]> git.proxmox.com Git - qemu.git/blob - qemu-timer.c
add a generic scaling mechanism for timers
[qemu.git] / qemu-timer.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "sysemu.h"
26 #include "net.h"
27 #include "monitor.h"
28 #include "console.h"
29
30 #include "hw/hw.h"
31
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <time.h>
35 #include <errno.h>
36 #include <sys/time.h>
37 #include <signal.h>
38 #ifdef __FreeBSD__
39 #include <sys/param.h>
40 #endif
41
42 #ifdef __linux__
43 #include <sys/ioctl.h>
44 #include <linux/rtc.h>
45 /* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47 /* #include <linux/hpet.h> */
48 #include "hpet.h"
49 #endif
50
51 #ifdef _WIN32
52 #include <windows.h>
53 #include <mmsystem.h>
54 #endif
55
56 #include "qemu-timer.h"
57
58 /* Conversion factor from emulated instructions to virtual clock ticks. */
59 int icount_time_shift;
60 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61 #define MAX_ICOUNT_SHIFT 10
62 /* Compensate for varying guest execution speed. */
63 int64_t qemu_icount_bias;
64 static QEMUTimer *icount_rt_timer;
65 static QEMUTimer *icount_vm_timer;
66
67 /***********************************************************/
68 /* guest cycle counter */
69
70 typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76 } TimersState;
77
78 TimersState timers_state;
79
80 /* return the host CPU cycle counter and handle stop/restart */
81 int64_t cpu_get_ticks(void)
82 {
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99 }
100
101 /* return the host CPU monotonic timer and handle stop/restart */
102 static int64_t cpu_get_clock(void)
103 {
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111 }
112
113 static int64_t qemu_icount_delta(void)
114 {
115 if (use_icount == 1) {
116 /* When not using an adaptive execution frequency
117 we tend to get badly out of sync with real time,
118 so just delay for a reasonable amount of time. */
119 return 0;
120 } else {
121 return cpu_get_icount() - cpu_get_clock();
122 }
123 }
124
125 /* enable cpu_get_ticks() */
126 void cpu_enable_ticks(void)
127 {
128 if (!timers_state.cpu_ticks_enabled) {
129 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
130 timers_state.cpu_clock_offset -= get_clock();
131 timers_state.cpu_ticks_enabled = 1;
132 }
133 }
134
135 /* disable cpu_get_ticks() : the clock is stopped. You must not call
136 cpu_get_ticks() after that. */
137 void cpu_disable_ticks(void)
138 {
139 if (timers_state.cpu_ticks_enabled) {
140 timers_state.cpu_ticks_offset = cpu_get_ticks();
141 timers_state.cpu_clock_offset = cpu_get_clock();
142 timers_state.cpu_ticks_enabled = 0;
143 }
144 }
145
146 /***********************************************************/
147 /* timers */
148
149 #define QEMU_CLOCK_REALTIME 0
150 #define QEMU_CLOCK_VIRTUAL 1
151 #define QEMU_CLOCK_HOST 2
152
153 struct QEMUClock {
154 int type;
155 int enabled;
156 };
157
158 struct QEMUTimer {
159 QEMUClock *clock;
160 int64_t expire_time; /* in nanoseconds */
161 int scale;
162 QEMUTimerCB *cb;
163 void *opaque;
164 struct QEMUTimer *next;
165 };
166
167 struct qemu_alarm_timer {
168 char const *name;
169 int (*start)(struct qemu_alarm_timer *t);
170 void (*stop)(struct qemu_alarm_timer *t);
171 void (*rearm)(struct qemu_alarm_timer *t);
172 void *priv;
173
174 char expired;
175 char pending;
176 };
177
178 static struct qemu_alarm_timer *alarm_timer;
179
180 int qemu_alarm_pending(void)
181 {
182 return alarm_timer->pending;
183 }
184
185 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
186 {
187 return !!t->rearm;
188 }
189
190 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
191 {
192 if (!alarm_has_dynticks(t))
193 return;
194
195 t->rearm(t);
196 }
197
198 /* TODO: MIN_TIMER_REARM_NS should be optimized */
199 #define MIN_TIMER_REARM_NS 250000
200
201 #ifdef _WIN32
202
203 static int win32_start_timer(struct qemu_alarm_timer *t);
204 static void win32_stop_timer(struct qemu_alarm_timer *t);
205 static void win32_rearm_timer(struct qemu_alarm_timer *t);
206
207 #else
208
209 static int unix_start_timer(struct qemu_alarm_timer *t);
210 static void unix_stop_timer(struct qemu_alarm_timer *t);
211
212 #ifdef __linux__
213
214 static int dynticks_start_timer(struct qemu_alarm_timer *t);
215 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
216 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
217
218 static int hpet_start_timer(struct qemu_alarm_timer *t);
219 static void hpet_stop_timer(struct qemu_alarm_timer *t);
220
221 static int rtc_start_timer(struct qemu_alarm_timer *t);
222 static void rtc_stop_timer(struct qemu_alarm_timer *t);
223
224 #endif /* __linux__ */
225
226 #endif /* _WIN32 */
227
228 /* Correlation between real and virtual time is always going to be
229 fairly approximate, so ignore small variation.
