]> git.proxmox.com Git - qemu.git/blob - savevm.c
migration: use QEMUFile for migration channel lifetime
[qemu.git] / savevm.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "config-host.h"
26 #include "qemu-common.h"
27 #include "hw/hw.h"
28 #include "hw/qdev.h"
29 #include "net/net.h"
30 #include "monitor/monitor.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/timer.h"
33 #include "audio/audio.h"
34 #include "migration/migration.h"
35 #include "qemu/sockets.h"
36 #include "qemu/queue.h"
37 #include "sysemu/cpus.h"
38 #include "exec/memory.h"
39 #include "qmp-commands.h"
40 #include "trace.h"
41 #include "qemu/bitops.h"
42
43 #define SELF_ANNOUNCE_ROUNDS 5
44
45 #ifndef ETH_P_RARP
46 #define ETH_P_RARP 0x8035
47 #endif
48 #define ARP_HTYPE_ETH 0x0001
49 #define ARP_PTYPE_IP 0x0800
50 #define ARP_OP_REQUEST_REV 0x3
51
52 static int announce_self_create(uint8_t *buf,
53 uint8_t *mac_addr)
54 {
55 /* Ethernet header. */
56 memset(buf, 0xff, 6); /* destination MAC addr */
57 memcpy(buf + 6, mac_addr, 6); /* source MAC addr */
58 *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */
59
60 /* RARP header. */
61 *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */
62 *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */
63 *(buf + 18) = 6; /* hardware addr length (ethernet) */
64 *(buf + 19) = 4; /* protocol addr length (IPv4) */
65 *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */
66 memcpy(buf + 22, mac_addr, 6); /* source hw addr */
67 memset(buf + 28, 0x00, 4); /* source protocol addr */
68 memcpy(buf + 32, mac_addr, 6); /* target hw addr */
69 memset(buf + 38, 0x00, 4); /* target protocol addr */
70
71 /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */
72 memset(buf + 42, 0x00, 18);
73
74 return 60; /* len (FCS will be added by hardware) */
75 }
76
77 static void qemu_announce_self_iter(NICState *nic, void *opaque)
78 {
79 uint8_t buf[60];
80 int len;
81
82 len = announce_self_create(buf, nic->conf->macaddr.a);
83
84 qemu_send_packet_raw(qemu_get_queue(nic), buf, len);
85 }
86
87
88 static void qemu_announce_self_once(void *opaque)
89 {
90 static int count = SELF_ANNOUNCE_ROUNDS;
91 QEMUTimer *timer = *(QEMUTimer **)opaque;
92
93 qemu_foreach_nic(qemu_announce_self_iter, NULL);
94
95 if (--count) {
96 /* delay 50ms, 150ms, 250ms, ... */
97 qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) +
98 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100);
99 } else {
100 qemu_del_timer(timer);
101 qemu_free_timer(timer);
102 }
103 }
104
105 void qemu_announce_self(void)
106 {
107 static QEMUTimer *timer;
108 timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer);
109 qemu_announce_self_once(&timer);
110 }
111
112 /***********************************************************/
113 /* savevm/loadvm support */
114
115 #define IO_BUF_SIZE 32768
116
117 struct QEMUFile {
118 const QEMUFileOps *ops;
119 void *opaque;
120 int is_write;
121
122 int64_t pos; /* start of buffer when writing, end of buffer
123 when reading */
124 int buf_index;
125 int buf_size; /* 0 when writing */
126 uint8_t buf[IO_BUF_SIZE];
127
128 int last_error;
129 };
130
131 typedef struct QEMUFileStdio
132 {
133 FILE *stdio_file;
134 QEMUFile *file;
135 } QEMUFileStdio;
136
137 typedef struct QEMUFileSocket
138 {
139 int fd;
140 QEMUFile *file;
141 } QEMUFileSocket;
142
143 typedef struct {
144 Coroutine *co;
145 int fd;
146 } FDYieldUntilData;
147
148 static void fd_coroutine_enter(void *opaque)
149 {
150 FDYieldUntilData *data = opaque;
151 qemu_set_fd_handler(data->fd, NULL, NULL, NULL);
152 qemu_coroutine_enter(data->co, NULL);
153 }
154
155 /**
156 * Yield until a file descriptor becomes readable
157 *
158 * Note that this function clobbers the handlers for the file descriptor.
159 */
160 static void coroutine_fn yield_until_fd_readable(int fd)
161 {
162 FDYieldUntilData data;
163
164 assert(qemu_in_coroutine());
165 data.co = qemu_coroutine_self();
166 data.fd = fd;
167 qemu_set_fd_handler(fd, fd_coroutine_enter, NULL, &data);
168 qemu_coroutine_yield();
169 }
170
171 static int socket_get_fd(void *opaque)
172 {
173 QEMUFileSocket *s = opaque;
174
175 return s->fd;
176 }
177
178 static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
179 {
180 QEMUFileSocket *s = opaque;
181 ssize_t len;
182
183 for (;;) {
184 len = qemu_recv(s->fd, buf, size, 0);
185 if (len != -1) {
186 break;
187 }
188 if (socket_error() == EAGAIN) {
189 yield_until_fd_readable(s->fd);
190 } else if (socket_error() != EINTR) {
191 break;
192 }
193 }
194
195 if (len == -1) {
196 len = -socket_error();
197 }
198 return len;
199 }
200
201 static int socket_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
202 {
203 QEMUFileSocket *s = opaque;
204 ssize_t len;
205
206 len = qemu_send_full(s->fd, buf, size, 0);
207 if (len < size) {
208 len = -socket_error();
209 }
210 return len;
211 }
212
213 static int socket_close(void *opaque)
214 {
215 QEMUFileSocket *s = opaque;
216 closesocket(s->fd);
217 g_free(s);
218 return 0;
219 }
220
221 static int stdio_get_fd(void *opaque)
222 {
223 QEMUFileStdio *s = opaque;
224
225 return fileno(s->stdio_file);
226 }
227
228 static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size)
229 {
230 QEMUFileStdio *s = opaque;
231 return fwrite(buf, 1, size, s->stdio_file);
232 }
233
234 static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
235 {
236 QEMUFileStdio *s = opaque;
237 FILE *fp = s->stdio_file;
238 int bytes;
239
240 for (;;) {
241 clearerr(fp);
242 bytes = fread(buf, 1, size, fp);
243 if (bytes != 0 || !ferror(fp)) {
244 break;
245 }
246 if (errno == EAGAIN) {
247 yield_until_fd_readable(fileno(fp));
248 } else if (errno != EINTR) {
249 break;
250 }
251 }
252 return bytes;
253 }
254
255 static int stdio_pclose(void *opaque)
256 {
257 QEMUFileStdio *s = opaque;
258 int ret;
259 ret = pclose(s->stdio_file);
260 if (ret == -1) {
261 ret = -errno;
262 } else if (!WIFEXITED(ret) || WEXITSTATUS(ret) != 0) {
263 /* close succeeded, but non-zero exit code: */
264 ret = -EIO; /* fake errno value */
265 }
266 g_free(s);
267 return ret;
268 }
269
270 static int stdio_fclose(void *opaque)
271 {
272 QEMUFileStdio *s = opaque;
273 int ret = 0;
274
275 if (s->file->ops->put_buffer) {
276 int fd = fileno(s->stdio_file);
277 struct stat st;
278
279 ret = fstat(fd, &st);
280 if (ret == 0 && S_ISREG(st.st_mode)) {
281 /*
282 * If the file handle is a regular file make sure the
283 * data is flushed to disk before signaling success.
