]> git.proxmox.com Git - qemu.git/blob - slirp/slirp.c
slirp: Fix port comparision in slirp_remove_hostfwd
[qemu.git] / slirp / slirp.c
1 /*
2 * libslirp glue
3 *
4 * Copyright (c) 2004-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "qemu-common.h"
25 #include "qemu-char.h"
26 #include "slirp.h"
27 #include "hw/hw.h"
28
29 /* host address */
30 struct in_addr our_addr;
31 /* host dns address */
32 struct in_addr dns_addr;
33 /* host loopback address */
34 struct in_addr loopback_addr;
35
36 /* virtual network configuration */
37 struct in_addr vnetwork_addr;
38 struct in_addr vnetwork_mask;
39 struct in_addr vhost_addr;
40 struct in_addr vdhcp_startaddr;
41 struct in_addr vnameserver_addr;
42
43 /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
44 static const uint8_t special_ethaddr[6] = {
45 0x52, 0x55, 0x00, 0x00, 0x00, 0x00
46 };
47
48 /* ARP cache for the guest IP addresses (XXX: allow many entries) */
49 uint8_t client_ethaddr[6];
50 static struct in_addr client_ipaddr;
51
52 static const uint8_t zero_ethaddr[6] = { 0, 0, 0, 0, 0, 0 };
53
54 int slirp_restrict;
55 static int do_slowtimo;
56 int link_up;
57 struct timeval tt;
58 FILE *lfd;
59 struct ex_list *exec_list;
60
61 /* XXX: suppress those select globals */
62 fd_set *global_readfds, *global_writefds, *global_xfds;
63
64 char slirp_hostname[33];
65
66 #ifdef _WIN32
67
68 static int get_dns_addr(struct in_addr *pdns_addr)
69 {
70 FIXED_INFO *FixedInfo=NULL;
71 ULONG BufLen;
72 DWORD ret;
73 IP_ADDR_STRING *pIPAddr;
74 struct in_addr tmp_addr;
75
76 FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
77 BufLen = sizeof(FIXED_INFO);
78
79 if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
80 if (FixedInfo) {
81 GlobalFree(FixedInfo);
82 FixedInfo = NULL;
83 }
84 FixedInfo = GlobalAlloc(GPTR, BufLen);
85 }
86
87 if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
88 printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
89 if (FixedInfo) {
90 GlobalFree(FixedInfo);
91 FixedInfo = NULL;
92 }
93 return -1;
94 }
95
96 pIPAddr = &(FixedInfo->DnsServerList);
97 inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
98 *pdns_addr = tmp_addr;
99 #if 0
100 printf( "DNS Servers:\n" );
101 printf( "DNS Addr:%s\n", pIPAddr->IpAddress.String );
102
103 pIPAddr = FixedInfo -> DnsServerList.Next;
104 while ( pIPAddr ) {
105 printf( "DNS Addr:%s\n", pIPAddr ->IpAddress.String );
106 pIPAddr = pIPAddr ->Next;
107 }
108 #endif
109 if (FixedInfo) {
110 GlobalFree(FixedInfo);
111 FixedInfo = NULL;
112 }
113 return 0;
114 }
115
116 #else
117
118 static int get_dns_addr(struct in_addr *pdns_addr)
119 {
120 char buff[512];
121 char buff2[257];
122 FILE *f;
123 int found = 0;
124 struct in_addr tmp_addr;
125
126 f = fopen("/etc/resolv.conf", "r");
127 if (!f)
128 return -1;
129
130 #ifdef DEBUG
131 lprint("IP address of your DNS(s): ");
132 #endif
133 while (fgets(buff, 512, f) != NULL) {
134 if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
135 if (!inet_aton(buff2, &tmp_addr))
136 continue;
137 if (tmp_addr.s_addr == loopback_addr.s_addr)
138 tmp_addr = our_addr;
139 /* If it's the first one, set it to dns_addr */
140 if (!found)
141 *pdns_addr = tmp_addr;
142 #ifdef DEBUG
143 else
144 lprint(", ");
145 #endif
146 if (++found > 3) {
147 #ifdef DEBUG
148 lprint("(more)");
149 #endif
150 break;
151 }
152 #ifdef DEBUG
153 else
154 lprint("%s", inet_ntoa(tmp_addr));
155 #endif
156 }
157 }
158 fclose(f);
159 if (!found)
160 return -1;
161 return 0;
162 }
163
164 #endif
165
166 #ifdef _WIN32
167 static void slirp_cleanup(void)
168 {
169 WSACleanup();
170 }
171 #endif
172
173 static void slirp_state_save(QEMUFile *f, void *opaque);
174 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id);
175
176 void slirp_init(int restricted, struct in_addr vnetwork,
