]> git.proxmox.com Git - qemu.git/blob - savevm.c
Use writev ops if available
[qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42 #include "qemu/iov.h"
43
44 #define SELF_ANNOUNCE_ROUNDS 5
45
46 #ifndef ETH_P_RARP
47 #define ETH_P_RARP 0x8035
48 #endif
49 #define ARP_HTYPE_ETH 0x0001
50 #define ARP_PTYPE_IP 0x0800
51 #define ARP_OP_REQUEST_REV 0x3
52
53 static int announce_self_create(uint8_t *buf,
54 uint8_t *mac_addr)
55 {
56 /* Ethernet header. */
57 memset(buf, 0xff, 6); /* destination MAC addr */
58 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
59 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
60
61 /* RARP header. */
62 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
63 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
64 *(buf + 18) = 6; /* hardware addr length (ethernet) */
65 *(buf + 19) = 4; /* protocol addr length (IPv4) */
66 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
67 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
68 memset(buf + 28, 0x00, 4); /* source protocol addr */
69 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
70 memset(buf + 38, 0x00, 4); /* target protocol addr */
71
72 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
73 memset(buf + 42, 0x00, 18);
74
75 return 60; /* len (FCS will be added by hardware) */
76 }
77
78 static void qemu_announce_self_iter(NICState *nic, void *opaque)
79 {
80 uint8_t buf[60];
81 int len;
82
83 len = announce_self_create(buf, nic->conf->macaddr.a);
84
85 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
86 }
87
88
89 static void qemu_announce_self_once(void *opaque)
90 {
91 static int count = SELF_ANNOUNCE_ROUNDS;
92 QEMUTimer *timer = *(QEMUTimer **)opaque;
93
94 qemu_foreach_nic(qemu_announce_self_iter, NULL);
95
96 if (--count) {
97 /* delay 50ms, 150ms, 250ms, ... */
98 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
99 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
100 } else {
101 qemu_del_timer(timer);
102 qemu_free_timer(timer);
103 }
104 }
105
106 void qemu_announce_self(void)
107 {
108 static QEMUTimer *timer;
109 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
110 qemu_announce_self_once(&timer);
111 }
112
113 /***********************************************************/
114 /* savevm/loadvm support */
115
116 #define IO_BUF_SIZE 32768
117 #define MAX_IOV_SIZE MIN(IOV_MAX, 64)
118
119 struct QEMUFile {
120 const QEMUFileOps *ops;
121 void *opaque;
122 int is_write;
123
124 int64_t bytes_xfer;
125 int64_t xfer_limit;
126
127 int64_t pos; /* start of buffer when writing, end of buffer
128 when reading */
129 int buf_index;
130 int buf_size; /* 0 when writing */
131 uint8_t buf[IO_BUF_SIZE];
132
133 struct iovec iov[MAX_IOV_SIZE];
134 unsigned int iovcnt;
135
136 int last_error;
137 };
138
139 typedef struct QEMUFileStdio
140 {
141 FILE *stdio_file;
142 QEMUFile *file;
143 } QEMUFileStdio;
144
145 typedef struct QEMUFileSocket
146 {
147 int fd;
148 QEMUFile *file;
149 } QEMUFileSocket;
150
151 typedef struct {
152 Coroutine *co;
153 int fd;
154 } FDYieldUntilData;
155
156 static void fd_coroutine_enter(void *opaque)
157 {
158 FDYieldUntilData *data = opaque;
159 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
160 qemu_coroutine_enter(data->co, NULL);
161 }
162
163 /**
164 * Yield until a file descriptor becomes readable
165 *
166 * Note that this function clobbers the handlers for the file descriptor.
167 */
168 static void coroutine_fn yield_until_fd_readable(int fd)
169 {
170 FDYieldUntilData data;
171
172 assert(qemu_in_coroutine());
173 data.co = qemu_coroutine_self();
174 data.fd = fd;
175 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
176 qemu_coroutine_yield();
177 }
178
179 static ssize_t socket_writev_buffer(void *opaque, struct iovec *iov, int iovcnt)
180 {
181 QEMUFileSocket *s = opaque;
182 ssize_t len;
183 ssize_t size = iov_size(iov, iovcnt);
184
185 len = iov_send(s->fd, iov, iovcnt, 0, size);
186 if (len < size) {
187 len = -socket_error();
188 }
189 return len;
190 }
191
192 static int socket_get_fd(void *opaque)
193 {
194 QEMUFileSocket *s = opaque;
195
196 return s->fd;
197 }
198
199 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
200 {
201 QEMUFileSocket *s = opaque;
202 ssize_t len;
203
204 for (;;) {
205 len = qemu_recv(s->fd, buf, size, 0);
206 if (len != -1) {
207 break;
208 }
209 if (socket_error() == EAGAIN) {
210 yield_until_fd_readable(s->fd);
211 } else if (socket_error() != EINTR) {
212 break;
213 }
214 }
215
216 if (len == -1) {
217 len = -socket_error();
218 }
219 return len;
220 }
221
222 static int socket_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
223 {
224 QEMUFileSocket *s = opaque;
225 ssize_t len;
226
227 len = qemu_send_full(s->fd, buf, size, 0);
228 if (len < size) {
229 len = -socket_error();
230 }
231 return len;
232 }
233
234 static int socket_close(void *opaque)
235 {
236 QEMUFileSocket *s = opaque;
237 closesocket(s->fd);
238 g_free(s);
239 return 0;
240 }
241
242 static int stdio_get_fd(void *opaque)
243 {
244 QEMUFileStdio *s = opaque;
245
246 return fileno(s->stdio_file);
247 }
248
249 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
250 {
251 QEMUFileStdio *s = opaque;
252 return fwrite(buf, 1, size, s->stdio_file);
253 }
254
255 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
256 {
257 QEMUFileStdio *s = opaque;
258 FILE *fp = s->stdio_file;
259 int bytes;
260
261 for (;;) {
262 clearerr(fp);
263 bytes = fread(buf, 1, size, fp);
264 if (bytes != 0 || !ferror(fp)) {
265 break;
266 }
267 if (errno == EAGAIN) {
268 yield_until_fd_readable(fileno(fp));
269 } else if (errno != EINTR) {
270 break;
271 }
272 }
273 return bytes;
274 }
275
276 static int stdio_pclose(void *opaque)
277 {
278 QEMUFileStdio *s = opaque;
279 int ret;
280 ret = pclose(s->stdio_file);
281 if (ret == -1) {
282 ret = -errno;
283 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
284 /* close succeeded, but non-zero exit code: */
285 ret = -EIO; /* fake errno value */
286 }
287 g_free(s);
288 return ret;
289 }
290
291 static int stdio_fclose(void *opaque)
292 {
293 QEMUFileStdio *s = opaque;
294 int ret = 0;
295
296 if (s->file->ops->put_buffer || s->file->ops->writev_buffer) {
297 int fd = fileno(s->stdio_file);
298 struct stat st;
299
300 ret = fstat(fd, &st);
301 if (ret == 0 && S_ISREG(st.st_mode)) {
302 /*
303 * If the file handle is a regular file make sure the
304 * data is flushed to disk before signaling success.