284 */
285 ret = fsync(fd);
286 if (ret != 0) {
287 ret = -errno;
288 return ret;
289 }
290 }
291 }
292 if (fclose(s->stdio_file) == EOF) {
293 ret = -errno;
294 }
295 g_free(s);
296 return ret;
297 }
298
299 static const QEMUFileOps stdio_pipe_read_ops = {
300 .get_fd = stdio_get_fd,
301 .get_buffer = stdio_get_buffer,
302 .close = stdio_pclose
303 };
304
305 static const QEMUFileOps stdio_pipe_write_ops = {
306 .get_fd = stdio_get_fd,
307 .put_buffer = stdio_put_buffer,
308 .close = stdio_pclose
309 };
310
311 QEMUFile *qemu_popen_cmd(const char *command, const char *mode)
312 {
313 FILE *stdio_file;
314 QEMUFileStdio *s;
315
316 stdio_file = popen(command, mode);
317 if (stdio_file == NULL) {
318 return NULL;
319 }
320
321 if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) {
322 fprintf(stderr, "qemu_popen: Argument validity check failed\n");
323 return NULL;
324 }
325
326 s = g_malloc0(sizeof(QEMUFileStdio));
327
328 s->stdio_file = stdio_file;
329
330 if(mode[0] == 'r') {
331 s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops);
332 } else {
333 s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops);
334 }
335 return s->file;
336 }
337
338 static const QEMUFileOps stdio_file_read_ops = {
339 .get_fd = stdio_get_fd,
340 .get_buffer = stdio_get_buffer,
341 .close = stdio_fclose
342 };
343
344 static const QEMUFileOps stdio_file_write_ops = {
345 .get_fd = stdio_get_fd,
346 .put_buffer = stdio_put_buffer,
347 .close = stdio_fclose
348 };
349
350 QEMUFile *qemu_fdopen(int fd, const char *mode)
351 {
352 QEMUFileStdio *s;
353
354 if (mode == NULL ||
355 (mode[0] != 'r' && mode[0] != 'w') ||
356 mode[1] != 'b' || mode[2] != 0) {
357 fprintf(stderr, "qemu_fdopen: Argument validity check failed\n");
358 return NULL;
359 }
360
361 s = g_malloc0(sizeof(QEMUFileStdio));
362 s->stdio_file = fdopen(fd, mode);
363 if (!s->stdio_file)
364 goto fail;
365
366 if(mode[0] == 'r') {
367 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
368 } else {
369 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
370 }
371 return s->file;
372
373 fail:
374 g_free(s);
375 return NULL;
376 }
377
378 static const QEMUFileOps socket_read_ops = {
379 .get_fd = socket_get_fd,
380 .get_buffer = socket_get_buffer,
381 .close = socket_close
382 };
383
384 static const QEMUFileOps socket_write_ops = {
385 .get_fd = socket_get_fd,
386 .put_buffer = socket_put_buffer,
387 .close = socket_close
388 };
389
390 QEMUFile *qemu_fopen_socket(int fd, const char *mode)
391 {
392 QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket));
393
394 if (mode == NULL ||
395 (mode[0] != 'r' && mode[0] != 'w') ||
396 mode[1] != 'b' || mode[2] != 0) {
397 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
398 return NULL;
399 }
400
401 s->fd = fd;
402 if (mode[0] == 'w') {
403 socket_set_block(s->fd);
404 s->file = qemu_fopen_ops(s, &socket_write_ops);
405 } else {
406 s->file = qemu_fopen_ops(s, &socket_read_ops);
407 }
408 return s->file;
409 }
410
411 QEMUFile *qemu_fopen(const char *filename, const char *mode)
412 {
413 QEMUFileStdio *s;
414
415 if (mode == NULL ||
416 (mode[0] != 'r' && mode[0] != 'w') ||
417 mode[1] != 'b' || mode[2] != 0) {
418 fprintf(stderr, "qemu_fopen: Argument validity check failed\n");
419 return NULL;
420 }
421
422 s = g_malloc0(sizeof(QEMUFileStdio));
423
424 s->stdio_file = fopen(filename, mode);
425 if (!s->stdio_file)
426 goto fail;
427
428 if(mode[0] == 'w') {
429 s->file = qemu_fopen_ops(s, &stdio_file_write_ops);
430 } else {
431 s->file = qemu_fopen_ops(s, &stdio_file_read_ops);
432 }
433 return s->file;
434 fail:
435 g_free(s);
436 return NULL;
437 }
438
439 static int block_put_buffer(void *opaque, const uint8_t *buf,
440 int64_t pos, int size)
441 {
442 bdrv_save_vmstate(opaque, buf, pos, size);
443 return size;
444 }
445
446 static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
447 {
448 return bdrv_load_vmstate(opaque, buf, pos, size);
449 }
450
451 static int bdrv_fclose(void *opaque)
452 {
453 return bdrv_flush(opaque);
454 }
455
456 static const QEMUFileOps bdrv_read_ops = {
457 .get_buffer = block_get_buffer,
458 .close = bdrv_fclose
459 };
460
461 static const QEMUFileOps bdrv_write_ops = {
462 .put_buffer = block_put_buffer,
463 .close = bdrv_fclose
464 };
465
466 static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable)
467 {
468 if (is_writable)
469 return qemu_fopen_ops(bs, &bdrv_write_ops);
470 return qemu_fopen_ops(bs, &bdrv_read_ops);
471 }
472
473 QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops)
474 {
475 QEMUFile *f;
476
477 f = g_malloc0(sizeof(QEMUFile));
478
479 f->opaque = opaque;
480 f->ops = ops;
481 f->is_write = 0;
482
483 return f;
484 }
485
486 int qemu_file_get_error(QEMUFile *f)
487 {
488 return f->last_error;
489 }
490
491 static void qemu_file_set_error(QEMUFile *f, int ret)
492 {
493 if (f->last_error == 0) {
494 f->last_error = ret;
495 }
496 }
497
498 /** Flushes QEMUFile buffer
499 *
500 */
501 static void qemu_fflush(QEMUFile *f)
502 {
503 int ret = 0;
504
505 if (!f->ops->put_buffer) {
506 return;
507 }
508 if (f->is_write && f->buf_index > 0) {
509 ret = f->ops->put_buffer(f->opaque, f->buf, f->pos, f->buf_index);
510 if (ret >= 0) {
511 f->pos += f->buf_index;
512 }
513 f->buf_index = 0;
514 }
515 if (ret < 0) {
516 qemu_file_set_error(f, ret);
517 }
518 }
519
520 static void qemu_fill_buffer(QEMUFile *f)
521 {
522 int len;
523 int pending;
524
525 if (!f->ops->get_buffer)
526 return;
527
528 if (f->is_write)
529 abort();
530
531 pending = f->buf_size - f->buf_index;
532 if (pending > 0) {
533 memmove(f->buf, f->buf + f->buf_index, pending);
534 }
535 f->buf_index = 0;
536 f->buf_size = pending;
537
538 len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos,
539 IO_BUF_SIZE - pending);
540 if (len > 0) {
541 f->buf_size += len;
542 f->pos += len;
543 } else if (len == 0) {
544 qemu_file_set_error(f, -EIO);
545 } else if (len != -EAGAIN)
546 qemu_file_set_error(f, len);
547 }
548
549 int qemu_get_fd(QEMUFile *f)
550 {
551 if (f->ops->get_fd) {
552 return f->ops->get_fd(f->opaque);
553 }
554 return -1;
555 }
556
557 /** Closes the file
558 *
559 * Returns negative error value if any error happened on previous operations or
560 * while closing the file. Returns 0 or positive number on success.
561 *
562 * The meaning of return value on success depends on the specific backend
563 * being used.
564 */
565 int qemu_fclose(QEMUFile *f)
566 {
567 int ret;
568 qemu_fflush(f);
569 ret = qemu_file_get_error(f);
570
571 if (f->ops->close) {
572 int ret2 = f->ops->close(f->opaque);
573 if (ret >= 0) {
574 ret = ret2;
575 }
576 }
577 /* If any error was spotted before closing, we should report it
578 * instead of the close() return value.
