]> git.proxmox.com Git - qemu.git/blob - savevm.c
migration: unify stdio-based QEMUFile operations
[qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <time.h>
27 #include <errno.h>
28 #include <sys/time.h>
29 #include <zlib.h>
30
31 /* Needed early for CONFIG_BSD etc. */
32 #include "config-host.h"
33
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/mman.h>
39 #include <sys/ioctl.h>
40 #include <sys/resource.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <net/if.h>
44 #include <arpa/inet.h>
45 #include <dirent.h>
46 #include <netdb.h>
47 #include <sys/select.h>
48 #ifdef CONFIG_BSD
49 #include <sys/stat.h>
50 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
51 #include <libutil.h>
52 #else
53 #include <util.h>
54 #endif
55 #ifdef __linux__
56 #include <pty.h>
57 #include <malloc.h>
58 #include <linux/rtc.h>
59 #endif
60 #endif
61 #endif
62
63 #ifdef _WIN32
64 #include <windows.h>
65 #include <malloc.h>
66 #include <sys/timeb.h>
67 #include <mmsystem.h>
68 #define getopt_long_only getopt_long
69 #define memalign(align, size) malloc(size)
70 #endif
71
72 #include "qemu-common.h"
73 #include "hw/hw.h"
74 #include "hw/qdev.h"
75 #include "net.h"
76 #include "monitor.h"
77 #include "sysemu.h"
78 #include "qemu-timer.h"
79 #include "qemu-char.h"
80 #include "audio/audio.h"
81 #include "migration.h"
82 #include "qemu_socket.h"
83 #include "qemu-queue.h"
84 #include "qemu-timer.h"
85 #include "cpus.h"
86 #include "memory.h"
87 #include "qmp-commands.h"
88 #include "trace.h"
89 #include "bitops.h"
90
91 #define SELF_ANNOUNCE_ROUNDS 5
92
93 #ifndef ETH_P_RARP
94 #define ETH_P_RARP 0x8035
95 #endif
96 #define ARP_HTYPE_ETH 0x0001
97 #define ARP_PTYPE_IP 0x0800
98 #define ARP_OP_REQUEST_REV 0x3
99
100 static int announce_self_create(uint8_t *buf,
101 uint8_t *mac_addr)
102 {
103 /* Ethernet header. */
104 memset(buf, 0xff, 6); /* destination MAC addr */
105 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
106 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
107
108 /* RARP header. */
109 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
110 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
111 *(buf + 18) = 6; /* hardware addr length (ethernet) */
112 *(buf + 19) = 4; /* protocol addr length (IPv4) */
113 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
114 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
115 memset(buf + 28, 0x00, 4); /* source protocol addr */
116 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
117 memset(buf + 38, 0x00, 4); /* target protocol addr */
118
119 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
120 memset(buf + 42, 0x00, 18);
121
122 return 60; /* len (FCS will be added by hardware) */
123 }
124
125 static void qemu_announce_self_iter(NICState *nic, void *opaque)
126 {
127 uint8_t buf[60];
128 int len;
129
130 len = announce_self_create(buf, nic->conf->macaddr.a);
131
132 qemu_send_packet_raw(&nic->nc, buf, len);
133 }
134
135
136 static void qemu_announce_self_once(void *opaque)
137 {
138 static int count = SELF_ANNOUNCE_ROUNDS;
139 QEMUTimer *timer = *(QEMUTimer **)opaque;
140
141 qemu_foreach_nic(qemu_announce_self_iter, NULL);
142
143 if (--count) {
144 /* delay 50ms, 150ms, 250ms, ... */
145 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
146 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
147 } else {
148 qemu_del_timer(timer);
149 qemu_free_timer(timer);
150 }
151 }
152
153 void qemu_announce_self(void)
154 {
155 static QEMUTimer *timer;
156 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
157 qemu_announce_self_once(&timer);
158 }
159
160 /***********************************************************/
161 /* savevm/loadvm support */
162
163 #define IO_BUF_SIZE 32768
164
165 struct QEMUFile {
166 QEMUFilePutBufferFunc *put_buffer;
167 QEMUFileGetBufferFunc *get_buffer;
168 QEMUFileCloseFunc *close;
169 QEMUFileRateLimit *rate_limit;
170 QEMUFileSetRateLimit *set_rate_limit;
171 QEMUFileGetRateLimit *get_rate_limit;
172 void *opaque;
173 int is_write;
174
175 int64_t buf_offset; /* start of buffer when writing, end of buffer
176 when reading */
177 int buf_index;
178 int buf_size; /* 0 when writing */
179 uint8_t buf[IO_BUF_SIZE];
180
181 int last_error;
182 };
183
184 typedef struct QEMUFileStdio
185 {
186 FILE *stdio_file;
187 QEMUFile *file;
188 } QEMUFileStdio;
189
190 typedef struct QEMUFileSocket
191 {
192 int fd;
193 QEMUFile *file;
194 } QEMUFileSocket;
195
196 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
197 {
198 QEMUFileSocket *s = opaque;
199 ssize_t len;
200
201 do {
202 len = qemu_recv(s->fd, buf, size, 0);
203 } while (len == -1 && socket_error() == EINTR);
204
205 if (len == -1)
206 len = -socket_error();
207
208 return len;
209 }
210
211 static int socket_close(void *opaque)
212 {
213 QEMUFileSocket *s = opaque;
214 g_free(s);
215 return 0;
216 }
217
218 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
219 {
220 QEMUFileStdio *s = opaque;
221 return fwrite(buf, 1, size, s->stdio_file);
222 }
223
224 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
225 {
226 QEMUFileStdio *s = opaque;
227 FILE *fp = s->stdio_file;
228 int bytes;
229
230 do {
231 clearerr(fp);
232 bytes = fread(buf, 1, size, fp);
233 } while ((bytes == 0) && ferror(fp) && (errno == EINTR));
234 return bytes;
235 }
236
237 static int stdio_pclose(void *opaque)
238 {
239 QEMUFileStdio *s = opaque;
240 int ret;
241 ret = pclose(s->stdio_file);
242 if (ret == -1) {
243 ret = -errno;
244 }
245 g_free(s);
246 return ret;
247 }
248
249 static int stdio_fclose(void *opaque)
250 {
251 QEMUFileStdio *s = opaque;
252 int ret = 0;
253 if (fclose(s->stdio_file) == EOF) {
254 ret = -errno;
255 }
256 g_free(s);
257 return ret;
258 }
259
260 QEMUFile *qemu_popen(FILE *stdio_file, const char *mode)
261 {
262 QEMUFileStdio *s;
263
264 if (stdio_file == NULL || mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
265 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
266 return NULL;
267 }
268
269 s = g_malloc0(sizeof(QEMUFileStdio));
270
271 s->stdio_file = stdio_file;
272
273 if(mode[0] == 'r') {
274 s->file = qemu_fopen_ops(s, NULL, stdio_get_buffer, stdio_pclose,
275 NULL, NULL, NULL);
276 } else {
277 s->file = qemu_fopen_ops(s, stdio_put_buffer, NULL, stdio_pclose,
278 NULL, NULL, NULL);
279 }
280 return s->file;
281 }
282
283 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
284 {
285 FILE *popen_file;
286
287 popen_file = popen(command, mode);
288 if(popen_file == NULL) {
289 return NULL;
290 }
291
292 return qemu_popen(popen_file, mode);
293 }
294
295 int qemu_stdio_fd(QEMUFile *f)
296 {
297 QEMUFileStdio *p;
298 int fd;
299
300 p = (QEMUFileStdio *)f->opaque;
301 fd = fileno(p->stdio_file);
302
303 return fd;
304 }
305
306 QEMUFile *qemu_fdopen(int fd, const char *mode)
307 {
308 QEMUFileStdio *s;
309
310 if (mode == NULL ||
311 (mode[0] != 'r' && mode[0] != 'w') ||
312 mode[1] != 'b' || mode[2] != 0) {
313 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
314 return NULL;
315 }
316
317 s = g_malloc0(sizeof(QEMUFileStdio));
318 s->stdio_file = fdopen(fd, mode);
319 if (!s->stdio_file)
320 goto fail;
321
322 if(mode[0] == 'r') {
323 s->file = qemu_fopen_ops(s, NULL, stdio_get_buffer, stdio_fclose,
324 NULL, NULL, NULL);
325 } else {
326 s->file = qemu_fopen_ops(s, stdio_put_buffer, NULL, stdio_fclose,
327 NULL, NULL, NULL);
328 }
329 return s->file;
330
331 fail:
332 g_free(s);
333 return NULL;
334 }
335
336 QEMUFile *qemu_fopen_socket(int fd)
337 {
338 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
339
340 s->fd = fd;