305 */
306 ret = fsync(fd);
307 if (ret != 0) {
308 ret = -errno;
309 return ret;
310 }
311 }
312 }
313 if (fclose(s->stdio_file) == EOF) {
314 ret = -errno;
315 }
316 g_free(s);
317 return ret;
318 }
319
320 static const QEMUFileOps stdio_pipe_read_ops = {
321 .get_fd = stdio_get_fd,
322 .get_buffer = stdio_get_buffer,
323 .close = stdio_pclose
324 };
325
326 static const QEMUFileOps stdio_pipe_write_ops = {
327 .get_fd = stdio_get_fd,
328 .put_buffer = stdio_put_buffer,
329 .close = stdio_pclose
330 };
331
332 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
333 {
334 FILE *stdio_file;
335 QEMUFileStdio *s;
336
337 stdio_file = popen(command, mode);
338 if (stdio_file == NULL) {
339 return NULL;
340 }
341
342 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
343 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
344 return NULL;
345 }
346
347 s = g_malloc0(sizeof(QEMUFileStdio));
348
349 s->stdio_file = stdio_file;
350
351 if(mode[0] == 'r') {
352 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
353 } else {
354 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
355 }
356 return s->file;
357 }
358
359 static const QEMUFileOps stdio_file_read_ops = {
360 .get_fd = stdio_get_fd,
361 .get_buffer = stdio_get_buffer,
362 .close = stdio_fclose
363 };
364
365 static const QEMUFileOps stdio_file_write_ops = {
366 .get_fd = stdio_get_fd,
367 .put_buffer = stdio_put_buffer,
368 .close = stdio_fclose
369 };
370
371 QEMUFile *qemu_fdopen(int fd, const char *mode)
372 {
373 QEMUFileStdio *s;
374
375 if (mode == NULL ||
376 (mode[0] != 'r' && mode[0] != 'w') ||
377 mode[1] != 'b' || mode[2] != 0) {
378 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
379 return NULL;
380 }
381
382 s = g_malloc0(sizeof(QEMUFileStdio));
383 s->stdio_file = fdopen(fd, mode);
384 if (!s->stdio_file)
385 goto fail;
386
387 if(mode[0] == 'r') {
388 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
389 } else {
390 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
391 }
392 return s->file;
393
394 fail:
395 g_free(s);
396 return NULL;
397 }
398
399 static const QEMUFileOps socket_read_ops = {
400 .get_fd = socket_get_fd,
401 .get_buffer = socket_get_buffer,
402 .close = socket_close
403 };
404
405 static const QEMUFileOps socket_write_ops = {
406 .get_fd = socket_get_fd,
407 .put_buffer = socket_put_buffer,
408 .writev_buffer = socket_writev_buffer,
409 .close = socket_close
410 };
411
412 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
413 {
414 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
415
416 if (mode == NULL ||
417 (mode[0] != 'r' && mode[0] != 'w') ||
418 mode[1] != 'b' || mode[2] != 0) {
419 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
420 return NULL;
421 }
422
423 s->fd = fd;
424 if (mode[0] == 'w') {
425 socket_set_block(s->fd);
426 s->file = qemu_fopen_ops(s, &socket_write_ops);
427 } else {
428 s->file = qemu_fopen_ops(s, &socket_read_ops);
429 }
430 return s->file;
431 }
432
433 QEMUFile *qemu_fopen(const char *filename, const char *mode)
434 {
435 QEMUFileStdio *s;
436
437 if (mode == NULL ||
438 (mode[0] != 'r' && mode[0] != 'w') ||
439 mode[1] != 'b' || mode[2] != 0) {
440 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
441 return NULL;
442 }
443
444 s = g_malloc0(sizeof(QEMUFileStdio));
445
446 s->stdio_file = fopen(filename, mode);
447 if (!s->stdio_file)
448 goto fail;
449
450 if(mode[0] == 'w') {
451 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
452 } else {
453 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
454 }
455 return s->file;
456 fail:
457 g_free(s);
458 return NULL;
459 }
460
461 static int block_put_buffer(void *opaque, const uint8_t *buf,
462 int64_t pos, int size)
463 {
464 bdrv_save_vmstate(opaque, buf, pos, size);
465 return size;
466 }
467
468 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
469 {
470 return bdrv_load_vmstate(opaque, buf, pos, size);
471 }
472
473 static int bdrv_fclose(void *opaque)
474 {
475 return bdrv_flush(opaque);
476 }
477
478 static const QEMUFileOps bdrv_read_ops = {
479 .get_buffer = block_get_buffer,
480 .close = bdrv_fclose
481 };
482
483 static const QEMUFileOps bdrv_write_ops = {
484 .put_buffer = block_put_buffer,
485 .close = bdrv_fclose
486 };
487
488 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
489 {
490 if (is_writable)
491 return qemu_fopen_ops(bs, &bdrv_write_ops);
492 return qemu_fopen_ops(bs, &bdrv_read_ops);
493 }
494
495 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
496 {
497 QEMUFile *f;
498
499 f = g_malloc0(sizeof(QEMUFile));
500
501 f->opaque = opaque;
502 f->ops = ops;
503 f->is_write = 0;
504 return f;
505 }
506
507 int qemu_file_get_error(QEMUFile *f)
508 {
509 return f->last_error;
510 }
511
512 static void qemu_file_set_error(QEMUFile *f, int ret)
513 {
514 if (f->last_error == 0) {
515 f->last_error = ret;
516 }
517 }
518
519 /**
520 * Flushes QEMUFile buffer
521 *
522 * If there is writev_buffer QEMUFileOps it uses it otherwise uses
523 * put_buffer ops.
524 */
525 static void qemu_fflush(QEMUFile *f)
526 {
527 ssize_t ret = 0;
528 int i = 0;
529
530 if (!f->ops->writev_buffer && !f->ops->put_buffer) {
531 return;
532 }
533
534 if (f->is_write && f->iovcnt > 0) {
535 if (f->ops->writev_buffer) {
536 ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt);
537 if (ret >= 0) {
538 f->pos += ret;
539 }
540 } else {
541 for (i = 0; i < f->iovcnt && ret >= 0; i++) {
542 ret = f->ops->put_buffer(f->opaque, f->iov[i].iov_base, f->pos,
543 f->iov[i].iov_len);
544 if (ret >= 0) {
545 f->pos += ret;
546 }
547 }
548 }
549 f->buf_index = 0;
550 f->iovcnt = 0;
551 }
552 if (ret < 0) {
553 qemu_file_set_error(f, ret);
554 }
555 }
556
557 static void qemu_fill_buffer(QEMUFile *f)
558 {
559 int len;
560 int pending;
561
562 if (!f->ops->get_buffer)
563 return;
564
565 if (f->is_write)
566 abort();
567
568 pending = f->buf_size - f->buf_index;
569 if (pending > 0) {
570 memmove(f->buf, f->buf + f->buf_index, pending);
571 }
572 f->buf_index = 0;
573 f->buf_size = pending;
574
575 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
576 IO_BUF_SIZE - pending);
577 if (len > 0) {
578 f->buf_size += len;
579 f->pos += len;
580 } else if (len == 0) {
581 qemu_file_set_error(f, -EIO);
582 } else if (len != -EAGAIN)
583 qemu_file_set_error(f, len);
584 }
585
586 int qemu_get_fd(QEMUFile *f)
587 {
588 if (f->ops->get_fd) {
589 return f->ops->get_fd(f->opaque);
590 }
591 return -1;
592 }
593
594 /** Closes the file
595 *
596 * Returns negative error value if any error happened on previous operations or
597 * while closing the file. Returns 0 or positive number on success.
598 *
599 * The meaning of return value on success depends on the specific backend
600 * being used.
601 */
602 int qemu_fclose(QEMUFile *f)
603 {
604 int ret;
605 qemu_fflush(f);
606 ret = qemu_file_get_error(f);
607
608 if (f->ops->close) {
609 int ret2 = f->ops->close(f->opaque);
610 if (ret >= 0) {
611 ret = ret2;
612 }
613 }
614 /* If any error was spotted before closing, we should report it
615 * instead of the close() return value.
