]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/tcg/translate-a64.c
accel/tcg: Replace CPUState.env_ptr with cpu_env()
[mirror_qemu.git] / target / arm / tcg / translate-a64.c
1 /*
2 * AArch64 translation
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "disas/disas.h"
25 #include "arm_ldst.h"
26 #include "semihosting/semihost.h"
27 #include "cpregs.h"
28
29 static TCGv_i64 cpu_X[32];
30 static TCGv_i64 cpu_pc;
31
32 /* Load/store exclusive handling */
33 static TCGv_i64 cpu_exclusive_high;
34
35 static const char *regnames[] = {
36 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
37 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
38 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
39 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
40 };
41
42 enum a64_shift_type {
43 A64_SHIFT_TYPE_LSL = 0,
44 A64_SHIFT_TYPE_LSR = 1,
45 A64_SHIFT_TYPE_ASR = 2,
46 A64_SHIFT_TYPE_ROR = 3
47 };
48
49 /*
50 * Helpers for extracting complex instruction fields
51 */
52
53 /*
54 * For load/store with an unsigned 12 bit immediate scaled by the element
55 * size. The input has the immediate field in bits [14:3] and the element
56 * size in [2:0].
57 */
58 static int uimm_scaled(DisasContext *s, int x)
59 {
60 unsigned imm = x >> 3;
61 unsigned scale = extract32(x, 0, 3);
62 return imm << scale;
63 }
64
65 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
66 static int scale_by_log2_tag_granule(DisasContext *s, int x)
67 {
68 return x << LOG2_TAG_GRANULE;
69 }
70
71 /*
72 * Include the generated decoders.
73 */
74
75 #include "decode-sme-fa64.c.inc"
76 #include "decode-a64.c.inc"
77
78 /* Table based decoder typedefs - used when the relevant bits for decode
79 * are too awkwardly scattered across the instruction (eg SIMD).
80 */
81 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
82
83 typedef struct AArch64DecodeTable {
84 uint32_t pattern;
85 uint32_t mask;
86 AArch64DecodeFn *disas_fn;
87 } AArch64DecodeTable;
88
89 /* initialize TCG globals. */
90 void a64_translate_init(void)
91 {
92 int i;
93
94 cpu_pc = tcg_global_mem_new_i64(tcg_env,
95 offsetof(CPUARMState, pc),
96 "pc");
97 for (i = 0; i < 32; i++) {
98 cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
99 offsetof(CPUARMState, xregs[i]),
100 regnames[i]);
101 }
102
103 cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
104 offsetof(CPUARMState, exclusive_high), "exclusive_high");
105 }
106
107 /*
108 * Return the core mmu_idx to use for A64 load/store insns which
109 * have a "unprivileged load/store" variant. Those insns access
110 * EL0 if executed from an EL which has control over EL0 (usually
111 * EL1) but behave like normal loads and stores if executed from
112 * elsewhere (eg EL3).
113 *
114 * @unpriv : true for the unprivileged encoding; false for the
115 * normal encoding (in which case we will return the same
116 * thing as get_mem_index().
117 */
118 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
119 {
120 /*
121 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
122 * which is the usual mmu_idx for this cpu state.
123 */
124 ARMMMUIdx useridx = s->mmu_idx;
125
126 if (unpriv && s->unpriv) {
127 /*
128 * We have pre-computed the condition for AccType_UNPRIV.
129 * Therefore we should never get here with a mmu_idx for
130 * which we do not know the corresponding user mmu_idx.
131 */
132 switch (useridx) {
133 case ARMMMUIdx_E10_1:
134 case ARMMMUIdx_E10_1_PAN:
135 useridx = ARMMMUIdx_E10_0;
136 break;
137 case ARMMMUIdx_E20_2:
138 case ARMMMUIdx_E20_2_PAN:
139 useridx = ARMMMUIdx_E20_0;
140 break;
141 default:
142 g_assert_not_reached();
143 }
144 }
145 return arm_to_core_mmu_idx(useridx);
146 }
147
148 static void set_btype_raw(int val)
149 {
150 tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
151 offsetof(CPUARMState, btype));
152 }
153
154 static void set_btype(DisasContext *s, int val)
155 {
156 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
157 tcg_debug_assert(val >= 1 && val <= 3);
158 set_btype_raw(val);
159 s->btype = -1;
160 }
161
162 static void reset_btype(DisasContext *s)
163 {
164 if (s->btype != 0) {
165 set_btype_raw(0);
166 s->btype = 0;
167 }
168 }
169
170 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
171 {
172 assert(s->pc_save != -1);
173 if (tb_cflags(s->base.tb) & CF_PCREL) {
174 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
175 } else {
176 tcg_gen_movi_i64(dest, s->pc_curr + diff);
177 }
178 }
179
180 void gen_a64_update_pc(DisasContext *s, target_long diff)
181 {
182 gen_pc_plus_diff(s, cpu_pc, diff);
183 s->pc_save = s->pc_curr + diff;
184 }
185
186 /*
187 * Handle Top Byte Ignore (TBI) bits.
188 *
189 * If address tagging is enabled via the TCR TBI bits:
190 * + for EL2 and EL3 there is only one TBI bit, and if it is set
191 * then the address is zero-extended, clearing bits [63:56]
192 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
193 * and TBI1 controls addresses with bit 55 == 1.
194 * If the appropriate TBI bit is set for the address then
195 * the address is sign-extended from bit 55 into bits [63:56]
196 *
197 * Here We have concatenated TBI{1,0} into tbi.
198 */
199 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
200 TCGv_i64 src, int tbi)
201 {
202 if (tbi == 0) {
203 /* Load unmodified address */
204 tcg_gen_mov_i64(dst, src);
205 } else if (!regime_has_2_ranges(s->mmu_idx)) {
206 /* Force tag byte to all zero */
207 tcg_gen_extract_i64(dst, src, 0, 56);
208 } else {
209 /* Sign-extend from bit 55. */
210 tcg_gen_sextract_i64(dst, src, 0, 56);
211
212 switch (tbi) {
213 case 1:
214 /* tbi0 but !tbi1: only use the extension if positive */
215 tcg_gen_and_i64(dst, dst, src);
216 break;
217 case 2:
218 /* !tbi0 but tbi1: only use the extension if negative */
219 tcg_gen_or_i64(dst, dst, src);
220 break;
221 case 3:
222 /* tbi0 and tbi1: always use the extension */
223 break;
224 default:
225 g_assert_not_reached();
226 }
227 }
228 }
229
230 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
231 {
232 /*
233 * If address tagging is enabled for instructions via the TCR TBI bits,
234 * then loading an address into the PC will clear out any tag.
235 */
236 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
237 s->pc_save = -1;
238 }
239
240 /*
241 * Handle MTE and/or TBI.
242 *
243 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
244 * for the tag to be present in the FAR_ELx register. But for user-only
245 * mode we do not have a TLB with which to implement this, so we must
246 * remove the top byte now.
247 *
248 * Always return a fresh temporary that we can increment independently
249 * of the write-back address.
250 */
251
252 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
253 {
254 TCGv_i64 clean = tcg_temp_new_i64();
255 #ifdef CONFIG_USER_ONLY
256 gen_top_byte_ignore(s, clean, addr, s->tbid);
257 #else
258 tcg_gen_mov_i64(clean, addr);
259 #endif
260 return clean;
261 }
262
263 /* Insert a zero tag into src, with the result at dst. */
264 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
265 {
266 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
267 }
268
269 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
270 MMUAccessType acc, int log2_size)
271 {
272 gen_helper_probe_access(tcg_env, ptr,
273 tcg_constant_i32(acc),
274 tcg_constant_i32(get_mem_index(s)),
275 tcg_constant_i32(1 << log2_size));
276 }
277
278 /*
279 * For MTE, check a single logical or atomic access. This probes a single
280 * address, the exact one specified. The size and alignment of the access
281 * is not relevant to MTE, per se, but watchpoints do require the size,
282 * and we want to recognize those before making any other changes to state.
283 */
284 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
285 bool is_write, bool tag_checked,
286 MemOp memop, bool is_unpriv,
287 int core_idx)
288 {
289 if (tag_checked && s->mte_active[is_unpriv]) {
290 TCGv_i64 ret;
291 int desc = 0;
292
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
298 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
299
300 ret = tcg_temp_new_i64();
301 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
302
303 return ret;
304 }
305 return clean_data_tbi(s, addr);
306 }
307
308 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
309 bool tag_checked, MemOp memop)
310 {
311 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
312 false, get_mem_index(s));
313 }
314
315 /*
316 * For MTE, check multiple logical sequential accesses.
317 */
318 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
319 bool tag_checked, int total_size, MemOp single_mop)
320 {
321 if (tag_checked && s->mte_active[0]) {
322 TCGv_i64 ret;
323 int desc = 0;
324
325 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
326 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
327 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
328 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
329 desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
330 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
331
332 ret = tcg_temp_new_i64();
333 gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
334
335 return ret;
336 }
337 return clean_data_tbi(s, addr);
338 }
339
340 /*
341 * Generate the special alignment check that applies to AccType_ATOMIC
342 * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
343 * naturally aligned, but it must not cross a 16-byte boundary.
344 * See AArch64.CheckAlignment().
345 */
346 static void check_lse2_align(DisasContext *s, int rn, int imm,
347 bool is_write, MemOp mop)
348 {
349 TCGv_i32 tmp;
350 TCGv_i64 addr;
351 TCGLabel *over_label;
352 MMUAccessType type;
353 int mmu_idx;
354
355 tmp = tcg_temp_new_i32();
356 tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
357 tcg_gen_addi_i32(tmp, tmp, imm & 15);
358 tcg_gen_andi_i32(tmp, tmp, 15);
359 tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
360
361 over_label = gen_new_label();
362 tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
363
364 addr = tcg_temp_new_i64();
365 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
366
367 type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
368 mmu_idx = get_mem_index(s);
369 gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
370 tcg_constant_i32(mmu_idx));
371
372 gen_set_label(over_label);
373
374 }
375
376 /* Handle the alignment check for AccType_ATOMIC instructions. */
377 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
378 {
379 MemOp size = mop & MO_SIZE;
380
381 if (size == MO_8) {
382 return mop;
383 }
384
385 /*
386 * If size == MO_128, this is a LDXP, and the operation is single-copy
387 * atomic for each doubleword, not the entire quadword; it still must
388 * be quadword aligned.
389 */
390 if (size == MO_128) {
391 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
392 MO_ATOM_IFALIGN_PAIR);
393 }
394 if (dc_isar_feature(aa64_lse2, s)) {
395 check_lse2_align(s, rn, 0, true, mop);
396 } else {
397 mop |= MO_ALIGN;
398 }
399 return finalize_memop(s, mop);
400 }
401
402 /* Handle the alignment check for AccType_ORDERED instructions. */
403 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
404 bool is_write, MemOp mop)
405 {
406 MemOp size = mop & MO_SIZE;
407
408 if (size == MO_8) {
409 return mop;
410 }
411 if (size == MO_128) {
412 return finalize_memop_atom(s, MO_128 | MO_ALIGN,
413 MO_ATOM_IFALIGN_PAIR);
414 }
415 if (!dc_isar_feature(aa64_lse2, s)) {
416 mop |= MO_ALIGN;
417 } else if (!s->naa) {
418 check_lse2_align(s, rn, imm, is_write, mop);
419 }
420 return finalize_memop(s, mop);
421 }
422
423 typedef struct DisasCompare64 {
424 TCGCond cond;
425 TCGv_i64 value;
426 } DisasCompare64;
427
428 static void a64_test_cc(DisasCompare64 *c64, int cc)
429 {
430 DisasCompare c32;
431
432 arm_test_cc(&c32, cc);
433
434 /*
435 * Sign-extend the 32-bit value so that the GE/LT comparisons work
436 * properly. The NE/EQ comparisons are also fine with this choice.
437 */
438 c64->cond = c32.cond;
439 c64->value = tcg_temp_new_i64();
440 tcg_gen_ext_i32_i64(c64->value, c32.value);
441 }
442
443 static void gen_rebuild_hflags(DisasContext *s)
444 {
445 gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
446 }
447
448 static void gen_exception_internal(int excp)
449 {
450 assert(excp_is_internal(excp));
451 gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
452 }
453
454 static void gen_exception_internal_insn(DisasContext *s, int excp)
455 {
456 gen_a64_update_pc(s, 0);
457 gen_exception_internal(excp);
458 s->base.is_jmp = DISAS_NORETURN;
459 }
460
461 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
462 {
463 gen_a64_update_pc(s, 0);
464 gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
465 s->base.is_jmp = DISAS_NORETURN;
466 }
467
468 static void gen_step_complete_exception(DisasContext *s)
469 {
470 /* We just completed step of an insn. Move from Active-not-pending
471 * to Active-pending, and then also take the swstep exception.
472 * This corresponds to making the (IMPDEF) choice to prioritize
473 * swstep exceptions over asynchronous exceptions taken to an exception
474 * level where debug is disabled. This choice has the advantage that
475 * we do not need to maintain internal state corresponding to the
476 * ISV/EX syndrome bits between completion of the step and generation
477 * of the exception, and our syndrome information is always correct.
478 */
479 gen_ss_advance(s);
480 gen_swstep_exception(s, 1, s->is_ldex);
481 s->base.is_jmp = DISAS_NORETURN;
482 }
483
484 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
485 {
486 if (s->ss_active) {
487 return false;
488 }
489 return translator_use_goto_tb(&s->base, dest);
490 }
491
492 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
493 {
494 if (use_goto_tb(s, s->pc_curr + diff)) {
495 /*
496 * For pcrel, the pc must always be up-to-date on entry to
497 * the linked TB, so that it can use simple additions for all
498 * further adjustments. For !pcrel, the linked TB is compiled
499 * to know its full virtual address, so we can delay the
500 * update to pc to the unlinked path. A long chain of links
501 * can thus avoid many updates to the PC.
502 */
503 if (tb_cflags(s->base.tb) & CF_PCREL) {
504 gen_a64_update_pc(s, diff);
505 tcg_gen_goto_tb(n);
506 } else {
507 tcg_gen_goto_tb(n);
508 gen_a64_update_pc(s, diff);
509 }
510 tcg_gen_exit_tb(s->base.tb, n);
511 s->base.is_jmp = DISAS_NORETURN;
512 } else {
513 gen_a64_update_pc(s, diff);
514 if (s->ss_active) {
515 gen_step_complete_exception(s);
516 } else {
517 tcg_gen_lookup_and_goto_ptr();
518 s->base.is_jmp = DISAS_NORETURN;
519 }
520 }
521 }
522
523 /*
524 * Register access functions
525 *
526 * These functions are used for directly accessing a register in where
527 * changes to the final register value are likely to be made. If you
528 * need to use a register for temporary calculation (e.g. index type
529 * operations) use the read_* form.
530 *
531 * B1.2.1 Register mappings
532 *
533 * In instruction register encoding 31 can refer to ZR (zero register) or
534 * the SP (stack pointer) depending on context. In QEMU's case we map SP
535 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
536 * This is the point of the _sp forms.
537 */
538 TCGv_i64 cpu_reg(DisasContext *s, int reg)
539 {
540 if (reg == 31) {
541 TCGv_i64 t = tcg_temp_new_i64();
542 tcg_gen_movi_i64(t, 0);
543 return t;
544 } else {
545 return cpu_X[reg];
546 }
547 }
548
549 /* register access for when 31 == SP */
550 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
551 {
552 return cpu_X[reg];
553 }
554
555 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
556 * representing the register contents. This TCGv is an auto-freed
557 * temporary so it need not be explicitly freed, and may be modified.