341 s->file = qemu_fopen_ops(s, NULL, socket_get_buffer, socket_close,
342 NULL, NULL, NULL);
343 return s->file;
344 }
345
346 QEMUFile *qemu_fopen(const char *filename, const char *mode)
347 {
348 QEMUFileStdio *s;
349
350 if (mode == NULL ||
351 (mode[0] != 'r' && mode[0] != 'w') ||
352 mode[1] != 'b' || mode[2] != 0) {
353 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
354 return NULL;
355 }
356
357 s = g_malloc0(sizeof(QEMUFileStdio));
358
359 s->stdio_file = fopen(filename, mode);
360 if (!s->stdio_file)
361 goto fail;
362
363 if(mode[0] == 'w') {
364 s->file = qemu_fopen_ops(s, stdio_put_buffer, NULL, stdio_fclose,
365 NULL, NULL, NULL);
366 } else {
367 s->file = qemu_fopen_ops(s, NULL, stdio_get_buffer, stdio_fclose,
368 NULL, NULL, NULL);
369 }
370 return s->file;
371 fail:
372 g_free(s);
373 return NULL;
374 }
375
376 static int block_put_buffer(void *opaque, const uint8_t *buf,
377 int64_t pos, int size)
378 {
379 bdrv_save_vmstate(opaque, buf, pos, size);
380 return size;
381 }
382
383 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
384 {
385 return bdrv_load_vmstate(opaque, buf, pos, size);
386 }
387
388 static int bdrv_fclose(void *opaque)
389 {
390 return bdrv_flush(opaque);
391 }
392
393 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
394 {
395 if (is_writable)
396 return qemu_fopen_ops(bs, block_put_buffer, NULL, bdrv_fclose,
397 NULL, NULL, NULL);
398 return qemu_fopen_ops(bs, NULL, block_get_buffer, bdrv_fclose, NULL, NULL, NULL);
399 }
400
401 QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
402 QEMUFileGetBufferFunc *get_buffer,
403 QEMUFileCloseFunc *close,
404 QEMUFileRateLimit *rate_limit,
405 QEMUFileSetRateLimit *set_rate_limit,
406 QEMUFileGetRateLimit *get_rate_limit)
407 {
408 QEMUFile *f;
409
410 f = g_malloc0(sizeof(QEMUFile));
411
412 f->opaque = opaque;
413 f->put_buffer = put_buffer;
414 f->get_buffer = get_buffer;
415 f->close = close;
416 f->rate_limit = rate_limit;
417 f->set_rate_limit = set_rate_limit;
418 f->get_rate_limit = get_rate_limit;
419 f->is_write = 0;
420
421 return f;
422 }
423
424 int qemu_file_get_error(QEMUFile *f)
425 {
426 return f->last_error;
427 }
428
429 static void qemu_file_set_error(QEMUFile *f, int ret)
430 {
431 f->last_error = ret;
432 }
433
434 /** Flushes QEMUFile buffer
435 *
436 */
437 static int qemu_fflush(QEMUFile *f)
438 {
439 int ret = 0;
440
441 if (!f->put_buffer)
442 return 0;
443
444 if (f->is_write && f->buf_index > 0) {
445 ret = f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
446 if (ret >= 0) {
447 f->buf_offset += f->buf_index;
448 }
449 f->buf_index = 0;
450 }
451 return ret;
452 }
453
454 static void qemu_fill_buffer(QEMUFile *f)
455 {
456 int len;
457 int pending;
458
459 if (!f->get_buffer)
460 return;
461
462 if (f->is_write)
463 abort();
464
465 pending = f->buf_size - f->buf_index;
466 if (pending > 0) {
467 memmove(f->buf, f->buf + f->buf_index, pending);
468 }
469 f->buf_index = 0;
470 f->buf_size = pending;
471
472 len = f->get_buffer(f->opaque, f->buf + pending, f->buf_offset,
473 IO_BUF_SIZE - pending);
474 if (len > 0) {
475 f->buf_size += len;
476 f->buf_offset += len;
477 } else if (len == 0) {
478 qemu_file_set_error(f, -EIO);
479 } else if (len != -EAGAIN)
480 qemu_file_set_error(f, len);
481 }
482
483 /** Closes the file
484 *
485 * Returns negative error value if any error happened on previous operations or
486 * while closing the file. Returns 0 or positive number on success.
487 *
488 * The meaning of return value on success depends on the specific backend
489 * being used.
490 */
491 int qemu_fclose(QEMUFile *f)
492 {
493 int ret;
494 ret = qemu_fflush(f);
495
496 if (f->close) {
497 int ret2 = f->close(f->opaque);
498 if (ret >= 0) {
499 ret = ret2;
500 }
501 }
502 /* If any error was spotted before closing, we should report it
503 * instead of the close() return value.
504 */
505 if (f->last_error) {
506 ret = f->last_error;
507 }
508 g_free(f);
509 return ret;
510 }
511
512 int qemu_file_put_notify(QEMUFile *f)
513 {
514 return f->put_buffer(f->opaque, NULL, 0, 0);
515 }
516
517 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
518 {
519 int l;
520
521 if (f->last_error) {
522 return;
523 }
524
525 if (f->is_write == 0 && f->buf_index > 0) {
526 fprintf(stderr,
527 "Attempted to write to buffer while read buffer is not empty\n");
528 abort();
529 }
530
531 while (size > 0) {
532 l = IO_BUF_SIZE - f->buf_index;
533 if (l > size)
534 l = size;
535 memcpy(f->buf + f->buf_index, buf, l);
536 f->is_write = 1;
537 f->buf_index += l;
538 buf += l;
539 size -= l;
540 if (f->buf_index >= IO_BUF_SIZE) {
541 int ret = qemu_fflush(f);
542 if (ret < 0) {
543 qemu_file_set_error(f, ret);
544 break;
545 }
546 }
547 }
548 }
549
550 void qemu_put_byte(QEMUFile *f, int v)
551 {
552 if (f->last_error) {
553 return;
554 }
555
556 if (f->is_write == 0 && f->buf_index > 0) {
557 fprintf(stderr,
558 "Attempted to write to buffer while read buffer is not empty\n");
559 abort();
560 }
561
562 f->buf[f->buf_index++] = v;
563 f->is_write = 1;
564 if (f->buf_index >= IO_BUF_SIZE) {
565 int ret = qemu_fflush(f);
566 if (ret < 0) {
567 qemu_file_set_error(f, ret);
568 }
569 }
570 }
571
572 static void qemu_file_skip(QEMUFile *f, int size)
573 {
574 if (f->buf_index + size <= f->buf_size) {
575 f->buf_index += size;
576 }
577 }
578
579 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
580 {
581 int pending;
582 int index;
583
584 if (f->is_write) {
585 abort();
586 }
587
588 index = f->buf_index + offset;
589 pending = f->buf_size - index;
590 if (pending < size) {
591 qemu_fill_buffer(f);
592 index = f->buf_index + offset;
593 pending = f->buf_size - index;
594 }
595
596 if (pending <= 0) {
597 return 0;
598 }
599 if (size > pending) {
600 size = pending;
601 }
602
603 memcpy(buf, f->buf + index, size);
604 return size;
605 }
606
607 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
608 {
609 int pending = size;
610 int done = 0;
611
612 while (pending > 0) {
613 int res;
614
615 res = qemu_peek_buffer(f, buf, pending, 0);
616 if (res == 0) {
617 return done;
618 }
619 qemu_file_skip(f, res);
620 buf += res;
621 pending -= res;
622 done += res;
623 }
624 return done;
625 }
626
627 static int qemu_peek_byte(QEMUFile *f, int offset)
628 {
629 int index = f->buf_index + offset;
630
631 if (f->is_write) {
632 abort();
633 }
634
635 if (index >= f->buf_size) {
636 qemu_fill_buffer(f);
637 index = f->buf_index + offset;
638 if (index >= f->buf_size) {
639 return 0;
640 }
641 }
642 return f->buf[index];
643 }
644
645 int qemu_get_byte(QEMUFile *f)
646 {
647 int result;
648
649 result = qemu_peek_byte(f, 0);
650 qemu_file_skip(f, 1);
651 return result;
652 }
653
654 static int64_t qemu_ftell(QEMUFile *f)
655 {
656 return f->buf_offset - f->buf_size + f->buf_index;
657 }
658
659 int qemu_file_rate_limit(QEMUFile *f)
660 {
661 if (f->rate_limit)
662 return f->rate_limit(f->opaque);
663
664 return 0;
665 }
666
667 int64_t qemu_file_get_rate_limit(QEMUFile *f)
668 {
669 if (f->get_rate_limit)
670 return f->get_rate_limit(f->opaque);
671
672 return 0;
673 }
674
675 int64_t qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate)
676 {
677 /* any failed or completed migration keeps its state to allow probing of
678 * migration data, but has no associated file anymore */
679 if (f && f->set_rate_limit)
680 return f->set_rate_limit(f->opaque, new_rate);
681
682 return 0;
683 }
684
685 void qemu_put_be16(QEMUFile *f, unsigned int v)
686 {
687 qemu_put_byte(f, v >> 8);
688 qemu_put_byte(f, v);
689 }
690
691 void qemu_put_be32(QEMUFile *f, unsigned int v)