616 */
617 if (f->last_error) {
618 ret = f->last_error;
619 }
620 g_free(f);
621 return ret;
622 }
623
624 static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size)
625 {
626 /* check for adjacent buffer and coalesce them */
627 if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base +
628 f->iov[f->iovcnt - 1].iov_len) {
629 f->iov[f->iovcnt - 1].iov_len += size;
630 } else {
631 f->iov[f->iovcnt].iov_base = (uint8_t *)buf;
632 f->iov[f->iovcnt++].iov_len = size;
633 }
634 }
635
636 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
637 {
638 int l;
639
640 if (f->last_error) {
641 return;
642 }
643
644 if (f->is_write == 0 && f->buf_index > 0) {
645 fprintf(stderr,
646 "Attempted to write to buffer while read buffer is not empty\n");
647 abort();
648 }
649
650 while (size > 0) {
651 l = IO_BUF_SIZE - f->buf_index;
652 if (l > size)
653 l = size;
654 memcpy(f->buf + f->buf_index, buf, l);
655 add_to_iovec(f, f->buf + f->buf_index, l);
656 f->is_write = 1;
657 f->buf_index += l;
658 f->bytes_xfer += l;
659 buf += l;
660 size -= l;
661 if (f->buf_index >= IO_BUF_SIZE || f->iovcnt >= MAX_IOV_SIZE) {
662 qemu_fflush(f);
663 if (qemu_file_get_error(f)) {
664 break;
665 }
666 }
667 }
668 }
669
670 void qemu_put_byte(QEMUFile *f, int v)
671 {
672 if (f->last_error) {
673 return;
674 }
675
676 if (f->is_write == 0 && f->buf_index > 0) {
677 fprintf(stderr,
678 "Attempted to write to buffer while read buffer is not empty\n");
679 abort();
680 }
681
682 f->buf[f->buf_index++] = v;
683 f->is_write = 1;
684 f->bytes_xfer++;
685
686 add_to_iovec(f, f->buf + (f->buf_index - 1), 1);
687
688 if (f->buf_index >= IO_BUF_SIZE || f->iovcnt >= MAX_IOV_SIZE) {
689 qemu_fflush(f);
690 }
691 }
692
693 static void qemu_file_skip(QEMUFile *f, int size)
694 {
695 if (f->buf_index + size <= f->buf_size) {
696 f->buf_index += size;
697 }
698 }
699
700 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
701 {
702 int pending;
703 int index;
704
705 if (f->is_write) {
706 abort();
707 }
708
709 index = f->buf_index + offset;
710 pending = f->buf_size - index;
711 if (pending < size) {
712 qemu_fill_buffer(f);
713 index = f->buf_index + offset;
714 pending = f->buf_size - index;
715 }
716
717 if (pending <= 0) {
718 return 0;
719 }
720 if (size > pending) {
721 size = pending;
722 }
723
724 memcpy(buf, f->buf + index, size);
725 return size;
726 }
727
728 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
729 {
730 int pending = size;
731 int done = 0;
732
733 while (pending > 0) {
734 int res;
735
736 res = qemu_peek_buffer(f, buf, pending, 0);
737 if (res == 0) {
738 return done;
739 }
740 qemu_file_skip(f, res);
741 buf += res;
742 pending -= res;
743 done += res;
744 }
745 return done;
746 }
747
748 static int qemu_peek_byte(QEMUFile *f, int offset)
749 {
750 int index = f->buf_index + offset;
751
752 if (f->is_write) {
753 abort();
754 }
755
756 if (index >= f->buf_size) {
757 qemu_fill_buffer(f);
758 index = f->buf_index + offset;
759 if (index >= f->buf_size) {
760 return 0;
761 }
762 }
763 return f->buf[index];
764 }
765
766 int qemu_get_byte(QEMUFile *f)
767 {
768 int result;
769
770 result = qemu_peek_byte(f, 0);
771 qemu_file_skip(f, 1);
772 return result;
773 }
774
775 int64_t qemu_ftell(QEMUFile *f)
776 {
777 qemu_fflush(f);
778 return f->pos;
779 }
780
781 int qemu_file_rate_limit(QEMUFile *f)
782 {
783 if (qemu_file_get_error(f)) {
784 return 1;
785 }
786 if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) {
787 return 1;
788 }
789 return 0;
790 }
791
792 int64_t qemu_file_get_rate_limit(QEMUFile *f)
793 {
794 return f->xfer_limit;
795 }
796
797 void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit)
798 {
799 f->xfer_limit = limit;
800 }
801
802 void qemu_file_reset_rate_limit(QEMUFile *f)
803 {
804 f->bytes_xfer = 0;
805 }
806
807 void qemu_put_be16(QEMUFile *f, unsigned int v)
808 {
809 qemu_put_byte(f, v >> 8);
810 qemu_put_byte(f, v);
811 }
812
813 void qemu_put_be32(QEMUFile *f, unsigned int v)
814 {
815 qemu_put_byte(f, v >> 24);
816 qemu_put_byte(f, v >> 16);
817 qemu_put_byte(f, v >> 8);
818 qemu_put_byte(f, v);
819 }
820
821 void qemu_put_be64(QEMUFile *f, uint64_t v)
822 {
823 qemu_put_be32(f, v >> 32);
824 qemu_put_be32(f, v);
825 }
826
827 unsigned int qemu_get_be16(QEMUFile *f)
828 {
829 unsigned int v;
830 v = qemu_get_byte(f) << 8;
831 v |= qemu_get_byte(f);
832 return v;
833 }
834
835 unsigned int qemu_get_be32(QEMUFile *f)
836 {
837 unsigned int v;
838 v = qemu_get_byte(f) << 24;
839 v |= qemu_get_byte(f) << 16;
840 v |= qemu_get_byte(f) << 8;
841 v |= qemu_get_byte(f);
842 return v;
843 }
844
845 uint64_t qemu_get_be64(QEMUFile *f)
846 {
847 uint64_t v;
848 v = (uint64_t)qemu_get_be32(f) << 32;
849 v |= qemu_get_be32(f);
850 return v;
851 }
852
853
854 /* timer */
855
856 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
857 {
858 uint64_t expire_time;
859
860 expire_time = qemu_timer_expire_time_ns(ts);
861 qemu_put_be64(f, expire_time);
862 }
863
864 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
865 {
866 uint64_t expire_time;
867
868 expire_time = qemu_get_be64(f);
869 if (expire_time != -1) {
870 qemu_mod_timer_ns(ts, expire_time);
871 } else {
872 qemu_del_timer(ts);
873 }
874 }
875
876
877 /* bool */
878
879 static int get_bool(QEMUFile *f, void *pv, size_t size)
880 {
881 bool *v = pv;
882 *v = qemu_get_byte(f);
883 return 0;
884 }
885
886 static void put_bool(QEMUFile *f, void *pv, size_t size)
887 {
888 bool *v = pv;
889 qemu_put_byte(f, *v);
890 }
891
892 const VMStateInfo vmstate_info_bool = {
893 .name = "bool",
894 .get = get_bool,
895 .put = put_bool,
896 };
897
898 /* 8 bit int */
899
900 static int get_int8(QEMUFile *f, void *pv, size_t size)
901 {
902 int8_t *v = pv;
903 qemu_get_s8s(f, v);
904 return 0;
905 }
906
907 static void put_int8(QEMUFile *f, void *pv, size_t size)
908 {
909 int8_t *v = pv;
910 qemu_put_s8s(f, v);
911 }
912
913 const VMStateInfo vmstate_info_int8 = {
914 .name = "int8",
915 .get = get_int8,
916 .put = put_int8,
917 };
918
919 /* 16 bit int */
920
921 static int get_int16(QEMUFile *f, void *pv, size_t size)
922 {
923 int16_t *v = pv;
924 qemu_get_sbe16s(f, v);
925 return 0;
926 }
927
928 static void put_int16(QEMUFile *f, void *pv, size_t size)
929 {
930 int16_t *v = pv;
931 qemu_put_sbe16s(f, v);
932 }
933
934 const VMStateInfo vmstate_info_int16 = {
935 .name = "int16",
936 .get = get_int16,
937 .put = put_int16,
938 };
939
940 /* 32 bit int */
941
942 static int get_int32(QEMUFile *f, void *pv, size_t size)
943 {
944 int32_t *v = pv;
945 qemu_get_sbe32s(f, v);
946 return 0;
947 }
948
949 static void put_int32(QEMUFile *f, void *pv, size_t size)
950 {
951 int32_t *v = pv;
952 qemu_put_sbe32s(f, v);
953 }
954
955 const VMStateInfo vmstate_info_int32 = {
956 .name = "int32",
957 .get = get_int32,
958 .put = put_int32,
959 };
960
961 /* 32 bit int. See that the received value is the same than the one
962 in the field */
963
964 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
965 {
966 int32_t *v = pv;
967 int32_t v2;
968 qemu_get_sbe32s(f, &v2);
969
970 if (*v == v2)
971 return 0;
972 return -EINVAL;
973 }
974
975 const VMStateInfo vmstate_info_int32_equal = {
976 .name = "int32 equal",
977 .get = get_int32_equal,
978 .put = put_int32,
979 };
980
981 /* 32 bit int. See that the received value is the less or the same
982 than the one in the field */
983
984 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
985 {
986 int32_t *old = pv;
987 int32_t new;
988 qemu_get_sbe32s(f, &new);
989
990 if (*old <= new)
991 return 0;
992 return -EINVAL;
993 }
994
995 const VMStateInfo vmstate_info_int32_le = {
996 .name = "int32 equal",
997 .get = get_int32_le,
998 .put = put_int32,
999 };
1000
1001 /* 64 bit int */
1002
1003 static int get_int64(QEMUFile *f, void *pv, size_t size)
1004 {
1005 int64_t *v = pv;
1006 qemu_get_sbe64s(f, v);
1007 return 0;
1008 }
1009
1010 static void put_int64(QEMUFile *f, void *pv, size_t size)
1011 {
1012 int64_t *v = pv;
1013 qemu_put_sbe64s(f, v);
1014 }
1015
1016 const VMStateInfo vmstate_info_int64 = {
1017 .name = "int64",
1018 .get = get_int64,
1019 .put = put_int64,
1020 };
1021
1022 /* 8 bit unsigned int */
1023
1024 static int get_uint8(QEMUFile *f, void *pv, size_t size)
1025 {
1026 uint8_t *v = pv;
1027 qemu_get_8s(f, v);
1028 return 0;
1029 }
1030
