]> git.proxmox.com Git - qemu.git/blob - savevm.c
migration: simplify writev vs. non-writev logic
[qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42 #include "qemu/iov.h"
43
44 #define SELF_ANNOUNCE_ROUNDS 5
45
46 #ifndef ETH_P_RARP
47 #define ETH_P_RARP 0x8035
48 #endif
49 #define ARP_HTYPE_ETH 0x0001
50 #define ARP_PTYPE_IP 0x0800
51 #define ARP_OP_REQUEST_REV 0x3
52
53 static int announce_self_create(uint8_t *buf,
54 uint8_t *mac_addr)
55 {
56 /* Ethernet header. */
57 memset(buf, 0xff, 6); /* destination MAC addr */
58 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
59 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
60
61 /* RARP header. */
62 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
63 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
64 *(buf + 18) = 6; /* hardware addr length (ethernet) */
65 *(buf + 19) = 4; /* protocol addr length (IPv4) */
66 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
67 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
68 memset(buf + 28, 0x00, 4); /* source protocol addr */
69 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
70 memset(buf + 38, 0x00, 4); /* target protocol addr */
71
72 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
73 memset(buf + 42, 0x00, 18);
74
75 return 60; /* len (FCS will be added by hardware) */
76 }
77
78 static void qemu_announce_self_iter(NICState *nic, void *opaque)
79 {
80 uint8_t buf[60];
81 int len;
82
83 len = announce_self_create(buf, nic->conf->macaddr.a);
84
85 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
86 }
87
88
89 static void qemu_announce_self_once(void *opaque)
90 {
91 static int count = SELF_ANNOUNCE_ROUNDS;
92 QEMUTimer *timer = *(QEMUTimer **)opaque;
93
94 qemu_foreach_nic(qemu_announce_self_iter, NULL);
95
96 if (--count) {
97 /* delay 50ms, 150ms, 250ms, ... */
98 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
99 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
100 } else {
101 qemu_del_timer(timer);
102 qemu_free_timer(timer);
103 }
104 }
105
106 void qemu_announce_self(void)
107 {
108 static QEMUTimer *timer;
109 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
110 qemu_announce_self_once(&timer);
111 }
112
113 /***********************************************************/
114 /* savevm/loadvm support */
115
116 #define IO_BUF_SIZE 32768
117 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
118
119 struct QEMUFile {
120 const QEMUFileOps *ops;
121 void *opaque;
122
123 int64_t bytes_xfer;
124 int64_t xfer_limit;
125
126 int64_t pos; /* start of buffer when writing, end of buffer
127 when reading */
128 int buf_index;
129 int buf_size; /* 0 when writing */
130 uint8_t buf[IO_BUF_SIZE];
131
132 struct iovec iov[MAX_IOV_SIZE];
133 unsigned int iovcnt;
134
135 int last_error;
136 };
137
138 typedef struct QEMUFileStdio
139 {
140 FILE *stdio_file;
141 QEMUFile *file;
142 } QEMUFileStdio;
143
144 typedef struct QEMUFileSocket
145 {
146 int fd;
147 QEMUFile *file;
148 } QEMUFileSocket;
149
150 typedef struct {
151 Coroutine *co;
152 int fd;
153 } FDYieldUntilData;
154
155 static void fd_coroutine_enter(void *opaque)
156 {
157 FDYieldUntilData *data = opaque;
158 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
159 qemu_coroutine_enter(data->co, NULL);
160 }
161
162 /**
163 * Yield until a file descriptor becomes readable
164 *
165 * Note that this function clobbers the handlers for the file descriptor.
166 */
167 static void coroutine_fn yield_until_fd_readable(int fd)
168 {
169 FDYieldUntilData data;
170
171 assert(qemu_in_coroutine());
172 data.co = qemu_coroutine_self();
173 data.fd = fd;
174 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
175 qemu_coroutine_yield();
176 }
177
178 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt)
179 {
180 QEMUFileSocket *s = opaque;
181 ssize_t len;
182 ssize_t size = iov_size(iov, iovcnt);
183
184 len = iov_send(s->fd, iov, iovcnt, 0, size);
185 if (len < size) {
186 len = -socket_error();
187 }
188 return len;
189 }
190
191 static int socket_get_fd(void *opaque)
192 {
193 QEMUFileSocket *s = opaque;
194
195 return s->fd;
196 }
197
198 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
199 {
200 QEMUFileSocket *s = opaque;
201 ssize_t len;
202
203 for (;;) {
204 len = qemu_recv(s->fd, buf, size, 0);
205 if (len != -1) {
206 break;
207 }
208 if (socket_error() == EAGAIN) {
209 yield_until_fd_readable(s->fd);
210 } else if (socket_error() != EINTR) {
211 break;
212 }
213 }
214
215 if (len == -1) {
216 len = -socket_error();
217 }
218 return len;
219 }
220
221 static int socket_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
222 {
223 QEMUFileSocket *s = opaque;
224 ssize_t len;
225
226 len = qemu_send_full(s->fd, buf, size, 0);
227 if (len < size) {
228 len = -socket_error();
229 }
230 return len;
231 }
232
233 static int socket_close(void *opaque)
234 {
235 QEMUFileSocket *s = opaque;
236 closesocket(s->fd);
237 g_free(s);
238 return 0;
239 }
240
241 static int stdio_get_fd(void *opaque)
242 {
243 QEMUFileStdio *s = opaque;
244
245 return fileno(s->stdio_file);
246 }
247
248 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
249 {
250 QEMUFileStdio *s = opaque;
251 return fwrite(buf, 1, size, s->stdio_file);
252 }
253
254 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
255 {
256 QEMUFileStdio *s = opaque;
257 FILE *fp = s->stdio_file;
258 int bytes;
259
260 for (;;) {
261 clearerr(fp);
262 bytes = fread(buf, 1, size, fp);
263 if (bytes != 0 || !ferror(fp)) {
264 break;
265 }
266 if (errno == EAGAIN) {
267 yield_until_fd_readable(fileno(fp));
268 } else if (errno != EINTR) {
269 break;
270 }
271 }
272 return bytes;
273 }
274
275 static int stdio_pclose(void *opaque)
276 {
277 QEMUFileStdio *s = opaque;
278 int ret;
279 ret = pclose(s->stdio_file);
280 if (ret == -1) {
281 ret = -errno;
282 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
283 /* close succeeded, but non-zero exit code: */
284 ret = -EIO; /* fake errno value */
285 }
286 g_free(s);
287 return ret;
288 }
289
290 static int stdio_fclose(void *opaque)
291 {
292 QEMUFileStdio *s = opaque;
293 int ret = 0;
294
295 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
296 int fd = fileno(s->stdio_file);
297 struct stat st;
298
299 ret = fstat(fd, &st);
300 if (ret == 0 && S_ISREG(st.st_mode)) {
301 /*
302 * If the file handle is a regular file make sure the
303 * data is flushed to disk before signaling success.