692 {
693 qemu_put_byte(f, v >> 24);
694 qemu_put_byte(f, v >> 16);
695 qemu_put_byte(f, v >> 8);
696 qemu_put_byte(f, v);
697 }
698
699 void qemu_put_be64(QEMUFile *f, uint64_t v)
700 {
701 qemu_put_be32(f, v >> 32);
702 qemu_put_be32(f, v);
703 }
704
705 unsigned int qemu_get_be16(QEMUFile *f)
706 {
707 unsigned int v;
708 v = qemu_get_byte(f) << 8;
709 v |= qemu_get_byte(f);
710 return v;
711 }
712
713 unsigned int qemu_get_be32(QEMUFile *f)
714 {
715 unsigned int v;
716 v = qemu_get_byte(f) << 24;
717 v |= qemu_get_byte(f) << 16;
718 v |= qemu_get_byte(f) << 8;
719 v |= qemu_get_byte(f);
720 return v;
721 }
722
723 uint64_t qemu_get_be64(QEMUFile *f)
724 {
725 uint64_t v;
726 v = (uint64_t)qemu_get_be32(f) << 32;
727 v |= qemu_get_be32(f);
728 return v;
729 }
730
731
732 /* timer */
733
734 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
735 {
736 uint64_t expire_time;
737
738 expire_time = qemu_timer_expire_time_ns(ts);
739 qemu_put_be64(f, expire_time);
740 }
741
742 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
743 {
744 uint64_t expire_time;
745
746 expire_time = qemu_get_be64(f);
747 if (expire_time != -1) {
748 qemu_mod_timer_ns(ts, expire_time);
749 } else {
750 qemu_del_timer(ts);
751 }
752 }
753
754
755 /* bool */
756
757 static int get_bool(QEMUFile *f, void *pv, size_t size)
758 {
759 bool *v = pv;
760 *v = qemu_get_byte(f);
761 return 0;
762 }
763
764 static void put_bool(QEMUFile *f, void *pv, size_t size)
765 {
766 bool *v = pv;
767 qemu_put_byte(f, *v);
768 }
769
770 const VMStateInfo vmstate_info_bool = {
771 .name = "bool",
772 .get = get_bool,
773 .put = put_bool,
774 };
775
776 /* 8 bit int */
777
778 static int get_int8(QEMUFile *f, void *pv, size_t size)
779 {
780 int8_t *v = pv;
781 qemu_get_s8s(f, v);
782 return 0;
783 }
784
785 static void put_int8(QEMUFile *f, void *pv, size_t size)
786 {
787 int8_t *v = pv;
788 qemu_put_s8s(f, v);
789 }
790
791 const VMStateInfo vmstate_info_int8 = {
792 .name = "int8",
793 .get = get_int8,
794 .put = put_int8,
795 };
796
797 /* 16 bit int */
798
799 static int get_int16(QEMUFile *f, void *pv, size_t size)
800 {
801 int16_t *v = pv;
802 qemu_get_sbe16s(f, v);
803 return 0;
804 }
805
806 static void put_int16(QEMUFile *f, void *pv, size_t size)
807 {
808 int16_t *v = pv;
809 qemu_put_sbe16s(f, v);
810 }
811
812 const VMStateInfo vmstate_info_int16 = {
813 .name = "int16",
814 .get = get_int16,
815 .put = put_int16,
816 };
817
818 /* 32 bit int */
819
820 static int get_int32(QEMUFile *f, void *pv, size_t size)
821 {
822 int32_t *v = pv;
823 qemu_get_sbe32s(f, v);
824 return 0;
825 }
826
827 static void put_int32(QEMUFile *f, void *pv, size_t size)
828 {
829 int32_t *v = pv;
830 qemu_put_sbe32s(f, v);
831 }
832
833 const VMStateInfo vmstate_info_int32 = {
834 .name = "int32",
835 .get = get_int32,
836 .put = put_int32,
837 };
838
839 /* 32 bit int. See that the received value is the same than the one
840 in the field */
841
842 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
843 {
844 int32_t *v = pv;
845 int32_t v2;
846 qemu_get_sbe32s(f, &v2);
847
848 if (*v == v2)
849 return 0;
850 return -EINVAL;
851 }
852
853 const VMStateInfo vmstate_info_int32_equal = {
854 .name = "int32 equal",
855 .get = get_int32_equal,
856 .put = put_int32,
857 };
858
859 /* 32 bit int. See that the received value is the less or the same
860 than the one in the field */
861
862 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
863 {
864 int32_t *old = pv;
865 int32_t new;
866 qemu_get_sbe32s(f, &new);
867
868 if (*old <= new)
869 return 0;
870 return -EINVAL;
871 }
872
873 const VMStateInfo vmstate_info_int32_le = {
874 .name = "int32 equal",
875 .get = get_int32_le,
876 .put = put_int32,
877 };
878
879 /* 64 bit int */
880
881 static int get_int64(QEMUFile *f, void *pv, size_t size)
882 {
883 int64_t *v = pv;
884 qemu_get_sbe64s(f, v);
885 return 0;
886 }
887
888 static void put_int64(QEMUFile *f, void *pv, size_t size)
889 {
890 int64_t *v = pv;
891 qemu_put_sbe64s(f, v);
892 }
893
894 const VMStateInfo vmstate_info_int64 = {
895 .name = "int64",
896 .get = get_int64,
897 .put = put_int64,
898 };
899
900 /* 8 bit unsigned int */
901
902 static int get_uint8(QEMUFile *f, void *pv, size_t size)
903 {
904 uint8_t *v = pv;
905 qemu_get_8s(f, v);
906 return 0;
907 }
908
909 static void put_uint8(QEMUFile *f, void *pv, size_t size)
910 {
911 uint8_t *v = pv;
912 qemu_put_8s(f, v);
913 }
914
915 const VMStateInfo vmstate_info_uint8 = {
916 .name = "uint8",
917 .get = get_uint8,
918 .put = put_uint8,
919 };
920
921 /* 16 bit unsigned int */
922
923 static int get_uint16(QEMUFile *f, void *pv, size_t size)
924 {
925 uint16_t *v = pv;
926 qemu_get_be16s(f, v);
927 return 0;
928 }
929
930 static void put_uint16(QEMUFile *f, void *pv, size_t size)
931 {
932 uint16_t *v = pv;
933 qemu_put_be16s(f, v);
934 }
935
936 const VMStateInfo vmstate_info_uint16 = {
937 .name = "uint16",
938 .get = get_uint16,
939 .put = put_uint16,
940 };
941
942 /* 32 bit unsigned int */
943
944 static int get_uint32(QEMUFile *f, void *pv, size_t size)
945 {
946 uint32_t *v = pv;
947 qemu_get_be32s(f, v);
948 return 0;
949 }
950
951 static void put_uint32(QEMUFile *f, void *pv, size_t size)
952 {
953 uint32_t *v = pv;
954 qemu_put_be32s(f, v);
955 }
956
957 const VMStateInfo vmstate_info_uint32 = {
958 .name = "uint32",
959 .get = get_uint32,
960 .put = put_uint32,
961 };
962
963 /* 32 bit uint. See that the received value is the same than the one
964 in the field */
965
966 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
967 {
968 uint32_t *v = pv;
969 uint32_t v2;
970 qemu_get_be32s(f, &v2);
971
972 if (*v == v2) {
973 return 0;
974 }
975 return -EINVAL;
976 }
977
978 const VMStateInfo vmstate_info_uint32_equal = {
979 .name = "uint32 equal",
980 .get = get_uint32_equal,
981 .put = put_uint32,
982 };
983
984 /* 64 bit unsigned int */
985
986 static int get_uint64(QEMUFile *f, void *pv, size_t size)
987 {
988 uint64_t *v = pv;
989 qemu_get_be64s(f, v);
990 return 0;
991 }
992
993 static void put_uint64(QEMUFile *f, void *pv, size_t size)
994 {
995 uint64_t *v = pv;
996 qemu_put_be64s(f, v);
997 }
998
999 const VMStateInfo vmstate_info_uint64 = {
1000 .name = "uint64",
1001 .get = get_uint64,
1002 .put = put_uint64,
1003 };
1004
1005 /* 8 bit int. See that the received value is the same than the one
1006 in the field */
1007
1008 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1009 {
1010 uint8_t *v = pv;
1011 uint8_t v2;
1012 qemu_get_8s(f, &v2);
1013
1014 if (*v == v2)
1015 return 0;
1016 return -EINVAL;
1017 }
1018
1019 const VMStateInfo vmstate_info_uint8_equal = {
1020 .name = "uint8 equal",
1021 .get = get_uint8_equal,
1022 .put = put_uint8,
1023 };
1024
1025 /* 16 bit unsigned int int. See that the received value is the same than the one
1026 in the field */
1027
1028 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1029 {
1030 uint16_t *v = pv;
1031 uint16_t v2;
1032 qemu_get_be16s(f, &v2);
1033
1034 if (*v == v2)
1035 return 0;
1036 return -EINVAL;
1037 }
1038
1039 const VMStateInfo vmstate_info_uint16_equal = {
1040 .name = "uint16 equal",
1041 .get = get_uint16_equal,
1042 .put = put_uint16,
1043 };
1044
1045 /* timers */
1046
1047 static int get_timer(QEMUFile *f, void *pv, size_t size)
1048 {
1049 QEMUTimer *v = pv;
1050 qemu_get_timer(f, v);
1051 return 0;
1052 }
1053
1054 static void put_timer(QEMUFile *f, void *pv, size_t size)
1055 {
1056 QEMUTimer *v = pv;
1057 qemu_put_timer(f, v);
1058 }
1059
1060 const VMStateInfo vmstate_info_timer = {
1061 .name = "timer",