1031 static void put_uint8(QEMUFile *f, void *pv, size_t size)
1032 {
1033 uint8_t *v = pv;
1034 qemu_put_8s(f, v);
1035 }
1036
1037 const VMStateInfo vmstate_info_uint8 = {
1038 .name = "uint8",
1039 .get = get_uint8,
1040 .put = put_uint8,
1041 };
1042
1043 /* 16 bit unsigned int */
1044
1045 static int get_uint16(QEMUFile *f, void *pv, size_t size)
1046 {
1047 uint16_t *v = pv;
1048 qemu_get_be16s(f, v);
1049 return 0;
1050 }
1051
1052 static void put_uint16(QEMUFile *f, void *pv, size_t size)
1053 {
1054 uint16_t *v = pv;
1055 qemu_put_be16s(f, v);
1056 }
1057
1058 const VMStateInfo vmstate_info_uint16 = {
1059 .name = "uint16",
1060 .get = get_uint16,
1061 .put = put_uint16,
1062 };
1063
1064 /* 32 bit unsigned int */
1065
1066 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1067 {
1068 uint32_t *v = pv;
1069 qemu_get_be32s(f, v);
1070 return 0;
1071 }
1072
1073 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1074 {
1075 uint32_t *v = pv;
1076 qemu_put_be32s(f, v);
1077 }
1078
1079 const VMStateInfo vmstate_info_uint32 = {
1080 .name = "uint32",
1081 .get = get_uint32,
1082 .put = put_uint32,
1083 };
1084
1085 /* 32 bit uint. See that the received value is the same than the one
1086 in the field */
1087
1088 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1089 {
1090 uint32_t *v = pv;
1091 uint32_t v2;
1092 qemu_get_be32s(f, &v2);
1093
1094 if (*v == v2) {
1095 return 0;
1096 }
1097 return -EINVAL;
1098 }
1099
1100 const VMStateInfo vmstate_info_uint32_equal = {
1101 .name = "uint32 equal",
1102 .get = get_uint32_equal,
1103 .put = put_uint32,
1104 };
1105
1106 /* 64 bit unsigned int */
1107
1108 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1109 {
1110 uint64_t *v = pv;
1111 qemu_get_be64s(f, v);
1112 return 0;
1113 }
1114
1115 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1116 {
1117 uint64_t *v = pv;
1118 qemu_put_be64s(f, v);
1119 }
1120
1121 const VMStateInfo vmstate_info_uint64 = {
1122 .name = "uint64",
1123 .get = get_uint64,
1124 .put = put_uint64,
1125 };
1126
1127 /* 64 bit unsigned int. See that the received value is the same than the one
1128 in the field */
1129
1130 static int get_uint64_equal(QEMUFile *f, void *pv, size_t size)
1131 {
1132 uint64_t *v = pv;
1133 uint64_t v2;
1134 qemu_get_be64s(f, &v2);
1135
1136 if (*v == v2) {
1137 return 0;
1138 }
1139 return -EINVAL;
1140 }
1141
1142 const VMStateInfo vmstate_info_uint64_equal = {
1143 .name = "int64 equal",
1144 .get = get_uint64_equal,
1145 .put = put_uint64,
1146 };
1147
1148 /* 8 bit int. See that the received value is the same than the one
1149 in the field */
1150
1151 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1152 {
1153 uint8_t *v = pv;
1154 uint8_t v2;
1155 qemu_get_8s(f, &v2);
1156
1157 if (*v == v2)
1158 return 0;
1159 return -EINVAL;
1160 }
1161
1162 const VMStateInfo vmstate_info_uint8_equal = {
1163 .name = "uint8 equal",
1164 .get = get_uint8_equal,
1165 .put = put_uint8,
1166 };
1167
1168 /* 16 bit unsigned int int. See that the received value is the same than the one
1169 in the field */
1170
1171 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1172 {
1173 uint16_t *v = pv;
1174 uint16_t v2;
1175 qemu_get_be16s(f, &v2);
1176
1177 if (*v == v2)
1178 return 0;
1179 return -EINVAL;
1180 }
1181
1182 const VMStateInfo vmstate_info_uint16_equal = {
1183 .name = "uint16 equal",
1184 .get = get_uint16_equal,
1185 .put = put_uint16,
1186 };
1187
1188 /* floating point */
1189
1190 static int get_float64(QEMUFile *f, void *pv, size_t size)
1191 {
1192 float64 *v = pv;
1193
1194 *v = make_float64(qemu_get_be64(f));
1195 return 0;
1196 }
1197
1198 static void put_float64(QEMUFile *f, void *pv, size_t size)
1199 {
1200 uint64_t *v = pv;
1201
1202 qemu_put_be64(f, float64_val(*v));
1203 }
1204
1205 const VMStateInfo vmstate_info_float64 = {
1206 .name = "float64",
1207 .get = get_float64,
1208 .put = put_float64,
1209 };
1210
1211 /* timers */
1212
1213 static int get_timer(QEMUFile *f, void *pv, size_t size)
1214 {
1215 QEMUTimer *v = pv;
1216 qemu_get_timer(f, v);
1217 return 0;
1218 }
1219
1220 static void put_timer(QEMUFile *f, void *pv, size_t size)
1221 {
1222 QEMUTimer *v = pv;
1223 qemu_put_timer(f, v);
1224 }
1225
1226 const VMStateInfo vmstate_info_timer = {
1227 .name = "timer",
1228 .get = get_timer,
1229 .put = put_timer,
1230 };
1231
1232 /* uint8_t buffers */
1233
1234 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1235 {
1236 uint8_t *v = pv;
1237 qemu_get_buffer(f, v, size);
1238 return 0;
1239 }
1240
1241 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1242 {
1243 uint8_t *v = pv;
1244 qemu_put_buffer(f, v, size);
1245 }
1246
1247 const VMStateInfo vmstate_info_buffer = {
1248 .name = "buffer",
1249 .get = get_buffer,
1250 .put = put_buffer,
1251 };
1252
1253 /* unused buffers: space that was used for some fields that are
1254 not useful anymore */
1255
1256 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1257 {
1258 uint8_t buf[1024];
1259 int block_len;
1260
1261 while (size > 0) {
1262 block_len = MIN(sizeof(buf), size);
1263 size -= block_len;
1264 qemu_get_buffer(f, buf, block_len);
1265 }
1266 return 0;
1267 }
1268
1269 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1270 {
1271 static const uint8_t buf[1024];
1272 int block_len;
1273
1274 while (size > 0) {
1275 block_len = MIN(sizeof(buf), size);
1276 size -= block_len;
1277 qemu_put_buffer(f, buf, block_len);
1278 }
1279 }
1280
1281 const VMStateInfo vmstate_info_unused_buffer = {
1282 .name = "unused_buffer",
1283 .get = get_unused_buffer,
1284 .put = put_unused_buffer,
1285 };
1286
1287 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1288 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1289 * bit words with the bits in big endian order. The in-memory format
1290 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1291 */
1292 /* This is the number of 64 bit words sent over the wire */
1293 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1294 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1295 {
1296 unsigned long *bmp = pv;
1297 int i, idx = 0;
1298 for (i = 0; i < BITS_TO_U64S(size); i++) {
1299 uint64_t w = qemu_get_be64(f);
1300 bmp[idx++] = w;
1301 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1302 bmp[idx++] = w >> 32;
1303 }
1304 }
1305 return 0;
1306 }
1307
1308 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1309 {
1310 unsigned long *bmp = pv;
1311 int i, idx = 0;
1312 for (i = 0; i < BITS_TO_U64S(size); i++) {
1313 uint64_t w = bmp[idx++];
1314 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1315 w |= ((uint64_t)bmp[idx++]) << 32;
1316 }
1317 qemu_put_be64(f, w);
1318 }
1319 }
1320
1321 const VMStateInfo vmstate_info_bitmap = {
1322 .name = "bitmap",
1323 .get = get_bitmap,
1324 .put = put_bitmap,
1325 };
1326
1327 typedef struct CompatEntry {
1328 char idstr[256];
1329 int instance_id;
1330 } CompatEntry;
1331
1332 typedef struct SaveStateEntry {
1333 QTAILQ_ENTRY(SaveStateEntry) entry;
1334 char idstr[256];
1335 int instance_id;
1336 int alias_id;
1337 int version_id;
1338 int section_id;
1339 SaveVMHandlers *ops;
1340 const VMStateDescription *vmsd;
1341 void *opaque;
1342 CompatEntry *compat;
1343 int no_migrate;
1344 int is_ram;
1345 } SaveStateEntry;
1346
1347
1348 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1349 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1350 static int global_section_id;
1351
1352 static int calculate_new_instance_id(const char *idstr)
1353 {
1354 SaveStateEntry *se;
1355 int instance_id = 0;
1356
1357 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1358 if (strcmp(idstr, se->idstr) == 0
1359 && instance_id <= se->instance_id) {
1360 instance_id = se->instance_id + 1;
1361 }
1362 }
1363 return instance_id;
1364 }
1365
1366 static int calculate_compat_instance_id(const char *idstr)
1367 {
1368 SaveStateEntry *se;
1369 int instance_id = 0;
1370
1371 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1372 if (!se->compat)
1373 continue;
1374
1375 if (strcmp(idstr, se->compat->idstr) == 0
1376 && instance_id <= se->compat->instance_id) {
1377 instance_id = se->compat->instance_id + 1;
1378 }
1379 }
1380 return instance_id;
1381 }
1382
1383 /* TODO: Individual devices generally have very little idea about the rest
1384 of the system, so instance_id should be removed/replaced.