558 */
559 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
560 {
561 TCGv_i64 v = tcg_temp_new_i64();
562 if (reg != 31) {
563 if (sf) {
564 tcg_gen_mov_i64(v, cpu_X[reg]);
565 } else {
566 tcg_gen_ext32u_i64(v, cpu_X[reg]);
567 }
568 } else {
569 tcg_gen_movi_i64(v, 0);
570 }
571 return v;
572 }
573
574 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
575 {
576 TCGv_i64 v = tcg_temp_new_i64();
577 if (sf) {
578 tcg_gen_mov_i64(v, cpu_X[reg]);
579 } else {
580 tcg_gen_ext32u_i64(v, cpu_X[reg]);
581 }
582 return v;
583 }
584
585 /* Return the offset into CPUARMState of a slice (from
586 * the least significant end) of FP register Qn (ie
587 * Dn, Sn, Hn or Bn).
588 * (Note that this is not the same mapping as for A32; see cpu.h)
589 */
590 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
591 {
592 return vec_reg_offset(s, regno, 0, size);
593 }
594
595 /* Offset of the high half of the 128 bit vector Qn */
596 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
597 {
598 return vec_reg_offset(s, regno, 1, MO_64);
599 }
600
601 /* Convenience accessors for reading and writing single and double
602 * FP registers. Writing clears the upper parts of the associated
603 * 128 bit vector register, as required by the architecture.
604 * Note that unlike the GP register accessors, the values returned
605 * by the read functions must be manually freed.
606 */
607 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
608 {
609 TCGv_i64 v = tcg_temp_new_i64();
610
611 tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
612 return v;
613 }
614
615 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
616 {
617 TCGv_i32 v = tcg_temp_new_i32();
618
619 tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
620 return v;
621 }
622
623 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
624 {
625 TCGv_i32 v = tcg_temp_new_i32();
626
627 tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
628 return v;
629 }
630
631 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
632 * If SVE is not enabled, then there are only 128 bits in the vector.
633 */
634 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
635 {
636 unsigned ofs = fp_reg_offset(s, rd, MO_64);
637 unsigned vsz = vec_full_reg_size(s);
638
639 /* Nop move, with side effect of clearing the tail. */
640 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
641 }
642
643 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
644 {
645 unsigned ofs = fp_reg_offset(s, reg, MO_64);
646
647 tcg_gen_st_i64(v, tcg_env, ofs);
648 clear_vec_high(s, false, reg);
649 }
650
651 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
652 {
653 TCGv_i64 tmp = tcg_temp_new_i64();
654
655 tcg_gen_extu_i32_i64(tmp, v);
656 write_fp_dreg(s, reg, tmp);
657 }
658
659 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
660 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
661 GVecGen2Fn *gvec_fn, int vece)
662 {
663 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
664 is_q ? 16 : 8, vec_full_reg_size(s));
665 }
666
667 /* Expand a 2-operand + immediate AdvSIMD vector operation using
668 * an expander function.
669 */
670 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
671 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
672 {
673 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
674 imm, is_q ? 16 : 8, vec_full_reg_size(s));
675 }
676
677 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
678 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
679 GVecGen3Fn *gvec_fn, int vece)
680 {
681 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
682 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
683 }
684
685 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
686 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
687 int rx, GVecGen4Fn *gvec_fn, int vece)
688 {
689 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
691 is_q ? 16 : 8, vec_full_reg_size(s));
692 }
693
694 /* Expand a 2-operand operation using an out-of-line helper. */
695 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
696 int rn, int data, gen_helper_gvec_2 *fn)
697 {
698 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
699 vec_full_reg_offset(s, rn),
700 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
701 }
702
703 /* Expand a 3-operand operation using an out-of-line helper. */
704 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
705 int rn, int rm, int data, gen_helper_gvec_3 *fn)
706 {
707 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
708 vec_full_reg_offset(s, rn),
709 vec_full_reg_offset(s, rm),
710 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
711 }
712
713 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
714 * an out-of-line helper.
715 */
716 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
717 int rm, bool is_fp16, int data,
718 gen_helper_gvec_3_ptr *fn)
719 {
720 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
721 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
722 vec_full_reg_offset(s, rn),
723 vec_full_reg_offset(s, rm), fpst,
724 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
725 }
726
727 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
728 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
729 int rm, gen_helper_gvec_3_ptr *fn)
730 {
731 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
732
733 tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
734 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
735 vec_full_reg_offset(s, rn),
736 vec_full_reg_offset(s, rm), qc_ptr,
737 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
738 }
739
740 /* Expand a 4-operand operation using an out-of-line helper. */
741 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
742 int rm, int ra, int data, gen_helper_gvec_4 *fn)
743 {
744 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
745 vec_full_reg_offset(s, rn),
746 vec_full_reg_offset(s, rm),
747 vec_full_reg_offset(s, ra),
748 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
749 }
750
751 /*
752 * Expand a 4-operand + fpstatus pointer + simd data value operation using
753 * an out-of-line helper.
754 */
755 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
756 int rm, int ra, bool is_fp16, int data,
757 gen_helper_gvec_4_ptr *fn)
758 {
759 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
760 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
761 vec_full_reg_offset(s, rn),
762 vec_full_reg_offset(s, rm),
763 vec_full_reg_offset(s, ra), fpst,
764 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
765 }
766
767 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
768 * than the 32 bit equivalent.
769 */
770 static inline void gen_set_NZ64(TCGv_i64 result)
771 {
772 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
773 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
774 }
775
776 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
777 static inline void gen_logic_CC(int sf, TCGv_i64 result)
778 {
779 if (sf) {
780 gen_set_NZ64(result);
781 } else {
782 tcg_gen_extrl_i64_i32(cpu_ZF, result);
783 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
784 }
785 tcg_gen_movi_i32(cpu_CF, 0);
786 tcg_gen_movi_i32(cpu_VF, 0);
787 }
788
789 /* dest = T0 + T1; compute C, N, V and Z flags */
790 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
791 {
792 TCGv_i64 result, flag, tmp;
793 result = tcg_temp_new_i64();
794 flag = tcg_temp_new_i64();
795 tmp = tcg_temp_new_i64();
796
797 tcg_gen_movi_i64(tmp, 0);
798 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
799
800 tcg_gen_extrl_i64_i32(cpu_CF, flag);
801
802 gen_set_NZ64(result);
803
804 tcg_gen_xor_i64(flag, result, t0);
805 tcg_gen_xor_i64(tmp, t0, t1);
806 tcg_gen_andc_i64(flag, flag, tmp);
807 tcg_gen_extrh_i64_i32(cpu_VF, flag);
808
809 tcg_gen_mov_i64(dest, result);
810 }
811
812 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
813 {
814 TCGv_i32 t0_32 = tcg_temp_new_i32();
815 TCGv_i32 t1_32 = tcg_temp_new_i32();
816 TCGv_i32 tmp = tcg_temp_new_i32();
817
818 tcg_gen_movi_i32(tmp, 0);
819 tcg_gen_extrl_i64_i32(t0_32, t0);
820 tcg_gen_extrl_i64_i32(t1_32, t1);
821 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
822 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
823 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
824 tcg_gen_xor_i32(tmp, t0_32, t1_32);
825 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
826 tcg_gen_extu_i32_i64(dest, cpu_NF);
827 }
828
829 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
830 {
831 if (sf) {
832 gen_add64_CC(dest, t0, t1);
833 } else {
834 gen_add32_CC(dest, t0, t1);
835 }
836 }
837
838 /* dest = T0 - T1; compute C, N, V and Z flags */
839 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
840 {
841 /* 64 bit arithmetic */
842 TCGv_i64 result, flag, tmp;
843
844 result = tcg_temp_new_i64();
845 flag = tcg_temp_new_i64();
846 tcg_gen_sub_i64(result, t0, t1);
847
848 gen_set_NZ64(result);
849
850 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
851 tcg_gen_extrl_i64_i32(cpu_CF, flag);
852
853 tcg_gen_xor_i64(flag, result, t0);
854 tmp = tcg_temp_new_i64();
855 tcg_gen_xor_i64(tmp, t0, t1);
856 tcg_gen_and_i64(flag, flag, tmp);
857 tcg_gen_extrh_i64_i32(cpu_VF, flag);
858 tcg_gen_mov_i64(dest, result);
859 }
860
861 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
862 {
863 /* 32 bit arithmetic */
864 TCGv_i32 t0_32 = tcg_temp_new_i32();
865 TCGv_i32 t1_32 = tcg_temp_new_i32();
866 TCGv_i32 tmp;
867
868 tcg_gen_extrl_i64_i32(t0_32, t0);
869 tcg_gen_extrl_i64_i32(t1_32, t1);
870 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
871 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
872 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
873 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
874 tmp = tcg_temp_new_i32();
875 tcg_gen_xor_i32(tmp, t0_32, t1_32);
876 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
877 tcg_gen_extu_i32_i64(dest, cpu_NF);
878 }
879
880 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
881 {
882 if (sf) {
883 gen_sub64_CC(dest, t0, t1);
884 } else {
885 gen_sub32_CC(dest, t0, t1);
886 }
887 }
888
889 /* dest = T0 + T1 + CF; do not compute flags. */
890 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
891 {
892 TCGv_i64 flag = tcg_temp_new_i64();
893 tcg_gen_extu_i32_i64(flag, cpu_CF);
894 tcg_gen_add_i64(dest, t0, t1);
895 tcg_gen_add_i64(dest, dest, flag);
896
897 if (!sf) {
898 tcg_gen_ext32u_i64(dest, dest);
899 }
900 }
901
902 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
903 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
904 {
905 if (sf) {
906 TCGv_i64 result = tcg_temp_new_i64();
907 TCGv_i64 cf_64 = tcg_temp_new_i64();
908 TCGv_i64 vf_64 = tcg_temp_new_i64();
909 TCGv_i64 tmp = tcg_temp_new_i64();
910 TCGv_i64 zero = tcg_constant_i64(0);
911
912 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
913 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
914 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
915 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
916 gen_set_NZ64(result);
917
918 tcg_gen_xor_i64(vf_64, result, t0);
919 tcg_gen_xor_i64(tmp, t0, t1);
920 tcg_gen_andc_i64(vf_64, vf_64, tmp);
921 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
922
923 tcg_gen_mov_i64(dest, result);
924 } else {
925 TCGv_i32 t0_32 = tcg_temp_new_i32();
926 TCGv_i32 t1_32 = tcg_temp_new_i32();
927 TCGv_i32 tmp = tcg_temp_new_i32();
928 TCGv_i32 zero = tcg_constant_i32(0);
929
930 tcg_gen_extrl_i64_i32(t0_32, t0);
931 tcg_gen_extrl_i64_i32(t1_32, t1);
932 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
933 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
934
935 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
936 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
937 tcg_gen_xor_i32(tmp, t0_32, t1_32);
938 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
939 tcg_gen_extu_i32_i64(dest, cpu_NF);
940 }
941 }
942
943 /*
944 * Load/Store generators
945 */
946
947 /*
948 * Store from GPR register to memory.
949 */
950 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
951 TCGv_i64 tcg_addr, MemOp memop, int memidx,
952 bool iss_valid,
953 unsigned int iss_srt,
954 bool iss_sf, bool iss_ar)
955 {
956 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
957
958 if (iss_valid) {
959 uint32_t syn;
960
961 syn = syn_data_abort_with_iss(0,
962 (memop & MO_SIZE),
963 false,
964 iss_srt,
965 iss_sf,
966 iss_ar,
967 0, 0, 0, 0, 0, false);
968 disas_set_insn_syndrome(s, syn);
969 }
970 }
971
972 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
973 TCGv_i64 tcg_addr, MemOp memop,
974 bool iss_valid,
975 unsigned int iss_srt,
976 bool iss_sf, bool iss_ar)
977 {
978 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
979 iss_valid, iss_srt, iss_sf, iss_ar);
980 }
981
982 /*
983 * Load from memory to GPR register
984 */
985 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
986 MemOp memop, bool extend, int memidx,
987 bool iss_valid, unsigned int iss_srt,
988 bool iss_sf, bool iss_ar)
989 {
990 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
991
992 if (extend && (memop & MO_SIGN)) {
993 g_assert((memop & MO_SIZE) <= MO_32);
994 tcg_gen_ext32u_i64(dest, dest);
995 }
996
997 if (iss_valid) {
998 uint32_t syn;
999
1000 syn = syn_data_abort_with_iss(0,
1001 (memop & MO_SIZE),
1002 (memop & MO_SIGN) != 0,
1003 iss_srt,
1004 iss_sf,
1005 iss_ar,
1006 0, 0, 0, 0, 0, false);
1007 disas_set_insn_syndrome(s, syn);
1008 }
1009 }
1010
1011 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1012 MemOp memop, bool extend,
1013 bool iss_valid, unsigned int iss_srt,
1014 bool iss_sf, bool iss_ar)
1015 {
1016 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1017 iss_valid, iss_srt, iss_sf, iss_ar);
1018 }
1019
1020 /*
1021 * Store from FP register to memory
1022 */
1023 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1024 {
1025 /* This writes the bottom N bits of a 128 bit wide vector to memory */
1026 TCGv_i64 tmplo = tcg_temp_new_i64();
1027
1028 tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1029
1030 if ((mop & MO_SIZE) < MO_128) {
1031 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1032 } else {
1033 TCGv_i64 tmphi = tcg_temp_new_i64();
1034 TCGv_i128 t16 = tcg_temp_new_i128();
1035
1036 tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1037 tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1038
1039 tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1040 }
1041 }
1042
1043 /*
1044 * Load from memory to FP register
1045 */
1046 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1047 {
1048 /* This always zero-extends and writes to a full 128 bit wide vector */
1049 TCGv_i64 tmplo = tcg_temp_new_i64();
1050 TCGv_i64 tmphi = NULL;
1051
1052 if ((mop & MO_SIZE) < MO_128) {
1053 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1054 } else {
1055 TCGv_i128 t16 = tcg_temp_new_i128();
1056
1057 tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1058
1059 tmphi = tcg_temp_new_i64();
1060 tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1061 }
1062
1063 tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1064
1065 if (tmphi) {
1066 tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1067 }
1068 clear_vec_high(s, tmphi != NULL, destidx);
1069 }
1070
1071 /*
1072 * Vector load/store helpers.
1073 *
1074 * The principal difference between this and a FP load is that we don't
1075 * zero extend as we are filling a partial chunk of the vector register.
1076 * These functions don't support 128 bit loads/stores, which would be
1077 * normal load/store operations.
1078 *
1079 * The _i32 versions are useful when operating on 32 bit quantities
1080 * (eg for floating point single or using Neon helper functions).
1081 */
1082
1083 /* Get value of an element within a vector register */
1084 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1085 int element, MemOp memop)
1086 {
1087 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1088 switch ((unsigned)memop) {
1089 case MO_8:
1090 tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1091 break;
1092 case MO_16:
1093 tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1094 break;
1095 case MO_32:
1096 tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1097 break;
1098 case MO_8|MO_SIGN:
1099 tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1100 break;
1101 case MO_16|MO_SIGN:
1102 tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1103 break;
1104 case MO_32|MO_SIGN:
1105 tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1106 break;
1107 case MO_64:
1108 case MO_64|MO_SIGN:
1109 tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1110 break;
1111 default:
1112 g_assert_not_reached();
1113 }
1114 }
1115
1116 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1117 int element, MemOp memop)
1118 {
1119 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1120 switch (memop) {
1121 case MO_8:
1122 tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1123 break;
1124 case MO_16:
1125 tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1126 break;
1127 case MO_8|MO_SIGN:
1128 tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1129 break;
1130 case MO_16|MO_SIGN:
1131 tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1132 break;
1133 case MO_32:
1134 case MO_32|MO_SIGN:
1135 tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1136 break;
1137 default:
1138 g_assert_not_reached();
1139 }
1140 }
1141
1142 /* Set value of an element within a vector register */
1143 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1144 int element, MemOp memop)
1145 {
1146 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1147 switch (memop) {
1148 case MO_8:
1149 tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1150 break;
1151 case MO_16:
1152 tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1153 break;
1154 case MO_32:
1155 tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1156 break;
1157 case MO_64:
1158 tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1159 break;
1160 default:
1161 g_assert_not_reached();
1162 }
1163 }
1164
1165 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1166 int destidx, int element, MemOp memop)
1167 {
1168 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1169 switch (memop) {
1170 case MO_8:
1171 tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1172 break;
1173 case MO_16:
1174 tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1175 break;
1176 case MO_32:
1177 tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1178 break;
1179 default:
1180 g_assert_not_reached();
1181 }
1182 }
1183
1184 /* Store from vector register to memory */
1185 static void do_vec_st(DisasContext *s, int srcidx, int element,
1186 TCGv_i64 tcg_addr, MemOp mop)
1187 {
1188 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1189
1190 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1191 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1192 }
1193
1194 /* Load from memory to vector register */
1195 static void do_vec_ld(DisasContext *s, int destidx, int element,
1196 TCGv_i64 tcg_addr, MemOp mop)
1197 {
1198 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1199
1200 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1201 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1202 }
1203
1204 /* Check that FP/Neon access is enabled. If it is, return
1205 * true. If not, emit code to generate an appropriate exception,
1206 * and return false; the caller should not emit any code for
1207 * the instruction. Note that this check must happen after all
1208 * unallocated-encoding checks (otherwise the syndrome information
1209 * for the resulting exception will be incorrect).