1062 .get = get_timer,
1063 .put = put_timer,
1064 };
1065
1066 /* uint8_t buffers */
1067
1068 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1069 {
1070 uint8_t *v = pv;
1071 qemu_get_buffer(f, v, size);
1072 return 0;
1073 }
1074
1075 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1076 {
1077 uint8_t *v = pv;
1078 qemu_put_buffer(f, v, size);
1079 }
1080
1081 const VMStateInfo vmstate_info_buffer = {
1082 .name = "buffer",
1083 .get = get_buffer,
1084 .put = put_buffer,
1085 };
1086
1087 /* unused buffers: space that was used for some fields that are
1088 not useful anymore */
1089
1090 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1091 {
1092 uint8_t buf[1024];
1093 int block_len;
1094
1095 while (size > 0) {
1096 block_len = MIN(sizeof(buf), size);
1097 size -= block_len;
1098 qemu_get_buffer(f, buf, block_len);
1099 }
1100 return 0;
1101 }
1102
1103 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1104 {
1105 static const uint8_t buf[1024];
1106 int block_len;
1107
1108 while (size > 0) {
1109 block_len = MIN(sizeof(buf), size);
1110 size -= block_len;
1111 qemu_put_buffer(f, buf, block_len);
1112 }
1113 }
1114
1115 const VMStateInfo vmstate_info_unused_buffer = {
1116 .name = "unused_buffer",
1117 .get = get_unused_buffer,
1118 .put = put_unused_buffer,
1119 };
1120
1121 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1122 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1123 * bit words with the bits in big endian order. The in-memory format
1124 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1125 */
1126 /* This is the number of 64 bit words sent over the wire */
1127 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1128 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1129 {
1130 unsigned long *bmp = pv;
1131 int i, idx = 0;
1132 for (i = 0; i < BITS_TO_U64S(size); i++) {
1133 uint64_t w = qemu_get_be64(f);
1134 bmp[idx++] = w;
1135 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1136 bmp[idx++] = w >> 32;
1137 }
1138 }
1139 return 0;
1140 }
1141
1142 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1143 {
1144 unsigned long *bmp = pv;
1145 int i, idx = 0;
1146 for (i = 0; i < BITS_TO_U64S(size); i++) {
1147 uint64_t w = bmp[idx++];
1148 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1149 w |= ((uint64_t)bmp[idx++]) << 32;
1150 }
1151 qemu_put_be64(f, w);
1152 }
1153 }
1154
1155 const VMStateInfo vmstate_info_bitmap = {
1156 .name = "bitmap",
1157 .get = get_bitmap,
1158 .put = put_bitmap,
1159 };
1160
1161 typedef struct CompatEntry {
1162 char idstr[256];
1163 int instance_id;
1164 } CompatEntry;
1165
1166 typedef struct SaveStateEntry {
1167 QTAILQ_ENTRY(SaveStateEntry) entry;
1168 char idstr[256];
1169 int instance_id;
1170 int alias_id;
1171 int version_id;
1172 int section_id;
1173 SaveVMHandlers *ops;
1174 const VMStateDescription *vmsd;
1175 void *opaque;
1176 CompatEntry *compat;
1177 int no_migrate;
1178 int is_ram;
1179 } SaveStateEntry;
1180
1181
1182 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1183 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1184 static int global_section_id;
1185
1186 static int calculate_new_instance_id(const char *idstr)
1187 {
1188 SaveStateEntry *se;
1189 int instance_id = 0;
1190
1191 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1192 if (strcmp(idstr, se->idstr) == 0
1193 && instance_id <= se->instance_id) {
1194 instance_id = se->instance_id + 1;
1195 }
1196 }
1197 return instance_id;
1198 }
1199
1200 static int calculate_compat_instance_id(const char *idstr)
1201 {
1202 SaveStateEntry *se;
1203 int instance_id = 0;
1204
1205 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1206 if (!se->compat)
1207 continue;
1208
1209 if (strcmp(idstr, se->compat->idstr) == 0
1210 && instance_id <= se->compat->instance_id) {
1211 instance_id = se->compat->instance_id + 1;
1212 }
1213 }
1214 return instance_id;
1215 }
1216
1217 /* TODO: Individual devices generally have very little idea about the rest
1218 of the system, so instance_id should be removed/replaced.
1219 Meanwhile pass -1 as instance_id if you do not already have a clearly
1220 distinguishing id for all instances of your device class. */
1221 int register_savevm_live(DeviceState *dev,
1222 const char *idstr,
1223 int instance_id,
1224 int version_id,
1225 SaveVMHandlers *ops,
1226 void *opaque)
1227 {
1228 SaveStateEntry *se;
1229
1230 se = g_malloc0(sizeof(SaveStateEntry));
1231 se->version_id = version_id;
1232 se->section_id = global_section_id++;
1233 se->ops = ops;
1234 se->opaque = opaque;
1235 se->vmsd = NULL;
1236 se->no_migrate = 0;
1237 /* if this is a live_savem then set is_ram */
1238 if (ops->save_live_setup != NULL) {
1239 se->is_ram = 1;
1240 }
1241
1242 if (dev) {
1243 char *id = qdev_get_dev_path(dev);
1244 if (id) {
1245 pstrcpy(se->idstr, sizeof(se->idstr), id);
1246 pstrcat(se->idstr, sizeof(se->idstr), "/");
1247 g_free(id);
1248
1249 se->compat = g_malloc0(sizeof(CompatEntry));
1250 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1251 se->compat->instance_id = instance_id == -1 ?
1252 calculate_compat_instance_id(idstr) : instance_id;
1253 instance_id = -1;
1254 }
1255 }
1256 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1257
1258 if (instance_id == -1) {
1259 se->instance_id = calculate_new_instance_id(se->idstr);
1260 } else {
1261 se->instance_id = instance_id;
1262 }
1263 assert(!se->compat || se->instance_id == 0);
1264 /* add at the end of list */
1265 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1266 return 0;
1267 }
1268
1269 int register_savevm(DeviceState *dev,
1270 const char *idstr,
1271 int instance_id,
1272 int version_id,
1273 SaveStateHandler *save_state,
1274 LoadStateHandler *load_state,
1275 void *opaque)
1276 {
1277 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1278 ops->save_state = save_state;
1279 ops->load_state = load_state;
1280 return register_savevm_live(dev, idstr, instance_id, version_id,
1281 ops, opaque);
1282 }
1283
1284 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1285 {
1286 SaveStateEntry *se, *new_se;
1287 char id[256] = "";
1288
1289 if (dev) {
1290 char *path = qdev_get_dev_path(dev);
1291 if (path) {
1292 pstrcpy(id, sizeof(id), path);
1293 pstrcat(id, sizeof(id), "/");
1294 g_free(path);
1295 }
1296 }
1297 pstrcat(id, sizeof(id), idstr);
1298
1299 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1300 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1301 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1302 if (se->compat) {
1303 g_free(se->compat);
1304 }
1305 g_free(se->ops);
1306 g_free(se);
1307 }
1308 }
1309 }
1310
1311 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1312 const VMStateDescription *vmsd,
1313 void *opaque, int alias_id,
1314 int required_for_version)
1315 {
1316 SaveStateEntry *se;
1317
1318 /* If this triggers, alias support can be dropped for the vmsd. */
1319 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1320
1321 se = g_malloc0(sizeof(SaveStateEntry));
1322 se->version_id = vmsd->version_id;
1323 se->section_id = global_section_id++;
1324 se->opaque = opaque;
1325 se->vmsd = vmsd;
1326 se->alias_id = alias_id;
1327 se->no_migrate = vmsd->unmigratable;
1328
1329 if (dev) {
1330 char *id = qdev_get_dev_path(dev);
1331 if (id) {
1332 pstrcpy(se->idstr, sizeof(se->idstr), id);
1333 pstrcat(se->idstr, sizeof(se->idstr), "/");
1334 g_free(id);
1335
1336 se->compat = g_malloc0(sizeof(CompatEntry));
1337 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1338 se->compat->instance_id = instance_id == -1 ?