230 When the guest is idle real and virtual time will be aligned in
231 the IO wait loop. */
232 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
233
234 static void icount_adjust(void)
235 {
236 int64_t cur_time;
237 int64_t cur_icount;
238 int64_t delta;
239 static int64_t last_delta;
240 /* If the VM is not running, then do nothing. */
241 if (!vm_running)
242 return;
243
244 cur_time = cpu_get_clock();
245 cur_icount = qemu_get_clock_ns(vm_clock);
246 delta = cur_icount - cur_time;
247 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
248 if (delta > 0
249 && last_delta + ICOUNT_WOBBLE < delta * 2
250 && icount_time_shift > 0) {
251 /* The guest is getting too far ahead. Slow time down. */
252 icount_time_shift--;
253 }
254 if (delta < 0
255 && last_delta - ICOUNT_WOBBLE > delta * 2
256 && icount_time_shift < MAX_ICOUNT_SHIFT) {
257 /* The guest is getting too far behind. Speed time up. */
258 icount_time_shift++;
259 }
260 last_delta = delta;
261 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
262 }
263
264 static void icount_adjust_rt(void * opaque)
265 {
266 qemu_mod_timer(icount_rt_timer,
267 qemu_get_clock_ms(rt_clock) + 1000);
268 icount_adjust();
269 }
270
271 static void icount_adjust_vm(void * opaque)
272 {
273 qemu_mod_timer(icount_vm_timer,
274 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
275 icount_adjust();
276 }
277
278 int64_t qemu_icount_round(int64_t count)
279 {
280 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
281 }
282
283 static struct qemu_alarm_timer alarm_timers[] = {
284 #ifndef _WIN32
285 #ifdef __linux__
286 {"dynticks", dynticks_start_timer,
287 dynticks_stop_timer, dynticks_rearm_timer, NULL},
288 /* HPET - if available - is preferred */
289 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
290 /* ...otherwise try RTC */
291 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
292 #endif
293 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
294 #else
295 {"dynticks", win32_start_timer,
296 win32_stop_timer, win32_rearm_timer, NULL},
297 {"win32", win32_start_timer,
298 win32_stop_timer, NULL, NULL},
299 #endif
300 {NULL, }
301 };
302
303 static void show_available_alarms(void)
304 {
305 int i;
306
307 printf("Available alarm timers, in order of precedence:\n");
308 for (i = 0; alarm_timers[i].name; i++)
309 printf("%s\n", alarm_timers[i].name);
310 }
311
312 void configure_alarms(char const *opt)
313 {
314 int i;
315 int cur = 0;
316 int count = ARRAY_SIZE(alarm_timers) - 1;
317 char *arg;
318 char *name;
319 struct qemu_alarm_timer tmp;
320
321 if (!strcmp(opt, "?")) {
322 show_available_alarms();
323 exit(0);
324 }
325
326 arg = qemu_strdup(opt);
327
328 /* Reorder the array */
329 name = strtok(arg, ",");
330 while (name) {
331 for (i = 0; i < count && alarm_timers[i].name; i++) {
332 if (!strcmp(alarm_timers[i].name, name))
333 break;
334 }
335
336 if (i == count) {
337 fprintf(stderr, "Unknown clock %s\n", name);
338 goto next;
339 }
340
341 if (i < cur)
342 /* Ignore */
343 goto next;
344
345 /* Swap */
346 tmp = alarm_timers[i];
347 alarm_timers[i] = alarm_timers[cur];