177 struct in_addr vnetmask, struct in_addr vhost,
178 const char *vhostname, const char *tftp_path,
179 const char *bootfile, struct in_addr vdhcp_start,
180 struct in_addr vnameserver)
181 {
182 // debug_init("/tmp/slirp.log", DEBUG_DEFAULT);
183
184 #ifdef _WIN32
185 WSADATA Data;
186
187 WSAStartup(MAKEWORD(2,0), &Data);
188 atexit(slirp_cleanup);
189 #endif
190
191 link_up = 1;
192 slirp_restrict = restricted;
193
194 if_init();
195 ip_init();
196
197 /* Initialise mbufs *after* setting the MTU */
198 m_init();
199
200 /* set default addresses */
201 inet_aton("127.0.0.1", &loopback_addr);
202
203 if (get_dns_addr(&dns_addr) < 0) {
204 dns_addr = loopback_addr;
205 fprintf (stderr, "Warning: No DNS servers found\n");
206 }
207
208 vnetwork_addr = vnetwork;
209 vnetwork_mask = vnetmask;
210 vhost_addr = vhost;
211 if (vhostname) {
212 pstrcpy(slirp_hostname, sizeof(slirp_hostname), vhostname);
213 }
214 qemu_free(tftp_prefix);
215 tftp_prefix = NULL;
216 if (tftp_path) {
217 tftp_prefix = qemu_strdup(tftp_path);
218 }
219 qemu_free(bootp_filename);
220 bootp_filename = NULL;
221 if (bootfile) {
222 bootp_filename = qemu_strdup(bootfile);
223 }
224 vdhcp_startaddr = vdhcp_start;
225 vnameserver_addr = vnameserver;
226
227 getouraddr();
228 register_savevm("slirp", 0, 1, slirp_state_save, slirp_state_load, NULL);
229 }
230
231 #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
232 #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
233 #define UPD_NFDS(x) if (nfds < (x)) nfds = (x)
234
235 /*
236 * curtime kept to an accuracy of 1ms
237 */
238 #ifdef _WIN32
239 static void updtime(void)
240 {
241 struct _timeb tb;
242
243 _ftime(&tb);
244 curtime = (u_int)tb.time * (u_int)1000;
245 curtime += (u_int)tb.millitm;
246 }
247 #else
248 static void updtime(void)
249 {
250 gettimeofday(&tt, NULL);
251
252 curtime = (u_int)tt.tv_sec * (u_int)1000;
253 curtime += (u_int)tt.tv_usec / (u_int)1000;
254
255 if ((tt.tv_usec % 1000) >= 500)
256 curtime++;
257 }
258 #endif
259
260 void slirp_select_fill(int *pnfds,
261 fd_set *readfds, fd_set *writefds, fd_set *xfds)
262 {
263 struct socket *so, *so_next;
264 struct timeval timeout;
265 int nfds;
266 int tmp_time;
267
268 /* fail safe */
269 global_readfds = NULL;
270 global_writefds = NULL;
271 global_xfds = NULL;
272
273 nfds = *pnfds;
274 /*
275 * First, TCP sockets
276 */
277 do_slowtimo = 0;
278 if (link_up) {
279 /*
280 * *_slowtimo needs calling if there are IP fragments
281 * in the fragment queue, or there are TCP connections active
282 */
283 do_slowtimo = ((tcb.so_next != &tcb) ||
284 (&ipq.ip_link != ipq.ip_link.next));
285
286 for (so = tcb.so_next; so != &tcb; so = so_next) {
287 so_next = so->so_next;
288
289 /*
290 * See if we need a tcp_fasttimo
291 */
292 if (time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK)
293 time_fasttimo = curtime; /* Flag when we want a fasttimo */
294
295 /*
296 * NOFDREF can include still connecting to local-host,
297 * newly socreated() sockets etc. Don't want to select these.
298 */
299 if (so->so_state & SS_NOFDREF || so->s == -1)
300 continue;
301
302 /*
303 * Set for reading sockets which are accepting
304 */
305 if (so->so_state & SS_FACCEPTCONN) {
306 FD_SET(so->s, readfds);
307 UPD_NFDS(so->s);
308 continue;
309 }
310
311 /*
312 * Set for writing sockets which are connecting
313 */
314 if (so->so_state & SS_ISFCONNECTING) {
315 FD_SET(so->s, writefds);
316 UPD_NFDS(so->s);
317 continue;
318 }
319
320 /*
321 * Set for writing if we are connected, can send more, and
322 * we have something to send
323 */
324 if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
325 FD_SET(so->s, writefds);
326 UPD_NFDS(so->s);
327 }
328
329 /*
330 * Set for reading (and urgent data) if we are connected, can
331 * receive more, and we have room for it XXX /2 ?