579 */
580 if (f->last_error) {
581 ret = f->last_error;
582 }
583 g_free(f);
584 return ret;
585 }
586
587 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
588 {
589 int l;
590
591 if (f->last_error) {
592 return;
593 }
594
595 if (f->is_write == 0 && f->buf_index > 0) {
596 fprintf(stderr,
597 "Attempted to write to buffer while read buffer is not empty\n");
598 abort();
599 }
600
601 while (size > 0) {
602 l = IO_BUF_SIZE - f->buf_index;
603 if (l > size)
604 l = size;
605 memcpy(f->buf + f->buf_index, buf, l);
606 f->is_write = 1;
607 f->buf_index += l;
608 buf += l;
609 size -= l;
610 if (f->buf_index >= IO_BUF_SIZE) {
611 qemu_fflush(f);
612 if (qemu_file_get_error(f)) {
613 break;
614 }
615 }
616 }
617 }
618
619 void qemu_put_byte(QEMUFile *f, int v)
620 {
621 if (f->last_error) {
622 return;
623 }
624
625 if (f->is_write == 0 && f->buf_index > 0) {
626 fprintf(stderr,
627 "Attempted to write to buffer while read buffer is not empty\n");
628 abort();
629 }
630
631 f->buf[f->buf_index++] = v;
632 f->is_write = 1;
633 if (f->buf_index >= IO_BUF_SIZE) {
634 qemu_fflush(f);
635 }
636 }
637
638 static void qemu_file_skip(QEMUFile *f, int size)
639 {
640 if (f->buf_index + size <= f->buf_size) {
641 f->buf_index += size;
642 }
643 }
644
645 static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset)
646 {
647 int pending;
648 int index;
649
650 if (f->is_write) {
651 abort();
652 }
653
654 index = f->buf_index + offset;
655 pending = f->buf_size - index;
656 if (pending < size) {
657 qemu_fill_buffer(f);
658 index = f->buf_index + offset;
659 pending = f->buf_size - index;
660 }
661
662 if (pending <= 0) {
663 return 0;
664 }
665 if (size > pending) {
666 size = pending;
667 }
668
669 memcpy(buf, f->buf + index, size);
670 return size;
671 }
672
673 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
674 {
675 int pending = size;
676 int done = 0;
677
678 while (pending > 0) {
679 int res;
680
681 res = qemu_peek_buffer(f, buf, pending, 0);
682 if (res == 0) {
683 return done;
684 }
685 qemu_file_skip(f, res);
686 buf += res;
687 pending -= res;
688 done += res;
689 }
690 return done;
691 }
692
693 static int qemu_peek_byte(QEMUFile *f, int offset)
694 {
695 int index = f->buf_index + offset;
696
697 if (f->is_write) {
698 abort();
699 }
700
701 if (index >= f->buf_size) {
702 qemu_fill_buffer(f);
703 index = f->buf_index + offset;
704 if (index >= f->buf_size) {
705 return 0;
706 }
707 }
708 return f->buf[index];
709 }
710
711 int qemu_get_byte(QEMUFile *f)
712 {
713 int result;
714
715 result = qemu_peek_byte(f, 0);
716 qemu_file_skip(f, 1);
717 return result;
718 }
719
720 int64_t qemu_ftell(QEMUFile *f)
721 {
722 qemu_fflush(f);
723 return f->pos;
724 }
725
726 int qemu_file_rate_limit(QEMUFile *f)
727 {
728 if (f->ops->rate_limit)
729 return f->ops->rate_limit(f->opaque);
730
731 return 0;
732 }
733
734 int64_t qemu_file_get_rate_limit(QEMUFile *f)
735 {
736 if (f->ops->get_rate_limit)
737 return f->ops->get_rate_limit(f->opaque);
738
739 return 0;
740 }
741
742 int64_t qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate)
743 {
744 /* any failed or completed migration keeps its state to allow probing of
745 * migration data, but has no associated file anymore */
746 if (f && f->ops->set_rate_limit)
747 return f->ops->set_rate_limit(f->opaque, new_rate);
748
749 return 0;
750 }
751
752 void qemu_put_be16(QEMUFile *f, unsigned int v)
753 {
754 qemu_put_byte(f, v >> 8);
755 qemu_put_byte(f, v);
756 }
757
758 void qemu_put_be32(QEMUFile *f, unsigned int v)
759 {
760 qemu_put_byte(f, v >> 24);
761 qemu_put_byte(f, v >> 16);
762 qemu_put_byte(f, v >> 8);
763 qemu_put_byte(f, v);
764 }
765
766 void qemu_put_be64(QEMUFile *f, uint64_t v)
767 {
768 qemu_put_be32(f, v >> 32);
769 qemu_put_be32(f, v);
770 }
771
772 unsigned int qemu_get_be16(QEMUFile *f)
773 {
774 unsigned int v;
775 v = qemu_get_byte(f) << 8;
776 v |= qemu_get_byte(f);
777 return v;
778 }
779
780 unsigned int qemu_get_be32(QEMUFile *f)
781 {
782 unsigned int v;
783 v = qemu_get_byte(f) << 24;
784 v |= qemu_get_byte(f) << 16;
785 v |= qemu_get_byte(f) << 8;
786 v |= qemu_get_byte(f);
787 return v;
788 }
789
790 uint64_t qemu_get_be64(QEMUFile *f)
791 {
792 uint64_t v;
793 v = (uint64_t)qemu_get_be32(f) << 32;
794 v |= qemu_get_be32(f);
795 return v;
796 }
797
798
799 /* timer */
800
801 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
802 {
803 uint64_t expire_time;
804
805 expire_time = qemu_timer_expire_time_ns(ts);
806 qemu_put_be64(f, expire_time);
807 }
808
809 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
810 {
811 uint64_t expire_time;
812
813 expire_time = qemu_get_be64(f);
814 if (expire_time != -1) {
815 qemu_mod_timer_ns(ts, expire_time);
816 } else {
817 qemu_del_timer(ts);
818 }
819 }
820
821
822 /* bool */
823
824 static int get_bool(QEMUFile *f, void *pv, size_t size)
825 {
826 bool *v = pv;
827 *v = qemu_get_byte(f);
828 return 0;
829 }
830
831 static void put_bool(QEMUFile *f, void *pv, size_t size)
832 {
833 bool *v = pv;
834 qemu_put_byte(f, *v);
835 }
836
837 const VMStateInfo vmstate_info_bool = {
838 .name = "bool",
839 .get = get_bool,
840 .put = put_bool,
841 };
842
843 /* 8 bit int */
844
845 static int get_int8(QEMUFile *f, void *pv, size_t size)
846 {
847 int8_t *v = pv;
848 qemu_get_s8s(f, v);
849 return 0;
850 }
851
852 static void put_int8(QEMUFile *f, void *pv, size_t size)
853 {
854 int8_t *v = pv;
855 qemu_put_s8s(f, v);
856 }
857
858 const VMStateInfo vmstate_info_int8 = {
859 .name = "int8",
860 .get = get_int8,
861 .put = put_int8,
862 };
863
864 /* 16 bit int */
865
866 static int get_int16(QEMUFile *f, void *pv, size_t size)
867 {
868 int16_t *v = pv;
869 qemu_get_sbe16s(f, v);
870 return 0;
871 }
872
873 static void put_int16(QEMUFile *f, void *pv, size_t size)
874 {
875 int16_t *v = pv;
876 qemu_put_sbe16s(f, v);
877 }
878
879 const VMStateInfo vmstate_info_int16 = {
880 .name = "int16",
881 .get = get_int16,
882 .put = put_int16,
883 };
884
885 /* 32 bit int */
886
887 static int get_int32(QEMUFile *f, void *pv, size_t size)
888 {
889 int32_t *v = pv;
890 qemu_get_sbe32s(f, v);
891 return 0;
892 }
893
894 static void put_int32(QEMUFile *f, void *pv, size_t size)
895 {
896 int32_t *v = pv;
897 qemu_put_sbe32s(f, v);
898 }
899
900 const VMStateInfo vmstate_info_int32 = {
901 .name = "int32",
902 .get = get_int32,
903 .put = put_int32,
904 };
905
906 /* 32 bit int. See that the received value is the same than the one
907 in the field */
908
909 static int get_int32_equal(QEMUFile *f, void *pv, size_t size)
910 {
911 int32_t *v = pv;
912 int32_t v2;
913 qemu_get_sbe32s(f, &v2);
914
915 if (*v == v2)
916 return 0;
917 return -EINVAL;
918 }
919
920 const VMStateInfo vmstate_info_int32_equal = {
921 .name = "int32 equal",
922 .get = get_int32_equal,
923 .put = put_int32,
924 };
925
926 /* 32 bit int. See that the received value is the less or the same
927 than the one in the field */
928
929 static int get_int32_le(QEMUFile *f, void *pv, size_t size)
930 {
931 int32_t *old = pv;
932 int32_t new;
933 qemu_get_sbe32s(f, &new);
934
935 if (*old <= new)
936 return 0;
937 return -EINVAL;
938 }
939
940 const VMStateInfo vmstate_info_int32_le = {
941 .name = "int32 equal",
942 .get = get_int32_le,
943 .put = put_int32,
944 };
945
946 /* 64 bit int */
947
948 static int get_int64(QEMUFile *f, void *pv, size_t size)
949 {
950 int64_t *v = pv;
951 qemu_get_sbe64s(f, v);
952 return 0;
953 }
954
955 static void put_int64(QEMUFile *f, void *pv, size_t size)
956 {
957 int64_t *v = pv;
958 qemu_put_sbe64s(f, v);
959 }
960
961 const VMStateInfo vmstate_info_int64 = {
962 .name = "int64",
963 .get = get_int64,
964 .put = put_int64,
965 };
966
967 /* 8 bit unsigned int */
968
969 static int get_uint8(QEMUFile *f, void *pv, size_t size)
970 {
971 uint8_t *v = pv;
972 qemu_get_8s(f, v);
973 return 0;
974 }
975
976 static void put_uint8(QEMUFile *f, void *pv, size_t size)
977 {
978 uint8_t *v = pv;
979 qemu_put_8s(f, v);
980 }
981
982 const VMStateInfo vmstate_info_uint8 = {
983 .name = "uint8",
984 .get = get_uint8,
985 .put = put_uint8,
986 };
987
988 /* 16 bit unsigned int */
989
990 static int get_uint16(QEMUFile *f, void *pv, size_t size)