348 alarm_timers[cur] = tmp;
349
350 cur++;
351 next:
352 name = strtok(NULL, ",");
353 }
354
355 qemu_free(arg);
356
357 if (cur) {
358 /* Disable remaining timers */
359 for (i = cur; i < count; i++)
360 alarm_timers[i].name = NULL;
361 } else {
362 show_available_alarms();
363 exit(1);
364 }
365 }
366
367 #define QEMU_NUM_CLOCKS 3
368
369 QEMUClock *rt_clock;
370 QEMUClock *vm_clock;
371 QEMUClock *host_clock;
372
373 static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
374
375 static QEMUClock *qemu_new_clock(int type)
376 {
377 QEMUClock *clock;
378 clock = qemu_mallocz(sizeof(QEMUClock));
379 clock->type = type;
380 clock->enabled = 1;
381 return clock;
382 }
383
384 void qemu_clock_enable(QEMUClock *clock, int enabled)
385 {
386 clock->enabled = enabled;
387 }
388
389 QEMUTimer *qemu_new_timer(QEMUClock *clock, int scale,
390 QEMUTimerCB *cb, void *opaque)
391 {
392 QEMUTimer *ts;
393
394 ts = qemu_mallocz(sizeof(QEMUTimer));
395 ts->clock = clock;
396 ts->cb = cb;
397 ts->opaque = opaque;
398 ts->scale = scale;
399 return ts;
400 }
401
402 void qemu_free_timer(QEMUTimer *ts)
403 {
404 qemu_free(ts);
405 }
406
407 /* stop a timer, but do not dealloc it */
408 void qemu_del_timer(QEMUTimer *ts)
409 {
410 QEMUTimer **pt, *t;
411
412 /* NOTE: this code must be signal safe because
413 qemu_timer_expired() can be called from a signal. */
414 pt = &active_timers[ts->clock->type];
415 for(;;) {
416 t = *pt;
417 if (!t)
418 break;
419 if (t == ts) {
420 *pt = t->next;
421 break;
422 }
423 pt = &t->next;
424 }
425 }
426
427 /* modify the current timer so that it will be fired when current_time
428 >= expire_time. The corresponding callback will be called. */
429 static void qemu_mod_timer_ns(QEMUTimer *ts, int64_t expire_time)
430 {
431 QEMUTimer **pt, *t;
432
433 qemu_del_timer(ts);
434
435 /* add the timer in the sorted list */
436 /* NOTE: this code must be signal safe because
437 qemu_timer_expired() can be called from a signal. */
438 pt = &active_timers[ts->clock->type];
439 for(;;) {
440 t = *pt;
441 if (!t)
442 break;
443 if (t->expire_time > expire_time)
444 break;
445 pt = &t->next;
446 }
447 ts->expire_time = expire_time;
448 ts->next = *pt;
449 *pt = ts;
450
451 /* Rearm if necessary */
452 if (pt == &active_timers[ts->clock->type]) {
453 if (!alarm_timer->pending) {
454 qemu_rearm_alarm_timer(alarm_timer);
455 }
456 /* Interrupt execution to force deadline recalculation. */
457 if (use_icount)
458 qemu_notify_event();
459 }
460 }
461
462 /* modify the current timer so that it will be fired when current_time
463 >= expire_time. The corresponding callback will be called. */
464 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
465 {
466 qemu_mod_timer_ns(ts, expire_time * ts->scale);
467 }
468
469 int qemu_timer_pending(QEMUTimer *ts)
470 {
471 QEMUTimer *t;
472 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
473 if (t == ts)
474 return 1;
475 }
476 return 0;
477 }
478
479 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
480 {
481 if (!timer_head)
482 return 0;
483 return (timer_head->expire_time <= current_time * timer_head->scale);