1385 Meanwhile pass -1 as instance_id if you do not already have a clearly
1386 distinguishing id for all instances of your device class. */
1387 int register_savevm_live(DeviceState *dev,
1388 const char *idstr,
1389 int instance_id,
1390 int version_id,
1391 SaveVMHandlers *ops,
1392 void *opaque)
1393 {
1394 SaveStateEntry *se;
1395
1396 se = g_malloc0(sizeof(SaveStateEntry));
1397 se->version_id = version_id;
1398 se->section_id = global_section_id++;
1399 se->ops = ops;
1400 se->opaque = opaque;
1401 se->vmsd = NULL;
1402 se->no_migrate = 0;
1403 /* if this is a live_savem then set is_ram */
1404 if (ops->save_live_setup != NULL) {
1405 se->is_ram = 1;
1406 }
1407
1408 if (dev) {
1409 char *id = qdev_get_dev_path(dev);
1410 if (id) {
1411 pstrcpy(se->idstr, sizeof(se->idstr), id);
1412 pstrcat(se->idstr, sizeof(se->idstr), "/");
1413 g_free(id);
1414
1415 se->compat = g_malloc0(sizeof(CompatEntry));
1416 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1417 se->compat->instance_id = instance_id == -1 ?
1418 calculate_compat_instance_id(idstr) : instance_id;
1419 instance_id = -1;
1420 }
1421 }
1422 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1423
1424 if (instance_id == -1) {
1425 se->instance_id = calculate_new_instance_id(se->idstr);
1426 } else {
1427 se->instance_id = instance_id;
1428 }
1429 assert(!se->compat || se->instance_id == 0);
1430 /* add at the end of list */
1431 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1432 return 0;
1433 }
1434
1435 int register_savevm(DeviceState *dev,
1436 const char *idstr,
1437 int instance_id,
1438 int version_id,
1439 SaveStateHandler *save_state,
1440 LoadStateHandler *load_state,
1441 void *opaque)
1442 {
1443 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1444 ops->save_state = save_state;
1445 ops->load_state = load_state;
1446 return register_savevm_live(dev, idstr, instance_id, version_id,
1447 ops, opaque);
1448 }
1449
1450 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1451 {
1452 SaveStateEntry *se, *new_se;
1453 char id[256] = "";
1454
1455 if (dev) {
1456 char *path = qdev_get_dev_path(dev);
1457 if (path) {
1458 pstrcpy(id, sizeof(id), path);
1459 pstrcat(id, sizeof(id), "/");
1460 g_free(path);
1461 }
1462 }
1463 pstrcat(id, sizeof(id), idstr);
1464
1465 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1466 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1467 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1468 if (se->compat) {
1469 g_free(se->compat);
1470 }
1471 g_free(se->ops);
1472 g_free(se);
1473 }
1474 }
1475 }
1476
1477 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1478 const VMStateDescription *vmsd,
1479 void *opaque, int alias_id,
1480 int required_for_version)
1481 {
1482 SaveStateEntry *se;
1483
1484 /* If this triggers, alias support can be dropped for the vmsd. */
1485 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1486
1487 se = g_malloc0(sizeof(SaveStateEntry));
1488 se->version_id = vmsd->version_id;
1489 se->section_id = global_section_id++;
1490 se->opaque = opaque;
1491 se->vmsd = vmsd;
1492 se->alias_id = alias_id;
1493 se->no_migrate = vmsd->unmigratable;
1494
1495 if (dev) {
1496 char *id = qdev_get_dev_path(dev);
1497 if (id) {
1498 pstrcpy(se->idstr, sizeof(se->idstr), id);
1499 pstrcat(se->idstr, sizeof(se->idstr), "/");
1500 g_free(id);
1501
1502 se->compat = g_malloc0(sizeof(CompatEntry));
1503 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1504 se->compat->instance_id = instance_id == -1 ?
1505 calculate_compat_instance_id(vmsd->name) : instance_id;
1506 instance_id = -1;
1507 }
1508 }
1509 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1510
1511 if (instance_id == -1) {
1512 se->instance_id = calculate_new_instance_id(se->idstr);
1513 } else {
1514 se->instance_id = instance_id;
1515 }
1516 assert(!se->compat || se->instance_id == 0);
1517 /* add at the end of list */
1518 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1519 return 0;
1520 }
1521
1522 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1523 void *opaque)
1524 {
1525 SaveStateEntry *se, *new_se;
1526
1527 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1528 if (se->vmsd == vmsd && se->opaque == opaque) {
1529 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1530 if (se->compat) {
1531 g_free(se->compat);
1532 }
1533 g_free(se);
1534 }
1535 }
1536 }
1537
1538 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1539 void *opaque);
1540 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1541 void *opaque);
1542
1543 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1544 void *opaque, int version_id)
1545 {
1546 VMStateField *field = vmsd->fields;
1547 int ret;
1548
1549 if (version_id > vmsd->version_id) {
1550 return -EINVAL;
1551 }
1552 if (version_id < vmsd->minimum_version_id_old) {
1553 return -EINVAL;
1554 }
1555 if (version_id < vmsd->minimum_version_id) {
1556 return vmsd->load_state_old(f, opaque, version_id);
1557 }
1558 if (vmsd->pre_load) {
1559 int ret = vmsd->pre_load(opaque);
1560 if (ret)
1561 return ret;
1562 }
1563 while(field->name) {
1564 if ((field->field_exists &&
1565 field->field_exists(opaque, version_id)) ||
1566 (!field->field_exists &&
1567 field->version_id <= version_id)) {
1568 void *base_addr = opaque + field->offset;
1569 int i, n_elems = 1;
1570 int size = field->size;
1571
1572 if (field->flags & VMS_VBUFFER) {
1573 size = *(int32_t *)(opaque+field->size_offset);
1574 if (field->flags & VMS_MULTIPLY) {
1575 size *= field->size;
1576 }
1577 }
1578 if (field->flags & VMS_ARRAY) {
1579 n_elems = field->num;
1580 } else if (field->flags & VMS_VARRAY_INT32) {
1581 n_elems = *(int32_t *)(opaque+field->num_offset);
1582 } else if (field->flags & VMS_VARRAY_UINT32) {
1583 n_elems = *(uint32_t *)(opaque+field->num_offset);
1584 } else if (field->flags & VMS_VARRAY_UINT16) {
1585 n_elems = *(uint16_t *)(opaque+field->num_offset);
1586 } else if (field->flags & VMS_VARRAY_UINT8) {
1587 n_elems = *(uint8_t *)(opaque+field->num_offset);
1588 }
1589 if (field->flags & VMS_POINTER) {
1590 base_addr = *(void **)base_addr + field->start;
1591 }
1592 for (i = 0; i < n_elems; i++) {
1593 void *addr = base_addr + size * i;
1594
1595 if (field->flags & VMS_ARRAY_OF_POINTER) {
1596 addr = *(void **)addr;
1597 }
1598 if (field->flags & VMS_STRUCT) {
1599 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1600 } else {
1601 ret = field->info->get(f, addr, size);
1602
1603 }
1604 if (ret < 0) {
1605 return ret;
1606 }
1607 }
1608 }
1609 field++;
1610 }
1611 ret = vmstate_subsection_load(f, vmsd, opaque);
1612 if (ret != 0) {
1613 return ret;
1614 }
1615 if (vmsd->post_load) {
1616 return vmsd->post_load(opaque, version_id);
1617 }
1618 return 0;
1619 }
1620
1621 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1622 void *opaque)
1623 {
1624 VMStateField *field = vmsd->fields;
1625
1626 if (vmsd->pre_save) {
1627 vmsd->pre_save(opaque);
1628 }
1629 while(field->name) {
1630 if (!field->field_exists ||
1631 field->field_exists(opaque, vmsd->version_id)) {
1632 void *base_addr = opaque + field->offset;
1633 int i, n_elems = 1;
1634 int size = field->size;
1635
1636 if (field->flags & VMS_VBUFFER) {
1637 size = *(int32_t *)(opaque+field->size_offset);