332 */
333 if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
334 FD_SET(so->s, readfds);
335 FD_SET(so->s, xfds);
336 UPD_NFDS(so->s);
337 }
338 }
339
340 /*
341 * UDP sockets
342 */
343 for (so = udb.so_next; so != &udb; so = so_next) {
344 so_next = so->so_next;
345
346 /*
347 * See if it's timed out
348 */
349 if (so->so_expire) {
350 if (so->so_expire <= curtime) {
351 udp_detach(so);
352 continue;
353 } else
354 do_slowtimo = 1; /* Let socket expire */
355 }
356
357 /*
358 * When UDP packets are received from over the
359 * link, they're sendto()'d straight away, so
360 * no need for setting for writing
361 * Limit the number of packets queued by this session
362 * to 4. Note that even though we try and limit this
363 * to 4 packets, the session could have more queued
364 * if the packets needed to be fragmented
365 * (XXX <= 4 ?)
366 */
367 if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
368 FD_SET(so->s, readfds);
369 UPD_NFDS(so->s);
370 }
371 }
372 }
373
374 /*
375 * Setup timeout to use minimum CPU usage, especially when idle
376 */
377
378 /*
379 * First, see the timeout needed by *timo
380 */
381 timeout.tv_sec = 0;
382 timeout.tv_usec = -1;
383 /*
384 * If a slowtimo is needed, set timeout to 500ms from the last
385 * slow timeout. If a fast timeout is needed, set timeout within
386 * 200ms of when it was requested.
387 */
388 if (do_slowtimo) {
389 /* XXX + 10000 because some select()'s aren't that accurate */
390 timeout.tv_usec = ((500 - (curtime - last_slowtimo)) * 1000) + 10000;
391 if (timeout.tv_usec < 0)
392 timeout.tv_usec = 0;
393 else if (timeout.tv_usec > 510000)
394 timeout.tv_usec = 510000;
395
396 /* Can only fasttimo if we also slowtimo */
397 if (time_fasttimo) {
398 tmp_time = (200 - (curtime - time_fasttimo)) * 1000;
399 if (tmp_time < 0)
400 tmp_time = 0;
401
402 /* Choose the smallest of the 2 */
403 if (tmp_time < timeout.tv_usec)
404 timeout.tv_usec = (u_int)tmp_time;
405 }
406 }
407 *pnfds = nfds;
408 }
409
410 void slirp_select_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds)
411 {
412 struct socket *so, *so_next;
413 int ret;
414
415 global_readfds = readfds;
416 global_writefds = writefds;
417 global_xfds = xfds;
418
419 /* Update time */
420 updtime();
421
422 /*
423 * See if anything has timed out
424 */
425 if (link_up) {
426 if (time_fasttimo && ((curtime - time_fasttimo) >= 2)) {
427 tcp_fasttimo();
428 time_fasttimo = 0;
429 }
430 if (do_slowtimo && ((curtime - last_slowtimo) >= 499)) {
431 ip_slowtimo();
432 tcp_slowtimo();
433 last_slowtimo = curtime;
434 }
435 }
436
437 /*
438 * Check sockets
439 */
440 if (link_up) {
441 /*
442 * Check TCP sockets
443 */
444 for (so = tcb.so_next; so != &tcb; so = so_next) {
445 so_next = so->so_next;
446
447 /*
448 * FD_ISSET is meaningless on these sockets
449 * (and they can crash the program)
450 */
451 if (so->so_state & SS_NOFDREF || so->s == -1)
452 continue;
453
454 /*
455 * Check for URG data
456 * This will soread as well, so no need to
457 * test for readfds below if this succeeds
458 */
459 if (FD_ISSET(so->s, xfds))
460 sorecvoob(so);
461 /*
462 * Check sockets for reading
463 */
464 else if (FD_ISSET(so->s, readfds)) {
465 /*
466 * Check for incoming connections
467 */
468 if (so->so_state & SS_FACCEPTCONN) {
469 tcp_connect(so);
470 continue;
471 } /* else */
472 ret = soread(so);
473
474 /* Output it if we read something */
475 if (ret > 0)
476 tcp_output(sototcpcb(so));
477 }
478
479 /*
480 * Check sockets for writing
481 */
482 if (FD_ISSET(so->s, writefds)) {
483 /*
484 * Check for non-blocking, still-connecting sockets
485 */
486 if (so->so_state & SS_ISFCONNECTING) {
487 /* Connected */
488 so->so_state &= ~SS_ISFCONNECTING;
489
490 ret = send(so->s, (const void *) &ret, 0, 0);
491 if (ret < 0) {
492 /* XXXXX Must fix, zero bytes is a NOP */
493 if (errno == EAGAIN || errno == EWOULDBLOCK ||
494 errno == EINPROGRESS || errno == ENOTCONN)
495 continue;
496
497 /* else failed */
498 so->so_state = SS_NOFDREF;
499 }
500 /* else so->so_state &= ~SS_ISFCONNECTING; */
501
502 /*
503 * Continue tcp_input
504 */
505 tcp_input((struct mbuf *)NULL, sizeof(struct ip), so);
506 /* continue; */
507 } else
508 ret = sowrite(so);
509 /*
510 * XXXXX If we wrote something (a lot), there
511 * could be a need for a window update.
