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1106 {
1107 if (running)
1108 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1109 }
1110
1111 int init_timer_alarm(void)
1112 {
1113 struct qemu_alarm_timer *t = NULL;
1114 int i, err = -1;
1115
1116 for (i = 0; alarm_timers[i].name; i++) {
1117 t = &alarm_timers[i];
1118
1119 err = t->start(t);
1120 if (!err)
1121 break;
1122 }
1123
1124 if (err) {
1125 err = -ENOENT;
1126 goto fail;
1127 }
1128
1129 /* first event is at time 0 */
1130 t->pending = 1;
1131 alarm_timer = t;
1132 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1133
1134 return 0;
1135
1136 fail:
1137 return err;
1138 }
1139
1140 void quit_timers(void)
1141 {
1142 struct qemu_alarm_timer *t = alarm_timer;
1143 alarm_timer = NULL;
1144 t->stop(t);
1145 }
1146
1147 int qemu_calculate_timeout(void)
1148 {
1149 #ifndef CONFIG_IOTHREAD
1150 int timeout;
1151
1152 if (!vm_running)
1153 timeout = 5000;
1154 else {
1155 /* XXX: use timeout computed from timers */
1156 int64_t add;
1157 int64_t delta;
1158 /* Advance virtual time to the next event. */
1159 delta = qemu_icount_delta();
1160 if (delta > 0) {
1161 /* If virtual time is ahead of real time then just
1162 wait for IO. */
1163 timeout = (delta + 999999) / 1000000;
1164 } else {
1165 /* Wait for either IO to occur or the next
1166 timer event. */
1167 add = qemu_next_icount_deadline();
1168 /* We advance the timer before checking for IO.
1169 Limit the amount we advance so that early IO
1170 activity won't get the guest too far ahead. */
1171 if (add > 10000000)
1172 add = 10000000;
1173 delta += add;
1174 qemu_icount += qemu_icount_round (add);
1175 timeout = delta / 1000000;
1176 if (timeout < 0)
1177 timeout = 0;
1178 }
1179 }
1180
1181 return timeout;
1182 #else /* CONFIG_IOTHREAD */
1183 return 1000;
1184 #endif
1185 }
1186