991 {
992 uint16_t *v = pv;
993 qemu_get_be16s(f, v);
994 return 0;
995 }
996
997 static void put_uint16(QEMUFile *f, void *pv, size_t size)
998 {
999 uint16_t *v = pv;
1000 qemu_put_be16s(f, v);
1001 }
1002
1003 const VMStateInfo vmstate_info_uint16 = {
1004 .name = "uint16",
1005 .get = get_uint16,
1006 .put = put_uint16,
1007 };
1008
1009 /* 32 bit unsigned int */
1010
1011 static int get_uint32(QEMUFile *f, void *pv, size_t size)
1012 {
1013 uint32_t *v = pv;
1014 qemu_get_be32s(f, v);
1015 return 0;
1016 }
1017
1018 static void put_uint32(QEMUFile *f, void *pv, size_t size)
1019 {
1020 uint32_t *v = pv;
1021 qemu_put_be32s(f, v);
1022 }
1023
1024 const VMStateInfo vmstate_info_uint32 = {
1025 .name = "uint32",
1026 .get = get_uint32,
1027 .put = put_uint32,
1028 };
1029
1030 /* 32 bit uint. See that the received value is the same than the one
1031 in the field */
1032
1033 static int get_uint32_equal(QEMUFile *f, void *pv, size_t size)
1034 {
1035 uint32_t *v = pv;
1036 uint32_t v2;
1037 qemu_get_be32s(f, &v2);
1038
1039 if (*v == v2) {
1040 return 0;
1041 }
1042 return -EINVAL;
1043 }
1044
1045 const VMStateInfo vmstate_info_uint32_equal = {
1046 .name = "uint32 equal",
1047 .get = get_uint32_equal,
1048 .put = put_uint32,
1049 };
1050
1051 /* 64 bit unsigned int */
1052
1053 static int get_uint64(QEMUFile *f, void *pv, size_t size)
1054 {
1055 uint64_t *v = pv;
1056 qemu_get_be64s(f, v);
1057 return 0;
1058 }
1059
1060 static void put_uint64(QEMUFile *f, void *pv, size_t size)
1061 {
1062 uint64_t *v = pv;
1063 qemu_put_be64s(f, v);
1064 }
1065
1066 const VMStateInfo vmstate_info_uint64 = {
1067 .name = "uint64",
1068 .get = get_uint64,
1069 .put = put_uint64,
1070 };
1071
1072 /* 8 bit int. See that the received value is the same than the one
1073 in the field */
1074
1075 static int get_uint8_equal(QEMUFile *f, void *pv, size_t size)
1076 {
1077 uint8_t *v = pv;
1078 uint8_t v2;
1079 qemu_get_8s(f, &v2);
1080
1081 if (*v == v2)
1082 return 0;
1083 return -EINVAL;
1084 }
1085
1086 const VMStateInfo vmstate_info_uint8_equal = {
1087 .name = "uint8 equal",
1088 .get = get_uint8_equal,
1089 .put = put_uint8,
1090 };
1091
1092 /* 16 bit unsigned int int. See that the received value is the same than the one
1093 in the field */
1094
1095 static int get_uint16_equal(QEMUFile *f, void *pv, size_t size)
1096 {
1097 uint16_t *v = pv;
1098 uint16_t v2;
1099 qemu_get_be16s(f, &v2);
1100
1101 if (*v == v2)
1102 return 0;
1103 return -EINVAL;
1104 }
1105
1106 const VMStateInfo vmstate_info_uint16_equal = {
1107 .name = "uint16 equal",
1108 .get = get_uint16_equal,
1109 .put = put_uint16,
1110 };
1111
1112 /* timers */
1113
1114 static int get_timer(QEMUFile *f, void *pv, size_t size)
1115 {
1116 QEMUTimer *v = pv;
1117 qemu_get_timer(f, v);
1118 return 0;
1119 }
1120
1121 static void put_timer(QEMUFile *f, void *pv, size_t size)
1122 {
1123 QEMUTimer *v = pv;
1124 qemu_put_timer(f, v);
1125 }
1126
1127 const VMStateInfo vmstate_info_timer = {
1128 .name = "timer",
1129 .get = get_timer,
1130 .put = put_timer,
1131 };
1132
1133 /* uint8_t buffers */
1134
1135 static int get_buffer(QEMUFile *f, void *pv, size_t size)
1136 {
1137 uint8_t *v = pv;
1138 qemu_get_buffer(f, v, size);
1139 return 0;
1140 }
1141
1142 static void put_buffer(QEMUFile *f, void *pv, size_t size)
1143 {
1144 uint8_t *v = pv;
1145 qemu_put_buffer(f, v, size);
1146 }
1147
1148 const VMStateInfo vmstate_info_buffer = {
1149 .name = "buffer",
1150 .get = get_buffer,
1151 .put = put_buffer,
1152 };
1153
1154 /* unused buffers: space that was used for some fields that are
1155 not useful anymore */
1156
1157 static int get_unused_buffer(QEMUFile *f, void *pv, size_t size)
1158 {
1159 uint8_t buf[1024];
1160 int block_len;
1161
1162 while (size > 0) {
1163 block_len = MIN(sizeof(buf), size);
1164 size -= block_len;
1165 qemu_get_buffer(f, buf, block_len);
1166 }
1167 return 0;
1168 }
1169
1170 static void put_unused_buffer(QEMUFile *f, void *pv, size_t size)
1171 {
1172 static const uint8_t buf[1024];
1173 int block_len;
1174
1175 while (size > 0) {
1176 block_len = MIN(sizeof(buf), size);
1177 size -= block_len;
1178 qemu_put_buffer(f, buf, block_len);
1179 }
1180 }
1181
1182 const VMStateInfo vmstate_info_unused_buffer = {
1183 .name = "unused_buffer",
1184 .get = get_unused_buffer,
1185 .put = put_unused_buffer,
1186 };
1187
1188 /* bitmaps (as defined by bitmap.h). Note that size here is the size
1189 * of the bitmap in bits. The on-the-wire format of a bitmap is 64
1190 * bit words with the bits in big endian order. The in-memory format
1191 * is an array of 'unsigned long', which may be either 32 or 64 bits.
1192 */
1193 /* This is the number of 64 bit words sent over the wire */
1194 #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
1195 static int get_bitmap(QEMUFile *f, void *pv, size_t size)
1196 {
1197 unsigned long *bmp = pv;
1198 int i, idx = 0;
1199 for (i = 0; i < BITS_TO_U64S(size); i++) {
1200 uint64_t w = qemu_get_be64(f);
1201 bmp[idx++] = w;
1202 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1203 bmp[idx++] = w >> 32;
1204 }
1205 }
1206 return 0;
1207 }
1208
1209 static void put_bitmap(QEMUFile *f, void *pv, size_t size)
1210 {
1211 unsigned long *bmp = pv;
1212 int i, idx = 0;
1213 for (i = 0; i < BITS_TO_U64S(size); i++) {
1214 uint64_t w = bmp[idx++];
1215 if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
1216 w |= ((uint64_t)bmp[idx++]) << 32;
1217 }
1218 qemu_put_be64(f, w);
1219 }
1220 }
1221
1222 const VMStateInfo vmstate_info_bitmap = {
1223 .name = "bitmap",
1224 .get = get_bitmap,
1225 .put = put_bitmap,
1226 };
1227
1228 typedef struct CompatEntry {
1229 char idstr[256];
1230 int instance_id;
1231 } CompatEntry;
1232
1233 typedef struct SaveStateEntry {
1234 QTAILQ_ENTRY(SaveStateEntry) entry;
1235 char idstr[256];
1236 int instance_id;
1237 int alias_id;
1238 int version_id;
1239 int section_id;
1240 SaveVMHandlers *ops;
1241 const VMStateDescription *vmsd;
1242 void *opaque;
1243 CompatEntry *compat;
1244 int no_migrate;
1245 int is_ram;
1246 } SaveStateEntry;
1247
1248
1249 static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers =
1250 QTAILQ_HEAD_INITIALIZER(savevm_handlers);
1251 static int global_section_id;
1252
1253 static int calculate_new_instance_id(const char *idstr)
1254 {
1255 SaveStateEntry *se;
1256 int instance_id = 0;
1257
1258 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1259 if (strcmp(idstr, se->idstr) == 0
1260 && instance_id <= se->instance_id) {
1261 instance_id = se->instance_id + 1;
1262 }
1263 }
1264 return instance_id;
1265 }
1266
1267 static int calculate_compat_instance_id(const char *idstr)
1268 {
1269 SaveStateEntry *se;
1270 int instance_id = 0;
1271
1272 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1273 if (!se->compat)
1274 continue;
1275
1276 if (strcmp(idstr, se->compat->idstr) == 0
1277 && instance_id <= se->compat->instance_id) {
1278 instance_id = se->compat->instance_id + 1;
1279 }
1280 }
1281 return instance_id;
1282 }
1283
1284 /* TODO: Individual devices generally have very little idea about the rest
1285 of the system, so instance_id should be removed/replaced.
1286 Meanwhile pass -1 as instance_id if you do not already have a clearly
1287 distinguishing id for all instances of your device class. */
1288 int register_savevm_live(DeviceState *dev,
1289 const char *idstr,
1290 int instance_id,
1291 int version_id,
1292 SaveVMHandlers *ops,
1293 void *opaque)
1294 {
1295 SaveStateEntry *se;
1296
1297 se = g_malloc0(sizeof(SaveStateEntry));
1298 se->version_id = version_id;
1299 se->section_id = global_section_id++;
1300 se->ops = ops;
1301 se->opaque = opaque;
1302 se->vmsd = NULL;
1303 se->no_migrate = 0;
1304 /* if this is a live_savem then set is_ram */
1305 if (ops->save_live_setup != NULL) {
1306 se->is_ram = 1;
1307 }
1308
1309 if (dev) {
1310 char *id = qdev_get_dev_path(dev);
1311 if (id) {
1312 pstrcpy(se->idstr, sizeof(se->idstr), id);
1313 pstrcat(se->idstr, sizeof(se->idstr), "/");
1314 g_free(id);
1315
1316 se->compat = g_malloc0(sizeof(CompatEntry));
1317 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr);
1318 se->compat->instance_id = instance_id == -1 ?