1210 */
1211 static bool fp_access_check_only(DisasContext *s)
1212 {
1213 if (s->fp_excp_el) {
1214 assert(!s->fp_access_checked);
1215 s->fp_access_checked = true;
1216
1217 gen_exception_insn_el(s, 0, EXCP_UDEF,
1218 syn_fp_access_trap(1, 0xe, false, 0),
1219 s->fp_excp_el);
1220 return false;
1221 }
1222 s->fp_access_checked = true;
1223 return true;
1224 }
1225
1226 static bool fp_access_check(DisasContext *s)
1227 {
1228 if (!fp_access_check_only(s)) {
1229 return false;
1230 }
1231 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1232 gen_exception_insn(s, 0, EXCP_UDEF,
1233 syn_smetrap(SME_ET_Streaming, false));
1234 return false;
1235 }
1236 return true;
1237 }
1238
1239 /*
1240 * Check that SVE access is enabled. If it is, return true.
1241 * If not, emit code to generate an appropriate exception and return false.
1242 * This function corresponds to CheckSVEEnabled().
1243 */
1244 bool sve_access_check(DisasContext *s)
1245 {
1246 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1247 assert(dc_isar_feature(aa64_sme, s));
1248 if (!sme_sm_enabled_check(s)) {
1249 goto fail_exit;
1250 }
1251 } else if (s->sve_excp_el) {
1252 gen_exception_insn_el(s, 0, EXCP_UDEF,
1253 syn_sve_access_trap(), s->sve_excp_el);
1254 goto fail_exit;
1255 }
1256 s->sve_access_checked = true;
1257 return fp_access_check(s);
1258
1259 fail_exit:
1260 /* Assert that we only raise one exception per instruction. */
1261 assert(!s->sve_access_checked);
1262 s->sve_access_checked = true;
1263 return false;
1264 }
1265
1266 /*
1267 * Check that SME access is enabled, raise an exception if not.
1268 * Note that this function corresponds to CheckSMEAccess and is
1269 * only used directly for cpregs.
1270 */
1271 static bool sme_access_check(DisasContext *s)
1272 {
1273 if (s->sme_excp_el) {
1274 gen_exception_insn_el(s, 0, EXCP_UDEF,
1275 syn_smetrap(SME_ET_AccessTrap, false),
1276 s->sme_excp_el);
1277 return false;
1278 }
1279 return true;
1280 }
1281
1282 /* This function corresponds to CheckSMEEnabled. */
1283 bool sme_enabled_check(DisasContext *s)
1284 {
1285 /*
1286 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1287 * to be zero when fp_excp_el has priority. This is because we need
1288 * sme_excp_el by itself for cpregs access checks.
1289 */
1290 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1291 s->fp_access_checked = true;
1292 return sme_access_check(s);
1293 }
1294 return fp_access_check_only(s);
1295 }
1296
1297 /* Common subroutine for CheckSMEAnd*Enabled. */
1298 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1299 {
1300 if (!sme_enabled_check(s)) {
1301 return false;
1302 }
1303 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1304 gen_exception_insn(s, 0, EXCP_UDEF,
1305 syn_smetrap(SME_ET_NotStreaming, false));
1306 return false;
1307 }
1308 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1309 gen_exception_insn(s, 0, EXCP_UDEF,
1310 syn_smetrap(SME_ET_InactiveZA, false));
1311 return false;
1312 }
1313 return true;
1314 }
1315
1316 /*
1317 * This utility function is for doing register extension with an
1318 * optional shift. You will likely want to pass a temporary for the
1319 * destination register. See DecodeRegExtend() in the ARM ARM.
1320 */
1321 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1322 int option, unsigned int shift)
1323 {
1324 int extsize = extract32(option, 0, 2);
1325 bool is_signed = extract32(option, 2, 1);
1326
1327 if (is_signed) {
1328 switch (extsize) {
1329 case 0:
1330 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1331 break;
1332 case 1:
1333 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1334 break;
1335 case 2:
1336 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1337 break;
1338 case 3:
1339 tcg_gen_mov_i64(tcg_out, tcg_in);
1340 break;
1341 }
1342 } else {
1343 switch (extsize) {
1344 case 0:
1345 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1346 break;
1347 case 1:
1348 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1349 break;
1350 case 2:
1351 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1352 break;
1353 case 3:
1354 tcg_gen_mov_i64(tcg_out, tcg_in);
1355 break;
1356 }
1357 }
1358
1359 if (shift) {
1360 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1361 }
1362 }
1363
1364 static inline void gen_check_sp_alignment(DisasContext *s)
1365 {
1366 /* The AArch64 architecture mandates that (if enabled via PSTATE
1367 * or SCTLR bits) there is a check that SP is 16-aligned on every
1368 * SP-relative load or store (with an exception generated if it is not).
1369 * In line with general QEMU practice regarding misaligned accesses,
1370 * we omit these checks for the sake of guest program performance.
1371 * This function is provided as a hook so we can more easily add these
1372 * checks in future (possibly as a "favour catching guest program bugs
1373 * over speed" user selectable option).
1374 */
1375 }
1376
1377 /*
1378 * This provides a simple table based table lookup decoder. It is
1379 * intended to be used when the relevant bits for decode are too
1380 * awkwardly placed and switch/if based logic would be confusing and
1381 * deeply nested. Since it's a linear search through the table, tables
1382 * should be kept small.
1383 *
1384 * It returns the first handler where insn & mask == pattern, or
1385 * NULL if there is no match.
1386 * The table is terminated by an empty mask (i.e. 0)
1387 */
1388 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1389 uint32_t insn)
1390 {
1391 const AArch64DecodeTable *tptr = table;
1392
1393 while (tptr->mask) {
1394 if ((insn & tptr->mask) == tptr->pattern) {
1395 return tptr->disas_fn;
1396 }
1397 tptr++;
1398 }
1399 return NULL;
1400 }
1401
1402 /*
1403 * The instruction disassembly implemented here matches
1404 * the instruction encoding classifications in chapter C4
1405 * of the ARM Architecture Reference Manual (DDI0487B_a);
1406 * classification names and decode diagrams here should generally
1407 * match up with those in the manual.
1408 */
1409
1410 static bool trans_B(DisasContext *s, arg_i *a)
1411 {
1412 reset_btype(s);
1413 gen_goto_tb(s, 0, a->imm);
1414 return true;
1415 }
1416
1417 static bool trans_BL(DisasContext *s, arg_i *a)
1418 {
1419 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1420 reset_btype(s);
1421 gen_goto_tb(s, 0, a->imm);
1422 return true;
1423 }
1424
1425
1426 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1427 {
1428 DisasLabel match;
1429 TCGv_i64 tcg_cmp;
1430
1431 tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1432 reset_btype(s);
1433
1434 match = gen_disas_label(s);
1435 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1436 tcg_cmp, 0, match.label);
1437 gen_goto_tb(s, 0, 4);
1438 set_disas_label(s, match);
1439 gen_goto_tb(s, 1, a->imm);
1440 return true;
1441 }
1442
1443 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1444 {
1445 DisasLabel match;
1446 TCGv_i64 tcg_cmp;
1447
1448 tcg_cmp = tcg_temp_new_i64();
1449 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1450
1451 reset_btype(s);
1452
1453 match = gen_disas_label(s);
1454 tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1455 tcg_cmp, 0, match.label);
1456 gen_goto_tb(s, 0, 4);
1457 set_disas_label(s, match);
1458 gen_goto_tb(s, 1, a->imm);
1459 return true;
1460 }
1461
1462 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1463 {
1464 /* BC.cond is only present with FEAT_HBC */
1465 if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1466 return false;
1467 }
1468 reset_btype(s);
1469 if (a->cond < 0x0e) {
1470 /* genuinely conditional branches */
1471 DisasLabel match = gen_disas_label(s);
1472 arm_gen_test_cc(a->cond, match.label);
1473 gen_goto_tb(s, 0, 4);
1474 set_disas_label(s, match);
1475 gen_goto_tb(s, 1, a->imm);
1476 } else {
1477 /* 0xe and 0xf are both "always" conditions */
1478 gen_goto_tb(s, 0, a->imm);
1479 }
1480 return true;
1481 }
1482
1483 static void set_btype_for_br(DisasContext *s, int rn)
1484 {
1485 if (dc_isar_feature(aa64_bti, s)) {
1486 /* BR to {x16,x17} or !guard -> 1, else 3. */
1487 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
1488 }
1489 }
1490
1491 static void set_btype_for_blr(DisasContext *s)
1492 {
1493 if (dc_isar_feature(aa64_bti, s)) {
1494 /* BLR sets BTYPE to 2, regardless of source guarded page. */
1495 set_btype(s, 2);
1496 }
1497 }
1498
1499 static bool trans_BR(DisasContext *s, arg_r *a)
1500 {
1501 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1502 set_btype_for_br(s, a->rn);
1503 s->base.is_jmp = DISAS_JUMP;
1504 return true;
1505 }
1506
1507 static bool trans_BLR(DisasContext *s, arg_r *a)
1508 {
1509 TCGv_i64 dst = cpu_reg(s, a->rn);
1510 TCGv_i64 lr = cpu_reg(s, 30);
1511 if (dst == lr) {
1512 TCGv_i64 tmp = tcg_temp_new_i64();
1513 tcg_gen_mov_i64(tmp, dst);
1514 dst = tmp;
1515 }
1516 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1517 gen_a64_set_pc(s, dst);
1518 set_btype_for_blr(s);
1519 s->base.is_jmp = DISAS_JUMP;
1520 return true;
1521 }
1522
1523 static bool trans_RET(DisasContext *s, arg_r *a)
1524 {
1525 gen_a64_set_pc(s, cpu_reg(s, a->rn));
1526 s->base.is_jmp = DISAS_JUMP;
1527 return true;
1528 }
1529
1530 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1531 TCGv_i64 modifier, bool use_key_a)
1532 {
1533 TCGv_i64 truedst;
1534 /*
1535 * Return the branch target for a BRAA/RETA/etc, which is either
1536 * just the destination dst, or that value with the pauth check
1537 * done and the code removed from the high bits.
1538 */
1539 if (!s->pauth_active) {
1540 return dst;
1541 }
1542
1543 truedst = tcg_temp_new_i64();
1544 if (use_key_a) {
1545 gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1546 } else {
1547 gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1548 }
1549 return truedst;
1550 }
1551
1552 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1553 {
1554 TCGv_i64 dst;
1555
1556 if (!dc_isar_feature(aa64_pauth, s)) {
1557 return false;
1558 }
1559
1560 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1561 gen_a64_set_pc(s, dst);
1562 set_btype_for_br(s, a->rn);
1563 s->base.is_jmp = DISAS_JUMP;
1564 return true;
1565 }
1566
1567 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1568 {
1569 TCGv_i64 dst, lr;
1570
1571 if (!dc_isar_feature(aa64_pauth, s)) {
1572 return false;
1573 }
1574
1575 dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1576 lr = cpu_reg(s, 30);
1577 if (dst == lr) {
1578 TCGv_i64 tmp = tcg_temp_new_i64();
1579 tcg_gen_mov_i64(tmp, dst);
1580 dst = tmp;
1581 }
1582 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1583 gen_a64_set_pc(s, dst);
1584 set_btype_for_blr(s);
1585 s->base.is_jmp = DISAS_JUMP;
1586 return true;
1587 }
1588
1589 static bool trans_RETA(DisasContext *s, arg_reta *a)
1590 {
1591 TCGv_i64 dst;
1592
1593 dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1594 gen_a64_set_pc(s, dst);
1595 s->base.is_jmp = DISAS_JUMP;
1596 return true;
1597 }
1598
1599 static bool trans_BRA(DisasContext *s, arg_bra *a)
1600 {
1601 TCGv_i64 dst;
1602
1603 if (!dc_isar_feature(aa64_pauth, s)) {
1604 return false;
1605 }
1606 dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1607 gen_a64_set_pc(s, dst);
1608 set_btype_for_br(s, a->rn);
1609 s->base.is_jmp = DISAS_JUMP;
1610 return true;
1611 }
1612
1613 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1614 {
1615 TCGv_i64 dst, lr;
1616
1617 if (!dc_isar_feature(aa64_pauth, s)) {
1618 return false;
1619 }
1620 dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1621 lr = cpu_reg(s, 30);
1622 if (dst == lr) {
1623 TCGv_i64 tmp = tcg_temp_new_i64();
1624 tcg_gen_mov_i64(tmp, dst);
1625 dst = tmp;
1626 }
1627 gen_pc_plus_diff(s, lr, curr_insn_len(s));
1628 gen_a64_set_pc(s, dst);
1629 set_btype_for_blr(s);
1630 s->base.is_jmp = DISAS_JUMP;
1631 return true;
1632 }
1633
1634 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1635 {
1636 TCGv_i64 dst;
1637
1638 if (s->current_el == 0) {
1639 return false;
1640 }
1641 if (s->fgt_eret) {
1642 gen_exception_insn_el(s, 0, EXCP_UDEF, 0, 2);
1643 return true;
1644 }
1645 dst = tcg_temp_new_i64();
1646 tcg_gen_ld_i64(dst, tcg_env,
1647 offsetof(CPUARMState, elr_el[s->current_el]));
1648
1649 translator_io_start(&s->base);
1650
1651 gen_helper_exception_return(tcg_env, dst);
1652 /* Must exit loop to check un-masked IRQs */
1653 s->base.is_jmp = DISAS_EXIT;
1654 return true;
1655 }
1656
1657 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1658 {
1659 TCGv_i64 dst;
1660
1661 if (!dc_isar_feature(aa64_pauth, s)) {
1662 return false;
1663 }
1664 if (s->current_el == 0) {
1665 return false;
1666 }
1667 /* The FGT trap takes precedence over an auth trap. */
1668 if (s->fgt_eret) {
1669 gen_exception_insn_el(s, 0, EXCP_UDEF, a->m ? 3 : 2, 2);
1670 return true;
1671 }
1672 dst = tcg_temp_new_i64();
1673 tcg_gen_ld_i64(dst, tcg_env,
1674 offsetof(CPUARMState, elr_el[s->current_el]));
1675
1676 dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1677
1678 translator_io_start(&s->base);
1679
1680 gen_helper_exception_return(tcg_env, dst);
1681 /* Must exit loop to check un-masked IRQs */
1682 s->base.is_jmp = DISAS_EXIT;
1683 return true;
1684 }
1685
1686 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1687 {
1688 return true;
1689 }
1690
1691 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1692 {
1693 /*
1694 * When running in MTTCG we don't generate jumps to the yield and
1695 * WFE helpers as it won't affect the scheduling of other vCPUs.