1638 if (field->flags & VMS_MULTIPLY) {
1639 size *= field->size;
1640 }
1641 }
1642 if (field->flags & VMS_ARRAY) {
1643 n_elems = field->num;
1644 } else if (field->flags & VMS_VARRAY_INT32) {
1645 n_elems = *(int32_t *)(opaque+field->num_offset);
1646 } else if (field->flags & VMS_VARRAY_UINT32) {
1647 n_elems = *(uint32_t *)(opaque+field->num_offset);
1648 } else if (field->flags & VMS_VARRAY_UINT16) {
1649 n_elems = *(uint16_t *)(opaque+field->num_offset);
1650 } else if (field->flags & VMS_VARRAY_UINT8) {
1651 n_elems = *(uint8_t *)(opaque+field->num_offset);
1652 }
1653 if (field->flags & VMS_POINTER) {
1654 base_addr = *(void **)base_addr + field->start;
1655 }
1656 for (i = 0; i < n_elems; i++) {
1657 void *addr = base_addr + size * i;
1658
1659 if (field->flags & VMS_ARRAY_OF_POINTER) {
1660 addr = *(void **)addr;
1661 }
1662 if (field->flags & VMS_STRUCT) {
1663 vmstate_save_state(f, field->vmsd, addr);
1664 } else {
1665 field->info->put(f, addr, size);
1666 }
1667 }
1668 }
1669 field++;
1670 }
1671 vmstate_subsection_save(f, vmsd, opaque);
1672 }
1673
1674 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1675 {
1676 if (!se->vmsd) { /* Old style */
1677 return se->ops->load_state(f, se->opaque, version_id);
1678 }
1679 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1680 }
1681
1682 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1683 {
1684 if (!se->vmsd) { /* Old style */
1685 se->ops->save_state(f, se->opaque);
1686 return;
1687 }
1688 vmstate_save_state(f,se->vmsd, se->opaque);
1689 }
1690
1691 #define QEMU_VM_FILE_MAGIC 0x5145564d
1692 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1693 #define QEMU_VM_FILE_VERSION 0x00000003
1694
1695 #define QEMU_VM_EOF 0x00
1696 #define QEMU_VM_SECTION_START 0x01
1697 #define QEMU_VM_SECTION_PART 0x02
1698 #define QEMU_VM_SECTION_END 0x03
1699 #define QEMU_VM_SECTION_FULL 0x04
1700 #define QEMU_VM_SUBSECTION 0x05
1701
1702 bool qemu_savevm_state_blocked(Error **errp)
1703 {
1704 SaveStateEntry *se;
1705
1706 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1707 if (se->no_migrate) {
1708 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1709 return true;
1710 }
1711 }
1712 return false;
1713 }
1714
1715 void qemu_savevm_state_begin(QEMUFile *f,
1716 const MigrationParams *params)
1717 {
1718 SaveStateEntry *se;
1719 int ret;
1720
1721 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1722 if (!se->ops || !se->ops->set_params) {
1723 continue;
1724 }
1725 se->ops->set_params(params, se->opaque);
1726 }
1727
1728 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1729 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1730
1731 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1732 int len;
1733
1734 if (!se->ops || !se->ops->save_live_setup) {
1735 continue;
1736 }
1737 if (se->ops && se->ops->is_active) {
1738 if (!se->ops->is_active(se->opaque)) {
1739 continue;
1740 }
1741 }
1742 /* Section type */
1743 qemu_put_byte(f, QEMU_VM_SECTION_START);
1744 qemu_put_be32(f, se->section_id);
1745
1746 /* ID string */
1747 len = strlen(se->idstr);
1748 qemu_put_byte(f, len);
1749 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1750
1751 qemu_put_be32(f, se->instance_id);
1752 qemu_put_be32(f, se->version_id);
1753
1754 ret = se->ops->save_live_setup(f, se->opaque);
1755 if (ret < 0) {
1756 qemu_file_set_error(f, ret);
1757 break;
1758 }
1759 }
1760 }
1761
1762 /*
1763 * this function has three return values:
1764 * negative: there was one error, and we have -errno.
1765 * 0 : We haven't finished, caller have to go again
1766 * 1 : We have finished, we can go to complete phase
1767 */
1768 int qemu_savevm_state_iterate(QEMUFile *f)
1769 {
1770 SaveStateEntry *se;
1771 int ret = 1;
1772
1773 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1774 if (!se->ops || !se->ops->save_live_iterate) {
1775 continue;
1776 }
1777 if (se->ops && se->ops->is_active) {
1778 if (!se->ops->is_active(se->opaque)) {
1779 continue;
1780 }
1781 }
1782 if (qemu_file_rate_limit(f)) {
1783 return 0;
1784 }
1785 trace_savevm_section_start();
1786 /* Section type */
1787 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1788 qemu_put_be32(f, se->section_id);
1789
1790 ret = se->ops->save_live_iterate(f, se->opaque);
1791 trace_savevm_section_end(se->section_id);
1792
1793 if (ret < 0) {
1794 qemu_file_set_error(f, ret);
1795 }
1796 if (ret <= 0) {
1797 /* Do not proceed to the next vmstate before this one reported
1798 completion of the current stage. This serializes the migration
1799 and reduces the probability that a faster changing state is
1800 synchronized over and over again. */
1801 break;
1802 }
1803 }
1804 return ret;
1805 }
1806
1807 void qemu_savevm_state_complete(QEMUFile *f)
1808 {
1809 SaveStateEntry *se;
1810 int ret;
1811
1812 cpu_synchronize_all_states();
1813
1814 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1815 if (!se->ops || !se->ops->save_live_complete) {
1816 continue;
1817 }
1818 if (se->ops && se->ops->is_active) {
1819 if (!se->ops->is_active(se->opaque)) {
1820 continue;
1821 }
1822 }
1823 trace_savevm_section_start();
1824 /* Section type */
1825 qemu_put_byte(f, QEMU_VM_SECTION_END);
1826 qemu_put_be32(f, se->section_id);
1827
1828 ret = se->ops->save_live_complete(f, se->opaque);
1829 trace_savevm_section_end(se->section_id);
1830 if (ret < 0) {
1831 qemu_file_set_error(f, ret);
1832 return;
1833 }
1834 }
1835
1836 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1837 int len;
1838
1839 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1840 continue;
1841 }
1842 trace_savevm_section_start();
1843 /* Section type */
1844 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1845 qemu_put_be32(f, se->section_id);
1846
1847 /* ID string */
1848 len = strlen(se->idstr);
1849 qemu_put_byte(f, len);
1850 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1851
1852 qemu_put_be32(f, se->instance_id);
1853 qemu_put_be32(f, se->version_id);
1854
1855 vmstate_save(f, se);
1856 trace_savevm_section_end(se->section_id);
1857 }
1858
1859 qemu_put_byte(f, QEMU_VM_EOF);
1860 qemu_fflush(f);
1861 }
1862
1863 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1864 {
1865 SaveStateEntry *se;
1866 uint64_t ret = 0;
1867
1868 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1869 if (!se->ops || !se->ops->save_live_pending) {
1870 continue;
1871 }
1872 if (se->ops && se->ops->is_active) {
1873 if (!se->ops->is_active(se->opaque)) {
1874 continue;
1875 }
1876 }
1877 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1878 }
1879 return ret;
1880 }
1881
1882 void qemu_savevm_state_cancel(void)
1883 {
1884 SaveStateEntry *se;
1885
1886 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1887 if (se->ops && se->ops->cancel) {
1888 se->ops->cancel(se->opaque);
1889 }
1890 }
1891 }
1892
1893 static int qemu_savevm_state(QEMUFile *f)
1894 {
1895 int ret;
1896 MigrationParams params = {
1897 .blk = 0,
1898 .shared = 0
1899 };
1900
1901 if (qemu_savevm_state_blocked(NULL)) {
1902 return -EINVAL;
1903 }
1904
1905 qemu_mutex_unlock_iothread();
1906 qemu_savevm_state_begin(f, &params);
1907 qemu_mutex_lock_iothread();
1908
1909 while (qemu_file_get_error(f) == 0) {
1910 if (qemu_savevm_state_iterate(f) > 0) {
1911 break;
1912 }
1913 }
1914