1319 calculate_compat_instance_id(idstr) : instance_id;
1320 instance_id = -1;
1321 }
1322 }
1323 pstrcat(se->idstr, sizeof(se->idstr), idstr);
1324
1325 if (instance_id == -1) {
1326 se->instance_id = calculate_new_instance_id(se->idstr);
1327 } else {
1328 se->instance_id = instance_id;
1329 }
1330 assert(!se->compat || se->instance_id == 0);
1331 /* add at the end of list */
1332 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1333 return 0;
1334 }
1335
1336 int register_savevm(DeviceState *dev,
1337 const char *idstr,
1338 int instance_id,
1339 int version_id,
1340 SaveStateHandler *save_state,
1341 LoadStateHandler *load_state,
1342 void *opaque)
1343 {
1344 SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers));
1345 ops->save_state = save_state;
1346 ops->load_state = load_state;
1347 return register_savevm_live(dev, idstr, instance_id, version_id,
1348 ops, opaque);
1349 }
1350
1351 void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque)
1352 {
1353 SaveStateEntry *se, *new_se;
1354 char id[256] = "";
1355
1356 if (dev) {
1357 char *path = qdev_get_dev_path(dev);
1358 if (path) {
1359 pstrcpy(id, sizeof(id), path);
1360 pstrcat(id, sizeof(id), "/");
1361 g_free(path);
1362 }
1363 }
1364 pstrcat(id, sizeof(id), idstr);
1365
1366 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1367 if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) {
1368 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1369 if (se->compat) {
1370 g_free(se->compat);
1371 }
1372 g_free(se->ops);
1373 g_free(se);
1374 }
1375 }
1376 }
1377
1378 int vmstate_register_with_alias_id(DeviceState *dev, int instance_id,
1379 const VMStateDescription *vmsd,
1380 void *opaque, int alias_id,
1381 int required_for_version)
1382 {
1383 SaveStateEntry *se;
1384
1385 /* If this triggers, alias support can be dropped for the vmsd. */
1386 assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id);
1387
1388 se = g_malloc0(sizeof(SaveStateEntry));
1389 se->version_id = vmsd->version_id;
1390 se->section_id = global_section_id++;
1391 se->opaque = opaque;
1392 se->vmsd = vmsd;
1393 se->alias_id = alias_id;
1394 se->no_migrate = vmsd->unmigratable;
1395
1396 if (dev) {
1397 char *id = qdev_get_dev_path(dev);
1398 if (id) {
1399 pstrcpy(se->idstr, sizeof(se->idstr), id);
1400 pstrcat(se->idstr, sizeof(se->idstr), "/");
1401 g_free(id);
1402
1403 se->compat = g_malloc0(sizeof(CompatEntry));
1404 pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name);
1405 se->compat->instance_id = instance_id == -1 ?
1406 calculate_compat_instance_id(vmsd->name) : instance_id;
1407 instance_id = -1;
1408 }
1409 }
1410 pstrcat(se->idstr, sizeof(se->idstr), vmsd->name);
1411
1412 if (instance_id == -1) {
1413 se->instance_id = calculate_new_instance_id(se->idstr);
1414 } else {
1415 se->instance_id = instance_id;
1416 }
1417 assert(!se->compat || se->instance_id == 0);
1418 /* add at the end of list */
1419 QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry);
1420 return 0;
1421 }
1422
1423 int vmstate_register(DeviceState *dev, int instance_id,
1424 const VMStateDescription *vmsd, void *opaque)
1425 {
1426 return vmstate_register_with_alias_id(dev, instance_id, vmsd,
1427 opaque, -1, 0);
1428 }
1429
1430 void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd,
1431 void *opaque)
1432 {
1433 SaveStateEntry *se, *new_se;
1434
1435 QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) {
1436 if (se->vmsd == vmsd && se->opaque == opaque) {
1437 QTAILQ_REMOVE(&savevm_handlers, se, entry);
1438 if (se->compat) {
1439 g_free(se->compat);
1440 }
1441 g_free(se);
1442 }
1443 }
1444 }
1445
1446 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1447 void *opaque);
1448 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1449 void *opaque);
1450
1451 int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd,
1452 void *opaque, int version_id)
1453 {
1454 VMStateField *field = vmsd->fields;
1455 int ret;
1456
1457 if (version_id > vmsd->version_id) {
1458 return -EINVAL;
1459 }
1460 if (version_id < vmsd->minimum_version_id_old) {
1461 return -EINVAL;
1462 }
1463 if (version_id < vmsd->minimum_version_id) {
1464 return vmsd->load_state_old(f, opaque, version_id);
1465 }
1466 if (vmsd->pre_load) {
1467 int ret = vmsd->pre_load(opaque);
1468 if (ret)
1469 return ret;
1470 }
1471 while(field->name) {
1472 if ((field->field_exists &&
1473 field->field_exists(opaque, version_id)) ||
1474 (!field->field_exists &&
1475 field->version_id <= version_id)) {
1476 void *base_addr = opaque + field->offset;
1477 int i, n_elems = 1;
1478 int size = field->size;
1479
1480 if (field->flags & VMS_VBUFFER) {
1481 size = *(int32_t *)(opaque+field->size_offset);
1482 if (field->flags & VMS_MULTIPLY) {
1483 size *= field->size;
1484 }
1485 }
1486 if (field->flags & VMS_ARRAY) {
1487 n_elems = field->num;
1488 } else if (field->flags & VMS_VARRAY_INT32) {
1489 n_elems = *(int32_t *)(opaque+field->num_offset);
1490 } else if (field->flags & VMS_VARRAY_UINT32) {
1491 n_elems = *(uint32_t *)(opaque+field->num_offset);
1492 } else if (field->flags & VMS_VARRAY_UINT16) {
1493 n_elems = *(uint16_t *)(opaque+field->num_offset);
1494 } else if (field->flags & VMS_VARRAY_UINT8) {
1495 n_elems = *(uint8_t *)(opaque+field->num_offset);
1496 }
1497 if (field->flags & VMS_POINTER) {
1498 base_addr = *(void **)base_addr + field->start;
1499 }
1500 for (i = 0; i < n_elems; i++) {
1501 void *addr = base_addr + size * i;
1502
1503 if (field->flags & VMS_ARRAY_OF_POINTER) {
1504 addr = *(void **)addr;
1505 }
1506 if (field->flags & VMS_STRUCT) {
1507 ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id);
1508 } else {
1509 ret = field->info->get(f, addr, size);
1510
1511 }
1512 if (ret < 0) {
1513 return ret;
1514 }
1515 }
1516 }
1517 field++;
1518 }
1519 ret = vmstate_subsection_load(f, vmsd, opaque);
1520 if (ret != 0) {
1521 return ret;
1522 }
1523 if (vmsd->post_load) {
1524 return vmsd->post_load(opaque, version_id);
1525 }
1526 return 0;
1527 }
1528
1529 void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd,
1530 void *opaque)
1531 {
1532 VMStateField *field = vmsd->fields;
1533
1534 if (vmsd->pre_save) {
1535 vmsd->pre_save(opaque);
1536 }
1537 while(field->name) {
1538 if (!field->field_exists ||
1539 field->field_exists(opaque, vmsd->version_id)) {
1540 void *base_addr = opaque + field->offset;
1541 int i, n_elems = 1;
1542 int size = field->size;
1543
1544 if (field->flags & VMS_VBUFFER) {
1545 size = *(int32_t *)(opaque+field->size_offset);
1546 if (field->flags & VMS_MULTIPLY) {
1547 size *= field->size;
1548 }
1549 }
1550 if (field->flags & VMS_ARRAY) {
1551 n_elems = field->num;
1552 } else if (field->flags & VMS_VARRAY_INT32) {
1553 n_elems = *(int32_t *)(opaque+field->num_offset);
1554 } else if (field->flags & VMS_VARRAY_UINT32) {
1555 n_elems = *(uint32_t *)(opaque+field->num_offset);
1556 } else if (field->flags & VMS_VARRAY_UINT16) {
1557 n_elems = *(uint16_t *)(opaque+field->num_offset);
1558 } else if (field->flags & VMS_VARRAY_UINT8) {