1696 * If we wanted to more completely model WFE/SEV so we don't busy
1697 * spin unnecessarily we would need to do something more involved.
1698 */
1699 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1700 s->base.is_jmp = DISAS_YIELD;
1701 }
1702 return true;
1703 }
1704
1705 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1706 {
1707 s->base.is_jmp = DISAS_WFI;
1708 return true;
1709 }
1710
1711 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1712 {
1713 /*
1714 * When running in MTTCG we don't generate jumps to the yield and
1715 * WFE helpers as it won't affect the scheduling of other vCPUs.
1716 * If we wanted to more completely model WFE/SEV so we don't busy
1717 * spin unnecessarily we would need to do something more involved.
1718 */
1719 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1720 s->base.is_jmp = DISAS_WFE;
1721 }
1722 return true;
1723 }
1724
1725 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
1726 {
1727 if (s->pauth_active) {
1728 gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
1729 }
1730 return true;
1731 }
1732
1733 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
1734 {
1735 if (s->pauth_active) {
1736 gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1737 }
1738 return true;
1739 }
1740
1741 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
1742 {
1743 if (s->pauth_active) {
1744 gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1745 }
1746 return true;
1747 }
1748
1749 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
1750 {
1751 if (s->pauth_active) {
1752 gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1753 }
1754 return true;
1755 }
1756
1757 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
1758 {
1759 if (s->pauth_active) {
1760 gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
1761 }
1762 return true;
1763 }
1764
1765 static bool trans_ESB(DisasContext *s, arg_ESB *a)
1766 {
1767 /* Without RAS, we must implement this as NOP. */
1768 if (dc_isar_feature(aa64_ras, s)) {
1769 /*
1770 * QEMU does not have a source of physical SErrors,
1771 * so we are only concerned with virtual SErrors.
1772 * The pseudocode in the ARM for this case is
1773 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1774 * AArch64.vESBOperation();
1775 * Most of the condition can be evaluated at translation time.
1776 * Test for EL2 present, and defer test for SEL2 to runtime.
1777 */
1778 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1779 gen_helper_vesb(tcg_env);
1780 }
1781 }
1782 return true;
1783 }
1784
1785 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
1786 {
1787 if (s->pauth_active) {
1788 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1789 }
1790 return true;
1791 }
1792
1793 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
1794 {
1795 if (s->pauth_active) {
1796 gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1797 }
1798 return true;
1799 }
1800
1801 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
1802 {
1803 if (s->pauth_active) {
1804 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1805 }
1806 return true;
1807 }
1808
1809 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
1810 {
1811 if (s->pauth_active) {
1812 gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1813 }
1814 return true;
1815 }
1816
1817 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
1818 {
1819 if (s->pauth_active) {
1820 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1821 }
1822 return true;
1823 }
1824
1825 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
1826 {
1827 if (s->pauth_active) {
1828 gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1829 }
1830 return true;
1831 }
1832
1833 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
1834 {
1835 if (s->pauth_active) {
1836 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
1837 }
1838 return true;
1839 }
1840
1841 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
1842 {
1843 if (s->pauth_active) {
1844 gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
1845 }
1846 return true;
1847 }
1848
1849 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
1850 {
1851 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1852 return true;
1853 }
1854
1855 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
1856 {
1857 /* We handle DSB and DMB the same way */
1858 TCGBar bar;
1859
1860 switch (a->types) {
1861 case 1: /* MBReqTypes_Reads */
1862 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1863 break;
1864 case 2: /* MBReqTypes_Writes */
1865 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1866 break;
1867 default: /* MBReqTypes_All */
1868 bar = TCG_BAR_SC | TCG_MO_ALL;
1869 break;
1870 }
1871 tcg_gen_mb(bar);
1872 return true;
1873 }
1874
1875 static bool trans_ISB(DisasContext *s, arg_ISB *a)
1876 {
1877 /*
1878 * We need to break the TB after this insn to execute
1879 * self-modifying code correctly and also to take
1880 * any pending interrupts immediately.
1881 */
1882 reset_btype(s);
1883 gen_goto_tb(s, 0, 4);
1884 return true;
1885 }
1886
1887 static bool trans_SB(DisasContext *s, arg_SB *a)
1888 {
1889 if (!dc_isar_feature(aa64_sb, s)) {
1890 return false;
1891 }
1892 /*
1893 * TODO: There is no speculation barrier opcode for TCG;
1894 * MB and end the TB instead.
1895 */
1896 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1897 gen_goto_tb(s, 0, 4);
1898 return true;
1899 }
1900
1901 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
1902 {
1903 if (!dc_isar_feature(aa64_condm_4, s)) {
1904 return false;
1905 }
1906 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1907 return true;
1908 }
1909
1910 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
1911 {
1912 TCGv_i32 z;
1913
1914 if (!dc_isar_feature(aa64_condm_5, s)) {
1915 return false;
1916 }
1917
1918 z = tcg_temp_new_i32();
1919
1920 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1921
1922 /*
1923 * (!C & !Z) << 31
1924 * (!(C | Z)) << 31
1925 * ~((C | Z) << 31)
1926 * ~-(C | Z)
1927 * (C | Z) - 1
1928 */
1929 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1930 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1931
1932 /* !(Z & C) */
1933 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1934 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1935
1936 /* (!C & Z) << 31 -> -(Z & ~C) */
1937 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1938 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1939
1940 /* C | Z */
1941 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1942
1943 return true;
1944 }
1945
1946 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
1947 {
1948 if (!dc_isar_feature(aa64_condm_5, s)) {
1949 return false;
1950 }
1951
1952 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1953 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1954
1955 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1956 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1957
1958 tcg_gen_movi_i32(cpu_NF, 0);
1959 tcg_gen_movi_i32(cpu_VF, 0);
1960
1961 return true;
1962 }
1963
1964 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
1965 {
1966 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1967 return false;
1968 }
1969 if (a->imm & 1) {
1970 set_pstate_bits(PSTATE_UAO);
1971 } else {
1972 clear_pstate_bits(PSTATE_UAO);
1973 }
1974 gen_rebuild_hflags(s);
1975 s->base.is_jmp = DISAS_TOO_MANY;
1976 return true;
1977 }
1978
1979 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
1980 {
1981 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1982 return false;
1983 }
1984 if (a->imm & 1) {
1985 set_pstate_bits(PSTATE_PAN);
1986 } else {
1987 clear_pstate_bits(PSTATE_PAN);
1988 }
1989 gen_rebuild_hflags(s);
1990 s->base.is_jmp = DISAS_TOO_MANY;
1991 return true;
1992 }
1993
1994 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
1995 {
1996 if (s->current_el == 0) {
1997 return false;
1998 }
1999 gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2000 s->base.is_jmp = DISAS_TOO_MANY;
2001 return true;
2002 }
2003
2004 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2005 {
2006 if (!dc_isar_feature(aa64_ssbs, s)) {
2007 return false;
2008 }
2009 if (a->imm & 1) {
2010 set_pstate_bits(PSTATE_SSBS);
2011 } else {
2012 clear_pstate_bits(PSTATE_SSBS);
2013 }
2014 /* Don't need to rebuild hflags since SSBS is a nop */
2015 s->base.is_jmp = DISAS_TOO_MANY;
2016 return true;
2017 }
2018
2019 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2020 {
2021 if (!dc_isar_feature(aa64_dit, s)) {
2022 return false;
2023 }
2024 if (a->imm & 1) {
2025 set_pstate_bits(PSTATE_DIT);
2026 } else {
2027 clear_pstate_bits(PSTATE_DIT);
2028 }
2029 /* There's no need to rebuild hflags because DIT is a nop */
2030 s->base.is_jmp = DISAS_TOO_MANY;
2031 return true;
2032 }
2033
2034 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2035 {
2036 if (dc_isar_feature(aa64_mte, s)) {
2037 /* Full MTE is enabled -- set the TCO bit as directed. */
2038 if (a->imm & 1) {
2039 set_pstate_bits(PSTATE_TCO);
2040 } else {
2041 clear_pstate_bits(PSTATE_TCO);
2042 }
2043 gen_rebuild_hflags(s);
2044 /* Many factors, including TCO, go into MTE_ACTIVE. */
2045 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2046 return true;
2047 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2048 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
2049 return true;
2050 } else {
2051 /* Insn not present */
2052 return false;
2053 }
2054 }
2055
2056 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2057 {
2058 gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2059 s->base.is_jmp = DISAS_TOO_MANY;
2060 return true;
2061 }
2062
2063 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2064 {
2065 gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2066 /* Exit the cpu loop to re-evaluate pending IRQs. */
2067 s->base.is_jmp = DISAS_UPDATE_EXIT;
2068 return true;
2069 }
2070
2071 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2072 {
2073 if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2074 return false;
2075 }
2076 if (sme_access_check(s)) {
2077 int old = s->pstate_sm | (s->pstate_za << 1);
2078 int new = a->imm * 3;
2079
2080 if ((old ^ new) & a->mask) {
2081 /* At least one bit changes. */
2082 gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2083 tcg_constant_i32(a->mask));
2084 s->base.is_jmp = DISAS_TOO_MANY;
2085 }
2086 }
2087 return true;
2088 }
2089
2090 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2091 {
2092 TCGv_i32 tmp = tcg_temp_new_i32();
2093 TCGv_i32 nzcv = tcg_temp_new_i32();
2094
2095 /* build bit 31, N */
2096 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2097 /* build bit 30, Z */
2098 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2099 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2100 /* build bit 29, C */
2101 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2102 /* build bit 28, V */
2103 tcg_gen_shri_i32(tmp, cpu_VF, 31);
2104 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2105 /* generate result */
2106 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2107 }
2108
2109 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2110 {
2111 TCGv_i32 nzcv = tcg_temp_new_i32();
2112
2113 /* take NZCV from R[t] */
2114 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2115
2116 /* bit 31, N */
2117 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2118 /* bit 30, Z */
2119 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2120 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2121 /* bit 29, C */
2122 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2123 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2124 /* bit 28, V */
2125 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2126 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2127 }
2128
2129 static void gen_sysreg_undef(DisasContext *s, bool isread,
2130 uint8_t op0, uint8_t op1, uint8_t op2,
2131 uint8_t crn, uint8_t crm, uint8_t rt)
2132 {
2133 /*
2134 * Generate code to emit an UNDEF with correct syndrome
2135 * information for a failed system register access.
2136 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2137 * but if FEAT_IDST is implemented then read accesses to registers
2138 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2139 * syndrome.
2140 */
2141 uint32_t syndrome;
2142
2143 if (isread && dc_isar_feature(aa64_ids, s) &&
2144 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2145 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2146 } else {
2147 syndrome = syn_uncategorized();
2148 }
2149 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2150 }
2151
2152 /* MRS - move from system register
2153 * MSR (register) - move to system register
2154 * SYS
2155 * SYSL
2156 * These are all essentially the same insn in 'read' and 'write'
2157 * versions, with varying op0 fields.
2158 */
2159 static void handle_sys(DisasContext *s, bool isread,
2160 unsigned int op0, unsigned int op1, unsigned int op2,
2161 unsigned int crn, unsigned int crm, unsigned int rt)
2162 {
2163 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2164 crn, crm, op0, op1, op2);
2165 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2166 bool need_exit_tb = false;
2167 TCGv_ptr tcg_ri = NULL;
2168 TCGv_i64 tcg_rt;
2169 uint32_t syndrome;
2170
2171 if (crn == 11 || crn == 15) {
2172 /*
2173 * Check for TIDCP trap, which must take precedence over
2174 * the UNDEF for "no such register" etc.
2175 */
2176 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2177 switch (s->current_el) {
2178 case 0:
2179 if (dc_isar_feature(aa64_tidcp1, s)) {
2180 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2181 }
2182 break;
2183 case 1:
2184 gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2185 break;
2186 }
2187 }
2188
2189 if (!ri) {
2190 /* Unknown register; this might be a guest error or a QEMU
2191 * unimplemented feature.
2192 */
2193 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2194 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2195 isread ? "read" : "write", op0, op1, crn, crm, op2);
2196 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2197 return;
2198 }
2199
2200 /* Check access permissions */
2201 if (!cp_access_ok(s->current_el, ri, isread)) {
2202 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2203 return;
2204 }
2205
2206 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2207 /* Emit code to perform further access permissions checks at
2208 * runtime; this may result in an exception.
2209 */
2210 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2211 gen_a64_update_pc(s, 0);
2212 tcg_ri = tcg_temp_new_ptr();
2213 gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2214 tcg_constant_i32(key),
2215 tcg_constant_i32(syndrome),
2216 tcg_constant_i32(isread));
2217 } else if (ri->type & ARM_CP_RAISES_EXC) {
2218 /*
2219 * The readfn or writefn might raise an exception;
2220 * synchronize the CPU state in case it does.
2221 */
2222 gen_a64_update_pc(s, 0);
2223 }
2224
2225 /* Handle special cases first */
2226 switch (ri->type & ARM_CP_SPECIAL_MASK) {
2227 case 0:
2228 break;
2229 case ARM_CP_NOP:
2230 return;
2231 case ARM_CP_NZCV:
2232 tcg_rt = cpu_reg(s, rt);
2233 if (isread) {
2234 gen_get_nzcv(tcg_rt);
2235 } else {
2236 gen_set_nzcv(tcg_rt);
2237 }
2238 return;
2239 case ARM_CP_CURRENTEL:
2240 /* Reads as current EL value from pstate, which is
2241 * guaranteed to be constant by the tb flags.
2242 */
2243 tcg_rt = cpu_reg(s, rt);
2244 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2245 return;
2246 case ARM_CP_DC_ZVA:
2247 /* Writes clear the aligned block of memory which rt points into. */
2248 if (s->mte_active[0]) {
2249 int desc = 0;
2250
2251 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2252 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2253 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2254
2255 tcg_rt = tcg_temp_new_i64();
2256 gen_helper_mte_check_zva(tcg_rt, tcg_env,
2257 tcg_constant_i32(desc), cpu_reg(s, rt));
2258 } else {
2259 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2260 }
2261 gen_helper_dc_zva(tcg_env, tcg_rt);
2262 return;
2263 case ARM_CP_DC_GVA:
2264 {
2265 TCGv_i64 clean_addr, tag;
2266
2267 /*
2268 * DC_GVA, like DC_ZVA, requires that we supply the original
2269 * pointer for an invalid page. Probe that address first.
2270 */
2271 tcg_rt = cpu_reg(s, rt);
2272 clean_addr = clean_data_tbi(s, tcg_rt);
2273 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2274
2275 if (s->ata[0]) {
2276 /* Extract the tag from the register to match STZGM. */
2277 tag = tcg_temp_new_i64();
2278 tcg_gen_shri_i64(tag, tcg_rt, 56);
2279 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2280 }
2281 }
2282 return;
2283 case ARM_CP_DC_GZVA:
2284 {
2285 TCGv_i64 clean_addr, tag;
2286
2287 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2288 tcg_rt = cpu_reg(s, rt);
2289 clean_addr = clean_data_tbi(s, tcg_rt);
2290 gen_helper_dc_zva(tcg_env, clean_addr);
2291
2292 if (s->ata[0]) {
2293 /* Extract the tag from the register to match STZGM. */
2294 tag = tcg_temp_new_i64();
2295 tcg_gen_shri_i64(tag, tcg_rt, 56);
2296 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2297 }
2298 }
2299 return;
2300 default:
2301 g_assert_not_reached();
2302 }
2303 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2304 return;
2305 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2306 return;
2307 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2308 return;
2309 }
2310
2311 if (ri->type & ARM_CP_IO) {
2312 /* I/O operations must end the TB here (whether read or write) */
2313 need_exit_tb = translator_io_start(&s->base);
2314 }
2315
2316 tcg_rt = cpu_reg(s, rt);
2317
2318 if (isread) {
2319 if (ri->type & ARM_CP_CONST) {
2320 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2321 } else if (ri->readfn) {
2322 if (!tcg_ri) {
2323 tcg_ri = gen_lookup_cp_reg(key);
2324 }
2325 gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2326 } else {
2327 tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2328 }
2329 } else {
2330 if (ri->type & ARM_CP_CONST) {
2331 /* If not forbidden by access permissions, treat as WI */
2332 return;
2333 } else if (ri->writefn) {
2334 if (!tcg_ri) {
2335 tcg_ri = gen_lookup_cp_reg(key);
2336 }
2337 gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2338 } else {
2339 tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2340 }
2341 }
2342
2343 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2344 /*
2345 * A write to any coprocessor register that ends a TB
2346 * must rebuild the hflags for the next TB.