512 * In the worst case, the remote will send
513 * a window probe to get things going again
514 */
515 }
516
517 /*
518 * Probe a still-connecting, non-blocking socket
519 * to check if it's still alive
520 */
521 #ifdef PROBE_CONN
522 if (so->so_state & SS_ISFCONNECTING) {
523 ret = recv(so->s, (char *)&ret, 0,0);
524
525 if (ret < 0) {
526 /* XXX */
527 if (errno == EAGAIN || errno == EWOULDBLOCK ||
528 errno == EINPROGRESS || errno == ENOTCONN)
529 continue; /* Still connecting, continue */
530
531 /* else failed */
532 so->so_state = SS_NOFDREF;
533
534 /* tcp_input will take care of it */
535 } else {
536 ret = send(so->s, &ret, 0,0);
537 if (ret < 0) {
538 /* XXX */
539 if (errno == EAGAIN || errno == EWOULDBLOCK ||
540 errno == EINPROGRESS || errno == ENOTCONN)
541 continue;
542 /* else failed */
543 so->so_state = SS_NOFDREF;
544 } else
545 so->so_state &= ~SS_ISFCONNECTING;
546
547 }
548 tcp_input((struct mbuf *)NULL, sizeof(struct ip),so);
549 } /* SS_ISFCONNECTING */
550 #endif
551 }
552
553 /*
554 * Now UDP sockets.
555 * Incoming packets are sent straight away, they're not buffered.
556 * Incoming UDP data isn't buffered either.
557 */
558 for (so = udb.so_next; so != &udb; so = so_next) {
559 so_next = so->so_next;
560
561 if (so->s != -1 && FD_ISSET(so->s, readfds)) {
562 sorecvfrom(so);
563 }
564 }
565 }
566
567 /*
568 * See if we can start outputting
569 */
570 if (if_queued && link_up)
571 if_start();
572
573 /* clear global file descriptor sets.
574 * these reside on the stack in vl.c
575 * so they're unusable if we're not in
576 * slirp_select_fill or slirp_select_poll.
577 */
578 global_readfds = NULL;
579 global_writefds = NULL;
580 global_xfds = NULL;
581 }
582
583 #define ETH_ALEN 6
584 #define ETH_HLEN 14
585
586 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
587 #define ETH_P_ARP 0x0806 /* Address Resolution packet */
588
589 #define ARPOP_REQUEST 1 /* ARP request */
590 #define ARPOP_REPLY 2 /* ARP reply */
591
592 struct ethhdr
593 {
594 unsigned char h_dest[ETH_ALEN]; /* destination eth addr */
595 unsigned char h_source[ETH_ALEN]; /* source ether addr */
596 unsigned short h_proto; /* packet type ID field */
597 };
598
599 struct arphdr
600 {
601 unsigned short ar_hrd; /* format of hardware address */
602 unsigned short ar_pro; /* format of protocol address */
603 unsigned char ar_hln; /* length of hardware address */
604 unsigned char ar_pln; /* length of protocol address */
605 unsigned short ar_op; /* ARP opcode (command) */
606
607 /*
608 * Ethernet looks like this : This bit is variable sized however...