1915 ret = qemu_file_get_error(f);
1916 if (ret == 0) {
1917 qemu_savevm_state_complete(f);
1918 ret = qemu_file_get_error(f);
1919 }
1920 if (ret != 0) {
1921 qemu_savevm_state_cancel();
1922 }
1923 return ret;
1924 }
1925
1926 static int qemu_save_device_state(QEMUFile *f)
1927 {
1928 SaveStateEntry *se;
1929
1930 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1931 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1932
1933 cpu_synchronize_all_states();
1934
1935 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1936 int len;
1937
1938 if (se->is_ram) {
1939 continue;
1940 }
1941 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1942 continue;
1943 }
1944
1945 /* Section type */
1946 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1947 qemu_put_be32(f, se->section_id);
1948
1949 /* ID string */
1950 len = strlen(se->idstr);
1951 qemu_put_byte(f, len);
1952 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1953
1954 qemu_put_be32(f, se->instance_id);
1955 qemu_put_be32(f, se->version_id);
1956
1957 vmstate_save(f, se);
1958 }
1959
1960 qemu_put_byte(f, QEMU_VM_EOF);
1961
1962 return qemu_file_get_error(f);
1963 }
1964
1965 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1966 {
1967 SaveStateEntry *se;
1968
1969 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1970 if (!strcmp(se->idstr, idstr) &&
1971 (instance_id == se->instance_id ||
1972 instance_id == se->alias_id))
1973 return se;
1974 /* Migrating from an older version? */
1975 if (strstr(se->idstr, idstr) && se->compat) {
1976 if (!strcmp(se->compat->idstr, idstr) &&
1977 (instance_id == se->compat->instance_id ||
1978 instance_id == se->alias_id))
1979 return se;
1980 }
1981 }
1982 return NULL;
1983 }
1984
1985 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1986 {
1987 while(sub && sub->needed) {
1988 if (strcmp(idstr, sub->vmsd->name) == 0) {
1989 return sub->vmsd;
1990 }
1991 sub++;
1992 }
1993 return NULL;
1994 }
1995
1996 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1997 void *opaque)
1998 {
1999 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
2000 char idstr[256];
2001 int ret;
2002 uint8_t version_id, len, size;
2003 const VMStateDescription *sub_vmsd;
2004
2005 len = qemu_peek_byte(f, 1);
2006 if (len < strlen(vmsd->name) + 1) {
2007 /* subsection name has be be "section_name/a" */
2008 return 0;
2009 }
2010 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
2011 if (size != len) {
2012 return 0;
2013 }
2014 idstr[size] = 0;
2015
2016 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
2017 /* it don't have a valid subsection name */
2018 return 0;
2019 }
2020 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
2021 if (sub_vmsd == NULL) {
2022 return -ENOENT;
2023 }
2024 qemu_file_skip(f, 1); /* subsection */
2025 qemu_file_skip(f, 1); /* len */
2026 qemu_file_skip(f, len); /* idstr */
2027 version_id = qemu_get_be32(f);
2028
2029 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
2030 if (ret) {
2031 return ret;
2032 }
2033 }
2034 return 0;
2035 }
2036
2037 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
2038 void *opaque)
2039 {
2040 const VMStateSubsection *sub = vmsd->subsections;
2041
2042 while (sub && sub->needed) {
2043 if (sub->needed(opaque)) {
2044 const VMStateDescription *vmsd = sub->vmsd;
2045 uint8_t len;
2046
2047 qemu_put_byte(f, QEMU_VM_SUBSECTION);
2048 len = strlen(vmsd->name);
2049 qemu_put_byte(f, len);
2050 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
2051 qemu_put_be32(f, vmsd->version_id);
2052 vmstate_save_state(f, vmsd, opaque);
2053 }
2054 sub++;
2055 }
2056 }
2057
2058 typedef struct LoadStateEntry {
2059 QLIST_ENTRY(LoadStateEntry) entry;
2060 SaveStateEntry *se;
2061 int section_id;
2062 int version_id;
2063 } LoadStateEntry;
2064
2065 int qemu_loadvm_state(QEMUFile *f)
2066 {
2067 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
2068 QLIST_HEAD_INITIALIZER(loadvm_handlers);
2069 LoadStateEntry *le, *new_le;
2070 uint8_t section_type;
2071 unsigned int v;
2072 int ret;
2073
2074 if (qemu_savevm_state_blocked(NULL)) {
2075 return -EINVAL;
2076 }
2077
2078 v = qemu_get_be32(f);
2079 if (v != QEMU_VM_FILE_MAGIC)
2080 return -EINVAL;
2081
2082 v = qemu_get_be32(f);
2083 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
2084 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
2085 return -ENOTSUP;
2086 }
2087 if (v != QEMU_VM_FILE_VERSION)
2088 return -ENOTSUP;
2089
2090 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
2091 uint32_t instance_id, version_id, section_id;
2092 SaveStateEntry *se;
2093 char idstr[257];
2094 int len;
2095
2096 switch (section_type) {
2097 case QEMU_VM_SECTION_START:
2098 case QEMU_VM_SECTION_FULL:
2099 /* Read section start */
2100 section_id = qemu_get_be32(f);
2101 len = qemu_get_byte(f);
2102 qemu_get_buffer(f, (uint8_t *)idstr, len);
2103 idstr[len] = 0;
2104 instance_id = qemu_get_be32(f);
2105 version_id = qemu_get_be32(f);
2106
2107 /* Find savevm section */
2108 se = find_se(idstr, instance_id);
2109 if (se == NULL) {
2110 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2111 ret = -EINVAL;
2112 goto out;
2113 }
2114
2115 /* Validate version */
2116 if (version_id > se->version_id) {
2117 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2118 version_id, idstr, se->version_id);
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 /* Add entry */
2124 le = g_malloc0(sizeof(*le));
2125
2126 le->se = se;
2127 le->section_id = section_id;
2128 le->version_id = version_id;
2129 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2130
2131 ret = vmstate_load(f, le->se, le->version_id);
2132 if (ret < 0) {
2133 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2134 instance_id, idstr);
2135 goto out;
2136 }
2137 break;
2138 case QEMU_VM_SECTION_PART:
2139 case QEMU_VM_SECTION_END:
2140 section_id = qemu_get_be32(f);
2141
2142 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2143 if (le->section_id == section_id) {
2144 break;
2145 }
2146 }
2147 if (le == NULL) {
2148 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2149 ret = -EINVAL;
2150 goto out;
2151 }
2152
2153 ret = vmstate_load(f, le->se, le->version_id);
2154 if (ret < 0) {
2155 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2156 section_id);
2157 goto out;
2158 }
2159 break;
2160 default:
2161 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2162 ret = -EINVAL;
2163 goto out;
2164 }
2165 }
2166
2167 cpu_synchronize_all_post_init();
2168
2169 ret = 0;
2170
2171 out:
2172 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2173 QLIST_REMOVE(le, entry);
2174 g_free(le);
2175 }
2176
2177 if (ret == 0) {
2178 ret = qemu_file_get_error(f);
2179 }
2180
2181 return ret;
2182 }
2183
2184 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2185 const char *name)
2186 {
2187 QEMUSnapshotInfo *sn_tab, *sn;
2188 int nb_sns, i, ret;
2189
2190 ret = -ENOENT;
2191 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2192 if (nb_sns < 0)
2193 return ret;
2194 for(i = 0; i < nb_sns; i++) {
2195 sn = &sn_tab[i];
2196 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2197 *sn_info = *sn;
2198 ret = 0;
2199 break;
2200 }
2201 }
2202 g_free(sn_tab);
2203 return ret;
2204 }
2205
2206 /*
2207 * Deletes snapshots of a given name in all opened images.