2347 */
2348 gen_rebuild_hflags(s);
2349 /*
2350 * We default to ending the TB on a coprocessor register write,
2351 * but allow this to be suppressed by the register definition
2352 * (usually only necessary to work around guest bugs).
2353 */
2354 need_exit_tb = true;
2355 }
2356 if (need_exit_tb) {
2357 s->base.is_jmp = DISAS_UPDATE_EXIT;
2358 }
2359 }
2360
2361 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2362 {
2363 handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2364 return true;
2365 }
2366
2367 static bool trans_SVC(DisasContext *s, arg_i *a)
2368 {
2369 /*
2370 * For SVC, HVC and SMC we advance the single-step state
2371 * machine before taking the exception. This is architecturally
2372 * mandated, to ensure that single-stepping a system call
2373 * instruction works properly.
2374 */
2375 uint32_t syndrome = syn_aa64_svc(a->imm);
2376 if (s->fgt_svc) {
2377 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2378 return true;
2379 }
2380 gen_ss_advance(s);
2381 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2382 return true;
2383 }
2384
2385 static bool trans_HVC(DisasContext *s, arg_i *a)
2386 {
2387 if (s->current_el == 0) {
2388 unallocated_encoding(s);
2389 return true;
2390 }
2391 /*
2392 * The pre HVC helper handles cases when HVC gets trapped
2393 * as an undefined insn by runtime configuration.
2394 */
2395 gen_a64_update_pc(s, 0);
2396 gen_helper_pre_hvc(tcg_env);
2397 /* Architecture requires ss advance before we do the actual work */
2398 gen_ss_advance(s);
2399 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), 2);
2400 return true;
2401 }
2402
2403 static bool trans_SMC(DisasContext *s, arg_i *a)
2404 {
2405 if (s->current_el == 0) {
2406 unallocated_encoding(s);
2407 return true;
2408 }
2409 gen_a64_update_pc(s, 0);
2410 gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2411 /* Architecture requires ss advance before we do the actual work */
2412 gen_ss_advance(s);
2413 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2414 return true;
2415 }
2416
2417 static bool trans_BRK(DisasContext *s, arg_i *a)
2418 {
2419 gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2420 return true;
2421 }
2422
2423 static bool trans_HLT(DisasContext *s, arg_i *a)
2424 {
2425 /*
2426 * HLT. This has two purposes.
2427 * Architecturally, it is an external halting debug instruction.
2428 * Since QEMU doesn't implement external debug, we treat this as
2429 * it is required for halting debug disabled: it will UNDEF.
2430 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2431 */
2432 if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2433 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2434 } else {
2435 unallocated_encoding(s);
2436 }
2437 return true;
2438 }
2439
2440 /*
2441 * Load/Store exclusive instructions are implemented by remembering
2442 * the value/address loaded, and seeing if these are the same
2443 * when the store is performed. This is not actually the architecturally
2444 * mandated semantics, but it works for typical guest code sequences
2445 * and avoids having to monitor regular stores.
2446 *
2447 * The store exclusive uses the atomic cmpxchg primitives to avoid
2448 * races in multi-threaded linux-user and when MTTCG softmmu is
2449 * enabled.
2450 */
2451 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2452 int size, bool is_pair)
2453 {
2454 int idx = get_mem_index(s);
2455 TCGv_i64 dirty_addr, clean_addr;
2456 MemOp memop = check_atomic_align(s, rn, size + is_pair);
2457
2458 s->is_ldex = true;
2459 dirty_addr = cpu_reg_sp(s, rn);
2460 clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2461
2462 g_assert(size <= 3);
2463 if (is_pair) {
2464 g_assert(size >= 2);
2465 if (size == 2) {
2466 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2467 if (s->be_data == MO_LE) {
2468 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2469 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2470 } else {
2471 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2472 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2473 }
2474 } else {
2475 TCGv_i128 t16 = tcg_temp_new_i128();
2476
2477 tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2478
2479 if (s->be_data == MO_LE) {
2480 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2481 cpu_exclusive_high, t16);
2482 } else {
2483 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2484 cpu_exclusive_val, t16);
2485 }
2486 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2487 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2488 }
2489 } else {
2490 tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2491 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2492 }
2493 tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2494 }
2495
2496 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2497 int rn, int size, int is_pair)
2498 {
2499 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2500 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2501 * [addr] = {Rt};
2502 * if (is_pair) {
2503 * [addr + datasize] = {Rt2};
2504 * }
2505 * {Rd} = 0;
2506 * } else {
2507 * {Rd} = 1;
2508 * }
2509 * env->exclusive_addr = -1;
2510 */
2511 TCGLabel *fail_label = gen_new_label();
2512 TCGLabel *done_label = gen_new_label();
2513 TCGv_i64 tmp, clean_addr;
2514 MemOp memop;
2515
2516 /*
2517 * FIXME: We are out of spec here. We have recorded only the address
2518 * from load_exclusive, not the entire range, and we assume that the
2519 * size of the access on both sides match. The architecture allows the
2520 * store to be smaller than the load, so long as the stored bytes are
2521 * within the range recorded by the load.
2522 */
2523
2524 /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2525 clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2526 tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2527
2528 /*
2529 * The write, and any associated faults, only happen if the virtual
2530 * and physical addresses pass the exclusive monitor check. These
2531 * faults are exceedingly unlikely, because normally the guest uses
2532 * the exact same address register for the load_exclusive, and we
2533 * would have recognized these faults there.
2534 *
2535 * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2536 * unaligned 4-byte write within the range of an aligned 8-byte load.
2537 * With LSE2, the store would need to cross a 16-byte boundary when the
2538 * load did not, which would mean the store is outside the range
2539 * recorded for the monitor, which would have failed a corrected monitor
2540 * check above. For now, we assume no size change and retain the
2541 * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2542 *
2543 * It is possible to trigger an MTE fault, by performing the load with
2544 * a virtual address with a valid tag and performing the store with the
2545 * same virtual address and a different invalid tag.
2546 */
2547 memop = size + is_pair;
2548 if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2549 memop |= MO_ALIGN;
2550 }
2551 memop = finalize_memop(s, memop);
2552 gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2553
2554 tmp = tcg_temp_new_i64();
2555 if (is_pair) {
2556 if (size == 2) {
2557 if (s->be_data == MO_LE) {
2558 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2559 } else {
2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2561 }
2562 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2563 cpu_exclusive_val, tmp,
2564 get_mem_index(s), memop);
2565 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2566 } else {
2567 TCGv_i128 t16 = tcg_temp_new_i128();
2568 TCGv_i128 c16 = tcg_temp_new_i128();
2569 TCGv_i64 a, b;
2570
2571 if (s->be_data == MO_LE) {
2572 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2573 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2574 cpu_exclusive_high);
2575 } else {
2576 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2577 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2578 cpu_exclusive_val);
2579 }
2580
2581 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2582 get_mem_index(s), memop);
2583
2584 a = tcg_temp_new_i64();
2585 b = tcg_temp_new_i64();
2586 if (s->be_data == MO_LE) {
2587 tcg_gen_extr_i128_i64(a, b, t16);
2588 } else {
2589 tcg_gen_extr_i128_i64(b, a, t16);
2590 }
2591
2592 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2593 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2594 tcg_gen_or_i64(tmp, a, b);
2595
2596 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2597 }
2598 } else {
2599 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2600 cpu_reg(s, rt), get_mem_index(s), memop);
2601 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2602 }
2603 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2604 tcg_gen_br(done_label);
2605
2606 gen_set_label(fail_label);
2607 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2608 gen_set_label(done_label);
2609 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2610 }
2611
2612 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2613 int rn, int size)
2614 {
2615 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2616 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2617 int memidx = get_mem_index(s);
2618 TCGv_i64 clean_addr;
2619 MemOp memop;
2620
2621 if (rn == 31) {
2622 gen_check_sp_alignment(s);
2623 }
2624 memop = check_atomic_align(s, rn, size);
2625 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2626 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
2627 memidx, memop);
2628 }
2629
2630 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2631 int rn, int size)
2632 {
2633 TCGv_i64 s1 = cpu_reg(s, rs);
2634 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2635 TCGv_i64 t1 = cpu_reg(s, rt);
2636 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2637 TCGv_i64 clean_addr;
2638 int memidx = get_mem_index(s);
2639 MemOp memop;
2640
2641 if (rn == 31) {
2642 gen_check_sp_alignment(s);
2643 }
2644
2645 /* This is a single atomic access, despite the "pair". */
2646 memop = check_atomic_align(s, rn, size + 1);
2647 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2648
2649 if (size == 2) {
2650 TCGv_i64 cmp = tcg_temp_new_i64();
2651 TCGv_i64 val = tcg_temp_new_i64();
2652
2653 if (s->be_data == MO_LE) {
2654 tcg_gen_concat32_i64(val, t1, t2);
2655 tcg_gen_concat32_i64(cmp, s1, s2);
2656 } else {
2657 tcg_gen_concat32_i64(val, t2, t1);
2658 tcg_gen_concat32_i64(cmp, s2, s1);
2659 }
2660
2661 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
2662
2663 if (s->be_data == MO_LE) {
2664 tcg_gen_extr32_i64(s1, s2, cmp);
2665 } else {
2666 tcg_gen_extr32_i64(s2, s1, cmp);
2667 }
2668 } else {
2669 TCGv_i128 cmp = tcg_temp_new_i128();
2670 TCGv_i128 val = tcg_temp_new_i128();
2671
2672 if (s->be_data == MO_LE) {
2673 tcg_gen_concat_i64_i128(val, t1, t2);
2674 tcg_gen_concat_i64_i128(cmp, s1, s2);
2675 } else {
2676 tcg_gen_concat_i64_i128(val, t2, t1);
2677 tcg_gen_concat_i64_i128(cmp, s2, s1);
2678 }
2679
2680 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
2681
2682 if (s->be_data == MO_LE) {
2683 tcg_gen_extr_i128_i64(s1, s2, cmp);
2684 } else {
2685 tcg_gen_extr_i128_i64(s2, s1, cmp);
2686 }
2687 }
2688 }
2689
2690 /*
2691 * Compute the ISS.SF bit for syndrome information if an exception
2692 * is taken on a load or store. This indicates whether the instruction
2693 * is accessing a 32-bit or 64-bit register. This logic is derived
2694 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2695 */
2696 static bool ldst_iss_sf(int size, bool sign, bool ext)
2697 {
2698
2699 if (sign) {
2700 /*
2701 * Signed loads are 64 bit results if we are not going to
2702 * do a zero-extend from 32 to 64 after the load.
2703 * (For a store, sign and ext are always false.)
2704 */
2705 return !ext;
2706 } else {
2707 /* Unsigned loads/stores work at the specified size */
2708 return size == MO_64;
2709 }
2710 }
2711
2712 static bool trans_STXR(DisasContext *s, arg_stxr *a)
2713 {
2714 if (a->rn == 31) {
2715 gen_check_sp_alignment(s);
2716 }
2717 if (a->lasr) {
2718 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2719 }
2720 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
2721 return true;
2722 }
2723
2724 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
2725 {
2726 if (a->rn == 31) {
2727 gen_check_sp_alignment(s);
2728 }
2729 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
2730 if (a->lasr) {
2731 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2732 }
2733 return true;
2734 }
2735
2736 static bool trans_STLR(DisasContext *s, arg_stlr *a)
2737 {
2738 TCGv_i64 clean_addr;
2739 MemOp memop;
2740 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2741
2742 /*
2743 * StoreLORelease is the same as Store-Release for QEMU, but
2744 * needs the feature-test.
2745 */
2746 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2747 return false;
2748 }
2749 /* Generate ISS for non-exclusive accesses including LASR. */
2750 if (a->rn == 31) {
2751 gen_check_sp_alignment(s);
2752 }
2753 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2754 memop = check_ordered_align(s, a->rn, 0, true, a->sz);
2755 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2756 true, a->rn != 31, memop);
2757 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
2758 iss_sf, a->lasr);
2759 return true;
2760 }
2761
2762 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
2763 {
2764 TCGv_i64 clean_addr;
2765 MemOp memop;
2766 bool iss_sf = ldst_iss_sf(a->sz, false, false);
2767
2768 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2769 if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
2770 return false;
2771 }
2772 /* Generate ISS for non-exclusive accesses including LASR. */
2773 if (a->rn == 31) {
2774 gen_check_sp_alignment(s);
2775 }
2776 memop = check_ordered_align(s, a->rn, 0, false, a->sz);
2777 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
2778 false, a->rn != 31, memop);
2779 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
2780 a->rt, iss_sf, a->lasr);
2781 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2782 return true;
2783 }
2784
2785 static bool trans_STXP(DisasContext *s, arg_stxr *a)
2786 {
2787 if (a->rn == 31) {
2788 gen_check_sp_alignment(s);
2789 }
2790 if (a->lasr) {
2791 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2792 }
2793 gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
2794 return true;
2795 }
2796
2797 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
2798 {
2799 if (a->rn == 31) {
2800 gen_check_sp_alignment(s);
2801 }
2802 gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
2803 if (a->lasr) {
2804 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2805 }
2806 return true;
2807 }
2808
2809 static bool trans_CASP(DisasContext *s, arg_CASP *a)
2810 {
2811 if (!dc_isar_feature(aa64_atomics, s)) {
2812 return false;
2813 }
2814 if (((a->rt | a->rs) & 1) != 0) {
2815 return false;
2816 }
2817
2818 gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
2819 return true;
2820 }
2821
2822 static bool trans_CAS(DisasContext *s, arg_CAS *a)
2823 {
2824 if (!dc_isar_feature(aa64_atomics, s)) {
2825 return false;
2826 }
2827 gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
2828 return true;
2829 }
2830
2831 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
2832 {
2833 bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
2834 TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
2835 TCGv_i64 clean_addr = tcg_temp_new_i64();
2836 MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
2837
2838 gen_pc_plus_diff(s, clean_addr, a->imm);
2839 do_gpr_ld(s, tcg_rt, clean_addr, memop,
2840 false, true, a->rt, iss_sf, false);
2841 return true;
2842 }
2843
2844 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
2845 {
2846 /* Load register (literal), vector version */
2847 TCGv_i64 clean_addr;
2848 MemOp memop;
2849
2850 if (!fp_access_check(s)) {
2851 return true;
2852 }
2853 memop = finalize_memop_asimd(s, a->sz);
2854 clean_addr = tcg_temp_new_i64();
2855 gen_pc_plus_diff(s, clean_addr, a->imm);
2856 do_fp_ld(s, a->rt, clean_addr, memop);
2857 return true;
2858 }
2859
2860 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
2861 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
2862 uint64_t offset, bool is_store, MemOp mop)
2863 {
2864 if (a->rn == 31) {
2865 gen_check_sp_alignment(s);
2866 }
2867
2868 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
2869 if (!a->p) {
2870 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
2871 }
2872
2873 *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
2874 (a->w || a->rn != 31), 2 << a->sz, mop);
2875 }
2876
2877 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
2878 TCGv_i64 dirty_addr, uint64_t offset)
2879 {
2880 if (a->w) {
2881 if (a->p) {
2882 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2883 }
2884 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
2885 }
2886 }
2887
2888 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
2889 {
2890 uint64_t offset = a->imm << a->sz;
2891 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2892 MemOp mop = finalize_memop(s, a->sz);
2893
2894 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
2895 tcg_rt = cpu_reg(s, a->rt);
2896 tcg_rt2 = cpu_reg(s, a->rt2);
2897 /*
2898 * We built mop above for the single logical access -- rebuild it
2899 * now for the paired operation.