609 */
610 unsigned char ar_sha[ETH_ALEN]; /* sender hardware address */
611 uint32_t ar_sip; /* sender IP address */
612 unsigned char ar_tha[ETH_ALEN]; /* target hardware address */
613 uint32_t ar_tip ; /* target IP address */
614 } __attribute__((packed));
615
616 static void arp_input(const uint8_t *pkt, int pkt_len)
617 {
618 struct ethhdr *eh = (struct ethhdr *)pkt;
619 struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN);
620 uint8_t arp_reply[ETH_HLEN + sizeof(struct arphdr)];
621 struct ethhdr *reh = (struct ethhdr *)arp_reply;
622 struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN);
623 int ar_op;
624 struct ex_list *ex_ptr;
625
626 ar_op = ntohs(ah->ar_op);
627 switch(ar_op) {
628 case ARPOP_REQUEST:
629 if ((ah->ar_tip & vnetwork_mask.s_addr) == vnetwork_addr.s_addr) {
630 if (ah->ar_tip == vnameserver_addr.s_addr ||
631 ah->ar_tip == vhost_addr.s_addr)
632 goto arp_ok;
633 for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
634 if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
635 goto arp_ok;
636 }
637 return;
638 arp_ok:
639 /* XXX: make an ARP request to have the client address */
640 memcpy(client_ethaddr, eh->h_source, ETH_ALEN);
641
642 /* ARP request for alias/dns mac address */
643 memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
644 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
645 memcpy(&reh->h_source[2], &ah->ar_tip, 4);
646 reh->h_proto = htons(ETH_P_ARP);
647
648 rah->ar_hrd = htons(1);
649 rah->ar_pro = htons(ETH_P_IP);
650 rah->ar_hln = ETH_ALEN;
651 rah->ar_pln = 4;
652 rah->ar_op = htons(ARPOP_REPLY);
653 memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
654 rah->ar_sip = ah->ar_tip;
655 memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
656 rah->ar_tip = ah->ar_sip;
657 slirp_output(arp_reply, sizeof(arp_reply));
658 }
659 break;
660 case ARPOP_REPLY:
661 /* reply to request of client mac address ? */
662 if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN) &&
663 ah->ar_sip == client_ipaddr.s_addr) {
664 memcpy(client_ethaddr, ah->ar_sha, ETH_ALEN);
665 }
666 break;
667 default:
668 break;
669 }
670 }
671
672 void slirp_input(const uint8_t *pkt, int pkt_len)
673 {
674 struct mbuf *m;
675 int proto;
676
677 if (pkt_len < ETH_HLEN)
678 return;
679
680 proto = ntohs(*(uint16_t *)(pkt + 12));
681 switch(proto) {
682 case ETH_P_ARP:
683 arp_input(pkt, pkt_len);
684 break;
685 case ETH_P_IP:
686 m = m_get();
687 if (!m)
688 return;
689 /* Note: we add to align the IP header */
690 if (M_FREEROOM(m) < pkt_len + 2) {
691 m_inc(m, pkt_len + 2);
692 }
693 m->m_len = pkt_len + 2;
694 memcpy(m->m_data + 2, pkt, pkt_len);
695
696 m->m_data += 2 + ETH_HLEN;
697 m->m_len -= 2 + ETH_HLEN;
698
699 ip_input(m);
700 break;
701 default:
702 break;
703 }
704 }
705
706 /* output the IP packet to the ethernet device */
707 void if_encap(const uint8_t *ip_data, int ip_data_len)
708 {
709 uint8_t buf[1600];
710 struct ethhdr *eh = (struct ethhdr *)buf;
711
712 if (ip_data_len + ETH_HLEN > sizeof(buf))
713 return;
714
715 if (!memcmp(client_ethaddr, zero_ethaddr, ETH_ALEN)) {
716 uint8_t arp_req[ETH_HLEN + sizeof(struct arphdr)];
717 struct ethhdr *reh = (struct ethhdr *)arp_req;
718 struct arphdr *rah = (struct arphdr *)(arp_req + ETH_HLEN);
719 const struct ip *iph = (const struct ip *)ip_data;
720
721 /* If the client addr is not known, there is no point in
722 sending the packet to it. Normally the sender should have
723 done an ARP request to get its MAC address. Here we do it
724 in place of sending the packet and we hope that the sender