1339 calculate_compat_instance_id(vmsd->name) : instance_id;
1340 instance_id = -1;
1341 }
1342 }
1343 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1344
1345 if (instance_id == -1) {
1346 se->instance_id = calculate_new_instance_id(se->idstr);
1347 } else {
1348 se->instance_id = instance_id;
1349 }
1350 assert(!se->compat || se->instance_id == 0);
1351 /* add at the end of list */
1352 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1353 return 0;
1354 }
1355
1356 int vmstate_register(DeviceState *dev, int instance_id,
1357 const VMStateDescription *vmsd, void *opaque)
1358 {
1359 return vmstate_register_with_alias_id(dev, instance_id, vmsd,
1360 opaque, -1, 0);
1361 }
1362
1363 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1364 void *opaque)
1365 {
1366 SaveStateEntry *se, *new_se;
1367
1368 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1369 if (se->vmsd == vmsd && se->opaque == opaque) {
1370 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1371 if (se->compat) {
1372 g_free(se->compat);
1373 }
1374 g_free(se);
1375 }
1376 }
1377 }
1378
1379 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1380 void *opaque);
1381 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1382 void *opaque);
1383
1384 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1385 void *opaque, int version_id)
1386 {
1387 VMStateField *field = vmsd->fields;
1388 int ret;
1389
1390 if (version_id > vmsd->version_id) {
1391 return -EINVAL;
1392 }
1393 if (version_id < vmsd->minimum_version_id_old) {
1394 return -EINVAL;
1395 }
1396 if (version_id < vmsd->minimum_version_id) {
1397 return vmsd->load_state_old(f, opaque, version_id);
1398 }
1399 if (vmsd->pre_load) {
1400 int ret = vmsd->pre_load(opaque);
1401 if (ret)
1402 return ret;
1403 }
1404 while(field->name) {
1405 if ((field->field_exists &&
1406 field->field_exists(opaque, version_id)) ||
1407 (!field->field_exists &&
1408 field->version_id <= version_id)) {
1409 void *base_addr = opaque + field->offset;
1410 int i, n_elems = 1;
1411 int size = field->size;
1412
1413 if (field->flags & VMS_VBUFFER) {
1414 size = *(int32_t *)(opaque+field->size_offset);
1415 if (field->flags & VMS_MULTIPLY) {
1416 size *= field->size;
1417 }
1418 }
1419 if (field->flags & VMS_ARRAY) {
1420 n_elems = field->num;
1421 } else if (field->flags & VMS_VARRAY_INT32) {
1422 n_elems = *(int32_t *)(opaque+field->num_offset);
1423 } else if (field->flags & VMS_VARRAY_UINT32) {
1424 n_elems = *(uint32_t *)(opaque+field->num_offset);
1425 } else if (field->flags & VMS_VARRAY_UINT16) {
1426 n_elems = *(uint16_t *)(opaque+field->num_offset);
1427 } else if (field->flags & VMS_VARRAY_UINT8) {
1428 n_elems = *(uint8_t *)(opaque+field->num_offset);
1429 }
1430 if (field->flags & VMS_POINTER) {
1431 base_addr = *(void **)base_addr + field->start;
1432 }
1433 for (i = 0; i < n_elems; i++) {
1434 void *addr = base_addr + size * i;
1435
1436 if (field->flags & VMS_ARRAY_OF_POINTER) {
1437 addr = *(void **)addr;
1438 }
1439 if (field->flags & VMS_STRUCT) {
1440 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1441 } else {
1442 ret = field->info->get(f, addr, size);
1443
1444 }
1445 if (ret < 0) {
1446 return ret;
1447 }
1448 }
1449 }
1450 field++;
1451 }
1452 ret = vmstate_subsection_load(f, vmsd, opaque);
1453 if (ret != 0) {
1454 return ret;
1455 }
1456 if (vmsd->post_load) {
1457 return vmsd->post_load(opaque, version_id);
1458 }
1459 return 0;
1460 }
1461
1462 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1463 void *opaque)
1464 {
1465 VMStateField *field = vmsd->fields;
1466
1467 if (vmsd->pre_save) {
1468 vmsd->pre_save(opaque);
1469 }
1470 while(field->name) {
1471 if (!field->field_exists ||
1472 field->field_exists(opaque, vmsd->version_id)) {
1473 void *base_addr = opaque + field->offset;
1474 int i, n_elems = 1;
1475 int size = field->size;
1476
1477 if (field->flags & VMS_VBUFFER) {
1478 size = *(int32_t *)(opaque+field->size_offset);
1479 if (field->flags & VMS_MULTIPLY) {
1480 size *= field->size;
1481 }
1482 }
1483 if (field->flags & VMS_ARRAY) {
1484 n_elems = field->num;
1485 } else if (field->flags & VMS_VARRAY_INT32) {
1486 n_elems = *(int32_t *)(opaque+field->num_offset);
1487 } else if (field->flags & VMS_VARRAY_UINT32) {
1488 n_elems = *(uint32_t *)(opaque+field->num_offset);
1489 } else if (field->flags & VMS_VARRAY_UINT16) {
1490 n_elems = *(uint16_t *)(opaque+field->num_offset);
1491 } else if (field->flags & VMS_VARRAY_UINT8) {
1492 n_elems = *(uint8_t *)(opaque+field->num_offset);
1493 }
1494 if (field->flags & VMS_POINTER) {
1495 base_addr = *(void **)base_addr + field->start;
1496 }
1497 for (i = 0; i < n_elems; i++) {
1498 void *addr = base_addr + size * i;
1499
1500 if (field->flags & VMS_ARRAY_OF_POINTER) {
1501 addr = *(void **)addr;
1502 }
1503 if (field->flags & VMS_STRUCT) {
1504 vmstate_save_state(f, field->vmsd, addr);
1505 } else {
1506 field->info->put(f, addr, size);
1507 }
1508 }
1509 }
1510 field++;
1511 }
1512 vmstate_subsection_save(f, vmsd, opaque);
1513 }
1514
1515 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1516 {
1517 if (!se->vmsd) { /* Old style */
1518 return se->ops->load_state(f, se->opaque, version_id);
1519 }
1520 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1521 }
1522
1523 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1524 {
1525 if (!se->vmsd) { /* Old style */
1526 se->ops->save_state(f, se->opaque);
1527 return;
1528 }
1529 vmstate_save_state(f,se->vmsd, se->opaque);
1530 }
1531
1532 #define QEMU_VM_FILE_MAGIC 0x5145564d
1533 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1534 #define QEMU_VM_FILE_VERSION 0x00000003
1535
1536 #define QEMU_VM_EOF 0x00
1537 #define QEMU_VM_SECTION_START 0x01
1538 #define QEMU_VM_SECTION_PART 0x02
1539 #define QEMU_VM_SECTION_END 0x03
1540 #define QEMU_VM_SECTION_FULL 0x04
1541 #define QEMU_VM_SUBSECTION 0x05
1542
1543 bool qemu_savevm_state_blocked(Error **errp)
1544 {
1545 SaveStateEntry *se;
1546
1547 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1548 if (se->no_migrate) {
1549 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1550 return true;
1551 }
1552 }
1553 return false;
1554 }
1555
1556 int qemu_savevm_state_begin(QEMUFile *f,
1557 const MigrationParams *params)
1558 {
1559 SaveStateEntry *se;
1560 int ret;
1561
1562 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1563 if (!se->ops || !se->ops->set_params) {
1564 continue;
1565 }
1566 se->ops->set_params(params, se->opaque);
1567 }
1568
1569 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1570 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1571
1572 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1573 int len;
1574
1575 if (!se->ops || !se->ops->save_live_setup) {
1576 continue;
1577 }
1578 if (se->ops && se->ops->is_active) {
1579 if (!se->ops->is_active(se->opaque)) {
1580 continue;
1581 }
1582 }
1583 /* Section type */
1584 qemu_put_byte(f, QEMU_VM_SECTION_START);
1585 qemu_put_be32(f, se->section_id);
1586
1587 /* ID string */
1588 len = strlen(se->idstr);
1589 qemu_put_byte(f, len);
1590 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1591
1592 qemu_put_be32(f, se->instance_id);
1593 qemu_put_be32(f, se->version_id);
1594
1595 ret = se->ops->save_live_setup(f, se->opaque);
1596 if (ret < 0) {
1597 qemu_savevm_state_cancel(f);
1598 return ret;
1599 }
1600 }
1601 ret = qemu_file_get_error(f);
1602 if (ret != 0) {
1603 qemu_savevm_state_cancel(f);
1604 }
1605
1606 return ret;
1607
1608 }
1609
1610 /*
1611 * this function has three return values:
1612 * negative: there was one error, and we have -errno.