304 */
305 ret = fsync(fd);
306 if (ret != 0) {
307 ret = -errno;
308 return ret;
309 }
310 }
311 }
312 if (fclose(s->stdio_file) == EOF) {
313 ret = -errno;
314 }
315 g_free(s);
316 return ret;
317 }
318
319 static const QEMUFileOps stdio_pipe_read_ops = {
320 .get_fd = stdio_get_fd,
321 .get_buffer = stdio_get_buffer,
322 .close = stdio_pclose
323 };
324
325 static const QEMUFileOps stdio_pipe_write_ops = {
326 .get_fd = stdio_get_fd,
327 .put_buffer = stdio_put_buffer,
328 .close = stdio_pclose
329 };
330
331 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
332 {
333 FILE *stdio_file;
334 QEMUFileStdio *s;
335
336 stdio_file = popen(command, mode);
337 if (stdio_file == NULL) {
338 return NULL;
339 }
340
341 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
342 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
343 return NULL;
344 }
345
346 s = g_malloc0(sizeof(QEMUFileStdio));
347
348 s->stdio_file = stdio_file;
349
350 if(mode[0] == 'r') {
351 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
352 } else {
353 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
354 }
355 return s->file;
356 }
357
358 static const QEMUFileOps stdio_file_read_ops = {
359 .get_fd = stdio_get_fd,
360 .get_buffer = stdio_get_buffer,
361 .close = stdio_fclose
362 };
363
364 static const QEMUFileOps stdio_file_write_ops = {
365 .get_fd = stdio_get_fd,
366 .put_buffer = stdio_put_buffer,
367 .close = stdio_fclose
368 };
369
370 QEMUFile *qemu_fdopen(int fd, const char *mode)
371 {
372 QEMUFileStdio *s;
373
374 if (mode == NULL ||
375 (mode[0] != 'r' && mode[0] != 'w') ||
376 mode[1] != 'b' || mode[2] != 0) {
377 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
378 return NULL;
379 }
380
381 s = g_malloc0(sizeof(QEMUFileStdio));
382 s->stdio_file = fdopen(fd, mode);
383 if (!s->stdio_file)
384 goto fail;
385
386 if(mode[0] == 'r') {
387 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
388 } else {
389 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
390 }
391 return s->file;
392
393 fail:
394 g_free(s);
395 return NULL;
396 }
397
398 static const QEMUFileOps socket_read_ops = {
399 .get_fd = socket_get_fd,
400 .get_buffer = socket_get_buffer,
401 .close = socket_close
402 };
403
404 static const QEMUFileOps socket_write_ops = {
405 .get_fd = socket_get_fd,
406 .put_buffer = socket_put_buffer,
407 .writev_buffer = socket_writev_buffer,
408 .close = socket_close
409 };
410
411 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
412 {
413 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
414
415 if (mode == NULL ||
416 (mode[0] != 'r' && mode[0] != 'w') ||
417 mode[1] != 'b' || mode[2] != 0) {
418 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
419 return NULL;
420 }
421
422 s->fd = fd;
423 if (mode[0] == 'w') {
424 qemu_set_block(s->fd);
425 s->file = qemu_fopen_ops(s, &socket_write_ops);
426 } else {
427 s->file = qemu_fopen_ops(s, &socket_read_ops);
428 }
429 return s->file;
430 }
431
432 QEMUFile *qemu_fopen(const char *filename, const char *mode)
433 {
434 QEMUFileStdio *s;
435
436 if (mode == NULL ||
437 (mode[0] != 'r' && mode[0] != 'w') ||
438 mode[1] != 'b' || mode[2] != 0) {
439 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
440 return NULL;
441 }
442
443 s = g_malloc0(sizeof(QEMUFileStdio));
444
445 s->stdio_file = fopen(filename, mode);
446 if (!s->stdio_file)
447 goto fail;
448
449 if(mode[0] == 'w') {
450 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
451 } else {
452 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
453 }
454 return s->file;
455 fail:
456 g_free(s);
457 return NULL;
458 }
459
460 static int block_put_buffer(void *opaque, const uint8_t *buf,
461 int64_t pos, int size)
462 {
463 bdrv_save_vmstate(opaque, buf, pos, size);
464 return size;
465 }
466
467 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
468 {
469 return bdrv_load_vmstate(opaque, buf, pos, size);
470 }
471
472 static int bdrv_fclose(void *opaque)
473 {
474 return bdrv_flush(opaque);
475 }
476
477 static const QEMUFileOps bdrv_read_ops = {
478 .get_buffer = block_get_buffer,
479 .close = bdrv_fclose
480 };
481
482 static const QEMUFileOps bdrv_write_ops = {
483 .put_buffer = block_put_buffer,
484 .close = bdrv_fclose
485 };
486
487 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
488 {
489 if (is_writable)
490 return qemu_fopen_ops(bs, &bdrv_write_ops);
491 return qemu_fopen_ops(bs, &bdrv_read_ops);
492 }
493
494 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
495 {
496 QEMUFile *f;
497
498 f = g_malloc0(sizeof(QEMUFile));
499
500 f->opaque = opaque;
501 f->ops = ops;
502 return f;
503 }
504
505 int qemu_file_get_error(QEMUFile *f)
506 {
507 return f->last_error;
508 }
509
510 static void qemu_file_set_error(QEMUFile *f, int ret)
511 {
512 if (f->last_error == 0) {
513 f->last_error = ret;
514 }
515 }
516
517 static inline bool qemu_file_is_writable(QEMUFile *f)
518 {
519 return f->ops->writev_buffer || f->ops->put_buffer;
520 }
521
522 /**
523 * Flushes QEMUFile buffer
524 *
525 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
526 * put_buffer ops.
527 */
528 static void qemu_fflush(QEMUFile *f)
529 {
530 ssize_t ret = 0;
531
532 if (!qemu_file_is_writable(f)) {
533 return;
534 }
535
536 if (f->ops->writev_buffer) {
537 if (f->iovcnt > 0) {
538 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt);
539 }
540 } else {
541 if (f->buf_index > 0) {
542 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
543 }
544 }
545 if (ret >= 0) {
546 f->pos += ret;
547 }
548 f->buf_index = 0;
549 f->iovcnt = 0;
550 if (ret < 0) {
551 qemu_file_set_error(f, ret);
552 }
553 }
554
555 static void qemu_fill_buffer(QEMUFile *f)
556 {
557 int len;
558 int pending;
559
560 assert(!qemu_file_is_writable(f));
561
562 pending = f->buf_size - f->buf_index;
563 if (pending > 0) {
564 memmove(f->buf, f->buf + f->buf_index, pending);
565 }
566 f->buf_index = 0;
567 f->buf_size = pending;
568
569 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
570 IO_BUF_SIZE - pending);
571 if (len > 0) {
572 f->buf_size += len;
573 f->pos += len;
574 } else if (len == 0) {
575 qemu_file_set_error(f, -EIO);
576 } else if (len != -EAGAIN)
577 qemu_file_set_error(f, len);
578 }
579
580 int qemu_get_fd(QEMUFile *f)
581 {
582 if (f->ops->get_fd) {
583 return f->ops->get_fd(f->opaque);
584 }
585 return -1;
586 }
587
588 /** Closes the file
589 *
590 * Returns negative error value if any error happened on previous operations or
591 * while closing the file. Returns 0 or positive number on success.
592 *
593 * The meaning of return value on success depends on the specific backend
594 * being used.
595 */
596 int qemu_fclose(QEMUFile *f)
597 {
598 int ret;
599 qemu_fflush(f);
600 ret = qemu_file_get_error(f);
601
602 if (f->ops->close) {
603 int ret2 = f->ops->close(f->opaque);
604 if (ret >= 0) {
605 ret = ret2;
606 }
607 }
608 /* If any error was spotted before closing, we should report it
609 * instead of the close() return value.