2900 *
2901 * With LSE2, non-sign-extending pairs are treated atomically if
2902 * aligned, and if unaligned one of the pair will be completely
2903 * within a 16-byte block and that element will be atomic.
2904 * Otherwise each element is separately atomic.
2905 * In all cases, issue one operation with the correct atomicity.
2906 */
2907 mop = a->sz + 1;
2908 if (s->align_mem) {
2909 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2910 }
2911 mop = finalize_memop_pair(s, mop);
2912 if (a->sz == 2) {
2913 TCGv_i64 tmp = tcg_temp_new_i64();
2914
2915 if (s->be_data == MO_LE) {
2916 tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
2917 } else {
2918 tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
2919 }
2920 tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
2921 } else {
2922 TCGv_i128 tmp = tcg_temp_new_i128();
2923
2924 if (s->be_data == MO_LE) {
2925 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
2926 } else {
2927 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
2928 }
2929 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
2930 }
2931 op_addr_ldstpair_post(s, a, dirty_addr, offset);
2932 return true;
2933 }
2934
2935 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
2936 {
2937 uint64_t offset = a->imm << a->sz;
2938 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
2939 MemOp mop = finalize_memop(s, a->sz);
2940
2941 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
2942 tcg_rt = cpu_reg(s, a->rt);
2943 tcg_rt2 = cpu_reg(s, a->rt2);
2944
2945 /*
2946 * We built mop above for the single logical access -- rebuild it
2947 * now for the paired operation.
2948 *
2949 * With LSE2, non-sign-extending pairs are treated atomically if
2950 * aligned, and if unaligned one of the pair will be completely
2951 * within a 16-byte block and that element will be atomic.
2952 * Otherwise each element is separately atomic.
2953 * In all cases, issue one operation with the correct atomicity.
2954 *
2955 * This treats sign-extending loads like zero-extending loads,
2956 * since that reuses the most code below.
2957 */
2958 mop = a->sz + 1;
2959 if (s->align_mem) {
2960 mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
2961 }
2962 mop = finalize_memop_pair(s, mop);
2963 if (a->sz == 2) {
2964 int o2 = s->be_data == MO_LE ? 32 : 0;
2965 int o1 = o2 ^ 32;
2966
2967 tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
2968 if (a->sign) {
2969 tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
2970 tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
2971 } else {
2972 tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
2973 tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
2974 }
2975 } else {
2976 TCGv_i128 tmp = tcg_temp_new_i128();
2977
2978 tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
2979 if (s->be_data == MO_LE) {
2980 tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
2981 } else {
2982 tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
2983 }
2984 }
2985 op_addr_ldstpair_post(s, a, dirty_addr, offset);
2986 return true;
2987 }
2988
2989 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
2990 {
2991 uint64_t offset = a->imm << a->sz;
2992 TCGv_i64 clean_addr, dirty_addr;
2993 MemOp mop;
2994
2995 if (!fp_access_check(s)) {
2996 return true;
2997 }
2998
2999 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3000 mop = finalize_memop_asimd(s, a->sz);
3001 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3002 do_fp_st(s, a->rt, clean_addr, mop);
3003 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3004 do_fp_st(s, a->rt2, clean_addr, mop);
3005 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3006 return true;
3007 }
3008
3009 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3010 {
3011 uint64_t offset = a->imm << a->sz;
3012 TCGv_i64 clean_addr, dirty_addr;
3013 MemOp mop;
3014
3015 if (!fp_access_check(s)) {
3016 return true;
3017 }
3018
3019 /* LSE2 does not merge FP pairs; leave these as separate operations. */
3020 mop = finalize_memop_asimd(s, a->sz);
3021 op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3022 do_fp_ld(s, a->rt, clean_addr, mop);
3023 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3024 do_fp_ld(s, a->rt2, clean_addr, mop);
3025 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3026 return true;
3027 }
3028
3029 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3030 {
3031 TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3032 uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3033 MemOp mop;
3034 TCGv_i128 tmp;
3035
3036 /* STGP only comes in one size. */
3037 tcg_debug_assert(a->sz == MO_64);
3038
3039 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3040 return false;
3041 }
3042
3043 if (a->rn == 31) {
3044 gen_check_sp_alignment(s);
3045 }
3046
3047 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3048 if (!a->p) {
3049 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3050 }
3051
3052 clean_addr = clean_data_tbi(s, dirty_addr);
3053 tcg_rt = cpu_reg(s, a->rt);
3054 tcg_rt2 = cpu_reg(s, a->rt2);
3055
3056 /*
3057 * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3058 * and one tag operation. We implement it as one single aligned 16-byte
3059 * memory operation for convenience. Note that the alignment ensures
3060 * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3061 */
3062 mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3063
3064 tmp = tcg_temp_new_i128();
3065 if (s->be_data == MO_LE) {
3066 tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3067 } else {
3068 tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3069 }
3070 tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3071
3072 /* Perform the tag store, if tag access enabled. */
3073 if (s->ata[0]) {
3074 if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3075 gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3076 } else {
3077 gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3078 }
3079 }
3080
3081 op_addr_ldstpair_post(s, a, dirty_addr, offset);
3082 return true;
3083 }
3084
3085 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3086 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3087 uint64_t offset, bool is_store, MemOp mop)
3088 {
3089 int memidx;
3090
3091 if (a->rn == 31) {
3092 gen_check_sp_alignment(s);
3093 }
3094
3095 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3096 if (!a->p) {
3097 tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3098 }
3099 memidx = get_a64_user_mem_index(s, a->unpriv);
3100 *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3101 a->w || a->rn != 31,
3102 mop, a->unpriv, memidx);
3103 }
3104
3105 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3106 TCGv_i64 dirty_addr, uint64_t offset)
3107 {
3108 if (a->w) {
3109 if (a->p) {
3110 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3111 }
3112 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3113 }
3114 }
3115
3116 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3117 {
3118 bool iss_sf, iss_valid = !a->w;
3119 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3120 int memidx = get_a64_user_mem_index(s, a->unpriv);
3121 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3122
3123 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3124
3125 tcg_rt = cpu_reg(s, a->rt);
3126 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3127
3128 do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3129 iss_valid, a->rt, iss_sf, false);
3130 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3131 return true;
3132 }
3133
3134 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3135 {
3136 bool iss_sf, iss_valid = !a->w;
3137 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3138 int memidx = get_a64_user_mem_index(s, a->unpriv);
3139 MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3140
3141 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3142
3143 tcg_rt = cpu_reg(s, a->rt);
3144 iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3145
3146 do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3147 a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3148 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3149 return true;
3150 }
3151
3152 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3153 {
3154 TCGv_i64 clean_addr, dirty_addr;
3155 MemOp mop;
3156
3157 if (!fp_access_check(s)) {
3158 return true;
3159 }
3160 mop = finalize_memop_asimd(s, a->sz);
3161 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3162 do_fp_st(s, a->rt, clean_addr, mop);
3163 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3164 return true;
3165 }
3166
3167 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3168 {
3169 TCGv_i64 clean_addr, dirty_addr;
3170 MemOp mop;
3171
3172 if (!fp_access_check(s)) {
3173 return true;
3174 }
3175 mop = finalize_memop_asimd(s, a->sz);
3176 op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3177 do_fp_ld(s, a->rt, clean_addr, mop);
3178 op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3179 return true;
3180 }
3181
3182 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3183 TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3184 bool is_store, MemOp memop)
3185 {
3186 TCGv_i64 tcg_rm;
3187
3188 if (a->rn == 31) {
3189 gen_check_sp_alignment(s);
3190 }
3191 *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3192
3193 tcg_rm = read_cpu_reg(s, a->rm, 1);
3194 ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3195
3196 tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3197 *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3198 }
3199
3200 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3201 {
3202 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3203 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3204 MemOp memop;
3205
3206 if (extract32(a->opt, 1, 1) == 0) {
3207 return false;
3208 }
3209
3210 memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3211 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3212 tcg_rt = cpu_reg(s, a->rt);
3213 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3214 a->ext, true, a->rt, iss_sf, false);
3215 return true;
3216 }
3217
3218 static bool trans_STR(DisasContext *s, arg_ldst *a)
3219 {
3220 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3221 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3222 MemOp memop;
3223
3224 if (extract32(a->opt, 1, 1) == 0) {
3225 return false;
3226 }
3227
3228 memop = finalize_memop(s, a->sz);
3229 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3230 tcg_rt = cpu_reg(s, a->rt);
3231 do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3232 return true;
3233 }
3234
3235 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3236 {
3237 TCGv_i64 clean_addr, dirty_addr;
3238 MemOp memop;
3239
3240 if (extract32(a->opt, 1, 1) == 0) {
3241 return false;
3242 }
3243
3244 if (!fp_access_check(s)) {
3245 return true;
3246 }
3247
3248 memop = finalize_memop_asimd(s, a->sz);
3249 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3250 do_fp_ld(s, a->rt, clean_addr, memop);
3251 return true;
3252 }
3253
3254 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3255 {
3256 TCGv_i64 clean_addr, dirty_addr;
3257 MemOp memop;
3258
3259 if (extract32(a->opt, 1, 1) == 0) {
3260 return false;
3261 }
3262
3263 if (!fp_access_check(s)) {
3264 return true;
3265 }
3266
3267 memop = finalize_memop_asimd(s, a->sz);
3268 op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3269 do_fp_st(s, a->rt, clean_addr, memop);
3270 return true;
3271 }
3272
3273
3274 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3275 int sign, bool invert)
3276 {
3277 MemOp mop = a->sz | sign;
3278 TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3279
3280 if (a->rn == 31) {
3281 gen_check_sp_alignment(s);
3282 }
3283 mop = check_atomic_align(s, a->rn, mop);
3284 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3285 a->rn != 31, mop);
3286 tcg_rs = read_cpu_reg(s, a->rs, true);
3287 tcg_rt = cpu_reg(s, a->rt);
3288 if (invert) {
3289 tcg_gen_not_i64(tcg_rs, tcg_rs);
3290 }
3291 /*
3292 * The tcg atomic primitives are all full barriers. Therefore we
3293 * can ignore the Acquire and Release bits of this instruction.
3294 */
3295 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3296
3297 if (mop & MO_SIGN) {
3298 switch (a->sz) {
3299 case MO_8:
3300 tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3301 break;
3302 case MO_16:
3303 tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3304 break;
3305 case MO_32:
3306 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3307 break;
3308 case MO_64:
3309 break;
3310 default:
3311 g_assert_not_reached();
3312 }
3313 }
3314 return true;
3315 }
3316
3317 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3318 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3319 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3320 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3321 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3322 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3323 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3324 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3325 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3326
3327 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3328 {
3329 bool iss_sf = ldst_iss_sf(a->sz, false, false);
3330 TCGv_i64 clean_addr;
3331 MemOp mop;
3332
3333 if (!dc_isar_feature(aa64_atomics, s) ||
3334 !dc_isar_feature(aa64_rcpc_8_3, s)) {
3335 return false;
3336 }
3337 if (a->rn == 31) {
3338 gen_check_sp_alignment(s);
3339 }
3340 mop = check_atomic_align(s, a->rn, a->sz);
3341 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3342 a->rn != 31, mop);
3343 /*
3344 * LDAPR* are a special case because they are a simple load, not a
3345 * fetch-and-do-something op.
3346 * The architectural consistency requirements here are weaker than
3347 * full load-acquire (we only need "load-acquire processor consistent"),
3348 * but we choose to implement them as full LDAQ.
3349 */
3350 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3351 true, a->rt, iss_sf, true);
3352 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3353 return true;
3354 }
3355
3356 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3357 {
3358 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3359 MemOp memop;
3360
3361 /* Load with pointer authentication */
3362 if (!dc_isar_feature(aa64_pauth, s)) {
3363 return false;
3364 }
3365
3366 if (a->rn == 31) {
3367 gen_check_sp_alignment(s);
3368 }
3369 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3370
3371 if (s->pauth_active) {
3372 if (!a->m) {
3373 gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3374 tcg_constant_i64(0));
3375 } else {
3376 gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3377 tcg_constant_i64(0));
3378 }
3379 }
3380
3381 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3382
3383 memop = finalize_memop(s, MO_64);
3384
3385 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3386 clean_addr = gen_mte_check1(s, dirty_addr, false,
3387 a->w || a->rn != 31, memop);
3388
3389 tcg_rt = cpu_reg(s, a->rt);
3390 do_gpr_ld(s, tcg_rt, clean_addr, memop,
3391 /* extend */ false, /* iss_valid */ !a->w,
3392 /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3393
3394 if (a->w) {
3395 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3396 }
3397 return true;
3398 }
3399
3400 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3401 {
3402 TCGv_i64 clean_addr, dirty_addr;
3403 MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3404 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3405
3406 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3407 return false;
3408 }
3409
3410 if (a->rn == 31) {
3411 gen_check_sp_alignment(s);
3412 }
3413
3414 mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3415 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3416 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3417 clean_addr = clean_data_tbi(s, dirty_addr);
3418
3419 /*
3420 * Load-AcquirePC semantics; we implement as the slightly more
3421 * restrictive Load-Acquire.
3422 */
3423 do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3424 a->rt, iss_sf, true);
3425 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3426 return true;
3427 }
3428
3429 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3430 {
3431 TCGv_i64 clean_addr, dirty_addr;
3432 MemOp mop = a->sz;
3433 bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3434
3435 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3436 return false;
3437 }
3438
3439 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3440
3441 if (a->rn == 31) {
3442 gen_check_sp_alignment(s);
3443 }
3444
3445 mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3446 dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3447 tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3448 clean_addr = clean_data_tbi(s, dirty_addr);
3449
3450 /* Store-Release semantics */
3451 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3452 do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3453 return true;
3454 }
3455
3456 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3457 {
3458 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3459 MemOp endian, align, mop;
3460
3461 int total; /* total bytes */
3462 int elements; /* elements per vector */
3463 int r;
3464 int size = a->sz;
3465
3466 if (!a->p && a->rm != 0) {
3467 /* For non-postindexed accesses the Rm field must be 0 */
3468 return false;
3469 }
3470 if (size == 3 && !a->q && a->selem != 1) {
3471 return false;
3472 }
3473 if (!fp_access_check(s)) {
3474 return true;
3475 }
3476
3477 if (a->rn == 31) {
3478 gen_check_sp_alignment(s);
3479 }
3480
3481 /* For our purposes, bytes are always little-endian. */
3482 endian = s->be_data;
3483 if (size == 0) {
3484 endian = MO_LE;
3485 }
3486
3487 total = a->rpt * a->selem * (a->q ? 16 : 8);
3488 tcg_rn = cpu_reg_sp(s, a->rn);
3489
3490 /*
3491 * Issue the MTE check vs the logical repeat count, before we
3492 * promote consecutive little-endian elements below.
3493 */
3494 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3495 finalize_memop_asimd(s, size));
3496
3497 /*
3498 * Consecutive little-endian elements from a single register
3499 * can be promoted to a larger little-endian operation.