2208 */
2209 static int del_existing_snapshots(Monitor *mon, const char *name)
2210 {
2211 BlockDriverState *bs;
2212 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2213 int ret;
2214
2215 bs = NULL;
2216 while ((bs = bdrv_next(bs))) {
2217 if (bdrv_can_snapshot(bs) &&
2218 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2219 {
2220 ret = bdrv_snapshot_delete(bs, name);
2221 if (ret < 0) {
2222 monitor_printf(mon,
2223 "Error while deleting snapshot on '%s'\n",
2224 bdrv_get_device_name(bs));
2225 return -1;
2226 }
2227 }
2228 }
2229
2230 return 0;
2231 }
2232
2233 void do_savevm(Monitor *mon, const QDict *qdict)
2234 {
2235 BlockDriverState *bs, *bs1;
2236 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2237 int ret;
2238 QEMUFile *f;
2239 int saved_vm_running;
2240 uint64_t vm_state_size;
2241 qemu_timeval tv;
2242 struct tm tm;
2243 const char *name = qdict_get_try_str(qdict, "name");
2244
2245 /* Verify if there is a device that doesn't support snapshots and is writable */
2246 bs = NULL;
2247 while ((bs = bdrv_next(bs))) {
2248
2249 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2250 continue;
2251 }
2252
2253 if (!bdrv_can_snapshot(bs)) {
2254 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2255 bdrv_get_device_name(bs));
2256 return;
2257 }
2258 }
2259
2260 bs = bdrv_snapshots();
2261 if (!bs) {
2262 monitor_printf(mon, "No block device can accept snapshots\n");
2263 return;
2264 }
2265
2266 saved_vm_running = runstate_is_running();
2267 vm_stop(RUN_STATE_SAVE_VM);
2268
2269 memset(sn, 0, sizeof(*sn));
2270
2271 /* fill auxiliary fields */
2272 qemu_gettimeofday(&tv);
2273 sn->date_sec = tv.tv_sec;
2274 sn->date_nsec = tv.tv_usec * 1000;
2275 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2276
2277 if (name) {
2278 ret = bdrv_snapshot_find(bs, old_sn, name);
2279 if (ret >= 0) {
2280 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2281 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2282 } else {
2283 pstrcpy(sn->name, sizeof(sn->name), name);
2284 }
2285 } else {
2286 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2287 localtime_r((const time_t *)&tv.tv_sec, &tm);
2288 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2289 }
2290
2291 /* Delete old snapshots of the same name */
2292 if (name && del_existing_snapshots(mon, name) < 0) {
2293 goto the_end;
2294 }
2295
2296 /* save the VM state */
2297 f = qemu_fopen_bdrv(bs, 1);
2298 if (!f) {
2299 monitor_printf(mon, "Could not open VM state file\n");
2300 goto the_end;
2301 }
2302 ret = qemu_savevm_state(f);
2303 vm_state_size = qemu_ftell(f);
2304 qemu_fclose(f);
2305 if (ret < 0) {
2306 monitor_printf(mon, "Error %d while writing VM\n", ret);
2307 goto the_end;
2308 }
2309
2310 /* create the snapshots */
2311
2312 bs1 = NULL;
2313 while ((bs1 = bdrv_next(bs1))) {
2314 if (bdrv_can_snapshot(bs1)) {
2315 /* Write VM state size only to the image that contains the state */
2316 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2317 ret = bdrv_snapshot_create(bs1, sn);
2318 if (ret < 0) {
2319 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2320 bdrv_get_device_name(bs1));
2321 }
2322 }
2323 }
2324
2325 the_end:
2326 if (saved_vm_running)
2327 vm_start();
2328 }
2329
2330 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2331 {
2332 QEMUFile *f;
2333 int saved_vm_running;
2334 int ret;
2335
2336 saved_vm_running = runstate_is_running();
2337 vm_stop(RUN_STATE_SAVE_VM);
2338
2339 f = qemu_fopen(filename, "wb");
2340 if (!f) {
2341 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2342 goto the_end;
2343 }
2344 ret = qemu_save_device_state(f);
2345 qemu_fclose(f);
2346 if (ret < 0) {
2347 error_set(errp, QERR_IO_ERROR);
2348 }
2349
2350 the_end:
2351 if (saved_vm_running)
2352 vm_start();
2353 }
2354
2355 int load_vmstate(const char *name)
2356 {
2357 BlockDriverState *bs, *bs_vm_state;
2358 QEMUSnapshotInfo sn;
2359 QEMUFile *f;
2360 int ret;
2361
2362 bs_vm_state = bdrv_snapshots();
2363 if (!bs_vm_state) {
2364 error_report("No block device supports snapshots");
2365 return -ENOTSUP;
2366 }
2367
2368 /* Don't even try to load empty VM states */
2369 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2370 if (ret < 0) {
2371 return ret;
2372 } else if (sn.vm_state_size == 0) {
2373 error_report("This is a disk-only snapshot. Revert to it offline "
2374 "using qemu-img.");
2375 return -EINVAL;
2376 }
2377
2378 /* Verify if there is any device that doesn't support snapshots and is
2379 writable and check if the requested snapshot is available too. */
2380 bs = NULL;
2381 while ((bs = bdrv_next(bs))) {
2382
2383 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2384 continue;
2385 }
2386
2387 if (!bdrv_can_snapshot(bs)) {
2388 error_report("Device '%s' is writable but does not support snapshots.",
2389 bdrv_get_device_name(bs));
2390 return -ENOTSUP;
2391 }
2392
2393 ret = bdrv_snapshot_find(bs, &sn, name);
2394 if (ret < 0) {
2395 error_report("Device '%s' does not have the requested snapshot '%s'",
2396 bdrv_get_device_name(bs), name);
2397 return ret;
2398 }
2399 }
2400
2401 /* Flush all IO requests so they don't interfere with the new state. */
2402 bdrv_drain_all();
2403
2404 bs = NULL;
2405 while ((bs = bdrv_next(bs))) {
2406 if (bdrv_can_snapshot(bs)) {
2407 ret = bdrv_snapshot_goto(bs, name);
2408 if (ret < 0) {
2409 error_report("Error %d while activating snapshot '%s' on '%s'",
2410 ret, name, bdrv_get_device_name(bs));
2411 return ret;
2412 }
2413 }
2414 }
2415
2416 /* restore the VM state */
2417 f = qemu_fopen_bdrv(bs_vm_state, 0);
2418 if (!f) {
2419 error_report("Could not open VM state file");
2420 return -EINVAL;
2421 }
2422
2423 qemu_system_reset(VMRESET_SILENT);
2424 ret = qemu_loadvm_state(f);
2425
2426 qemu_fclose(f);
2427 if (ret < 0) {
2428 error_report("Error %d while loading VM state", ret);
2429 return ret;
2430 }
2431
2432 return 0;
2433 }
2434
2435 void do_delvm(Monitor *mon, const QDict *qdict)
2436 {
2437 BlockDriverState *bs, *bs1;
2438 int ret;
2439 const char *name = qdict_get_str(qdict, "name");
2440
2441 bs = bdrv_snapshots();
2442 if (!bs) {
2443 monitor_printf(mon, "No block device supports snapshots\n");
2444 return;
2445 }
2446
2447 bs1 = NULL;
2448 while ((bs1 = bdrv_next(bs1))) {
2449 if (bdrv_can_snapshot(bs1)) {
2450 ret = bdrv_snapshot_delete(bs1, name);
2451 if (ret < 0) {
2452 if (ret == -ENOTSUP)
2453 monitor_printf(mon,
2454 "Snapshots not supported on device '%s'\n",
2455 bdrv_get_device_name(bs1));
2456 else
2457 monitor_printf(mon, "Error %d while deleting snapshot on "
2458 "'%s'\n", ret, bdrv_get_device_name(bs1));
2459 }
2460 }
2461 }
2462 }
2463
2464 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2465 {
2466 BlockDriverState *bs, *bs1;
2467 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2468 int nb_sns, i, ret, available;
2469 int total;
2470 int *available_snapshots;
2471 char buf[256];
2472
2473 bs = bdrv_snapshots();
2474 if (!bs) {
2475 monitor_printf(mon, "No available block device supports snapshots\n");
2476 return;
2477 }
2478
2479 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2480 if (nb_sns < 0) {
2481 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2482 return;
2483 }
2484
2485 if (nb_sns == 0) {
2486 monitor_printf(mon, "There is no snapshot available.\n");
2487 return;
2488 }
2489
2490 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2491 total = 0;
2492 for (i = 0; i < nb_sns; i++) {
2493 sn = &sn_tab[i];
2494 available = 1;
2495 bs1 = NULL;
2496
2497 while ((bs1 = bdrv_next(bs1))) {
2498 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2499 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2500 if (ret < 0) {
2501 available = 0;
2502 break;
2503 }
2504 }
2505 }
2506
2507 if (available) {
2508 available_snapshots[total] = i;
2509 total++;
2510 }
2511 }
2512
2513 if (total > 0) {
2514 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2515 for (i = 0; i < total; i++) {
2516 sn = &sn_tab[available_snapshots[i]];
2517 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2518 }
2519 } else {
2520 monitor_printf(mon, "There is no suitable snapshot available\n");
2521 }
2522
2523 g_free(sn_tab);
2524 g_free(available_snapshots);
2525
2526 }
2527
2528 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2529 {
2530 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2531 memory_region_name(mr), dev);
2532 }
2533
2534 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2535 {
2536 /* Nothing do to while the implementation is in RAMBlock */
2537 }
2538
2539 void vmstate_register_ram_global(MemoryRegion *mr)
2540 {
2541 vmstate_register_ram(mr, NULL);
2542 }