1613 * 0 : We haven't finished, caller have to go again
1614 * 1 : We have finished, we can go to complete phase
1615 */
1616 int qemu_savevm_state_iterate(QEMUFile *f)
1617 {
1618 SaveStateEntry *se;
1619 int ret = 1;
1620
1621 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1622 if (!se->ops || !se->ops->save_live_iterate) {
1623 continue;
1624 }
1625 if (se->ops && se->ops->is_active) {
1626 if (!se->ops->is_active(se->opaque)) {
1627 continue;
1628 }
1629 }
1630 if (qemu_file_rate_limit(f)) {
1631 return 0;
1632 }
1633 trace_savevm_section_start();
1634 /* Section type */
1635 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1636 qemu_put_be32(f, se->section_id);
1637
1638 ret = se->ops->save_live_iterate(f, se->opaque);
1639 trace_savevm_section_end(se->section_id);
1640
1641 if (ret <= 0) {
1642 /* Do not proceed to the next vmstate before this one reported
1643 completion of the current stage. This serializes the migration
1644 and reduces the probability that a faster changing state is
1645 synchronized over and over again. */
1646 break;
1647 }
1648 }
1649 if (ret != 0) {
1650 return ret;
1651 }
1652 ret = qemu_file_get_error(f);
1653 if (ret != 0) {
1654 qemu_savevm_state_cancel(f);
1655 }
1656 return ret;
1657 }
1658
1659 int qemu_savevm_state_complete(QEMUFile *f)
1660 {
1661 SaveStateEntry *se;
1662 int ret;
1663
1664 cpu_synchronize_all_states();
1665
1666 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1667 if (!se->ops || !se->ops->save_live_complete) {
1668 continue;
1669 }
1670 if (se->ops && se->ops->is_active) {
1671 if (!se->ops->is_active(se->opaque)) {
1672 continue;
1673 }
1674 }
1675 trace_savevm_section_start();
1676 /* Section type */
1677 qemu_put_byte(f, QEMU_VM_SECTION_END);
1678 qemu_put_be32(f, se->section_id);
1679
1680 ret = se->ops->save_live_complete(f, se->opaque);
1681 trace_savevm_section_end(se->section_id);
1682 if (ret < 0) {
1683 return ret;
1684 }
1685 }
1686
1687 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1688 int len;
1689
1690 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1691 continue;
1692 }
1693 trace_savevm_section_start();
1694 /* Section type */
1695 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1696 qemu_put_be32(f, se->section_id);
1697
1698 /* ID string */
1699 len = strlen(se->idstr);
1700 qemu_put_byte(f, len);
1701 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1702
1703 qemu_put_be32(f, se->instance_id);
1704 qemu_put_be32(f, se->version_id);
1705
1706 vmstate_save(f, se);
1707 trace_savevm_section_end(se->section_id);
1708 }
1709
1710 qemu_put_byte(f, QEMU_VM_EOF);
1711
1712 return qemu_file_get_error(f);
1713 }
1714
1715 void qemu_savevm_state_cancel(QEMUFile *f)
1716 {
1717 SaveStateEntry *se;
1718
1719 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1720 if (se->ops && se->ops->cancel) {
1721 se->ops->cancel(se->opaque);
1722 }
1723 }
1724 }
1725
1726 static int qemu_savevm_state(QEMUFile *f)
1727 {
1728 int ret;
1729 MigrationParams params = {
1730 .blk = 0,
1731 .shared = 0
1732 };
1733
1734 if (qemu_savevm_state_blocked(NULL)) {
1735 ret = -EINVAL;
1736 goto out;
1737 }
1738
1739 ret = qemu_savevm_state_begin(f, &params);
1740 if (ret < 0)
1741 goto out;
1742
1743 do {
1744 ret = qemu_savevm_state_iterate(f);
1745 if (ret < 0)
1746 goto out;
1747 } while (ret == 0);
1748
1749 ret = qemu_savevm_state_complete(f);
1750
1751 out:
1752 if (ret == 0) {
1753 ret = qemu_file_get_error(f);
1754 }
1755
1756 return ret;
1757 }
1758
1759 static int qemu_save_device_state(QEMUFile *f)
1760 {
1761 SaveStateEntry *se;
1762
1763 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1764 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1765
1766 cpu_synchronize_all_states();
1767
1768 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1769 int len;
1770
1771 if (se->is_ram) {
1772 continue;
1773 }
1774 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1775 continue;
1776 }
1777
1778 /* Section type */
1779 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1780 qemu_put_be32(f, se->section_id);
1781
1782 /* ID string */
1783 len = strlen(se->idstr);
1784 qemu_put_byte(f, len);
1785 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1786
1787 qemu_put_be32(f, se->instance_id);
1788 qemu_put_be32(f, se->version_id);
1789
1790 vmstate_save(f, se);
1791 }
1792
1793 qemu_put_byte(f, QEMU_VM_EOF);
1794
1795 return qemu_file_get_error(f);
1796 }
1797
1798 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1799 {
1800 SaveStateEntry *se;
1801
1802 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1803 if (!strcmp(se->idstr, idstr) &&
1804 (instance_id == se->instance_id ||
1805 instance_id == se->alias_id))
1806 return se;
1807 /* Migrating from an older version? */
1808 if (strstr(se->idstr, idstr) && se->compat) {
1809 if (!strcmp(se->compat->idstr, idstr) &&
1810 (instance_id == se->compat->instance_id ||
1811 instance_id == se->alias_id))
1812 return se;
1813 }
1814 }
1815 return NULL;
1816 }
1817
1818 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1819 {
1820 while(sub && sub->needed) {
1821 if (strcmp(idstr, sub->vmsd->name) == 0) {
1822 return sub->vmsd;
1823 }
1824 sub++;
1825 }
1826 return NULL;
1827 }
1828
1829 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1830 void *opaque)
1831 {
1832 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
1833 char idstr[256];
1834 int ret;
1835 uint8_t version_id, len, size;
1836 const VMStateDescription *sub_vmsd;
1837
1838 len = qemu_peek_byte(f, 1);
1839 if (len < strlen(vmsd->name) + 1) {
1840 /* subsection name has be be "section_name/a" */
1841 return 0;
1842 }
1843 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
1844 if (size != len) {
1845 return 0;
1846 }
1847 idstr[size] = 0;
1848
1849 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
1850 /* it don't have a valid subsection name */
1851 return 0;
1852 }
1853 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
1854 if (sub_vmsd == NULL) {
1855 return -ENOENT;
1856 }
1857 qemu_file_skip(f, 1); /* subsection */
1858 qemu_file_skip(f, 1); /* len */
1859 qemu_file_skip(f, len); /* idstr */
1860 version_id = qemu_get_be32(f);
1861
1862 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
1863 if (ret) {
1864 return ret;
1865 }
1866 }
1867 return 0;
1868 }
1869
1870 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1871 void *opaque)
1872 {
1873 const VMStateSubsection *sub = vmsd->subsections;
1874
1875 while (sub && sub->needed) {
1876 if (sub->needed(opaque)) {
1877 const VMStateDescription *vmsd = sub->vmsd;
1878 uint8_t len;
1879
1880 qemu_put_byte(f, QEMU_VM_SUBSECTION);
1881 len = strlen(vmsd->name);
1882 qemu_put_byte(f, len);
1883 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
1884 qemu_put_be32(f, vmsd->version_id);
1885 vmstate_save_state(f, vmsd, opaque);
1886 }
1887 sub++;
1888 }
1889 }
1890
1891 typedef struct LoadStateEntry {
1892 QLIST_ENTRY(LoadStateEntry) entry;
1893 SaveStateEntry *se;
1894 int section_id;
1895 int version_id;
1896 } LoadStateEntry;
1897
1898 int qemu_loadvm_state(QEMUFile *f)
1899 {
1900 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
1901 QLIST_HEAD_INITIALIZER(loadvm_handlers);
1902 LoadStateEntry *le, *new_le;
1903 uint8_t section_type;
1904 unsigned int v;
1905 int ret;
1906
1907 if (qemu_savevm_state_blocked(NULL)) {
1908 return -EINVAL;
1909 }
1910
1911 v = qemu_get_be32(f);
1912 if (v != QEMU_VM_FILE_MAGIC)
1913 return -EINVAL;
1914
1915 v = qemu_get_be32(f);
1916 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
1917 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