1559 n_elems = *(uint8_t *)(opaque+field->num_offset);
1560 }
1561 if (field->flags & VMS_POINTER) {
1562 base_addr = *(void **)base_addr + field->start;
1563 }
1564 for (i = 0; i < n_elems; i++) {
1565 void *addr = base_addr + size * i;
1566
1567 if (field->flags & VMS_ARRAY_OF_POINTER) {
1568 addr = *(void **)addr;
1569 }
1570 if (field->flags & VMS_STRUCT) {
1571 vmstate_save_state(f, field->vmsd, addr);
1572 } else {
1573 field->info->put(f, addr, size);
1574 }
1575 }
1576 }
1577 field++;
1578 }
1579 vmstate_subsection_save(f, vmsd, opaque);
1580 }
1581
1582 static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id)
1583 {
1584 if (!se->vmsd) { /* Old style */
1585 return se->ops->load_state(f, se->opaque, version_id);
1586 }
1587 return vmstate_load_state(f, se->vmsd, se->opaque, version_id);
1588 }
1589
1590 static void vmstate_save(QEMUFile *f, SaveStateEntry *se)
1591 {
1592 if (!se->vmsd) { /* Old style */
1593 se->ops->save_state(f, se->opaque);
1594 return;
1595 }
1596 vmstate_save_state(f,se->vmsd, se->opaque);
1597 }
1598
1599 #define QEMU_VM_FILE_MAGIC 0x5145564d
1600 #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002
1601 #define QEMU_VM_FILE_VERSION 0x00000003
1602
1603 #define QEMU_VM_EOF 0x00
1604 #define QEMU_VM_SECTION_START 0x01
1605 #define QEMU_VM_SECTION_PART 0x02
1606 #define QEMU_VM_SECTION_END 0x03
1607 #define QEMU_VM_SECTION_FULL 0x04
1608 #define QEMU_VM_SUBSECTION 0x05
1609
1610 bool qemu_savevm_state_blocked(Error **errp)
1611 {
1612 SaveStateEntry *se;
1613
1614 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1615 if (se->no_migrate) {
1616 error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr);
1617 return true;
1618 }
1619 }
1620 return false;
1621 }
1622
1623 void qemu_savevm_state_begin(QEMUFile *f,
1624 const MigrationParams *params)
1625 {
1626 SaveStateEntry *se;
1627 int ret;
1628
1629 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1630 if (!se->ops || !se->ops->set_params) {
1631 continue;
1632 }
1633 se->ops->set_params(params, se->opaque);
1634 }
1635
1636 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1637 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1638
1639 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1640 int len;
1641
1642 if (!se->ops || !se->ops->save_live_setup) {
1643 continue;
1644 }
1645 if (se->ops && se->ops->is_active) {
1646 if (!se->ops->is_active(se->opaque)) {
1647 continue;
1648 }
1649 }
1650 /* Section type */
1651 qemu_put_byte(f, QEMU_VM_SECTION_START);
1652 qemu_put_be32(f, se->section_id);
1653
1654 /* ID string */
1655 len = strlen(se->idstr);
1656 qemu_put_byte(f, len);
1657 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1658
1659 qemu_put_be32(f, se->instance_id);
1660 qemu_put_be32(f, se->version_id);
1661
1662 ret = se->ops->save_live_setup(f, se->opaque);
1663 if (ret < 0) {
1664 qemu_file_set_error(f, ret);
1665 break;
1666 }
1667 }
1668 }
1669
1670 /*
1671 * this function has three return values:
1672 * negative: there was one error, and we have -errno.
1673 * 0 : We haven't finished, caller have to go again
1674 * 1 : We have finished, we can go to complete phase
1675 */
1676 int qemu_savevm_state_iterate(QEMUFile *f)
1677 {
1678 SaveStateEntry *se;
1679 int ret = 1;
1680
1681 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1682 if (!se->ops || !se->ops->save_live_iterate) {
1683 continue;
1684 }
1685 if (se->ops && se->ops->is_active) {
1686 if (!se->ops->is_active(se->opaque)) {
1687 continue;
1688 }
1689 }
1690 if (qemu_file_rate_limit(f)) {
1691 return 0;
1692 }
1693 trace_savevm_section_start();
1694 /* Section type */
1695 qemu_put_byte(f, QEMU_VM_SECTION_PART);
1696 qemu_put_be32(f, se->section_id);
1697
1698 ret = se->ops->save_live_iterate(f, se->opaque);
1699 trace_savevm_section_end(se->section_id);
1700
1701 if (ret < 0) {
1702 qemu_file_set_error(f, ret);
1703 }
1704 if (ret <= 0) {
1705 /* Do not proceed to the next vmstate before this one reported
1706 completion of the current stage. This serializes the migration
1707 and reduces the probability that a faster changing state is
1708 synchronized over and over again. */
1709 break;
1710 }
1711 }
1712 return ret;
1713 }
1714
1715 void qemu_savevm_state_complete(QEMUFile *f)
1716 {
1717 SaveStateEntry *se;
1718 int ret;
1719
1720 cpu_synchronize_all_states();
1721
1722 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1723 if (!se->ops || !se->ops->save_live_complete) {
1724 continue;
1725 }
1726 if (se->ops && se->ops->is_active) {
1727 if (!se->ops->is_active(se->opaque)) {
1728 continue;
1729 }
1730 }
1731 trace_savevm_section_start();
1732 /* Section type */
1733 qemu_put_byte(f, QEMU_VM_SECTION_END);
1734 qemu_put_be32(f, se->section_id);
1735
1736 ret = se->ops->save_live_complete(f, se->opaque);
1737 trace_savevm_section_end(se->section_id);
1738 if (ret < 0) {
1739 qemu_file_set_error(f, ret);
1740 return;
1741 }
1742 }
1743
1744 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1745 int len;
1746
1747 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1748 continue;
1749 }
1750 trace_savevm_section_start();
1751 /* Section type */
1752 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1753 qemu_put_be32(f, se->section_id);
1754
1755 /* ID string */
1756 len = strlen(se->idstr);
1757 qemu_put_byte(f, len);
1758 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1759
1760 qemu_put_be32(f, se->instance_id);
1761 qemu_put_be32(f, se->version_id);
1762
1763 vmstate_save(f, se);
1764 trace_savevm_section_end(se->section_id);
1765 }
1766
1767 qemu_put_byte(f, QEMU_VM_EOF);
1768 qemu_fflush(f);
1769 }
1770
1771 uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size)
1772 {
1773 SaveStateEntry *se;
1774 uint64_t ret = 0;
1775
1776 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1777 if (!se->ops || !se->ops->save_live_pending) {
1778 continue;
1779 }
1780 if (se->ops && se->ops->is_active) {
1781 if (!se->ops->is_active(se->opaque)) {
1782 continue;
1783 }
1784 }
1785 ret += se->ops->save_live_pending(f, se->opaque, max_size);
1786 }
1787 return ret;
1788 }
1789
1790 void qemu_savevm_state_cancel(void)
1791 {
1792 SaveStateEntry *se;
1793
1794 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1795 if (se->ops && se->ops->cancel) {
1796 se->ops->cancel(se->opaque);
1797 }
1798 }
1799 }
1800
1801 static int qemu_savevm_state(QEMUFile *f)
1802 {
1803 int ret;
1804 MigrationParams params = {
1805 .blk = 0,
1806 .shared = 0
1807 };
1808
1809 if (qemu_savevm_state_blocked(NULL)) {
1810 return -EINVAL;
1811 }
1812
1813 qemu_mutex_unlock_iothread();
1814 qemu_savevm_state_begin(f, &params);
1815 qemu_mutex_lock_iothread();
1816
1817 while (qemu_file_get_error(f) == 0) {
1818 if (qemu_savevm_state_iterate(f) > 0) {
1819 break;
1820 }
1821 }
1822
1823 ret = qemu_file_get_error(f);
1824 if (ret == 0) {
1825 qemu_savevm_state_complete(f);
1826 ret = qemu_file_get_error(f);
1827 }
1828 if (ret != 0) {
1829 qemu_savevm_state_cancel();
1830 }
1831 return ret;
1832 }
1833
1834 static int qemu_save_device_state(QEMUFile *f)
1835 {