610 */
611 if (f->last_error) {
612 ret = f->last_error;
613 }
614 g_free(f);
615 return ret;
616 }
617
618 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
619 {
620 /* check for adjacent buffer and coalesce them */
621 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
622 f->iov[f->iovcnt - 1].iov_len) {
623 f->iov[f->iovcnt - 1].iov_len += size;
624 } else {
625 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
626 f->iov[f->iovcnt++].iov_len = size;
627 }
628
629 if (f->iovcnt >= MAX_IOV_SIZE) {
630 qemu_fflush(f);
631 }
632 }
633
634 void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, int size)
635 {
636 if (!f->ops->writev_buffer) {
637 qemu_put_buffer(f, buf, size);
638 return;
639 }
640
641 if (f->last_error) {
642 return;
643 }
644
645 f->bytes_xfer += size;
646 add_to_iovec(f, buf, size);
647 }
648
649 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
650 {
651 int l;
652
653 if (f->last_error) {
654 return;
655 }
656
657 while (size > 0) {
658 l = IO_BUF_SIZE - f->buf_index;
659 if (l > size)
660 l = size;
661 memcpy(f->buf + f->buf_index, buf, l);
662 f->bytes_xfer += size;
663 if (f->ops->writev_buffer) {
664 add_to_iovec(f, f->buf + f->buf_index, l);
665 }
666 f->buf_index += l;
667 if (f->buf_index == IO_BUF_SIZE) {
668 qemu_fflush(f);
669 }
670 if (qemu_file_get_error(f)) {
671 break;
672 }
673 buf += l;
674 size -= l;
675 }
676 }
677
678 void qemu_put_byte(QEMUFile *f, int v)
679 {
680 if (f->last_error) {
681 return;
682 }
683
684 f->buf[f->buf_index] = v;
685 f->bytes_xfer++;
686 if (f->ops->writev_buffer) {
687 add_to_iovec(f, f->buf + f->buf_index, 1);
688 }
689 f->buf_index++;
690 if (f->buf_index == IO_BUF_SIZE) {
691 qemu_fflush(f);
692 }
693 }
694
695 static void qemu_file_skip(QEMUFile *f, int size)
696 {
697 if (f->buf_index + size <= f->buf_size) {
698 f->buf_index += size;
699 }
700 }
701
702 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
703 {
704 int pending;
705 int index;
706
707 assert(!qemu_file_is_writable(f));
708
709 index = f->buf_index + offset;
710 pending = f->buf_size - index;
711 if (pending < size) {
712 qemu_fill_buffer(f);
713 index = f->buf_index + offset;
714 pending = f->buf_size - index;
715 }
716
717 if (pending <= 0) {
718 return 0;
719 }
720 if (size > pending) {
721 size = pending;
722 }
723
724 memcpy(buf, f->buf + index, size);
725 return size;
726 }
727
728 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
729 {
730 int pending = size;
731 int done = 0;
732
733 while (pending > 0) {
734 int res;
735
736 res = qemu_peek_buffer(f, buf, pending, 0);
737 if (res == 0) {
738 return done;
739 }
740 qemu_file_skip(f, res);
741 buf += res;
742 pending -= res;
743 done += res;
744 }
745 return done;
746 }
747
748 static int qemu_peek_byte(QEMUFile *f, int offset)
749 {
750 int index = f->buf_index + offset;
751
752 assert(!qemu_file_is_writable(f));
753
754 if (index >= f->buf_size) {
755 qemu_fill_buffer(f);
756 index = f->buf_index + offset;
757 if (index >= f->buf_size) {
758 return 0;
759 }
760 }
761 return f->buf[index];
762 }
763
764 int qemu_get_byte(QEMUFile *f)
765 {
766 int result;
767
768 result = qemu_peek_byte(f, 0);
769 qemu_file_skip(f, 1);
770 return result;
771 }
772
773 int64_t qemu_ftell(QEMUFile *f)
774 {
775 qemu_fflush(f);
776 return f->pos;
777 }
778
779 int qemu_file_rate_limit(QEMUFile *f)
780 {
781 if (qemu_file_get_error(f)) {
782 return 1;
783 }
784 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
785 return 1;
786 }
787 return 0;
788 }
789
790 int64_t qemu_file_get_rate_limit(QEMUFile *f)
791 {
792 return f->xfer_limit;
793 }
794
795 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
796 {
797 f->xfer_limit = limit;
798 }
799
800 void qemu_file_reset_rate_limit(QEMUFile *f)
801 {
802 f->bytes_xfer = 0;
803 }
804
805 void qemu_put_be16(QEMUFile *f, unsigned int v)
806 {
807 qemu_put_byte(f, v >> 8);
808 qemu_put_byte(f, v);
809 }
810
811 void qemu_put_be32(QEMUFile *f, unsigned int v)
812 {
813 qemu_put_byte(f, v >> 24);
814 qemu_put_byte(f, v >> 16);
815 qemu_put_byte(f, v >> 8);
816 qemu_put_byte(f, v);
817 }
818
819 void qemu_put_be64(QEMUFile *f, uint64_t v)
820 {
821 qemu_put_be32(f, v >> 32);
822 qemu_put_be32(f, v);
823 }
824
825 unsigned int qemu_get_be16(QEMUFile *f)
826 {
827 unsigned int v;
828 v = qemu_get_byte(f) << 8;
829 v |= qemu_get_byte(f);
830 return v;
831 }
832
833 unsigned int qemu_get_be32(QEMUFile *f)
834 {
835 unsigned int v;
836 v = qemu_get_byte(f) << 24;
837 v |= qemu_get_byte(f) << 16;
838 v |= qemu_get_byte(f) << 8;
839 v |= qemu_get_byte(f);
840 return v;
841 }
842
843 uint64_t qemu_get_be64(QEMUFile *f)
844 {
845 uint64_t v;
846 v = (uint64_t)qemu_get_be32(f) << 32;
847 v |= qemu_get_be32(f);
848 return v;
849 }
850
851
852 /* timer */
853
854 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
855 {
856 uint64_t expire_time;
857
858 expire_time = qemu_timer_expire_time_ns(ts);
859 qemu_put_be64(f, expire_time);
860 }
861
862 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
863 {
864 uint64_t expire_time;
865
866 expire_time = qemu_get_be64(f);
867 if (expire_time != -1) {
868 qemu_mod_timer_ns(ts, expire_time);
869 } else {
870 qemu_del_timer(ts);
871 }
872 }
873
874
875 /* bool */
876
877 static int get_bool(QEMUFile *f, void *pv, size_t size)
878 {
879 bool *v = pv;
880 *v = qemu_get_byte(f);
881 return 0;
882 }
883
884 static void put_bool(QEMUFile *f, void *pv, size_t size)
885 {
886 bool *v = pv;
887 qemu_put_byte(f, *v);
888 }
889
890 const VMStateInfo vmstate_info_bool = {
891 .name = "bool",
892 .get = get_bool,
893 .put = put_bool,
894 };
895
896 /* 8 bit int */
897
898 static int get_int8(QEMUFile *f, void *pv, size_t size)
899 {
900 int8_t *v = pv;
901 qemu_get_s8s(f, v);
902 return 0;
903 }
904
905 static void put_int8(QEMUFile *f, void *pv, size_t size)
906 {
907 int8_t *v = pv;
908 qemu_put_s8s(f, v);
909 }
910
911 const VMStateInfo vmstate_info_int8 = {
912 .name = "int8",
913 .get = get_int8,
914 .put = put_int8,
915 };
916
917 /* 16 bit int */
918
919 static int get_int16(QEMUFile *f, void *pv, size_t size)
920 {
921 int16_t *v = pv;
922 qemu_get_sbe16s(f, v);
923 return 0;
924 }
925
926 static void put_int16(QEMUFile *f, void *pv, size_t size)
927 {
928 int16_t *v = pv;
929 qemu_put_sbe16s(f, v);
930 }
931
932 const VMStateInfo vmstate_info_int16 = {
933 .name = "int16",
934 .get = get_int16,
935 .put = put_int16,
936 };
937
938 /* 32 bit int */
939
940 static int get_int32(QEMUFile *f, void *pv, size_t size)
941 {
942 int32_t *v = pv;
943 qemu_get_sbe32s(f, v);
944 return 0;
945 }
946
947 static void put_int32(QEMUFile *f, void *pv, size_t size)
948 {
949 int32_t *v = pv;
950 qemu_put_sbe32s(f, v);
951 }
952
953 const VMStateInfo vmstate_info_int32 = {
954 .name = "int32",
955 .get = get_int32,
956 .put = put_int32,
957 };
958
959 /* 32 bit int. See that the received value is the same than the one
960 in the field */
961
962 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
963 {
964 int32_t *v = pv;
965 int32_t v2;
966 qemu_get_sbe32s(f, &v2);
967
968 if (*v == v2)
969 return 0;
970 return -EINVAL;
971 }
972
973 const VMStateInfo vmstate_info_int32_equal = {
974 .name = "int32 equal",
975 .get = get_int32_equal,
976 .put = put_int32,
977 };
978
979 /* 32 bit int. See that the received value is the less or the same
980 than the one in the field */
981
982 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
983 {
984 int32_t *old = pv;
985 int32_t new;
986 qemu_get_sbe32s(f, &new);
987
988 if (*old <= new)
989 return 0;
990 return -EINVAL;
991 }
992
993 const VMStateInfo vmstate_info_int32_le = {
994 .name = "int32 equal",
995 .get = get_int32_le,
996 .put = put_int32,
997 };
998
999 /* 64 bit int */
1000
1001 static int get_int64(QEMUFile *f, void *pv, size_t size)
1002 {
1003 int64_t *v = pv;
1004 qemu_get_sbe64s(f, v);
1005 return 0;
1006 }
1007
1008 static void put_int64(QEMUFile *f, void *pv, size_t size)
1009 {
1010 int64_t *v = pv;
1011 qemu_put_sbe64s(f, v);
1012 }
1013
1014 const VMStateInfo vmstate_info_int64 = {
1015 .name = "int64",
1016 .get = get_int64,
1017 .put = put_int64,
1018 };
1019
1020 /* 8 bit unsigned int */
1021
1022 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1023 {
1024 uint8_t *v = pv;
1025 qemu_get_8s(f, v);
1026 return 0;
1027 }
1028