725 will retry sending its packet. */
726 memset(reh->h_dest, 0xff, ETH_ALEN);
727 memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
728 memcpy(&reh->h_source[2], &vhost_addr, 4);
729 reh->h_proto = htons(ETH_P_ARP);
730 rah->ar_hrd = htons(1);
731 rah->ar_pro = htons(ETH_P_IP);
732 rah->ar_hln = ETH_ALEN;
733 rah->ar_pln = 4;
734 rah->ar_op = htons(ARPOP_REQUEST);
735 /* source hw addr */
736 memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
737 memcpy(&rah->ar_sha[2], &vhost_addr, 4);
738 /* source IP */
739 rah->ar_sip = vhost_addr.s_addr;
740 /* target hw addr (none) */
741 memset(rah->ar_tha, 0, ETH_ALEN);
742 /* target IP */
743 rah->ar_tip = iph->ip_dst.s_addr;
744 client_ipaddr = iph->ip_dst;
745 slirp_output(arp_req, sizeof(arp_req));
746 } else {
747 memcpy(eh->h_dest, client_ethaddr, ETH_ALEN);
748 memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
749 /* XXX: not correct */
750 memcpy(&eh->h_source[2], &vhost_addr, 4);
751 eh->h_proto = htons(ETH_P_IP);
752 memcpy(buf + sizeof(struct ethhdr), ip_data, ip_data_len);
753 slirp_output(buf, ip_data_len + ETH_HLEN);
754 }
755 }
756
757 /* Unlistens a redirection
758 *
759 * Return value: number of redirs removed */
760 int slirp_remove_hostfwd(int is_udp, int host_port)
761 {
762 struct socket *so;
763 struct socket *head = (is_udp ? &udb : &tcb);
764 struct sockaddr_in addr;
765 int port = htons(host_port);
766 socklen_t addr_len;
767 int n = 0;
768
769 loop_again:
770 for (so = head->so_next; so != head; so = so->so_next) {
771 addr_len = sizeof(addr);
772 if (getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
773 addr.sin_port == port) {
774 close(so->s);
775 sofree(so);
776 n++;
777 goto loop_again;
778 }
779 }
780
781 return n;
782 }
783
784 int slirp_add_hostfwd(int is_udp, int host_port,
785 struct in_addr guest_addr, int guest_port)
786 {
787 if (!guest_addr.s_addr) {
788 guest_addr = vdhcp_startaddr;
789 }
790 if (is_udp) {
791 if (!udp_listen(htons(host_port), guest_addr.s_addr,
792 htons(guest_port), 0))
793 return -1;
794 } else {
795 if (!solisten(htons(host_port), guest_addr.s_addr,
796 htons(guest_port), 0))
797 return -1;
798 }
799 return 0;
800 }
801
802 int slirp_add_exec(int do_pty, const void *args, struct in_addr guest_addr,
803 int guest_port)
804 {
805 if (!guest_addr.s_addr) {
806 guest_addr.s_addr =
807 vnetwork_addr.s_addr | (htonl(0x0204) & ~vnetwork_mask.s_addr);
808 }
809 if ((guest_addr.s_addr & vnetwork_mask.s_addr) != vnetwork_addr.s_addr ||
810 guest_addr.s_addr == vhost_addr.s_addr ||
811 guest_addr.s_addr == vnameserver_addr.s_addr) {
812 return -1;
813 }
814 return add_exec(&exec_list, do_pty, (char *)args, guest_addr,
815 htons(guest_port));
816 }
817
818 ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
819 {
820 if (so->s == -1 && so->extra) {
821 qemu_chr_write(so->extra, buf, len);
822 return len;
823 }
824
825 return send(so->s, buf, len, flags);
826 }
827
828 static struct socket *
829 slirp_find_ctl_socket(struct in_addr guest_addr, int guest_port)
830 {
831 struct socket *so;
832
833 for (so = tcb.so_next; so != &tcb; so = so->so_next) {
834 if (so->so_faddr.s_addr == guest_addr.s_addr &&
835 htons(so->so_fport) == guest_port) {
836 return so;
837 }
838 }
839 return NULL;
840 }
841
842 size_t slirp_socket_can_recv(struct in_addr guest_addr, int guest_port)
843 {
844 struct iovec iov[2];
845 struct socket *so;
846
847 if (!link_up)
848 return 0;
849
850 so = slirp_find_ctl_socket(guest_addr, guest_port);
851
852 if (!so || so->so_state & SS_NOFDREF)
853 return 0;
854