1836 SaveStateEntry *se;
1837
1838 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1839 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1840
1841 cpu_synchronize_all_states();
1842
1843 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1844 int len;
1845
1846 if (se->is_ram) {
1847 continue;
1848 }
1849 if ((!se->ops || !se->ops->save_state) && !se->vmsd) {
1850 continue;
1851 }
1852
1853 /* Section type */
1854 qemu_put_byte(f, QEMU_VM_SECTION_FULL);
1855 qemu_put_be32(f, se->section_id);
1856
1857 /* ID string */
1858 len = strlen(se->idstr);
1859 qemu_put_byte(f, len);
1860 qemu_put_buffer(f, (uint8_t *)se->idstr, len);
1861
1862 qemu_put_be32(f, se->instance_id);
1863 qemu_put_be32(f, se->version_id);
1864
1865 vmstate_save(f, se);
1866 }
1867
1868 qemu_put_byte(f, QEMU_VM_EOF);
1869
1870 return qemu_file_get_error(f);
1871 }
1872
1873 static SaveStateEntry *find_se(const char *idstr, int instance_id)
1874 {
1875 SaveStateEntry *se;
1876
1877 QTAILQ_FOREACH(se, &savevm_handlers, entry) {
1878 if (!strcmp(se->idstr, idstr) &&
1879 (instance_id == se->instance_id ||
1880 instance_id == se->alias_id))
1881 return se;
1882 /* Migrating from an older version? */
1883 if (strstr(se->idstr, idstr) && se->compat) {
1884 if (!strcmp(se->compat->idstr, idstr) &&
1885 (instance_id == se->compat->instance_id ||
1886 instance_id == se->alias_id))
1887 return se;
1888 }
1889 }
1890 return NULL;
1891 }
1892
1893 static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr)
1894 {
1895 while(sub && sub->needed) {
1896 if (strcmp(idstr, sub->vmsd->name) == 0) {
1897 return sub->vmsd;
1898 }
1899 sub++;
1900 }
1901 return NULL;
1902 }
1903
1904 static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd,
1905 void *opaque)
1906 {
1907 while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) {
1908 char idstr[256];
1909 int ret;
1910 uint8_t version_id, len, size;
1911 const VMStateDescription *sub_vmsd;
1912
1913 len = qemu_peek_byte(f, 1);
1914 if (len < strlen(vmsd->name) + 1) {
1915 /* subsection name has be be "section_name/a" */
1916 return 0;
1917 }
1918 size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2);
1919 if (size != len) {
1920 return 0;
1921 }
1922 idstr[size] = 0;
1923
1924 if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) {
1925 /* it don't have a valid subsection name */
1926 return 0;
1927 }
1928 sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr);
1929 if (sub_vmsd == NULL) {
1930 return -ENOENT;
1931 }
1932 qemu_file_skip(f, 1); /* subsection */
1933 qemu_file_skip(f, 1); /* len */
1934 qemu_file_skip(f, len); /* idstr */
1935 version_id = qemu_get_be32(f);
1936
1937 ret = vmstate_load_state(f, sub_vmsd, opaque, version_id);
1938 if (ret) {
1939 return ret;
1940 }
1941 }
1942 return 0;
1943 }
1944
1945 static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd,
1946 void *opaque)
1947 {
1948 const VMStateSubsection *sub = vmsd->subsections;
1949
1950 while (sub && sub->needed) {
1951 if (sub->needed(opaque)) {
1952 const VMStateDescription *vmsd = sub->vmsd;
1953 uint8_t len;
1954
1955 qemu_put_byte(f, QEMU_VM_SUBSECTION);
1956 len = strlen(vmsd->name);
1957 qemu_put_byte(f, len);
1958 qemu_put_buffer(f, (uint8_t *)vmsd->name, len);
1959 qemu_put_be32(f, vmsd->version_id);
1960 vmstate_save_state(f, vmsd, opaque);
1961 }
1962 sub++;
1963 }
1964 }
1965
1966 typedef struct LoadStateEntry {
1967 QLIST_ENTRY(LoadStateEntry) entry;
1968 SaveStateEntry *se;
1969 int section_id;
1970 int version_id;
1971 } LoadStateEntry;
1972
1973 int qemu_loadvm_state(QEMUFile *f)
1974 {
1975 QLIST_HEAD(, LoadStateEntry) loadvm_handlers =
1976 QLIST_HEAD_INITIALIZER(loadvm_handlers);
1977 LoadStateEntry *le, *new_le;
1978 uint8_t section_type;
1979 unsigned int v;
1980 int ret;
1981
1982 if (qemu_savevm_state_blocked(NULL)) {
1983 return -EINVAL;
1984 }
1985
1986 v = qemu_get_be32(f);
1987 if (v != QEMU_VM_FILE_MAGIC)
1988 return -EINVAL;
1989
1990 v = qemu_get_be32(f);
1991 if (v == QEMU_VM_FILE_VERSION_COMPAT) {
1992 fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n");
1993 return -ENOTSUP;
1994 }
1995 if (v != QEMU_VM_FILE_VERSION)
1996 return -ENOTSUP;
1997
1998 while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
1999 uint32_t instance_id, version_id, section_id;
2000 SaveStateEntry *se;
2001 char idstr[257];
2002 int len;
2003
2004 switch (section_type) {
2005 case QEMU_VM_SECTION_START:
2006 case QEMU_VM_SECTION_FULL:
2007 /* Read section start */
2008 section_id = qemu_get_be32(f);
2009 len = qemu_get_byte(f);
2010 qemu_get_buffer(f, (uint8_t *)idstr, len);
2011 idstr[len] = 0;
2012 instance_id = qemu_get_be32(f);
2013 version_id = qemu_get_be32(f);
2014
2015 /* Find savevm section */
2016 se = find_se(idstr, instance_id);
2017 if (se == NULL) {
2018 fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
2019 ret = -EINVAL;
2020 goto out;
2021 }
2022
2023 /* Validate version */
2024 if (version_id > se->version_id) {
2025 fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
2026 version_id, idstr, se->version_id);
2027 ret = -EINVAL;
2028 goto out;
2029 }
2030
2031 /* Add entry */
2032 le = g_malloc0(sizeof(*le));
2033
2034 le->se = se;
2035 le->section_id = section_id;
2036 le->version_id = version_id;
2037 QLIST_INSERT_HEAD(&loadvm_handlers, le, entry);
2038
2039 ret = vmstate_load(f, le->se, le->version_id);
2040 if (ret < 0) {
2041 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
2042 instance_id, idstr);
2043 goto out;
2044 }
2045 break;
2046 case QEMU_VM_SECTION_PART:
2047 case QEMU_VM_SECTION_END:
2048 section_id = qemu_get_be32(f);
2049
2050 QLIST_FOREACH(le, &loadvm_handlers, entry) {
2051 if (le->section_id == section_id) {
2052 break;
2053 }
2054 }
2055 if (le == NULL) {
2056 fprintf(stderr, "Unknown savevm section %d\n", section_id);
2057 ret = -EINVAL;
2058 goto out;
2059 }
2060
2061 ret = vmstate_load(f, le->se, le->version_id);
2062 if (ret < 0) {
2063 fprintf(stderr, "qemu: warning: error while loading state section id %d\n",
2064 section_id);
2065 goto out;
2066 }
2067 break;
2068 default:
2069 fprintf(stderr, "Unknown savevm section type %d\n", section_type);
2070 ret = -EINVAL;
2071 goto out;
2072 }
2073 }
2074
2075 cpu_synchronize_all_post_init();
2076
2077 ret = 0;
2078
2079 out:
2080 QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) {
2081 QLIST_REMOVE(le, entry);
2082 g_free(le);
2083 }
2084
2085 if (ret == 0) {
2086 ret = qemu_file_get_error(f);
2087 }
2088
2089 return ret;
2090 }
2091
2092 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
2093 const char *name)
2094 {
2095 QEMUSnapshotInfo *sn_tab, *sn;
2096 int nb_sns, i, ret;
2097
2098 ret = -ENOENT;
2099 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2100 if (nb_sns < 0)
2101 return ret;
2102 for(i = 0; i < nb_sns; i++) {
2103 sn = &sn_tab[i];
2104 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
2105 *sn_info = *sn;
2106 ret = 0;
2107 break;
2108 }
2109 }
2110 g_free(sn_tab);
2111 return ret;
2112 }
2113
2114 /*
2115 * Deletes snapshots of a given name in all opened images.