1029 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1030 {
1031 uint8_t *v = pv;
1032 qemu_put_8s(f, v);
1033 }
1034
1035 const VMStateInfo vmstate_info_uint8 = {
1036 .name = "uint8",
1037 .get = get_uint8,
1038 .put = put_uint8,
1039 };
1040
1041 /* 16 bit unsigned int */
1042
1043 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1044 {
1045 uint16_t *v = pv;
1046 qemu_get_be16s(f, v);
1047 return 0;
1048 }
1049
1050 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1051 {
1052 uint16_t *v = pv;
1053 qemu_put_be16s(f, v);
1054 }
1055
1056 const VMStateInfo vmstate_info_uint16 = {
1057 .name = "uint16",
1058 .get = get_uint16,
1059 .put = put_uint16,
1060 };
1061
1062 /* 32 bit unsigned int */
1063
1064 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1065 {
1066 uint32_t *v = pv;
1067 qemu_get_be32s(f, v);
1068 return 0;
1069 }
1070
1071 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1072 {
1073 uint32_t *v = pv;
1074 qemu_put_be32s(f, v);
1075 }
1076
1077 const VMStateInfo vmstate_info_uint32 = {
1078 .name = "uint32",
1079 .get = get_uint32,
1080 .put = put_uint32,
1081 };
1082
1083 /* 32 bit uint. See that the received value is the same than the one
1084 in the field */
1085
1086 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1087 {
1088 uint32_t *v = pv;
1089 uint32_t v2;
1090 qemu_get_be32s(f, &v2);
1091
1092 if (*v == v2) {
1093 return 0;
1094 }
1095 return -EINVAL;
1096 }
1097
1098 const VMStateInfo vmstate_info_uint32_equal = {
1099 .name = "uint32 equal",
1100 .get = get_uint32_equal,
1101 .put = put_uint32,
1102 };
1103
1104 /* 64 bit unsigned int */
1105
1106 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1107 {
1108 uint64_t *v = pv;
1109 qemu_get_be64s(f, v);
1110 return 0;
1111 }
1112
1113 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1114 {
1115 uint64_t *v = pv;
1116 qemu_put_be64s(f, v);
1117 }
1118
1119 const VMStateInfo vmstate_info_uint64 = {
1120 .name = "uint64",
1121 .get = get_uint64,
1122 .put = put_uint64,
1123 };
1124
1125 /* 64 bit unsigned int. See that the received value is the same than the one
1126 in the field */
1127
1128 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1129 {
1130 uint64_t *v = pv;
1131 uint64_t v2;
1132 qemu_get_be64s(f, &v2);
1133
1134 if (*v == v2) {
1135 return 0;
1136 }
1137 return -EINVAL;
1138 }
1139
1140 const VMStateInfo vmstate_info_uint64_equal = {
1141 .name = "int64 equal",
1142 .get = get_uint64_equal,
1143 .put = put_uint64,
1144 };
1145
1146 /* 8 bit int. See that the received value is the same than the one
1147 in the field */
1148
1149 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1150 {
1151 uint8_t *v = pv;
1152 uint8_t v2;
1153 qemu_get_8s(f, &v2);
1154
1155 if (*v == v2)
1156 return 0;
1157 return -EINVAL;
1158 }
1159
1160 const VMStateInfo vmstate_info_uint8_equal = {
1161 .name = "uint8 equal",
1162 .get = get_uint8_equal,
1163 .put = put_uint8,
1164 };
1165
1166 /* 16 bit unsigned int int. See that the received value is the same than the one
1167 in the field */
1168
1169 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1170 {
1171 uint16_t *v = pv;
1172 uint16_t v2;
1173 qemu_get_be16s(f, &v2);
1174
1175 if (*v == v2)
1176 return 0;
1177 return -EINVAL;
1178 }
1179
1180 const VMStateInfo vmstate_info_uint16_equal = {
1181 .name = "uint16 equal",
1182 .get = get_uint16_equal,
1183 .put = put_uint16,
1184 };
1185
1186 /* floating point */
1187
1188 static int get_float64(QEMUFile *f, void *pv, size_t size)
1189 {
1190 float64 *v = pv;
1191
1192 *v = make_float64(qemu_get_be64(f));
1193 return 0;
1194 }
1195
1196 static void put_float64(QEMUFile *f, void *pv, size_t size)
1197 {
1198 uint64_t *v = pv;
1199
1200 qemu_put_be64(f, float64_val(*v));
1201 }
1202
1203 const VMStateInfo vmstate_info_float64 = {
1204 .name = "float64",
1205 .get = get_float64,
1206 .put = put_float64,
1207 };
1208
1209 /* timers */
1210
1211 static int get_timer(QEMUFile *f, void *pv, size_t size)
1212 {
1213 QEMUTimer *v = pv;
1214 qemu_get_timer(f, v);
1215 return 0;
1216 }
1217
1218 static void put_timer(QEMUFile *f, void *pv, size_t size)
1219 {
1220 QEMUTimer *v = pv;
1221 qemu_put_timer(f, v);
1222 }
1223
1224 const VMStateInfo vmstate_info_timer = {
1225 .name = "timer",
1226 .get = get_timer,
1227 .put = put_timer,
1228 };
1229
1230 /* uint8_t buffers */
1231
1232 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1233 {
1234 uint8_t *v = pv;
1235 qemu_get_buffer(f, v, size);
1236 return 0;
1237 }
1238
1239 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1240 {
1241 uint8_t *v = pv;
1242 qemu_put_buffer(f, v, size);
1243 }
1244
1245 const VMStateInfo vmstate_info_buffer = {
1246 .name = "buffer",
1247 .get = get_buffer,
1248 .put = put_buffer,
1249 };
1250
1251 /* unused buffers: space that was used for some fields that are
1252 not useful anymore */
1253
1254 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1255 {
1256 uint8_t buf[1024];
1257 int block_len;
1258
1259 while (size > 0) {
1260 block_len = MIN(sizeof(buf), size);
1261 size -= block_len;
1262 qemu_get_buffer(f, buf, block_len);
1263 }
1264 return 0;
1265 }
1266
1267 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1268 {
1269 static const uint8_t buf[1024];
1270 int block_len;
1271
1272 while (size > 0) {
1273 block_len = MIN(sizeof(buf), size);
1274 size -= block_len;
1275 qemu_put_buffer(f, buf, block_len);
1276 }
1277 }
1278
1279 const VMStateInfo vmstate_info_unused_buffer = {
1280 .name = "unused_buffer",
1281 .get = get_unused_buffer,
1282 .put = put_unused_buffer,
1283 };
1284
1285 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1286 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1287 * bit words with the bits in big endian order. The in-memory format
1288 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1289 */
1290 /* This is the number of 64 bit words sent over the wire */
1291 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1292 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1293 {
1294 unsigned long *bmp = pv;
1295 int i, idx = 0;
1296 for (i = 0; i < BITS_TO_U64S(size); i++) {
1297 uint64_t w = qemu_get_be64(f);
1298 bmp[idx++] = w;
1299 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1300 bmp[idx++] = w >> 32;
1301 }
1302 }
1303 return 0;
1304 }
1305
1306 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1307 {
1308 unsigned long *bmp = pv;
1309 int i, idx = 0;
1310 for (i = 0; i < BITS_TO_U64S(size); i++) {
1311 uint64_t w = bmp[idx++];
1312 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1313 w |= ((uint64_t)bmp[idx++]) << 32;
1314 }
1315 qemu_put_be64(f, w);
1316 }
1317 }
1318
1319 const VMStateInfo vmstate_info_bitmap = {
1320 .name = "bitmap",
1321 .get = get_bitmap,
1322 .put = put_bitmap,
1323 };
1324
1325 typedef struct CompatEntry {
1326 char idstr[256];
1327 int instance_id;
1328 } CompatEntry;
1329
1330 typedef struct SaveStateEntry {
1331 QTAILQ_ENTRY(SaveStateEntry) entry;
1332 char idstr[256];
1333 int instance_id;
1334 int alias_id;
1335 int version_id;
1336 int section_id;
1337 SaveVMHandlers *ops;
1338 const VMStateDescription *vmsd;
1339 void *opaque;
1340 CompatEntry *compat;
1341 int no_migrate;
1342 int is_ram;
1343 } SaveStateEntry;
1344
1345
1346 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1347 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1348 static int global_section_id;
1349
1350 static int calculate_new_instance_id(const char *idstr)
1351 {
1352 SaveStateEntry *se;
1353 int instance_id = 0;
1354
1355 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1356 if (strcmp(idstr, se->idstr) == 0
1357 && instance_id <= se->instance_id) {
1358 instance_id = se->instance_id + 1;
1359 }
1360 }
1361 return instance_id;
1362 }
1363
1364 static int calculate_compat_instance_id(const char *idstr)
1365 {
1366 SaveStateEntry *se;
1367 int instance_id = 0;
1368
1369 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1370 if (!se->compat)
1371 continue;
1372
1373 if (strcmp(idstr, se->compat->idstr) == 0
1374 && instance_id <= se->compat->instance_id) {
1375 instance_id = se->compat->instance_id + 1;
1376 }
1377 }
1378 return instance_id;
1379 }
1380
1381 /* TODO: Individual devices generally have very little idea about the rest
1382 of the system, so instance_id should be removed/replaced.