484 }
485
486 static void qemu_run_timers(QEMUClock *clock)
487 {
488 QEMUTimer **ptimer_head, *ts;
489 int64_t current_time;
490
491 if (!clock->enabled)
492 return;
493
494 current_time = qemu_get_clock_ns(clock);
495 ptimer_head = &active_timers[clock->type];
496 for(;;) {
497 ts = *ptimer_head;
498 if (!ts || ts->expire_time > current_time)
499 break;
500 /* remove timer from the list before calling the callback */
501 *ptimer_head = ts->next;
502 ts->next = NULL;
503
504 /* run the callback (the timer list can be modified) */
505 ts->cb(ts->opaque);
506 }
507 }
508
509 int64_t qemu_get_clock(QEMUClock *clock)
510 {
511 switch(clock->type) {
512 case QEMU_CLOCK_REALTIME:
513 return get_clock() / 1000000;
514 default:
515 case QEMU_CLOCK_VIRTUAL:
516 if (use_icount) {
517 return cpu_get_icount();
518 } else {
519 return cpu_get_clock();
520 }
521 case QEMU_CLOCK_HOST:
522 return get_clock_realtime();
523 }
524 }
525
526 int64_t qemu_get_clock_ns(QEMUClock *clock)
527 {
528 switch(clock->type) {
529 case QEMU_CLOCK_REALTIME:
530 return get_clock();
531 default:
532 case QEMU_CLOCK_VIRTUAL:
533 if (use_icount) {
534 return cpu_get_icount();
535 } else {
536 return cpu_get_clock();
537 }
538 case QEMU_CLOCK_HOST:
539 return get_clock_realtime();
540 }
541 }
542
543 void init_clocks(void)
544 {
545 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
546 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
547 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
548
549 rtc_clock = host_clock;
550 }
551
552 /* save a timer */
553 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
554 {
555 uint64_t expire_time;
556
557 if (qemu_timer_pending(ts)) {
558 expire_time = ts->expire_time;
559 } else {
560 expire_time = -1;
561 }
562 qemu_put_be64(f, expire_time);
563 }
564
565 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
566 {
567 uint64_t expire_time;
568
569 expire_time = qemu_get_be64(f);
570 if (expire_time != -1) {
571 qemu_mod_timer_ns(ts, expire_time);
572 } else {
573 qemu_del_timer(ts);
574 }
575 }
576
577 static const VMStateDescription vmstate_timers = {
578 .name = "timer",
579 .version_id = 2,
580 .minimum_version_id = 1,
581 .minimum_version_id_old = 1,
582 .fields = (VMStateField []) {
583 VMSTATE_INT64(cpu_ticks_offset, TimersState),
584 VMSTATE_INT64(dummy, TimersState),
585 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
586 VMSTATE_END_OF_LIST()
587 }
588 };
589
590 void configure_icount(const char *option)
591 {
592 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
593 if (!option)
594 return;
595
596 if (strcmp(option, "auto") != 0) {
597 icount_time_shift = strtol(option, NULL, 0);
598 use_icount = 1;
599 return;
600 }
601
602 use_icount = 2;
603
604 /* 125MIPS seems a reasonable initial guess at the guest speed.
605 It will be corrected fairly quickly anyway. */
606 icount_time_shift = 3;
607
608 /* Have both realtime and virtual time triggers for speed adjustment.
609 The realtime trigger catches emulated time passing too slowly,
610 the virtual time trigger catches emulated time passing too fast.