855 if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2))
856 return 0;
857
858 return sopreprbuf(so, iov, NULL);
859 }
860
861 void slirp_socket_recv(struct in_addr guest_addr, int guest_port,
862 const uint8_t *buf, int size)
863 {
864 int ret;
865 struct socket *so = slirp_find_ctl_socket(guest_addr, guest_port);
866
867 if (!so)
868 return;
869
870 ret = soreadbuf(so, (const char *)buf, size);
871
872 if (ret > 0)
873 tcp_output(sototcpcb(so));
874 }
875
876 static void slirp_tcp_save(QEMUFile *f, struct tcpcb *tp)
877 {
878 int i;
879
880 qemu_put_sbe16(f, tp->t_state);
881 for (i = 0; i < TCPT_NTIMERS; i++)
882 qemu_put_sbe16(f, tp->t_timer[i]);
883 qemu_put_sbe16(f, tp->t_rxtshift);
884 qemu_put_sbe16(f, tp->t_rxtcur);
885 qemu_put_sbe16(f, tp->t_dupacks);
886 qemu_put_be16(f, tp->t_maxseg);
887 qemu_put_sbyte(f, tp->t_force);
888 qemu_put_be16(f, tp->t_flags);
889 qemu_put_be32(f, tp->snd_una);
890 qemu_put_be32(f, tp->snd_nxt);
891 qemu_put_be32(f, tp->snd_up);
892 qemu_put_be32(f, tp->snd_wl1);
893 qemu_put_be32(f, tp->snd_wl2);
894 qemu_put_be32(f, tp->iss);
895 qemu_put_be32(f, tp->snd_wnd);
896 qemu_put_be32(f, tp->rcv_wnd);
897 qemu_put_be32(f, tp->rcv_nxt);
898 qemu_put_be32(f, tp->rcv_up);
899 qemu_put_be32(f, tp->irs);
900 qemu_put_be32(f, tp->rcv_adv);
901 qemu_put_be32(f, tp->snd_max);
902 qemu_put_be32(f, tp->snd_cwnd);
903 qemu_put_be32(f, tp->snd_ssthresh);
904 qemu_put_sbe16(f, tp->t_idle);
905 qemu_put_sbe16(f, tp->t_rtt);
906 qemu_put_be32(f, tp->t_rtseq);
907 qemu_put_sbe16(f, tp->t_srtt);
908 qemu_put_sbe16(f, tp->t_rttvar);
909 qemu_put_be16(f, tp->t_rttmin);
910 qemu_put_be32(f, tp->max_sndwnd);
911 qemu_put_byte(f, tp->t_oobflags);
912 qemu_put_byte(f, tp->t_iobc);
913 qemu_put_sbe16(f, tp->t_softerror);
914 qemu_put_byte(f, tp->snd_scale);
915 qemu_put_byte(f, tp->rcv_scale);
916 qemu_put_byte(f, tp->request_r_scale);
917 qemu_put_byte(f, tp->requested_s_scale);
918 qemu_put_be32(f, tp->ts_recent);
919 qemu_put_be32(f, tp->ts_recent_age);
920 qemu_put_be32(f, tp->last_ack_sent);
921 }
922
923 static void slirp_sbuf_save(QEMUFile *f, struct sbuf *sbuf)
924 {
925 uint32_t off;
926
927 qemu_put_be32(f, sbuf->sb_cc);
928 qemu_put_be32(f, sbuf->sb_datalen);
929 off = (uint32_t)(sbuf->sb_wptr - sbuf->sb_data);
930 qemu_put_sbe32(f, off);
931 off = (uint32_t)(sbuf->sb_rptr - sbuf->sb_data);
932 qemu_put_sbe32(f, off);
933 qemu_put_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen);
934 }
935
936 static void slirp_socket_save(QEMUFile *f, struct socket *so)
937 {
938 qemu_put_be32(f, so->so_urgc);
939 qemu_put_be32(f, so->so_faddr.s_addr);
940 qemu_put_be32(f, so->so_laddr.s_addr);
941 qemu_put_be16(f, so->so_fport);
942 qemu_put_be16(f, so->so_lport);
943 qemu_put_byte(f, so->so_iptos);
944 qemu_put_byte(f, so->so_emu);
945 qemu_put_byte(f, so->so_type);
946 qemu_put_be32(f, so->so_state);
947 slirp_sbuf_save(f, &so->so_rcv);
948 slirp_sbuf_save(f, &so->so_snd);
949 slirp_tcp_save(f, so->so_tcpcb);
950 }
951
952 static void slirp_state_save(QEMUFile *f, void *opaque)
953 {
954 struct ex_list *ex_ptr;
955
956 for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next)
957 if (ex_ptr->ex_pty == 3) {
958 struct socket *so;
959 so = slirp_find_ctl_socket(ex_ptr->ex_addr, ntohs(ex_ptr->ex_fport));
960 if (!so)
961 continue;
962
963 qemu_put_byte(f, 42);
964 slirp_socket_save(f, so);
965 }
966 qemu_put_byte(f, 0);
967 }
968
969 static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp)
970 {
971 int i;
972
973 tp->t_state = qemu_get_sbe16(f);
974 for (i = 0; i < TCPT_NTIMERS; i++)