1383 Meanwhile pass -1 as instance_id if you do not already have a clearly
1384 distinguishing id for all instances of your device class. */
1385 int register_savevm_live(DeviceState *dev,
1386 const char *idstr,
1387 int instance_id,
1388 int version_id,
1389 SaveVMHandlers *ops,
1390 void *opaque)
1391 {
1392 SaveStateEntry *se;
1393
1394 se = g_malloc0(sizeof(SaveStateEntry));
1395 se->version_id = version_id;
1396 se->section_id = global_section_id++;
1397 se->ops = ops;
1398 se->opaque = opaque;
1399 se->vmsd = NULL;
1400 se->no_migrate = 0;
1401 /* if this is a live_savem then set is_ram */
1402 if (ops->save_live_setup != NULL) {
1403 se->is_ram = 1;
1404 }
1405
1406 if (dev) {
1407 char *id = qdev_get_dev_path(dev);
1408 if (id) {
1409 pstrcpy(se->idstr, sizeof(se->idstr), id);
1410 pstrcat(se->idstr, sizeof(se->idstr), "/");
1411 g_free(id);
1412
1413 se->compat = g_malloc0(sizeof(CompatEntry));
1414 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1415 se->compat->instance_id = instance_id == -1 ?
1416 calculate_compat_instance_id(idstr) : instance_id;
1417 instance_id = -1;
1418 }
1419 }
1420 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1421
1422 if (instance_id == -1) {
1423 se->instance_id = calculate_new_instance_id(se->idstr);
1424 } else {
1425 se->instance_id = instance_id;
1426 }
1427 assert(!se->compat || se->instance_id == 0);
1428 /* add at the end of list */
1429 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1430 return 0;
1431 }
1432
1433 int register_savevm(DeviceState *dev,
1434 const char *idstr,
1435 int instance_id,
1436 int version_id,
1437 SaveStateHandler *save_state,
1438 LoadStateHandler *load_state,
1439 void *opaque)
1440 {
1441 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1442 ops->save_state = save_state;
1443 ops->load_state = load_state;
1444 return register_savevm_live(dev, idstr, instance_id, version_id,
1445 ops, opaque);
1446 }
1447
1448 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1449 {
1450 SaveStateEntry *se, *new_se;
1451 char id[256] = "";
1452
1453 if (dev) {
1454 char *path = qdev_get_dev_path(dev);
1455 if (path) {
1456 pstrcpy(id, sizeof(id), path);
1457 pstrcat(id, sizeof(id), "/");
1458 g_free(path);
1459 }
1460 }
1461 pstrcat(id, sizeof(id), idstr);
1462
1463 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1464 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1465 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1466 if (se->compat) {
1467 g_free(se->compat);
1468 }
1469 g_free(se->ops);
1470 g_free(se);
1471 }
1472 }
1473 }
1474
1475 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1476 const VMStateDescription *vmsd,
1477 void *opaque, int alias_id,
1478 int required_for_version)
1479 {
1480 SaveStateEntry *se;
1481
1482 /* If this triggers, alias support can be dropped for the vmsd. */
1483 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1484
1485 se = g_malloc0(sizeof(SaveStateEntry));
1486 se->version_id = vmsd->version_id;
1487 se->section_id = global_section_id++;
1488 se->opaque = opaque;
1489 se->vmsd = vmsd;
1490 se->alias_id = alias_id;
1491 se->no_migrate = vmsd->unmigratable;
1492
1493 if (dev) {
1494 char *id = qdev_get_dev_path(dev);
1495 if (id) {
1496 pstrcpy(se->idstr, sizeof(se->idstr), id);
1497 pstrcat(se->idstr, sizeof(se->idstr), "/");
1498 g_free(id);
1499
1500 se->compat = g_malloc0(sizeof(CompatEntry));
1501 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1502 se->compat->instance_id = instance_id == -1 ?
1503 calculate_compat_instance_id(vmsd->name) : instance_id;
1504 instance_id = -1;
1505 }
1506 }
1507 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1508
1509 if (instance_id == -1) {
1510 se->instance_id = calculate_new_instance_id(se->idstr);
1511 } else {
1512 se->instance_id = instance_id;
1513 }
1514 assert(!se->compat || se->instance_id == 0);
1515 /* add at the end of list */
1516 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1517 return 0;
1518 }
1519
1520 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1521 void *opaque)
1522 {
1523 SaveStateEntry *se, *new_se;
1524
1525 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1526 if (se->vmsd == vmsd && se->opaque == opaque) {
1527 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1528 if (se->compat) {
1529 g_free(se->compat);
1530 }
1531 g_free(se);
1532 }
1533 }
1534 }
1535
1536 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1537 void *opaque);
1538 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1539 void *opaque);
1540
1541 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1542 void *opaque, int version_id)
1543 {
1544 VMStateField *field = vmsd->fields;
1545 int ret;
1546
1547 if (version_id > vmsd->version_id) {
1548 return -EINVAL;
1549 }
1550 if (version_id < vmsd->minimum_version_id_old) {
1551 return -EINVAL;
1552 }
1553 if (version_id < vmsd->minimum_version_id) {
1554 return vmsd->load_state_old(f, opaque, version_id);
1555 }
1556 if (vmsd->pre_load) {
1557 int ret = vmsd->pre_load(opaque);
1558 if (ret)
1559 return ret;
1560 }
1561 while(field->name) {
1562 if ((field->field_exists &&
1563 field->field_exists(opaque, version_id)) ||
1564 (!field->field_exists &&
1565 field->version_id <= version_id)) {
1566 void *base_addr = opaque + field->offset;
1567 int i, n_elems = 1;
1568 int size = field->size;
1569
1570 if (field->flags & VMS_VBUFFER) {
1571 size = *(int32_t *)(opaque+field->size_offset);
1572 if (field->flags & VMS_MULTIPLY) {
1573 size *= field->size;
1574 }
1575 }
1576 if (field->flags & VMS_ARRAY) {
1577 n_elems = field->num;
1578 } else if (field->flags & VMS_VARRAY_INT32) {
1579 n_elems = *(int32_t *)(opaque+field->num_offset);
1580 } else if (field->flags & VMS_VARRAY_UINT32) {
1581 n_elems = *(uint32_t *)(opaque+field->num_offset);
1582 } else if (field->flags & VMS_VARRAY_UINT16) {
1583 n_elems = *(uint16_t *)(opaque+field->num_offset);
1584 } else if (field->flags & VMS_VARRAY_UINT8) {
1585 n_elems = *(uint8_t *)(opaque+field->num_offset);
1586 }
1587 if (field->flags & VMS_POINTER) {
1588 base_addr = *(void **)base_addr + field->start;
1589 }
1590 for (i = 0; i < n_elems; i++) {
1591 void *addr = base_addr + size * i;
1592
1593 if (field->flags & VMS_ARRAY_OF_POINTER) {
1594 addr = *(void **)addr;
1595 }
1596 if (field->flags & VMS_STRUCT) {
1597 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1598 } else {
1599 ret = field->info->get(f, addr, size);
1600
1601 }
1602 if (ret < 0) {
1603 return ret;
1604 }
1605 }
1606 }
1607 field++;
1608 }
1609 ret = vmstate_subsection_load(f, vmsd, opaque);
1610 if (ret != 0) {
1611 return ret;
1612 }
1613 if (vmsd->post_load) {
1614 return vmsd->post_load(opaque, version_id);
1615 }
1616 return 0;
1617 }
1618
1619 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1620 void *opaque)
1621 {
1622 VMStateField *field = vmsd->fields;
1623
1624 if (vmsd->pre_save) {
1625 vmsd->pre_save(opaque);
1626 }
1627 while(field->name) {
1628 if (!field->field_exists ||
1629 field->field_exists(opaque, vmsd->version_id)) {
1630 void *base_addr = opaque + field->offset;
1631 int i, n_elems = 1;
1632 int size = field->size;
1633
1634 if (field->flags & VMS_VBUFFER) {
1635 size = *(int32_t *)(opaque+field->size_offset);