611 Realtime triggers occur even when idle, so use them less frequently
612 than VM triggers. */
613 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
614 qemu_mod_timer(icount_rt_timer,
615 qemu_get_clock_ms(rt_clock) + 1000);
616 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
617 qemu_mod_timer(icount_vm_timer,
618 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
619 }
620
621 void qemu_run_all_timers(void)
622 {
623 alarm_timer->pending = 0;
624
625 /* rearm timer, if not periodic */
626 if (alarm_timer->expired) {
627 alarm_timer->expired = 0;
628 qemu_rearm_alarm_timer(alarm_timer);
629 }
630
631 /* vm time timers */
632 if (vm_running) {
633 qemu_run_timers(vm_clock);
634 }
635
636 qemu_run_timers(rt_clock);
637 qemu_run_timers(host_clock);
638 }
639
640 static int64_t qemu_next_alarm_deadline(void);
641
642 #ifdef _WIN32
643 static void CALLBACK host_alarm_handler(PVOID lpParam, BOOLEAN unused)
644 #else
645 static void host_alarm_handler(int host_signum)
646 #endif
647 {
648 struct qemu_alarm_timer *t = alarm_timer;
649 if (!t)
650 return;
651
652 #if 0
653 #define DISP_FREQ 1000
654 {
655 static int64_t delta_min = INT64_MAX;
656 static int64_t delta_max, delta_cum, last_clock, delta, ti;
657 static int count;
658 ti = qemu_get_clock_ns(vm_clock);
659 if (last_clock != 0) {
660 delta = ti - last_clock;
661 if (delta < delta_min)
662 delta_min = delta;
663 if (delta > delta_max)
664 delta_max = delta;
665 delta_cum += delta;
666 if (++count == DISP_FREQ) {
667 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
668 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
669 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
670 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
671 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
672 count = 0;
673 delta_min = INT64_MAX;
674 delta_max = 0;
675 delta_cum = 0;
676 }
677 }
678 last_clock = ti;
679 }
680 #endif
681 if (alarm_has_dynticks(t) ||
682 qemu_next_alarm_deadline () <= 0) {
683 t->expired = alarm_has_dynticks(t);
684 t->pending = 1;
685 qemu_notify_event();
686 }
687 }
688
689 int64_t qemu_next_deadline(void)
690 {
691 /* To avoid problems with overflow limit this to 2^32. */
692 int64_t delta = INT32_MAX;
693
694 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
695 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
696 qemu_get_clock_ns(vm_clock);
697 }
698 if (active_timers[QEMU_CLOCK_HOST]) {
699 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
700 qemu_get_clock_ns(host_clock);
701 if (hdelta < delta)
702 delta = hdelta;
703 }
704
705 if (delta < 0)
706 delta = 0;
707
708 return delta;
709 }
710
711 static int64_t qemu_next_alarm_deadline(void)
712 {
713 int64_t delta;
714 int64_t rtdelta;
715
716 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
717 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
718 qemu_get_clock_ns(vm_clock);
719 } else {
720 delta = INT32_MAX;
721 }
722 if (active_timers[QEMU_CLOCK_HOST]) {
723 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
724 qemu_get_clock_ns(host_clock);
725 if (hdelta < delta)
726 delta = hdelta;
727 }
728 if (active_timers[QEMU_CLOCK_REALTIME]) {
729 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
730 qemu_get_clock_ns(rt_clock));
731 if (rtdelta < delta)
732 delta = rtdelta;
733 }
734
735 return delta;
736 }
737
738 #if defined(__linux__)
739
740 #define RTC_FREQ 1024
741
742 static void enable_sigio_timer(int fd)
743 {
744 struct sigaction act;
745
746 /* timer signal */
747 sigfillset(&act.sa_mask);
748 act.sa_flags = 0;
749 act.sa_handler = host_alarm_handler;
750
751 sigaction(SIGIO, &act, NULL);
752 fcntl_setfl(fd, O_ASYNC);
753 fcntl(fd, F_SETOWN, getpid());
754 }
755
756 static int hpet_start_timer(struct qemu_alarm_timer *t)
757 {
758 struct hpet_info info;
759 int r, fd;
760
761 fd = qemu_open("/dev/hpet", O_RDONLY);
762 if (fd < 0)
763 return -1;
764
765 /* Set frequency */
766 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
767 if (r < 0) {
768 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
769 "error, but for better emulation accuracy type:\n"