2116 */
2117 static int del_existing_snapshots(Monitor *mon, const char *name)
2118 {
2119 BlockDriverState *bs;
2120 QEMUSnapshotInfo sn1, *snapshot = &sn1;
2121 int ret;
2122
2123 bs = NULL;
2124 while ((bs = bdrv_next(bs))) {
2125 if (bdrv_can_snapshot(bs) &&
2126 bdrv_snapshot_find(bs, snapshot, name) >= 0)
2127 {
2128 ret = bdrv_snapshot_delete(bs, name);
2129 if (ret < 0) {
2130 monitor_printf(mon,
2131 "Error while deleting snapshot on '%s'\n",
2132 bdrv_get_device_name(bs));
2133 return -1;
2134 }
2135 }
2136 }
2137
2138 return 0;
2139 }
2140
2141 void do_savevm(Monitor *mon, const QDict *qdict)
2142 {
2143 BlockDriverState *bs, *bs1;
2144 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
2145 int ret;
2146 QEMUFile *f;
2147 int saved_vm_running;
2148 uint64_t vm_state_size;
2149 qemu_timeval tv;
2150 struct tm tm;
2151 const char *name = qdict_get_try_str(qdict, "name");
2152
2153 /* Verify if there is a device that doesn't support snapshots and is writable */
2154 bs = NULL;
2155 while ((bs = bdrv_next(bs))) {
2156
2157 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2158 continue;
2159 }
2160
2161 if (!bdrv_can_snapshot(bs)) {
2162 monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n",
2163 bdrv_get_device_name(bs));
2164 return;
2165 }
2166 }
2167
2168 bs = bdrv_snapshots();
2169 if (!bs) {
2170 monitor_printf(mon, "No block device can accept snapshots\n");
2171 return;
2172 }
2173
2174 saved_vm_running = runstate_is_running();
2175 vm_stop(RUN_STATE_SAVE_VM);
2176
2177 memset(sn, 0, sizeof(*sn));
2178
2179 /* fill auxiliary fields */
2180 qemu_gettimeofday(&tv);
2181 sn->date_sec = tv.tv_sec;
2182 sn->date_nsec = tv.tv_usec * 1000;
2183 sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock);
2184
2185 if (name) {
2186 ret = bdrv_snapshot_find(bs, old_sn, name);
2187 if (ret >= 0) {
2188 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
2189 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
2190 } else {
2191 pstrcpy(sn->name, sizeof(sn->name), name);
2192 }
2193 } else {
2194 /* cast below needed for OpenBSD where tv_sec is still 'long' */
2195 localtime_r((const time_t *)&tv.tv_sec, &tm);
2196 strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm);
2197 }
2198
2199 /* Delete old snapshots of the same name */
2200 if (name && del_existing_snapshots(mon, name) < 0) {
2201 goto the_end;
2202 }
2203
2204 /* save the VM state */
2205 f = qemu_fopen_bdrv(bs, 1);
2206 if (!f) {
2207 monitor_printf(mon, "Could not open VM state file\n");
2208 goto the_end;
2209 }
2210 ret = qemu_savevm_state(f);
2211 vm_state_size = qemu_ftell(f);
2212 qemu_fclose(f);
2213 if (ret < 0) {
2214 monitor_printf(mon, "Error %d while writing VM\n", ret);
2215 goto the_end;
2216 }
2217
2218 /* create the snapshots */
2219
2220 bs1 = NULL;
2221 while ((bs1 = bdrv_next(bs1))) {
2222 if (bdrv_can_snapshot(bs1)) {
2223 /* Write VM state size only to the image that contains the state */
2224 sn->vm_state_size = (bs == bs1 ? vm_state_size : 0);
2225 ret = bdrv_snapshot_create(bs1, sn);
2226 if (ret < 0) {
2227 monitor_printf(mon, "Error while creating snapshot on '%s'\n",
2228 bdrv_get_device_name(bs1));
2229 }
2230 }
2231 }
2232
2233 the_end:
2234 if (saved_vm_running)
2235 vm_start();
2236 }
2237
2238 void qmp_xen_save_devices_state(const char *filename, Error **errp)
2239 {
2240 QEMUFile *f;
2241 int saved_vm_running;
2242 int ret;
2243
2244 saved_vm_running = runstate_is_running();
2245 vm_stop(RUN_STATE_SAVE_VM);
2246
2247 f = qemu_fopen(filename, "wb");
2248 if (!f) {
2249 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
2250 goto the_end;
2251 }
2252 ret = qemu_save_device_state(f);
2253 qemu_fclose(f);
2254 if (ret < 0) {
2255 error_set(errp, QERR_IO_ERROR);
2256 }
2257
2258 the_end:
2259 if (saved_vm_running)
2260 vm_start();
2261 }
2262
2263 int load_vmstate(const char *name)
2264 {
2265 BlockDriverState *bs, *bs_vm_state;
2266 QEMUSnapshotInfo sn;
2267 QEMUFile *f;
2268 int ret;
2269
2270 bs_vm_state = bdrv_snapshots();
2271 if (!bs_vm_state) {
2272 error_report("No block device supports snapshots");
2273 return -ENOTSUP;
2274 }
2275
2276 /* Don't even try to load empty VM states */
2277 ret = bdrv_snapshot_find(bs_vm_state, &sn, name);
2278 if (ret < 0) {
2279 return ret;
2280 } else if (sn.vm_state_size == 0) {
2281 error_report("This is a disk-only snapshot. Revert to it offline "
2282 "using qemu-img.");
2283 return -EINVAL;
2284 }
2285
2286 /* Verify if there is any device that doesn't support snapshots and is
2287 writable and check if the requested snapshot is available too. */
2288 bs = NULL;
2289 while ((bs = bdrv_next(bs))) {
2290
2291 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2292 continue;
2293 }
2294
2295 if (!bdrv_can_snapshot(bs)) {
2296 error_report("Device '%s' is writable but does not support snapshots.",
2297 bdrv_get_device_name(bs));
2298 return -ENOTSUP;
2299 }
2300
2301 ret = bdrv_snapshot_find(bs, &sn, name);
2302 if (ret < 0) {
2303 error_report("Device '%s' does not have the requested snapshot '%s'",
2304 bdrv_get_device_name(bs), name);
2305 return ret;
2306 }
2307 }
2308
2309 /* Flush all IO requests so they don't interfere with the new state. */
2310 bdrv_drain_all();
2311
2312 bs = NULL;
2313 while ((bs = bdrv_next(bs))) {
2314 if (bdrv_can_snapshot(bs)) {
2315 ret = bdrv_snapshot_goto(bs, name);
2316 if (ret < 0) {
2317 error_report("Error %d while activating snapshot '%s' on '%s'",
2318 ret, name, bdrv_get_device_name(bs));
2319 return ret;
2320 }
2321 }
2322 }
2323
2324 /* restore the VM state */
2325 f = qemu_fopen_bdrv(bs_vm_state, 0);
2326 if (!f) {
2327 error_report("Could not open VM state file");
2328 return -EINVAL;
2329 }
2330
2331 qemu_system_reset(VMRESET_SILENT);
2332 ret = qemu_loadvm_state(f);
2333
2334 qemu_fclose(f);
2335 if (ret < 0) {
2336 error_report("Error %d while loading VM state", ret);
2337 return ret;
2338 }
2339
2340 return 0;
2341 }
2342
2343 void do_delvm(Monitor *mon, const QDict *qdict)
2344 {
2345 BlockDriverState *bs, *bs1;
2346 int ret;
2347 const char *name = qdict_get_str(qdict, "name");
2348
2349 bs = bdrv_snapshots();
2350 if (!bs) {
2351 monitor_printf(mon, "No block device supports snapshots\n");
2352 return;
2353 }
2354
2355 bs1 = NULL;
2356 while ((bs1 = bdrv_next(bs1))) {
2357 if (bdrv_can_snapshot(bs1)) {
2358 ret = bdrv_snapshot_delete(bs1, name);
2359 if (ret < 0) {
2360 if (ret == -ENOTSUP)
2361 monitor_printf(mon,
2362 "Snapshots not supported on device '%s'\n",
2363 bdrv_get_device_name(bs1));
2364 else
2365 monitor_printf(mon, "Error %d while deleting snapshot on "
2366 "'%s'\n", ret, bdrv_get_device_name(bs1));
2367 }
2368 }
2369 }
2370 }
2371
2372 void do_info_snapshots(Monitor *mon, const QDict *qdict)
2373 {
2374 BlockDriverState *bs, *bs1;
2375 QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s;
2376 int nb_sns, i, ret, available;
2377 int total;
2378 int *available_snapshots;
2379 char buf[256];
2380
2381 bs = bdrv_snapshots();
2382 if (!bs) {
2383 monitor_printf(mon, "No available block device supports snapshots\n");
2384 return;
2385 }
2386
2387 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
2388 if (nb_sns < 0) {
2389 monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns);
2390 return;
2391 }
2392
2393 if (nb_sns == 0) {
2394 monitor_printf(mon, "There is no snapshot available.\n");
2395 return;
2396 }
2397
2398 available_snapshots = g_malloc0(sizeof(int) * nb_sns);
2399 total = 0;
2400 for (i = 0; i < nb_sns; i++) {
2401 sn = &sn_tab[i];
2402 available = 1;
2403 bs1 = NULL;
2404
2405 while ((bs1 = bdrv_next(bs1))) {
2406 if (bdrv_can_snapshot(bs1) && bs1 != bs) {
2407 ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str);
2408 if (ret < 0) {
2409 available = 0;
2410 break;
2411 }
2412 }
2413 }
2414
2415 if (available) {
2416 available_snapshots[total] = i;
2417 total++;
2418 }
2419 }
2420
2421 if (total > 0) {
2422 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
2423 for (i = 0; i < total; i++) {
2424 sn = &sn_tab[available_snapshots[i]];
2425 monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
2426 }
2427 } else {
2428 monitor_printf(mon, "There is no suitable snapshot available\n");
2429 }
2430
2431 g_free(sn_tab);
2432 g_free(available_snapshots);
2433
2434 }
2435
2436 void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev)
2437 {
2438 qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK,
2439 memory_region_name(mr), dev);
2440 }
2441
2442 void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev)
2443 {
2444 /* Nothing do to while the implementation is in RAMBlock */
2445 }
2446
2447 void vmstate_register_ram_global(MemoryRegion *mr)
2448 {
2449 vmstate_register_ram(mr, NULL);
2450 }