1636 if (field->flags & VMS_MULTIPLY) {
1637 size *= field->size;
1638 }
1639 }
1640 if (field->flags & VMS_ARRAY) {
1641 n_elems = field->num;
1642 } else if (field->flags & VMS_VARRAY_INT32) {
1643 n_elems = *(int32_t *)(opaque+field->num_offset);
1644 } else if (field->flags & VMS_VARRAY_UINT32) {
1645 n_elems = *(uint32_t *)(opaque+field->num_offset);
1646 } else if (field->flags & VMS_VARRAY_UINT16) {
1647 n_elems = *(uint16_t *)(opaque+field->num_offset);
1648 } else if (field->flags & VMS_VARRAY_UINT8) {
1649 n_elems = *(uint8_t *)(opaque+field->num_offset);
1650 }
1651 if (field->flags & VMS_POINTER) {
1652 base_addr = *(void **)base_addr + field->start;
1653 }
1654 for (i = 0; i < n_elems; i++) {
1655 void *addr = base_addr + size * i;
1656
1657 if (field->flags & VMS_ARRAY_OF_POINTER) {
1658 addr = *(void **)addr;
1659 }
1660 if (field->flags & VMS_STRUCT) {
1661 vmstate_save_state(f, field->vmsd, addr);
1662 } else {
1663 field->info->put(f, addr, size);
1664 }
1665 }
1666 }
1667 field++;
1668 }
1669 vmstate_subsection_save(f, vmsd, opaque);
1670 }
1671
1672 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1673 {
1674 if (!se->vmsd) { /* Old style */
1675 return se->ops->load_state(f, se->opaque, version_id);
1676 }
1677 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1678 }
1679
1680 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1681 {
1682 if (!se->vmsd) { /* Old style */
1683 se->ops->save_state(f, se->opaque);
1684 return;
1685 }
1686 vmstate_save_state(f,se->vmsd, se->opaque);
1687 }
1688
1689 #define QEMU_VM_FILE_MAGIC 0x5145564d
1690 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1691 #define QEMU_VM_FILE_VERSION 0x00000003
1692
1693 #define QEMU_VM_EOF 0x00
1694 #define QEMU_VM_SECTION_START 0x01
1695 #define QEMU_VM_SECTION_PART 0x02
1696 #define QEMU_VM_SECTION_END 0x03
1697 #define QEMU_VM_SECTION_FULL 0x04
1698 #define QEMU_VM_SUBSECTION 0x05
1699
1700 bool qemu_savevm_state_blocked(Error **errp)
1701 {
1702 SaveStateEntry *se;
1703
1704 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1705 if (se->no_migrate) {
1706 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1707 return true;
1708 }
1709 }
1710 return false;
1711 }
1712
1713 void qemu_savevm_state_begin(QEMUFile *f,
1714 const MigrationParams *params)
1715 {
1716 SaveStateEntry *se;
1717 int ret;
1718
1719 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1720 if (!se->ops || !se->ops->set_params) {
1721 continue;
1722 }
1723 se->ops->set_params(params, se->opaque);
1724 }
1725
1726 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1727 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1728
1729 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1730 int len;
1731
1732 if (!se->ops || !se->ops->save_live_setup) {
1733 continue;
1734 }
1735 if (se->ops && se->ops->is_active) {
1736 if (!se->ops->is_active(se->opaque)) {
1737 continue;
1738 }
1739 }
1740 /* Section type */
1741 qemu_put_byte(f, QEMU_VM_SECTION_START);
1742 qemu_put_be32(f, se->section_id);
1743
1744 /* ID string */
1745 len = strlen(se->idstr);
1746 qemu_put_byte(f, len);
1747 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1748
1749 qemu_put_be32(f, se->instance_id);
1750 qemu_put_be32(f, se->version_id);
1751
1752 ret = se->ops->save_live_setup(f, se->opaque);
1753 if (ret < 0) {
1754 qemu_file_set_error(f, ret);
1755 break;
1756 }
1757 }
1758 }
1759
1760 /*
1761 * this function has three return values:
1762 * negative: there was one error, and we have -errno.
1763 * 0 : We haven't finished, caller have to go again
1764 * 1 : We have finished, we can go to complete phase
1765 */
1766 int qemu_savevm_state_iterate(QEMUFile *f)
1767 {
1768 SaveStateEntry *se;
1769 int ret = 1;
1770
1771 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1772 if (!se->ops || !se->ops->save_live_iterate) {
1773 continue;
1774 }
1775 if (se->ops && se->ops->is_active) {
1776 if (!se->ops->is_active(se->opaque)) {
1777 continue;
1778 }
1779 }
1780 if (qemu_file_rate_limit(f)) {
1781 return 0;
1782 }
1783 trace_savevm_section_start();
1784 /* Section type */
1785 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1786 qemu_put_be32(f, se->section_id);
1787
1788 ret = se->ops->save_live_iterate(f, se->opaque);
1789 trace_savevm_section_end(se->section_id);
1790
1791 if (ret < 0) {
1792 qemu_file_set_error(f, ret);
1793 }
1794 if (ret <= 0) {
1795 /* Do not proceed to the next vmstate before this one reported
1796 completion of the current stage. This serializes the migration
1797 and reduces the probability that a faster changing state is
1798 synchronized over and over again. */
1799 break;
1800 }
1801 }
1802 return ret;
1803 }
1804
1805 void qemu_savevm_state_complete(QEMUFile *f)
1806 {
1807 SaveStateEntry *se;
1808 int ret;
1809
1810 cpu_synchronize_all_states();
1811
1812 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1813 if (!se->ops || !se->ops->save_live_complete) {
1814 continue;
1815 }
1816 if (se->ops && se->ops->is_active) {
1817 if (!se->ops->is_active(se->opaque)) {
1818 continue;
1819 }
1820 }
1821 trace_savevm_section_start();
1822 /* Section type */
1823 qemu_put_byte(f, QEMU_VM_SECTION_END);
1824 qemu_put_be32(f, se->section_id);
1825
1826 ret = se->ops->save_live_complete(f, se->opaque);
1827 trace_savevm_section_end(se->section_id);
1828 if (ret < 0) {
1829 qemu_file_set_error(f, ret);
1830 return;
1831 }
1832 }
1833
1834 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1835 int len;
1836
1837 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1838 continue;
1839 }
1840 trace_savevm_section_start();
1841 /* Section type */
1842 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1843 qemu_put_be32(f, se->section_id);
1844
1845 /* ID string */
1846 len = strlen(se->idstr);
1847 qemu_put_byte(f, len);
1848 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1849
1850 qemu_put_be32(f, se->instance_id);
1851 qemu_put_be32(f, se->version_id);
1852
1853 vmstate_save(f, se);
1854 trace_savevm_section_end(se->section_id);
1855 }
1856
1857 qemu_put_byte(f, QEMU_VM_EOF);
1858 qemu_fflush(f);
1859 }
1860
1861 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1862 {
1863 SaveStateEntry *se;
1864 uint64_t ret = 0;
1865
1866 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1867 if (!se->ops || !se->ops->save_live_pending) {
1868 continue;
1869 }
1870 if (se->ops && se->ops->is_active) {
1871 if (!se->ops->is_active(se->opaque)) {
1872 continue;
1873 }
1874 }
1875 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1876 }
1877 return ret;
1878 }
1879
1880 void qemu_savevm_state_cancel(void)
1881 {
1882 SaveStateEntry *se;
1883
1884 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1885 if (se->ops && se->ops->cancel) {
1886 se->ops->cancel(se->opaque);
1887 }
1888 }
1889 }
1890
1891 static int qemu_savevm_state(QEMUFile *f)
1892 {
1893 int ret;
1894 MigrationParams params = {
1895 .blk = 0,
1896 .shared = 0
1897 };
1898
1899 if (qemu_savevm_state_blocked(NULL)) {
1900 return -EINVAL;
1901 }
1902
1903 qemu_mutex_unlock_iothread();
1904 qemu_savevm_state_begin(f, &params);
1905 qemu_mutex_lock_iothread();
1906
1907 while (qemu_file_get_error(f) == 0) {
1908 if (qemu_savevm_state_iterate(f) > 0) {
1909 break;
1910 }
1911 }
1912
1913 ret = qemu_file_get_error(f);