3500 */
3501 align = MO_ALIGN;
3502 if (a->selem == 1 && endian == MO_LE) {
3503 align = pow2_align(size);
3504 size = 3;
3505 }
3506 if (!s->align_mem) {
3507 align = 0;
3508 }
3509 mop = endian | size | align;
3510
3511 elements = (a->q ? 16 : 8) >> size;
3512 tcg_ebytes = tcg_constant_i64(1 << size);
3513 for (r = 0; r < a->rpt; r++) {
3514 int e;
3515 for (e = 0; e < elements; e++) {
3516 int xs;
3517 for (xs = 0; xs < a->selem; xs++) {
3518 int tt = (a->rt + r + xs) % 32;
3519 do_vec_ld(s, tt, e, clean_addr, mop);
3520 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3521 }
3522 }
3523 }
3524
3525 /*
3526 * For non-quad operations, setting a slice of the low 64 bits of
3527 * the register clears the high 64 bits (in the ARM ARM pseudocode
3528 * this is implicit in the fact that 'rval' is a 64 bit wide
3529 * variable). For quad operations, we might still need to zero
3530 * the high bits of SVE.
3531 */
3532 for (r = 0; r < a->rpt * a->selem; r++) {
3533 int tt = (a->rt + r) % 32;
3534 clear_vec_high(s, a->q, tt);
3535 }
3536
3537 if (a->p) {
3538 if (a->rm == 31) {
3539 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3540 } else {
3541 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3542 }
3543 }
3544 return true;
3545 }
3546
3547 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3548 {
3549 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3550 MemOp endian, align, mop;
3551
3552 int total; /* total bytes */
3553 int elements; /* elements per vector */
3554 int r;
3555 int size = a->sz;
3556
3557 if (!a->p && a->rm != 0) {
3558 /* For non-postindexed accesses the Rm field must be 0 */
3559 return false;
3560 }
3561 if (size == 3 && !a->q && a->selem != 1) {
3562 return false;
3563 }
3564 if (!fp_access_check(s)) {
3565 return true;
3566 }
3567
3568 if (a->rn == 31) {
3569 gen_check_sp_alignment(s);
3570 }
3571
3572 /* For our purposes, bytes are always little-endian. */
3573 endian = s->be_data;
3574 if (size == 0) {
3575 endian = MO_LE;
3576 }
3577
3578 total = a->rpt * a->selem * (a->q ? 16 : 8);
3579 tcg_rn = cpu_reg_sp(s, a->rn);
3580
3581 /*
3582 * Issue the MTE check vs the logical repeat count, before we
3583 * promote consecutive little-endian elements below.
3584 */
3585 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
3586 finalize_memop_asimd(s, size));
3587
3588 /*
3589 * Consecutive little-endian elements from a single register
3590 * can be promoted to a larger little-endian operation.
3591 */
3592 align = MO_ALIGN;
3593 if (a->selem == 1 && endian == MO_LE) {
3594 align = pow2_align(size);
3595 size = 3;
3596 }
3597 if (!s->align_mem) {
3598 align = 0;
3599 }
3600 mop = endian | size | align;
3601
3602 elements = (a->q ? 16 : 8) >> size;
3603 tcg_ebytes = tcg_constant_i64(1 << size);
3604 for (r = 0; r < a->rpt; r++) {
3605 int e;
3606 for (e = 0; e < elements; e++) {
3607 int xs;
3608 for (xs = 0; xs < a->selem; xs++) {
3609 int tt = (a->rt + r + xs) % 32;
3610 do_vec_st(s, tt, e, clean_addr, mop);
3611 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3612 }
3613 }
3614 }
3615
3616 if (a->p) {
3617 if (a->rm == 31) {
3618 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3619 } else {
3620 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3621 }
3622 }
3623 return true;
3624 }
3625
3626 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
3627 {
3628 int xs, total, rt;
3629 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3630 MemOp mop;
3631
3632 if (!a->p && a->rm != 0) {
3633 return false;
3634 }
3635 if (!fp_access_check(s)) {
3636 return true;
3637 }
3638
3639 if (a->rn == 31) {
3640 gen_check_sp_alignment(s);
3641 }
3642
3643 total = a->selem << a->scale;
3644 tcg_rn = cpu_reg_sp(s, a->rn);
3645
3646 mop = finalize_memop_asimd(s, a->scale);
3647 clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
3648 total, mop);
3649
3650 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3651 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3652 do_vec_st(s, rt, a->index, clean_addr, mop);
3653 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3654 }
3655
3656 if (a->p) {
3657 if (a->rm == 31) {
3658 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3659 } else {
3660 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3661 }
3662 }
3663 return true;
3664 }
3665
3666 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
3667 {
3668 int xs, total, rt;
3669 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3670 MemOp mop;
3671
3672 if (!a->p && a->rm != 0) {
3673 return false;
3674 }
3675 if (!fp_access_check(s)) {
3676 return true;
3677 }
3678
3679 if (a->rn == 31) {
3680 gen_check_sp_alignment(s);
3681 }
3682
3683 total = a->selem << a->scale;
3684 tcg_rn = cpu_reg_sp(s, a->rn);
3685
3686 mop = finalize_memop_asimd(s, a->scale);
3687 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3688 total, mop);
3689
3690 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3691 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3692 do_vec_ld(s, rt, a->index, clean_addr, mop);
3693 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3694 }
3695
3696 if (a->p) {
3697 if (a->rm == 31) {
3698 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3699 } else {
3700 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3701 }
3702 }
3703 return true;
3704 }
3705
3706 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
3707 {
3708 int xs, total, rt;
3709 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3710 MemOp mop;
3711
3712 if (!a->p && a->rm != 0) {
3713 return false;
3714 }
3715 if (!fp_access_check(s)) {
3716 return true;
3717 }
3718
3719 if (a->rn == 31) {
3720 gen_check_sp_alignment(s);
3721 }
3722
3723 total = a->selem << a->scale;
3724 tcg_rn = cpu_reg_sp(s, a->rn);
3725
3726 mop = finalize_memop_asimd(s, a->scale);
3727 clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
3728 total, mop);
3729
3730 tcg_ebytes = tcg_constant_i64(1 << a->scale);
3731 for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
3732 /* Load and replicate to all elements */
3733 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3734
3735 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3736 tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
3737 (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
3738 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3739 }
3740
3741 if (a->p) {
3742 if (a->rm == 31) {
3743 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3744 } else {
3745 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3746 }
3747 }
3748 return true;
3749 }
3750
3751 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
3752 {
3753 TCGv_i64 addr, clean_addr, tcg_rt;
3754 int size = 4 << s->dcz_blocksize;
3755
3756 if (!dc_isar_feature(aa64_mte, s)) {
3757 return false;
3758 }
3759 if (s->current_el == 0) {
3760 return false;
3761 }
3762
3763 if (a->rn == 31) {
3764 gen_check_sp_alignment(s);
3765 }
3766
3767 addr = read_cpu_reg_sp(s, a->rn, true);
3768 tcg_gen_addi_i64(addr, addr, a->imm);
3769 tcg_rt = cpu_reg(s, a->rt);
3770
3771 if (s->ata[0]) {
3772 gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
3773 }
3774 /*
3775 * The non-tags portion of STZGM is mostly like DC_ZVA,
3776 * except the alignment happens before the access.
3777 */
3778 clean_addr = clean_data_tbi(s, addr);
3779 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3780 gen_helper_dc_zva(tcg_env, clean_addr);
3781 return true;
3782 }
3783
3784 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
3785 {
3786 TCGv_i64 addr, clean_addr, tcg_rt;
3787
3788 if (!dc_isar_feature(aa64_mte, s)) {
3789 return false;
3790 }
3791 if (s->current_el == 0) {
3792 return false;
3793 }
3794
3795 if (a->rn == 31) {
3796 gen_check_sp_alignment(s);
3797 }
3798
3799 addr = read_cpu_reg_sp(s, a->rn, true);
3800 tcg_gen_addi_i64(addr, addr, a->imm);
3801 tcg_rt = cpu_reg(s, a->rt);
3802
3803 if (s->ata[0]) {
3804 gen_helper_stgm(tcg_env, addr, tcg_rt);
3805 } else {
3806 MMUAccessType acc = MMU_DATA_STORE;
3807 int size = 4 << s->gm_blocksize;
3808
3809 clean_addr = clean_data_tbi(s, addr);
3810 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3811 gen_probe_access(s, clean_addr, acc, size);
3812 }
3813 return true;
3814 }
3815
3816 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
3817 {
3818 TCGv_i64 addr, clean_addr, tcg_rt;
3819
3820 if (!dc_isar_feature(aa64_mte, s)) {
3821 return false;
3822 }
3823 if (s->current_el == 0) {
3824 return false;
3825 }
3826
3827 if (a->rn == 31) {
3828 gen_check_sp_alignment(s);
3829 }
3830
3831 addr = read_cpu_reg_sp(s, a->rn, true);
3832 tcg_gen_addi_i64(addr, addr, a->imm);
3833 tcg_rt = cpu_reg(s, a->rt);
3834
3835 if (s->ata[0]) {
3836 gen_helper_ldgm(tcg_rt, tcg_env, addr);
3837 } else {
3838 MMUAccessType acc = MMU_DATA_LOAD;
3839 int size = 4 << s->gm_blocksize;
3840
3841 clean_addr = clean_data_tbi(s, addr);
3842 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
3843 gen_probe_access(s, clean_addr, acc, size);
3844 /* The result tags are zeros. */
3845 tcg_gen_movi_i64(tcg_rt, 0);
3846 }
3847 return true;
3848 }
3849
3850 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
3851 {
3852 TCGv_i64 addr, clean_addr, tcg_rt;
3853
3854 if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3855 return false;
3856 }
3857
3858 if (a->rn == 31) {
3859 gen_check_sp_alignment(s);
3860 }
3861
3862 addr = read_cpu_reg_sp(s, a->rn, true);
3863 if (!a->p) {
3864 /* pre-index or signed offset */
3865 tcg_gen_addi_i64(addr, addr, a->imm);
3866 }
3867
3868 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
3869 tcg_rt = cpu_reg(s, a->rt);
3870 if (s->ata[0]) {
3871 gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
3872 } else {
3873 /*
3874 * Tag access disabled: we must check for aborts on the load
3875 * load from [rn+offset], and then insert a 0 tag into rt.
3876 */
3877 clean_addr = clean_data_tbi(s, addr);
3878 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
3879 gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
3880 }
3881
3882 if (a->w) {
3883 /* pre-index or post-index */
3884 if (a->p) {
3885 /* post-index */
3886 tcg_gen_addi_i64(addr, addr, a->imm);
3887 }
3888 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3889 }
3890 return true;
3891 }
3892
3893 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
3894 {
3895 TCGv_i64 addr, tcg_rt;
3896
3897 if (a->rn == 31) {
3898 gen_check_sp_alignment(s);
3899 }
3900
3901 addr = read_cpu_reg_sp(s, a->rn, true);
3902 if (!a->p) {
3903 /* pre-index or signed offset */
3904 tcg_gen_addi_i64(addr, addr, a->imm);
3905 }
3906 tcg_rt = cpu_reg_sp(s, a->rt);
3907 if (!s->ata[0]) {
3908 /*
3909 * For STG and ST2G, we need to check alignment and probe memory.
3910 * TODO: For STZG and STZ2G, we could rely on the stores below,
3911 * at least for system mode; user-only won't enforce alignment.
3912 */
3913 if (is_pair) {
3914 gen_helper_st2g_stub(tcg_env, addr);
3915 } else {
3916 gen_helper_stg_stub(tcg_env, addr);
3917 }
3918 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3919 if (is_pair) {
3920 gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
3921 } else {
3922 gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
3923 }
3924 } else {
3925 if (is_pair) {
3926 gen_helper_st2g(tcg_env, addr, tcg_rt);
3927 } else {
3928 gen_helper_stg(tcg_env, addr, tcg_rt);
3929 }
3930 }
3931
3932 if (is_zero) {
3933 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
3934 TCGv_i64 zero64 = tcg_constant_i64(0);
3935 TCGv_i128 zero128 = tcg_temp_new_i128();
3936 int mem_index = get_mem_index(s);
3937 MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
3938
3939 tcg_gen_concat_i64_i128(zero128, zero64, zero64);
3940
3941 /* This is 1 or 2 atomic 16-byte operations. */
3942 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3943 if (is_pair) {
3944 tcg_gen_addi_i64(clean_addr, clean_addr, 16);
3945 tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
3946 }
3947 }
3948
3949 if (a->w) {
3950 /* pre-index or post-index */
3951 if (a->p) {
3952 /* post-index */
3953 tcg_gen_addi_i64(addr, addr, a->imm);
3954 }
3955 tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
3956 }
3957 return true;
3958 }
3959
3960 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
3961 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
3962 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
3963 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
3964
3965 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
3966
3967 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
3968 bool is_setg, SetFn fn)
3969 {
3970 int memidx;
3971 uint32_t syndrome, desc = 0;
3972
3973 if (is_setg && !dc_isar_feature(aa64_mte, s)) {
3974 return false;
3975 }
3976
3977 /*
3978 * UNPREDICTABLE cases: we choose to UNDEF, which allows
3979 * us to pull this check before the CheckMOPSEnabled() test
3980 * (which we do in the helper function)
3981 */
3982 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
3983 a->rd == 31 || a->rn == 31) {
3984 return false;
3985 }
3986
3987 memidx = get_a64_user_mem_index(s, a->unpriv);
3988
3989 /*
3990 * We pass option_a == true, matching our implementation;
3991 * we pass wrong_option == false: helper function may set that bit.
3992 */
3993 syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
3994 is_epilogue, false, true, a->rd, a->rs, a->rn);
3995
3996 if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
3997 /* We may need to do MTE tag checking, so assemble the descriptor */
3998 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
3999 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4000 desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4001 /* SIZEM1 and ALIGN we leave 0 (byte write) */
4002 }
4003 /* The helper function always needs the memidx even with MTE disabled */
4004 desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4005
4006 /*
4007 * The helper needs the register numbers, but since they're in
4008 * the syndrome anyway, we let it extract them from there rather
4009 * than passing in an extra three integer arguments.
4010 */
4011 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4012 return true;
4013 }
4014
4015 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4016 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4017 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4018 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4019 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4020 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4021
4022 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4023
4024 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4025 {
4026 int rmemidx, wmemidx;
4027 uint32_t syndrome, rdesc = 0, wdesc = 0;
4028 bool wunpriv = extract32(a->options, 0, 1);
4029 bool runpriv = extract32(a->options, 1, 1);
4030
4031 /*
4032 * UNPREDICTABLE cases: we choose to UNDEF, which allows
4033 * us to pull this check before the CheckMOPSEnabled() test
4034 * (which we do in the helper function)
4035 */
4036 if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4037 a->rd == 31 || a->rs == 31 || a->rn == 31) {
4038 return false;
4039 }
4040
4041 rmemidx = get_a64_user_mem_index(s, runpriv);
4042 wmemidx = get_a64_user_mem_index(s, wunpriv);
4043
4044 /*
4045 * We pass option_a == true, matching our implementation;
4046 * we pass wrong_option == false: helper function may set that bit.
4047 */
4048 syndrome = syn_mop(false, false, a->options, is_epilogue,
4049 false, true, a->rd, a->rs, a->rn);
4050
4051 /* If we need to do MTE tag checking, assemble the descriptors */
4052 if (s->mte_active[runpriv]) {
4053 rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4054 rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4055 }
4056 if (s->mte_active[wunpriv]) {
4057 wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4058 wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4059 wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4060 }
4061 /* The helper function needs these parts of the descriptor regardless */
4062 rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4063 wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4064
4065 /*
4066 * The helper needs the register numbers, but since they're in
4067 * the syndrome anyway, we let it extract them from there rather
4068 * than passing in an extra three integer arguments.