770 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
771 goto fail;
772 }
773
774 /* Check capabilities */
775 r = ioctl(fd, HPET_INFO, &info);
776 if (r < 0)
777 goto fail;
778
779 /* Enable periodic mode */
780 r = ioctl(fd, HPET_EPI, 0);
781 if (info.hi_flags && (r < 0))
782 goto fail;
783
784 /* Enable interrupt */
785 r = ioctl(fd, HPET_IE_ON, 0);
786 if (r < 0)
787 goto fail;
788
789 enable_sigio_timer(fd);
790 t->priv = (void *)(long)fd;
791
792 return 0;
793 fail:
794 close(fd);
795 return -1;
796 }
797
798 static void hpet_stop_timer(struct qemu_alarm_timer *t)
799 {
800 int fd = (long)t->priv;
801
802 close(fd);
803 }
804
805 static int rtc_start_timer(struct qemu_alarm_timer *t)
806 {
807 int rtc_fd;
808 unsigned long current_rtc_freq = 0;
809
810 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
811 if (rtc_fd < 0)
812 return -1;
813 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
814 if (current_rtc_freq != RTC_FREQ &&
815 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
816 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
817 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
818 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
819 goto fail;
820 }
821 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
822 fail:
823 close(rtc_fd);
824 return -1;
825 }
826
827 enable_sigio_timer(rtc_fd);
828
829 t->priv = (void *)(long)rtc_fd;
830
831 return 0;
832 }
833
834 static void rtc_stop_timer(struct qemu_alarm_timer *t)
835 {
836 int rtc_fd = (long)t->priv;
837
838 close(rtc_fd);
839 }
840
841 static int dynticks_start_timer(struct qemu_alarm_timer *t)
842 {
843 struct sigevent ev;
844 timer_t host_timer;
845 struct sigaction act;
846
847 sigfillset(&act.sa_mask);
848 act.sa_flags = 0;
849 act.sa_handler = host_alarm_handler;
850
851 sigaction(SIGALRM, &act, NULL);
852
853 /*
854 * Initialize ev struct to 0 to avoid valgrind complaining
855 * about uninitialized data in timer_create call
856 */
857 memset(&ev, 0, sizeof(ev));
858 ev.sigev_value.sival_int = 0;
859 ev.sigev_notify = SIGEV_SIGNAL;
860 ev.sigev_signo = SIGALRM;
861
862 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
863 perror("timer_create");
864
865 /* disable dynticks */
866 fprintf(stderr, "Dynamic Ticks disabled\n");
867
868 return -1;
869 }
870
871 t->priv = (void *)(long)host_timer;
872
873 return 0;
874 }
875
876 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
877 {
878 timer_t host_timer = (timer_t)(long)t->priv;
879
880 timer_delete(host_timer);
881 }
882
883 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
884 {
885 timer_t host_timer = (timer_t)(long)t->priv;
886 struct itimerspec timeout;
887 int64_t nearest_delta_ns = INT64_MAX;
888 int64_t current_ns;
889
890 assert(alarm_has_dynticks(t));
891 if (!active_timers[QEMU_CLOCK_REALTIME] &&
892 !active_timers[QEMU_CLOCK_VIRTUAL] &&
893 !active_timers[QEMU_CLOCK_HOST])
894 return;
895
896 nearest_delta_ns = qemu_next_alarm_deadline();
897 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
898 nearest_delta_ns = MIN_TIMER_REARM_NS;
899
900 /* check whether a timer is already running */
901 if (timer_gettime(host_timer, &timeout)) {
902 perror("gettime");
903 fprintf(stderr, "Internal timer error: aborting\n");
904 exit(1);
905 }
906 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
907 if (current_ns && current_ns <= nearest_delta_ns)
908 return;
909
910 timeout.it_interval.tv_sec = 0;
911 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
912 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
913 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
914 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
915 perror("settime");
916 fprintf(stderr, "Internal timer error: aborting\n");
917 exit(1);
918 }
919 }
920
921 #endif /* defined(__linux__) */
922
923 #if !defined(_WIN32)
924
925 static int unix_start_timer(struct qemu_alarm_timer *t)
926 {
927 struct sigaction act;
928 struct itimerval itv;
929 int err;
930
931 /* timer signal */
932 sigfillset(&act.sa_mask);
933 act.sa_flags = 0;
934 act.sa_handler = host_alarm_handler;
935