1914 if (ret == 0) {
1915 qemu_savevm_state_complete(f);
1916 ret = qemu_file_get_error(f);
1917 }
1918 if (ret != 0) {
1919 qemu_savevm_state_cancel();
1920 }
1921 return ret;
1922 }
1923
1924 static int qemu_save_device_state(QEMUFile *f)
1925 {
1926 SaveStateEntry *se;
1927
1928 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1929 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1930
1931 cpu_synchronize_all_states();
1932
1933 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1934 int len;
1935
1936 if (se->is_ram) {
1937 continue;
1938 }
1939 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1940 continue;
1941 }
1942
1943 /* Section type */
1944 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1945 qemu_put_be32(f, se->section_id);
1946
1947 /* ID string */
1948 len = strlen(se->idstr);
1949 qemu_put_byte(f, len);
1950 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1951
1952 qemu_put_be32(f, se->instance_id);
1953 qemu_put_be32(f, se->version_id);
1954
1955 vmstate_save(f, se);
1956 }
1957
1958 qemu_put_byte(f, QEMU_VM_EOF);
1959
1960 return qemu_file_get_error(f);
1961 }
1962
1963 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1964 {
1965 SaveStateEntry *se;
1966
1967 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1968 if (!strcmp(se->idstr, idstr) &&
1969 (instance_id == se->instance_id ||
1970 instance_id == se->alias_id))
1971 return se;
1972 /* Migrating from an older version? */
1973 if (strstr(se->idstr, idstr) && se->compat) {
1974 if (!strcmp(se->compat->idstr, idstr) &&
1975 (instance_id == se->compat->instance_id ||
1976 instance_id == se->alias_id))
1977 return se;
1978 }
1979 }
1980 return NULL;
1981 }
1982
1983 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1984 {
1985 while(sub && sub->needed) {
1986 if (strcmp(idstr, sub->vmsd->name) == 0) {
1987 return sub->vmsd;
1988 }
1989 sub++;
1990 }
1991 return NULL;
1992 }
1993
1994 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1995 void *opaque)
1996 {
1997 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
1998 char idstr[256];
1999 int ret;
2000 uint8_t version_id, len, size;
2001 const VMStateDescription *sub_vmsd;
2002
2003 len = qemu_peek_byte(f, 1);
2004 if (len < strlen(vmsd->name) + 1) {
2005 /* subsection name has be be "section_name/a" */
2006 return 0;
2007 }
2008 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2009 if (size != len) {
2010 return 0;
2011 }
2012 idstr[size] = 0;
2013
2014 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2015 /* it don't have a valid subsection name */
2016 return 0;
2017 }
2018 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2019 if (sub_vmsd == NULL) {
2020 return -ENOENT;
2021 }
2022 qemu_file_skip(f, 1); /* subsection */
2023 qemu_file_skip(f, 1); /* len */
2024 qemu_file_skip(f, len); /* idstr */
2025 version_id = qemu_get_be32(f);
2026
2027 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2028 if (ret) {
2029 return ret;
2030 }
2031 }
2032 return 0;
2033 }
2034
2035 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2036 void *opaque)
2037 {
2038 const VMStateSubsection *sub = vmsd->subsections;
2039
2040 while (sub && sub->needed) {
2041 if (sub->needed(opaque)) {
2042 const VMStateDescription *vmsd = sub->vmsd;
2043 uint8_t len;
2044
2045 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2046 len = strlen(vmsd->name);
2047 qemu_put_byte(f, len);
2048 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2049 qemu_put_be32(f, vmsd->version_id);
2050 vmstate_save_state(f, vmsd, opaque);
2051 }
2052 sub++;
2053 }
2054 }
2055
2056 typedef struct LoadStateEntry {
2057 QLIST_ENTRY(LoadStateEntry) entry;
2058 SaveStateEntry *se;
2059 int section_id;
2060 int version_id;
2061 } LoadStateEntry;
2062
2063 int qemu_loadvm_state(QEMUFile *f)
2064 {
2065 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2066 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2067 LoadStateEntry *le, *new_le;
2068 uint8_t section_type;
2069 unsigned int v;
2070 int ret;
2071
2072 if (qemu_savevm_state_blocked(NULL)) {
2073 return -EINVAL;
2074 }
2075
2076 v = qemu_get_be32(f);
2077 if (v != QEMU_VM_FILE_MAGIC)
2078 return -EINVAL;
2079
2080 v = qemu_get_be32(f);
2081 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2082 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2083 return -ENOTSUP;
2084 }
2085 if (v != QEMU_VM_FILE_VERSION)
2086 return -ENOTSUP;
2087
2088 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2089 uint32_t instance_id, version_id, section_id;
2090 SaveStateEntry *se;
2091 char idstr[257];
2092 int len;
2093
2094 switch (section_type) {
2095 case QEMU_VM_SECTION_START:
2096 case QEMU_VM_SECTION_FULL:
2097 /* Read section start */
2098 section_id = qemu_get_be32(f);
2099 len = qemu_get_byte(f);
2100 qemu_get_buffer(f, (uint8_t *)idstr, len);
2101 idstr[len] = 0;
2102 instance_id = qemu_get_be32(f);
2103 version_id = qemu_get_be32(f);
2104
2105 /* Find savevm section */
2106 se = find_se(idstr, instance_id);
2107 if (se == NULL) {
2108 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2109 ret = -EINVAL;
2110 goto out;
2111 }
2112
2113 /* Validate version */
2114 if (version_id > se->version_id) {
2115 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2116 version_id, idstr, se->version_id);
2117 ret = -EINVAL;
2118 goto out;
2119 }
2120
2121 /* Add entry */
2122 le = g_malloc0(sizeof(*le));
2123
2124 le->se = se;
2125 le->section_id = section_id;
2126 le->version_id = version_id;
2127 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2128
2129 ret = vmstate_load(f, le->se, le->version_id);
2130 if (ret < 0) {
2131 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2132 instance_id, idstr);
2133 goto out;
2134 }
2135 break;
2136 case QEMU_VM_SECTION_PART:
2137 case QEMU_VM_SECTION_END:
2138 section_id = qemu_get_be32(f);
2139
2140 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2141 if (le->section_id == section_id) {
2142 break;
2143 }
2144 }
2145 if (le == NULL) {
2146 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2147 ret = -EINVAL;
2148 goto out;
2149 }
2150
2151 ret = vmstate_load(f, le->se, le->version_id);
2152 if (ret < 0) {
2153 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2154 section_id);
2155 goto out;
2156 }
2157 break;
2158 default:
2159 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2160 ret = -EINVAL;
2161 goto out;
2162 }
2163 }
2164
2165 cpu_synchronize_all_post_init();
2166
2167 ret = 0;
2168
2169 out:
2170 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2171 QLIST_REMOVE(le, entry);
2172 g_free(le);
2173 }
2174
2175 if (ret == 0) {
2176 ret = qemu_file_get_error(f);
2177 }
2178
2179 return ret;
2180 }
2181
2182 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2183 const char *name)
2184 {
2185 QEMUSnapshotInfo *sn_tab, *sn;
2186 int nb_sns, i, ret;
2187
2188 ret = -ENOENT;
2189 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2190 if (nb_sns < 0)
2191 return ret;
2192 for(i = 0; i < nb_sns; i++) {
2193 sn = &sn_tab[i];
2194 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2195 *sn_info = *sn;
2196 ret = 0;
2197 break;
2198 }
2199 }
2200 g_free(sn_tab);
2201 return ret;
2202 }
2203
2204 /*
2205 * Deletes snapshots of a given name in all opened images.