975 tp->t_timer[i] = qemu_get_sbe16(f);
976 tp->t_rxtshift = qemu_get_sbe16(f);
977 tp->t_rxtcur = qemu_get_sbe16(f);
978 tp->t_dupacks = qemu_get_sbe16(f);
979 tp->t_maxseg = qemu_get_be16(f);
980 tp->t_force = qemu_get_sbyte(f);
981 tp->t_flags = qemu_get_be16(f);
982 tp->snd_una = qemu_get_be32(f);
983 tp->snd_nxt = qemu_get_be32(f);
984 tp->snd_up = qemu_get_be32(f);
985 tp->snd_wl1 = qemu_get_be32(f);
986 tp->snd_wl2 = qemu_get_be32(f);
987 tp->iss = qemu_get_be32(f);
988 tp->snd_wnd = qemu_get_be32(f);
989 tp->rcv_wnd = qemu_get_be32(f);
990 tp->rcv_nxt = qemu_get_be32(f);
991 tp->rcv_up = qemu_get_be32(f);
992 tp->irs = qemu_get_be32(f);
993 tp->rcv_adv = qemu_get_be32(f);
994 tp->snd_max = qemu_get_be32(f);
995 tp->snd_cwnd = qemu_get_be32(f);
996 tp->snd_ssthresh = qemu_get_be32(f);
997 tp->t_idle = qemu_get_sbe16(f);
998 tp->t_rtt = qemu_get_sbe16(f);
999 tp->t_rtseq = qemu_get_be32(f);
1000 tp->t_srtt = qemu_get_sbe16(f);
1001 tp->t_rttvar = qemu_get_sbe16(f);
1002 tp->t_rttmin = qemu_get_be16(f);
1003 tp->max_sndwnd = qemu_get_be32(f);
1004 tp->t_oobflags = qemu_get_byte(f);
1005 tp->t_iobc = qemu_get_byte(f);
1006 tp->t_softerror = qemu_get_sbe16(f);
1007 tp->snd_scale = qemu_get_byte(f);
1008 tp->rcv_scale = qemu_get_byte(f);
1009 tp->request_r_scale = qemu_get_byte(f);
1010 tp->requested_s_scale = qemu_get_byte(f);
1011 tp->ts_recent = qemu_get_be32(f);
1012 tp->ts_recent_age = qemu_get_be32(f);
1013 tp->last_ack_sent = qemu_get_be32(f);
1014 tcp_template(tp);
1015 }
1016
1017 static int slirp_sbuf_load(QEMUFile *f, struct sbuf *sbuf)
1018 {
1019 uint32_t off, sb_cc, sb_datalen;
1020
1021 sb_cc = qemu_get_be32(f);
1022 sb_datalen = qemu_get_be32(f);
1023
1024 sbreserve(sbuf, sb_datalen);
1025
1026 if (sbuf->sb_datalen != sb_datalen)
1027 return -ENOMEM;
1028
1029 sbuf->sb_cc = sb_cc;
1030
1031 off = qemu_get_sbe32(f);
1032 sbuf->sb_wptr = sbuf->sb_data + off;
1033 off = qemu_get_sbe32(f);
1034 sbuf->sb_rptr = sbuf->sb_data + off;
1035 qemu_get_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen);
1036
1037 return 0;
1038 }
1039
1040 static int slirp_socket_load(QEMUFile *f, struct socket *so)
1041 {
1042 if (tcp_attach(so) < 0)
1043 return -ENOMEM;
1044
1045 so->so_urgc = qemu_get_be32(f);
1046 so->so_faddr.s_addr = qemu_get_be32(f);
1047 so->so_laddr.s_addr = qemu_get_be32(f);
1048 so->so_fport = qemu_get_be16(f);
1049 so->so_lport = qemu_get_be16(f);
1050 so->so_iptos = qemu_get_byte(f);
1051 so->so_emu = qemu_get_byte(f);
1052 so->so_type = qemu_get_byte(f);
1053 so->so_state = qemu_get_be32(f);
1054 if (slirp_sbuf_load(f, &so->so_rcv) < 0)
1055 return -ENOMEM;
1056 if (slirp_sbuf_load(f, &so->so_snd) < 0)
1057 return -ENOMEM;
1058 slirp_tcp_load(f, so->so_tcpcb);
1059
1060 return 0;
1061 }
1062
1063 static int slirp_state_load(QEMUFile *f, void *opaque, int version_id)
1064 {
1065 struct ex_list *ex_ptr;
1066 int r;
1067
1068 while ((r = qemu_get_byte(f))) {
1069 int ret;
1070 struct socket *so = socreate();
1071
1072 if (!so)
1073 return -ENOMEM;
1074
1075 ret = slirp_socket_load(f, so);
1076
1077 if (ret < 0)
1078 return ret;
1079
1080 if ((so->so_faddr.s_addr & vnetwork_mask.s_addr) !=
1081 vnetwork_addr.s_addr) {
1082 return -EINVAL;
1083 }
1084 for (ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
1085 if (ex_ptr->ex_pty == 3 &&
1086 so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr &&
1087 so->so_fport == ex_ptr->ex_fport) {
1088 break;
1089 }
1090 }
1091 if (!ex_ptr)
1092 return -EINVAL;
1093
1094 so->extra = (void *)ex_ptr->ex_exec;
1095 }
1096
1097 return 0;
1098 }