1918 return -ENOTSUP;
1919 }
1920 if (v != QEMU_VM_FILE_VERSION)
1921 return -ENOTSUP;
1922
1923 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
1924 uint32_t instance_id, version_id, section_id;
1925 SaveStateEntry *se;
1926 char idstr[257];
1927 int len;
1928
1929 switch (section_type) {
1930 case QEMU_VM_SECTION_START:
1931 case QEMU_VM_SECTION_FULL:
1932 /* Read section start */
1933 section_id = qemu_get_be32(f);
1934 len = qemu_get_byte(f);
1935 qemu_get_buffer(f, (uint8_t *)idstr, len);
1936 idstr[len] = 0;
1937 instance_id = qemu_get_be32(f);
1938 version_id = qemu_get_be32(f);
1939
1940 /* Find savevm section */
1941 se = find_se(idstr, instance_id);
1942 if (se == NULL) {
1943 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
1944 ret = -EINVAL;
1945 goto out;
1946 }
1947
1948 /* Validate version */
1949 if (version_id > se->version_id) {
1950 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
1951 version_id, idstr, se->version_id);
1952 ret = -EINVAL;
1953 goto out;
1954 }
1955
1956 /* Add entry */
1957 le = g_malloc0(sizeof(*le));
1958
1959 le->se = se;
1960 le->section_id = section_id;
1961 le->version_id = version_id;
1962 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
1963
1964 ret = vmstate_load(f, le->se, le->version_id);
1965 if (ret < 0) {
1966 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
1967 instance_id, idstr);
1968 goto out;
1969 }
1970 break;
1971 case QEMU_VM_SECTION_PART:
1972 case QEMU_VM_SECTION_END:
1973 section_id = qemu_get_be32(f);
1974
1975 QLIST_FOREACH(le, &loadvm_handlers, entry) {
1976 if (le->section_id == section_id) {
1977 break;
1978 }
1979 }
1980 if (le == NULL) {
1981 fprintf(stderr, "Unknown savevm section %d\n", section_id);
1982 ret = -EINVAL;
1983 goto out;
1984 }
1985
1986 ret = vmstate_load(f, le->se, le->version_id);
1987 if (ret < 0) {
1988 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
1989 section_id);
1990 goto out;
1991 }
1992 break;
1993 default:
1994 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
1995 ret = -EINVAL;
1996 goto out;
1997 }
1998 }
1999
2000 cpu_synchronize_all_post_init();
2001
2002 ret = 0;
2003
2004 out:
2005 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2006 QLIST_REMOVE(le, entry);
2007 g_free(le);
2008 }
2009
2010 if (ret == 0) {
2011 ret = qemu_file_get_error(f);
2012 }
2013
2014 return ret;
2015 }
2016
2017 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2018 const char *name)
2019 {
2020 QEMUSnapshotInfo *sn_tab, *sn;
2021 int nb_sns, i, ret;
2022
2023 ret = -ENOENT;
2024 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2025 if (nb_sns < 0)
2026 return ret;
2027 for(i = 0; i < nb_sns; i++) {
2028 sn = &sn_tab[i];
2029 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2030 *sn_info = *sn;
2031 ret = 0;
2032 break;
2033 }
2034 }
2035 g_free(sn_tab);
2036 return ret;
2037 }
2038
2039 /*
2040 * Deletes snapshots of a given name in all opened images.
2041 */
2042 static int del_existing_snapshots(Monitor *mon, const char *name)
2043 {
2044 BlockDriverState *bs;
2045 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2046 int ret;
2047
2048 bs = NULL;
2049 while ((bs = bdrv_next(bs))) {
2050 if (bdrv_can_snapshot(bs) &&
2051 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2052 {
2053 ret = bdrv_snapshot_delete(bs, name);
2054 if (ret < 0) {
2055 monitor_printf(mon,
2056 "Error while deleting snapshot on '%s'\n",
2057 bdrv_get_device_name(bs));
2058 return -1;
2059 }
2060 }
2061 }
2062
2063 return 0;
2064 }
2065
2066 void do_savevm(Monitor *mon, const QDict *qdict)
2067 {
2068 BlockDriverState *bs, *bs1;
2069 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2070 int ret;
2071 QEMUFile *f;
2072 int saved_vm_running;
2073 uint64_t vm_state_size;
2074 #ifdef _WIN32
2075 struct _timeb tb;
2076 struct tm *ptm;
2077 #else
2078 struct timeval tv;
2079 struct tm tm;
2080 #endif
2081 const char *name = qdict_get_try_str(qdict, "name");
2082
2083 /* Verify if there is a device that doesn't support snapshots and is writable */
2084 bs = NULL;
2085 while ((bs = bdrv_next(bs))) {
2086
2087 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2088 continue;
2089 }
2090
2091 if (!bdrv_can_snapshot(bs)) {
2092 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2093 bdrv_get_device_name(bs));
2094 return;
2095 }
2096 }
2097
2098 bs = bdrv_snapshots();
2099 if (!bs) {
2100 monitor_printf(mon, "No block device can accept snapshots\n");
2101 return;
2102 }
2103
2104 saved_vm_running = runstate_is_running();
2105 vm_stop(RUN_STATE_SAVE_VM);
2106
2107 memset(sn, 0, sizeof(*sn));
2108
2109 /* fill auxiliary fields */
2110 #ifdef _WIN32
2111 _ftime(&tb);
2112 sn->date_sec = tb.time;
2113 sn->date_nsec = tb.millitm * 1000000;
2114 #else
2115 gettimeofday(&tv, NULL);
2116 sn->date_sec = tv.tv_sec;
2117 sn->date_nsec = tv.tv_usec * 1000;
2118 #endif
2119 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2120
2121 if (name) {
2122 ret = bdrv_snapshot_find(bs, old_sn, name);
2123 if (ret >= 0) {
2124 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2125 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2126 } else {
2127 pstrcpy(sn->name, sizeof(sn->name), name);
2128 }
2129 } else {
2130 #ifdef _WIN32
2131 time_t t = tb.time;
2132 ptm = localtime(&t);
2133 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", ptm);
2134 #else
2135 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2136 localtime_r((const time_t *)&tv.tv_sec, &tm);
2137 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2138 #endif
2139 }
2140
2141 /* Delete old snapshots of the same name */
2142 if (name && del_existing_snapshots(mon, name) < 0) {
2143 goto the_end;
2144 }
2145
2146 /* save the VM state */
2147 f = qemu_fopen_bdrv(bs, 1);
2148 if (!f) {
2149 monitor_printf(mon, "Could not open VM state file\n");
2150 goto the_end;
2151 }
2152 ret = qemu_savevm_state(f);
2153 vm_state_size = qemu_ftell(f);
2154 qemu_fclose(f);
2155 if (ret < 0) {
2156 monitor_printf(mon, "Error %d while writing VM\n", ret);
2157 goto the_end;
2158 }
2159
2160 /* create the snapshots */
2161
2162 bs1 = NULL;
2163 while ((bs1 = bdrv_next(bs1))) {
2164 if (bdrv_can_snapshot(bs1)) {
2165 /* Write VM state size only to the image that contains the state */
2166 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2167 ret = bdrv_snapshot_create(bs1, sn);
2168 if (ret < 0) {
2169 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2170 bdrv_get_device_name(bs1));
2171 }
2172 }
2173 }
2174
2175 the_end:
2176 if (saved_vm_running)
2177 vm_start();
2178 }
2179
2180 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2181 {
2182 QEMUFile *f;
2183 int saved_vm_running;
2184 int ret;
2185
2186 saved_vm_running = runstate_is_running();
2187 vm_stop(RUN_STATE_SAVE_VM);
2188
2189 f = qemu_fopen(filename, "wb");
2190 if (!f) {
2191 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2192 goto the_end;
2193 }
2194 ret = qemu_save_device_state(f);
2195 qemu_fclose(f);
2196 if (ret < 0) {
2197 error_set(errp, QERR_IO_ERROR);
2198 }
2199
2200 the_end:
2201 if (saved_vm_running)
2202 vm_start();
2203 }
2204
2205 int load_vmstate(const char *name)
2206 {
2207 BlockDriverState *bs, *bs_vm_state;
2208 QEMUSnapshotInfo sn;
2209 QEMUFile *f;
2210 int ret;
2211
2212 bs_vm_state = bdrv_snapshots();
2213 if (!bs_vm_state) {
2214 error_report("No block device supports snapshots");
2215 return -ENOTSUP;
2216 }
2217
2218 /* Don't even try to load empty VM states */
2219 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2220 if (ret < 0) {
2221 return ret;
2222 } else if (sn.vm_state_size == 0) {