2206 */
2207 static int del_existing_snapshots(Monitor *mon, const char *name)
2208 {
2209 BlockDriverState *bs;
2210 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2211 int ret;
2212
2213 bs = NULL;
2214 while ((bs = bdrv_next(bs))) {
2215 if (bdrv_can_snapshot(bs) &&
2216 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2217 {
2218 ret = bdrv_snapshot_delete(bs, name);
2219 if (ret < 0) {
2220 monitor_printf(mon,
2221 "Error while deleting snapshot on '%s'\n",
2222 bdrv_get_device_name(bs));
2223 return -1;
2224 }
2225 }
2226 }
2227
2228 return 0;
2229 }
2230
2231 void do_savevm(Monitor *mon, const QDict *qdict)
2232 {
2233 BlockDriverState *bs, *bs1;
2234 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2235 int ret;
2236 QEMUFile *f;
2237 int saved_vm_running;
2238 uint64_t vm_state_size;
2239 qemu_timeval tv;
2240 struct tm tm;
2241 const char *name = qdict_get_try_str(qdict, "name");
2242
2243 /* Verify if there is a device that doesn't support snapshots and is writable */
2244 bs = NULL;
2245 while ((bs = bdrv_next(bs))) {
2246
2247 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2248 continue;
2249 }
2250
2251 if (!bdrv_can_snapshot(bs)) {
2252 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2253 bdrv_get_device_name(bs));
2254 return;
2255 }
2256 }
2257
2258 bs = bdrv_snapshots();
2259 if (!bs) {
2260 monitor_printf(mon, "No block device can accept snapshots\n");
2261 return;
2262 }
2263
2264 saved_vm_running = runstate_is_running();
2265 vm_stop(RUN_STATE_SAVE_VM);
2266
2267 memset(sn, 0, sizeof(*sn));
2268
2269 /* fill auxiliary fields */
2270 qemu_gettimeofday(&tv);
2271 sn->date_sec = tv.tv_sec;
2272 sn->date_nsec = tv.tv_usec * 1000;
2273 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2274
2275 if (name) {
2276 ret = bdrv_snapshot_find(bs, old_sn, name);
2277 if (ret >= 0) {
2278 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2279 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2280 } else {
2281 pstrcpy(sn->name, sizeof(sn->name), name);
2282 }
2283 } else {
2284 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2285 localtime_r((const time_t *)&tv.tv_sec, &tm);
2286 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2287 }
2288
2289 /* Delete old snapshots of the same name */
2290 if (name && del_existing_snapshots(mon, name) < 0) {
2291 goto the_end;
2292 }
2293
2294 /* save the VM state */
2295 f = qemu_fopen_bdrv(bs, 1);
2296 if (!f) {
2297 monitor_printf(mon, "Could not open VM state file\n");
2298 goto the_end;
2299 }
2300 ret = qemu_savevm_state(f);
2301 vm_state_size = qemu_ftell(f);
2302 qemu_fclose(f);
2303 if (ret < 0) {
2304 monitor_printf(mon, "Error %d while writing VM\n", ret);
2305 goto the_end;
2306 }
2307
2308 /* create the snapshots */
2309
2310 bs1 = NULL;
2311 while ((bs1 = bdrv_next(bs1))) {
2312 if (bdrv_can_snapshot(bs1)) {
2313 /* Write VM state size only to the image that contains the state */
2314 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2315 ret = bdrv_snapshot_create(bs1, sn);
2316 if (ret < 0) {
2317 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2318 bdrv_get_device_name(bs1));
2319 }
2320 }
2321 }
2322
2323 the_end:
2324 if (saved_vm_running)
2325 vm_start();
2326 }
2327
2328 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2329 {
2330 QEMUFile *f;
2331 int saved_vm_running;
2332 int ret;
2333
2334 saved_vm_running = runstate_is_running();
2335 vm_stop(RUN_STATE_SAVE_VM);
2336
2337 f = qemu_fopen(filename, "wb");
2338 if (!f) {
2339 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2340 goto the_end;
2341 }
2342 ret = qemu_save_device_state(f);
2343 qemu_fclose(f);
2344 if (ret < 0) {
2345 error_set(errp, QERR_IO_ERROR);
2346 }
2347
2348 the_end:
2349 if (saved_vm_running)
2350 vm_start();
2351 }
2352
2353 int load_vmstate(const char *name)
2354 {
2355 BlockDriverState *bs, *bs_vm_state;
2356 QEMUSnapshotInfo sn;
2357 QEMUFile *f;
2358 int ret;
2359
2360 bs_vm_state = bdrv_snapshots();
2361 if (!bs_vm_state) {
2362 error_report("No block device supports snapshots");
2363 return -ENOTSUP;
2364 }
2365
2366 /* Don't even try to load empty VM states */
2367 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2368 if (ret < 0) {
2369 return ret;
2370 } else if (sn.vm_state_size == 0) {
2371 error_report("This is a disk-only snapshot. Revert to it offline "
2372 "using qemu-img.");
2373 return -EINVAL;
2374 }
2375
2376 /* Verify if there is any device that doesn't support snapshots and is
2377 writable and check if the requested snapshot is available too. */
2378 bs = NULL;
2379 while ((bs = bdrv_next(bs))) {
2380
2381 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2382 continue;
2383 }
2384
2385 if (!bdrv_can_snapshot(bs)) {
2386 error_report("Device '%s' is writable but does not support snapshots.",
2387 bdrv_get_device_name(bs));
2388 return -ENOTSUP;
2389 }
2390
2391 ret = bdrv_snapshot_find(bs, &sn, name);
2392 if (ret < 0) {
2393 error_report("Device '%s' does not have the requested snapshot '%s'",
2394 bdrv_get_device_name(bs), name);
2395 return ret;
2396 }
2397 }
2398
2399 /* Flush all IO requests so they don't interfere with the new state. */
2400 bdrv_drain_all();
2401
2402 bs = NULL;
2403 while ((bs = bdrv_next(bs))) {
2404 if (bdrv_can_snapshot(bs)) {
2405 ret = bdrv_snapshot_goto(bs, name);
2406 if (ret < 0) {
2407 error_report("Error %d while activating snapshot '%s' on '%s'",
2408 ret, name, bdrv_get_device_name(bs));
2409 return ret;
2410 }
2411 }
2412 }
2413
2414 /* restore the VM state */
2415 f = qemu_fopen_bdrv(bs_vm_state, 0);
2416 if (!f) {
2417 error_report("Could not open VM state file");
2418 return -EINVAL;
2419 }
2420
2421 qemu_system_reset(VMRESET_SILENT);
2422 ret = qemu_loadvm_state(f);
2423
2424 qemu_fclose(f);
2425 if (ret < 0) {
2426 error_report("Error %d while loading VM state", ret);
2427 return ret;
2428 }
2429
2430 return 0;
2431 }
2432
2433 void do_delvm(Monitor *mon, const QDict *qdict)
2434 {
2435 BlockDriverState *bs, *bs1;
2436 int ret;
2437 const char *name = qdict_get_str(qdict, "name");
2438
2439 bs = bdrv_snapshots();
2440 if (!bs) {
2441 monitor_printf(mon, "No block device supports snapshots\n");
2442 return;
2443 }
2444
2445 bs1 = NULL;
2446 while ((bs1 = bdrv_next(bs1))) {
2447 if (bdrv_can_snapshot(bs1)) {
2448 ret = bdrv_snapshot_delete(bs1, name);
2449 if (ret < 0) {
2450 if (ret == -ENOTSUP)
2451 monitor_printf(mon,
2452 "Snapshots not supported on device '%s'\n",
2453 bdrv_get_device_name(bs1));
2454 else
2455 monitor_printf(mon, "Error %d while deleting snapshot on "
2456 "'%s'\n", ret, bdrv_get_device_name(bs1));
2457 }
2458 }
2459 }
2460 }
2461
2462 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2463 {
2464 BlockDriverState *bs, *bs1;
2465 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2466 int nb_sns, i, ret, available;
2467 int total;
2468 int *available_snapshots;
2469 char buf[256];
2470
2471 bs = bdrv_snapshots();
2472 if (!bs) {
2473 monitor_printf(mon, "No available block device supports snapshots\n");
2474 return;
2475 }
2476
2477 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2478 if (nb_sns < 0) {
2479 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2480 return;
2481 }
2482
2483 if (nb_sns == 0) {
2484 monitor_printf(mon, "There is no snapshot available.\n");
2485 return;
2486 }
2487
2488 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2489 total = 0;
2490 for (i = 0; i < nb_sns; i++) {
2491 sn = &sn_tab[i];
2492 available = 1;
2493 bs1 = NULL;
2494
2495 while ((bs1 = bdrv_next(bs1))) {
2496 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2497 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2498 if (ret < 0) {
2499 available = 0;
2500 break;
2501 }
2502 }
2503 }
2504
2505 if (available) {
2506 available_snapshots[total] = i;
2507 total++;
2508 }
2509 }
2510
2511 if (total > 0) {
2512 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2513 for (i = 0; i < total; i++) {
2514 sn = &sn_tab[available_snapshots[i]];
2515 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2516 }
2517 } else {
2518 monitor_printf(mon, "There is no suitable snapshot available\n");
2519 }
2520
2521 g_free(sn_tab);
2522 g_free(available_snapshots);
2523
2524 }
2525
2526 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2527 {
2528 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2529 memory_region_name(mr), dev);
2530 }
2531
2532 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2533 {
2534 /* Nothing do to while the implementation is in RAMBlock */
2535 }
2536
2537 void vmstate_register_ram_global(MemoryRegion *mr)
2538 {
2539 vmstate_register_ram(mr, NULL);
2540 }