936 sigaction(SIGALRM, &act, NULL);
937
938 itv.it_interval.tv_sec = 0;
939 /* for i386 kernel 2.6 to get 1 ms */
940 itv.it_interval.tv_usec = 999;
941 itv.it_value.tv_sec = 0;
942 itv.it_value.tv_usec = 10 * 1000;
943
944 err = setitimer(ITIMER_REAL, &itv, NULL);
945 if (err)
946 return -1;
947
948 return 0;
949 }
950
951 static void unix_stop_timer(struct qemu_alarm_timer *t)
952 {
953 struct itimerval itv;
954
955 memset(&itv, 0, sizeof(itv));
956 setitimer(ITIMER_REAL, &itv, NULL);
957 }
958
959 #endif /* !defined(_WIN32) */
960
961
962 #ifdef _WIN32
963
964 static int win32_start_timer(struct qemu_alarm_timer *t)
965 {
966 HANDLE hTimer;
967 BOOLEAN success;
968
969 /* If you call ChangeTimerQueueTimer on a one-shot timer (its period
970 is zero) that has already expired, the timer is not updated. Since
971 creating a new timer is relatively expensive, set a bogus one-hour
972 interval in the dynticks case. */
973 success = CreateTimerQueueTimer(&hTimer,
974 NULL,
975 host_alarm_handler,
976 t,
977 1,
978 alarm_has_dynticks(t) ? 3600000 : 1,
979 WT_EXECUTEINTIMERTHREAD);
980
981 if (!success) {
982 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
983 GetLastError());
984 return -1;
985 }
986
987 t->priv = (PVOID) hTimer;
988 return 0;
989 }
990
991 static void win32_stop_timer(struct qemu_alarm_timer *t)
992 {
993 HANDLE hTimer = t->priv;
994
995 if (hTimer) {
996 DeleteTimerQueueTimer(NULL, hTimer, NULL);
997 }
998 }
999
1000 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1001 {
1002 HANDLE hTimer = t->priv;
1003 int nearest_delta_ms;
1004 BOOLEAN success;
1005
1006 assert(alarm_has_dynticks(t));
1007 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1008 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1009 !active_timers[QEMU_CLOCK_HOST])
1010 return;
1011
1012 nearest_delta_ms = (qemu_next_alarm_deadline() + 999999) / 1000000;
1013 if (nearest_delta_ms < 1) {
1014 nearest_delta_ms = 1;
1015 }
1016 success = ChangeTimerQueueTimer(NULL,
1017 hTimer,
1018 nearest_delta_ms,
1019 3600000);
1020
1021 if (!success) {
1022 fprintf(stderr, "Failed to rearm win32 alarm timer: %ld\n",
1023 GetLastError());
1024 exit(-1);
1025 }
1026
1027 }
1028
1029 #endif /* _WIN32 */
1030
1031 static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1032 {
1033 if (running)
1034 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1035 }
1036
1037 int init_timer_alarm(void)
1038 {
1039 struct qemu_alarm_timer *t = NULL;
1040 int i, err = -1;
1041
1042 for (i = 0; alarm_timers[i].name; i++) {
1043 t = &alarm_timers[i];
1044
1045 err = t->start(t);
1046 if (!err)
1047 break;
1048 }
1049
1050 if (err) {
1051 err = -ENOENT;
1052 goto fail;
1053 }
1054
1055 /* first event is at time 0 */
1056 t->pending = 1;
1057 alarm_timer = t;
1058 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1059
1060 return 0;
1061
1062 fail:
1063 return err;
1064 }
1065
1066 void quit_timers(void)
1067 {
1068 struct qemu_alarm_timer *t = alarm_timer;
1069 alarm_timer = NULL;
1070 t->stop(t);
1071 }
1072
1073 int qemu_calculate_timeout(void)
1074 {
1075 int timeout;
1076 int64_t add;
1077 int64_t delta;
1078
1079 /* When using icount, making forward progress with qemu_icount when the
1080 guest CPU is idle is critical. We only use the static io-thread timeout
1081 for non icount runs. */
1082 if (!use_icount || !vm_running) {
1083 return 5000;
1084 }
1085
1086 /* Advance virtual time to the next event. */
1087 delta = qemu_icount_delta();
1088 if (delta > 0) {
1089 /* If virtual time is ahead of real time then just
1090 wait for IO. */
1091 timeout = (delta + 999999) / 1000000;
1092 } else {
1093 /* Wait for either IO to occur or the next
1094 timer event. */
1095 add = qemu_next_deadline();
1096 /* We advance the timer before checking for IO.
1097 Limit the amount we advance so that early IO
1098 activity won't get the guest too far ahead. */
1099 if (add > 10000000)
1100 add = 10000000;
1101 delta += add;
1102 qemu_icount += qemu_icount_round (add);
1103 timeout = delta / 1000000;
1104 if (timeout < 0)
1105 timeout = 0;
1106 }
1107
1108 return timeout;
1109 }
1110