2223 error_report("This is a disk-only snapshot. Revert to it offline "
2224 "using qemu-img.");
2225 return -EINVAL;
2226 }
2227
2228 /* Verify if there is any device that doesn't support snapshots and is
2229 writable and check if the requested snapshot is available too. */
2230 bs = NULL;
2231 while ((bs = bdrv_next(bs))) {
2232
2233 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2234 continue;
2235 }
2236
2237 if (!bdrv_can_snapshot(bs)) {
2238 error_report("Device '%s' is writable but does not support snapshots.",
2239 bdrv_get_device_name(bs));
2240 return -ENOTSUP;
2241 }
2242
2243 ret = bdrv_snapshot_find(bs, &sn, name);
2244 if (ret < 0) {
2245 error_report("Device '%s' does not have the requested snapshot '%s'",
2246 bdrv_get_device_name(bs), name);
2247 return ret;
2248 }
2249 }
2250
2251 /* Flush all IO requests so they don't interfere with the new state. */
2252 bdrv_drain_all();
2253
2254 bs = NULL;
2255 while ((bs = bdrv_next(bs))) {
2256 if (bdrv_can_snapshot(bs)) {
2257 ret = bdrv_snapshot_goto(bs, name);
2258 if (ret < 0) {
2259 error_report("Error %d while activating snapshot '%s' on '%s'",
2260 ret, name, bdrv_get_device_name(bs));
2261 return ret;
2262 }
2263 }
2264 }
2265
2266 /* restore the VM state */
2267 f = qemu_fopen_bdrv(bs_vm_state, 0);
2268 if (!f) {
2269 error_report("Could not open VM state file");
2270 return -EINVAL;
2271 }
2272
2273 qemu_system_reset(VMRESET_SILENT);
2274 ret = qemu_loadvm_state(f);
2275
2276 qemu_fclose(f);
2277 if (ret < 0) {
2278 error_report("Error %d while loading VM state", ret);
2279 return ret;
2280 }
2281
2282 return 0;
2283 }
2284
2285 void do_delvm(Monitor *mon, const QDict *qdict)
2286 {
2287 BlockDriverState *bs, *bs1;
2288 int ret;
2289 const char *name = qdict_get_str(qdict, "name");
2290
2291 bs = bdrv_snapshots();
2292 if (!bs) {
2293 monitor_printf(mon, "No block device supports snapshots\n");
2294 return;
2295 }
2296
2297 bs1 = NULL;
2298 while ((bs1 = bdrv_next(bs1))) {
2299 if (bdrv_can_snapshot(bs1)) {
2300 ret = bdrv_snapshot_delete(bs1, name);
2301 if (ret < 0) {
2302 if (ret == -ENOTSUP)
2303 monitor_printf(mon,
2304 "Snapshots not supported on device '%s'\n",
2305 bdrv_get_device_name(bs1));
2306 else
2307 monitor_printf(mon, "Error %d while deleting snapshot on "
2308 "'%s'\n", ret, bdrv_get_device_name(bs1));
2309 }
2310 }
2311 }
2312 }
2313
2314 void do_info_snapshots(Monitor *mon)
2315 {
2316 BlockDriverState *bs, *bs1;
2317 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2318 int nb_sns, i, ret, available;
2319 int total;
2320 int *available_snapshots;
2321 char buf[256];
2322
2323 bs = bdrv_snapshots();
2324 if (!bs) {
2325 monitor_printf(mon, "No available block device supports snapshots\n");
2326 return;
2327 }
2328
2329 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2330 if (nb_sns < 0) {
2331 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2332 return;
2333 }
2334
2335 if (nb_sns == 0) {
2336 monitor_printf(mon, "There is no snapshot available.\n");
2337 return;
2338 }
2339
2340 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2341 total = 0;
2342 for (i = 0; i < nb_sns; i++) {
2343 sn = &sn_tab[i];
2344 available = 1;
2345 bs1 = NULL;
2346
2347 while ((bs1 = bdrv_next(bs1))) {
2348 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2349 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2350 if (ret < 0) {
2351 available = 0;
2352 break;
2353 }
2354 }
2355 }
2356
2357 if (available) {
2358 available_snapshots[total] = i;
2359 total++;
2360 }
2361 }
2362
2363 if (total > 0) {
2364 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2365 for (i = 0; i < total; i++) {
2366 sn = &sn_tab[available_snapshots[i]];
2367 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2368 }
2369 } else {
2370 monitor_printf(mon, "There is no suitable snapshot available\n");
2371 }
2372
2373 g_free(sn_tab);
2374 g_free(available_snapshots);
2375
2376 }
2377
2378 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2379 {
2380 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2381 memory_region_name(mr), dev);
2382 }
2383
2384 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2385 {
2386 /* Nothing do to while the implementation is in RAMBlock */
2387 }
2388
2389 void vmstate_register_ram_global(MemoryRegion *mr)
2390 {
2391 vmstate_register_ram(mr, NULL);
2392 }
2393
2394 /*
2395 page = zrun nzrun
2396 | zrun nzrun page
2397
2398 zrun = length
2399
2400 nzrun = length byte...
2401
2402 length = uleb128 encoded integer
2403 */
2404 int xbzrle_encode_buffer(uint8_t *old_buf, uint8_t *new_buf, int slen,
2405 uint8_t *dst, int dlen)
2406 {
2407 uint32_t zrun_len = 0, nzrun_len = 0;
2408 int d = 0, i = 0;
2409 long res, xor;
2410 uint8_t *nzrun_start = NULL;
2411
2412 g_assert(!(((uintptr_t)old_buf | (uintptr_t)new_buf | slen) %
2413 sizeof(long)));
2414
2415 while (i < slen) {
2416 /* overflow */
2417 if (d + 2 > dlen) {
2418 return -1;
2419 }
2420
2421 /* not aligned to sizeof(long) */
2422 res = (slen - i) % sizeof(long);
2423 while (res && old_buf[i] == new_buf[i]) {
2424 zrun_len++;
2425 i++;
2426 res--;
2427 }
2428
2429 /* word at a time for speed */
2430 if (!res) {
2431 while (i < slen &&
2432 (*(long *)(old_buf + i)) == (*(long *)(new_buf + i))) {
2433 i += sizeof(long);
2434 zrun_len += sizeof(long);
2435 }
2436
2437 /* go over the rest */
2438 while (i < slen && old_buf[i] == new_buf[i]) {
2439 zrun_len++;
2440 i++;
2441 }
2442 }
2443
2444 /* buffer unchanged */
2445 if (zrun_len == slen) {
2446 return 0;
2447 }
2448
2449 /* skip last zero run */
2450 if (i == slen) {
2451 return d;
2452 }
2453
2454 d += uleb128_encode_small(dst + d, zrun_len);
2455
2456 zrun_len = 0;
2457 nzrun_start = new_buf + i;
2458
2459 /* overflow */
2460 if (d + 2 > dlen) {
2461 return -1;
2462 }
2463 /* not aligned to sizeof(long) */
2464 res = (slen - i) % sizeof(long);
2465 while (res && old_buf[i] != new_buf[i]) {
2466 i++;
2467 nzrun_len++;
2468 res--;
2469 }
2470
2471 /* word at a time for speed, use of 32-bit long okay */
2472 if (!res) {
2473 /* truncation to 32-bit long okay */
2474 long mask = (long)0x0101010101010101ULL;
2475 while (i < slen) {
2476 xor = *(long *)(old_buf + i) ^ *(long *)(new_buf + i);
2477 if ((xor - mask) & ~xor & (mask << 7)) {
2478 /* found the end of an nzrun within the current long */
2479 while (old_buf[i] != new_buf[i]) {
2480 nzrun_len++;
2481 i++;
2482 }
2483 break;
2484 } else {
2485 i += sizeof(long);
2486 nzrun_len += sizeof(long);
2487 }
2488 }
2489 }
2490
2491 d += uleb128_encode_small(dst + d, nzrun_len);
2492 /* overflow */
2493 if (d + nzrun_len > dlen) {
2494 return -1;
2495 }
2496 memcpy(dst + d, nzrun_start, nzrun_len);
2497 d += nzrun_len;
2498 nzrun_len = 0;
2499 }
2500
2501 return d;
2502 }
2503
2504 int xbzrle_decode_buffer(uint8_t *src, int slen, uint8_t *dst, int dlen)
2505 {
2506 int i = 0, d = 0;
2507 int ret;
2508 uint32_t count = 0;
2509
2510 while (i < slen) {
2511
2512 /* zrun */
2513 if ((slen - i) < 2) {
2514 return -1;
2515 }
2516
2517 ret = uleb128_decode_small(src + i, &count);
2518 if (ret < 0 || (i && !count)) {
2519 return -1;
2520 }
2521 i += ret;
2522 d += count;
2523
2524 /* overflow */
2525 if (d > dlen) {
2526 return -1;
2527 }
2528
2529 /* nzrun */
2530 if ((slen - i) < 2) {
2531 return -1;
2532 }
2533
2534 ret = uleb128_decode_small(src + i, &count);
2535 if (ret < 0 || !count) {
2536 return -1;
2537 }
2538 i += ret;
2539
2540 /* overflow */
2541 if (d + count > dlen || i + count > slen) {
2542 return -1;
2543 }
2544
2545 memcpy(dst + d, src + i, count);
2546 d += count;
2547 i += count;
2548 }
2549
2550 return d;
2551 }