4069 */
4070 fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4071 tcg_constant_i32(rdesc));
4072 return true;
4073 }
4074
4075 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4076 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4077 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4078 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4079 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4080 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4081
4082 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4083
4084 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4085 bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4086 {
4087 TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4088 TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4089 TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4090
4091 fn(tcg_rd, tcg_rn, tcg_imm);
4092 if (!a->sf) {
4093 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4094 }
4095 return true;
4096 }
4097
4098 /*
4099 * PC-rel. addressing
4100 */
4101
4102 static bool trans_ADR(DisasContext *s, arg_ri *a)
4103 {
4104 gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4105 return true;
4106 }
4107
4108 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4109 {
4110 int64_t offset = (int64_t)a->imm << 12;
4111
4112 /* The page offset is ok for CF_PCREL. */
4113 offset -= s->pc_curr & 0xfff;
4114 gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4115 return true;
4116 }
4117
4118 /*
4119 * Add/subtract (immediate)
4120 */
4121 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4122 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4123 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4124 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4125
4126 /*
4127 * Add/subtract (immediate, with tags)
4128 */
4129
4130 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4131 bool sub_op)
4132 {
4133 TCGv_i64 tcg_rn, tcg_rd;
4134 int imm;
4135
4136 imm = a->uimm6 << LOG2_TAG_GRANULE;
4137 if (sub_op) {
4138 imm = -imm;
4139 }
4140
4141 tcg_rn = cpu_reg_sp(s, a->rn);
4142 tcg_rd = cpu_reg_sp(s, a->rd);
4143
4144 if (s->ata[0]) {
4145 gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4146 tcg_constant_i32(imm),
4147 tcg_constant_i32(a->uimm4));
4148 } else {
4149 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4150 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4151 }
4152 return true;
4153 }
4154
4155 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4156 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4157
4158 /* The input should be a value in the bottom e bits (with higher
4159 * bits zero); returns that value replicated into every element
4160 * of size e in a 64 bit integer.
4161 */
4162 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4163 {
4164 assert(e != 0);
4165 while (e < 64) {
4166 mask |= mask << e;
4167 e *= 2;
4168 }
4169 return mask;
4170 }
4171
4172 /*
4173 * Logical (immediate)
4174 */
4175
4176 /*
4177 * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4178 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4179 * value (ie should cause a guest UNDEF exception), and true if they are
4180 * valid, in which case the decoded bit pattern is written to result.
4181 */
4182 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4183 unsigned int imms, unsigned int immr)
4184 {
4185 uint64_t mask;
4186 unsigned e, levels, s, r;
4187 int len;
4188
4189 assert(immn < 2 && imms < 64 && immr < 64);
4190
4191 /* The bit patterns we create here are 64 bit patterns which
4192 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4193 * 64 bits each. Each element contains the same value: a run
4194 * of between 1 and e-1 non-zero bits, rotated within the
4195 * element by between 0 and e-1 bits.
4196 *
4197 * The element size and run length are encoded into immn (1 bit)
4198 * and imms (6 bits) as follows:
4199 * 64 bit elements: immn = 1, imms = <length of run - 1>
4200 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4201 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4202 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4203 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4204 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4205 * Notice that immn = 0, imms = 11111x is the only combination
4206 * not covered by one of the above options; this is reserved.
4207 * Further, <length of run - 1> all-ones is a reserved pattern.
4208 *
4209 * In all cases the rotation is by immr % e (and immr is 6 bits).
4210 */
4211
4212 /* First determine the element size */
4213 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4214 if (len < 1) {
4215 /* This is the immn == 0, imms == 0x11111x case */
4216 return false;
4217 }
4218 e = 1 << len;
4219
4220 levels = e - 1;
4221 s = imms & levels;
4222 r = immr & levels;
4223
4224 if (s == levels) {
4225 /* <length of run - 1> mustn't be all-ones. */
4226 return false;
4227 }
4228
4229 /* Create the value of one element: s+1 set bits rotated
4230 * by r within the element (which is e bits wide)...
4231 */
4232 mask = MAKE_64BIT_MASK(0, s + 1);
4233 if (r) {
4234 mask = (mask >> r) | (mask << (e - r));
4235 mask &= MAKE_64BIT_MASK(0, e);
4236 }
4237 /* ...then replicate the element over the whole 64 bit value */
4238 mask = bitfield_replicate(mask, e);
4239 *result = mask;
4240 return true;
4241 }
4242
4243 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4244 void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4245 {
4246 TCGv_i64 tcg_rd, tcg_rn;
4247 uint64_t imm;
4248
4249 /* Some immediate field values are reserved. */
4250 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4251 extract32(a->dbm, 0, 6),
4252 extract32(a->dbm, 6, 6))) {
4253 return false;
4254 }
4255 if (!a->sf) {
4256 imm &= 0xffffffffull;
4257 }
4258
4259 tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4260 tcg_rn = cpu_reg(s, a->rn);
4261
4262 fn(tcg_rd, tcg_rn, imm);
4263 if (set_cc) {
4264 gen_logic_CC(a->sf, tcg_rd);
4265 }
4266 if (!a->sf) {
4267 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4268 }
4269 return true;
4270 }
4271
4272 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4273 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4274 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4275 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4276
4277 /*
4278 * Move wide (immediate)
4279 */
4280
4281 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4282 {
4283 int pos = a->hw << 4;
4284 tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4285 return true;
4286 }
4287
4288 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4289 {
4290 int pos = a->hw << 4;
4291 uint64_t imm = a->imm;
4292
4293 imm = ~(imm << pos);
4294 if (!a->sf) {
4295 imm = (uint32_t)imm;
4296 }
4297 tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4298 return true;
4299 }
4300
4301 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4302 {
4303 int pos = a->hw << 4;
4304 TCGv_i64 tcg_rd, tcg_im;
4305
4306 tcg_rd = cpu_reg(s, a->rd);
4307 tcg_im = tcg_constant_i64(a->imm);
4308 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4309 if (!a->sf) {
4310 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4311 }
4312 return true;
4313 }
4314
4315 /*
4316 * Bitfield
4317 */
4318
4319 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4320 {
4321 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4322 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4323 unsigned int bitsize = a->sf ? 64 : 32;
4324 unsigned int ri = a->immr;
4325 unsigned int si = a->imms;
4326 unsigned int pos, len;
4327
4328 if (si >= ri) {
4329 /* Wd<s-r:0> = Wn<s:r> */
4330 len = (si - ri) + 1;
4331 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4332 if (!a->sf) {
4333 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4334 }
4335 } else {
4336 /* Wd<32+s-r,32-r> = Wn<s:0> */
4337 len = si + 1;
4338 pos = (bitsize - ri) & (bitsize - 1);
4339
4340 if (len < ri) {
4341 /*
4342 * Sign extend the destination field from len to fill the
4343 * balance of the word. Let the deposit below insert all
4344 * of those sign bits.
4345 */
4346 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4347 len = ri;
4348 }
4349
4350 /*
4351 * We start with zero, and we haven't modified any bits outside
4352 * bitsize, therefore no final zero-extension is unneeded for !sf.
4353 */
4354 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4355 }
4356 return true;
4357 }
4358
4359 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4360 {
4361 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4362 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4363 unsigned int bitsize = a->sf ? 64 : 32;
4364 unsigned int ri = a->immr;
4365 unsigned int si = a->imms;
4366 unsigned int pos, len;
4367
4368 tcg_rd = cpu_reg(s, a->rd);
4369 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4370
4371 if (si >= ri) {
4372 /* Wd<s-r:0> = Wn<s:r> */
4373 len = (si - ri) + 1;
4374 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4375 } else {
4376 /* Wd<32+s-r,32-r> = Wn<s:0> */
4377 len = si + 1;
4378 pos = (bitsize - ri) & (bitsize - 1);
4379 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4380 }
4381 return true;
4382 }
4383
4384 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4385 {
4386 TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4387 TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4388 unsigned int bitsize = a->sf ? 64 : 32;
4389 unsigned int ri = a->immr;
4390 unsigned int si = a->imms;
4391 unsigned int pos, len;
4392
4393 tcg_rd = cpu_reg(s, a->rd);
4394 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4395
4396 if (si >= ri) {
4397 /* Wd<s-r:0> = Wn<s:r> */
4398 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4399 len = (si - ri) + 1;
4400 pos = 0;
4401 } else {
4402 /* Wd<32+s-r,32-r> = Wn<s:0> */
4403 len = si + 1;
4404 pos = (bitsize - ri) & (bitsize - 1);
4405 }
4406
4407 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4408 if (!a->sf) {
4409 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4410 }
4411 return true;
4412 }
4413
4414 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4415 {
4416 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4417
4418 tcg_rd = cpu_reg(s, a->rd);
4419
4420 if (unlikely(a->imm == 0)) {
4421 /*
4422 * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4423 * so an extract from bit 0 is a special case.
4424 */
4425 if (a->sf) {
4426 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4427 } else {
4428 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4429 }
4430 } else {
4431 tcg_rm = cpu_reg(s, a->rm);
4432 tcg_rn = cpu_reg(s, a->rn);
4433
4434 if (a->sf) {
4435 /* Specialization to ROR happens in EXTRACT2. */
4436 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4437 } else {
4438 TCGv_i32 t0 = tcg_temp_new_i32();
4439
4440 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4441 if (a->rm == a->rn) {
4442 tcg_gen_rotri_i32(t0, t0, a->imm);
4443 } else {
4444 TCGv_i32 t1 = tcg_temp_new_i32();
4445 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4446 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4447 }
4448 tcg_gen_extu_i32_i64(tcg_rd, t0);
4449 }
4450 }
4451 return true;
4452 }
4453
4454 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4455 * Note that it is the caller's responsibility to ensure that the
4456 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4457 * mandated semantics for out of range shifts.
4458 */
4459 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4460 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4461 {
4462 switch (shift_type) {
4463 case A64_SHIFT_TYPE_LSL:
4464 tcg_gen_shl_i64(dst, src, shift_amount);
4465 break;
4466 case A64_SHIFT_TYPE_LSR:
4467 tcg_gen_shr_i64(dst, src, shift_amount);
4468 break;
4469 case A64_SHIFT_TYPE_ASR:
4470 if (!sf) {
4471 tcg_gen_ext32s_i64(dst, src);
4472 }
4473 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4474 break;
4475 case A64_SHIFT_TYPE_ROR:
4476 if (sf) {
4477 tcg_gen_rotr_i64(dst, src, shift_amount);
4478 } else {
4479 TCGv_i32 t0, t1;
4480 t0 = tcg_temp_new_i32();
4481 t1 = tcg_temp_new_i32();
4482 tcg_gen_extrl_i64_i32(t0, src);
4483 tcg_gen_extrl_i64_i32(t1, shift_amount);
4484 tcg_gen_rotr_i32(t0, t0, t1);
4485 tcg_gen_extu_i32_i64(dst, t0);
4486 }
4487 break;
4488 default:
4489 assert(FALSE); /* all shift types should be handled */
4490 break;
4491 }
4492
4493 if (!sf) { /* zero extend final result */
4494 tcg_gen_ext32u_i64(dst, dst);
4495 }
4496 }
4497
4498 /* Shift a TCGv src by immediate, put result in dst.
4499 * The shift amount must be in range (this should always be true as the
4500 * relevant instructions will UNDEF on bad shift immediates).
4501 */
4502 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4503 enum a64_shift_type shift_type, unsigned int shift_i)
4504 {
4505 assert(shift_i < (sf ? 64 : 32));
4506
4507 if (shift_i == 0) {
4508 tcg_gen_mov_i64(dst, src);
4509 } else {
4510 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4511 }
4512 }
4513
4514 /* Logical (shifted register)
4515 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4516 * +----+-----+-----------+-------+---+------+--------+------+------+
4517 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4518 * +----+-----+-----------+-------+---+------+--------+------+------+
4519 */
4520 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4521 {
4522 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4523 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4524
4525 sf = extract32(insn, 31, 1);
4526 opc = extract32(insn, 29, 2);
4527 shift_type = extract32(insn, 22, 2);
4528 invert = extract32(insn, 21, 1);
4529 rm = extract32(insn, 16, 5);
4530 shift_amount = extract32(insn, 10, 6);
4531 rn = extract32(insn, 5, 5);
4532 rd = extract32(insn, 0, 5);
4533
4534 if (!sf && (shift_amount & (1 << 5))) {
4535 unallocated_encoding(s);
4536 return;
4537 }
4538
4539 tcg_rd = cpu_reg(s, rd);
4540
4541 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4542 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4543 * register-register MOV and MVN, so it is worth special casing.
4544 */
4545 tcg_rm = cpu_reg(s, rm);
4546 if (invert) {
4547 tcg_gen_not_i64(tcg_rd, tcg_rm);
4548 if (!sf) {
4549 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4550 }
4551 } else {
4552 if (sf) {
4553 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4554 } else {
4555 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4556 }
4557 }
4558 return;
4559 }
4560
4561 tcg_rm = read_cpu_reg(s, rm, sf);
4562
4563 if (shift_amount) {
4564 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4565 }
4566
4567 tcg_rn = cpu_reg(s, rn);
4568
4569 switch (opc | (invert << 2)) {
4570 case 0: /* AND */
4571 case 3: /* ANDS */
4572 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4573 break;
4574 case 1: /* ORR */
4575 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4576 break;
4577 case 2: /* EOR */
4578 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4579 break;
4580 case 4: /* BIC */
4581 case 7: /* BICS */
4582 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4583 break;
4584 case 5: /* ORN */
4585 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4586 break;
4587 case 6: /* EON */
4588 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4589 break;
4590 default:
4591 assert(FALSE);
4592 break;
4593 }
4594
4595 if (!sf) {
4596 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4597 }
4598
4599 if (opc == 3) {
4600 gen_logic_CC(sf, tcg_rd);
4601 }
4602 }
4603
4604 /*
4605 * Add/subtract (extended register)
4606 *
4607 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4608 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4609 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4610 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4611 *
4612 * sf: 0 -> 32bit, 1 -> 64bit
4613 * op: 0 -> add , 1 -> sub
4614 * S: 1 -> set flags
4615 * opt: 00
4616 * option: extension type (see DecodeRegExtend)
4617 * imm3: optional shift to Rm
4618 *
4619 * Rd = Rn + LSL(extend(Rm), amount)
4620 */
4621 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4622 {
4623 int rd = extract32(insn, 0, 5);
4624 int rn = extract32(insn, 5, 5);
4625 int imm3 = extract32(insn, 10, 3);
4626 int option = extract32(insn, 13, 3);
4627 int rm = extract32(insn, 16, 5);
4628 int opt = extract32(insn, 22, 2);
4629 bool setflags = extract32(insn, 29, 1);
4630 bool sub_op = extract32(insn, 30, 1);
4631 bool sf = extract32(insn, 31, 1);
4632
4633 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4634 TCGv_i64 tcg_rd;
4635 TCGv_i64 tcg_result;
4636
4637 if (imm3 > 4 || opt != 0) {
4638 unallocated_encoding(s);
4639 return;
4640 }
4641
4642 /* non-flag setting ops may use SP */
4643 if (!setflags) {
4644 tcg_rd = cpu_reg_sp(s, rd);
4645 } else {
4646 tcg_rd = cpu_reg(s, rd);
4647 }
4648 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4649
4650 tcg_rm = read_cpu_reg(s, rm, sf);
4651 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4652
4653 tcg_result = tcg_temp_new_i64();
4654
4655 if (!setflags) {
4656 if (sub_op) {
4657 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4658 } else {
4659 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4660 }
4661 } else {
4662 if (sub_op) {
4663 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4664 } else {
4665 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4666 }
4667 }
4668
4669 if (sf) {
4670 tcg_gen_mov_i64(tcg_rd, tcg_result);
4671 } else {
4672 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4673 }
4674 }
4675
4676 /*
4677 * Add/subtract (shifted register)
4678 *
4679 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4680 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4681 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4682 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4683 *
4684 * sf: 0 -> 32bit, 1 -> 64bit
4685 * op: 0 -> add , 1 -> sub
4686 * S: 1 -> set flags
4687 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4688 * imm6: Shift amount to apply to Rm before the add/sub
4689 */
4690 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4691 {
4692 int rd = extract32(insn, 0, 5);
4693 int rn = extract32(insn, 5, 5);
4694 int imm6 = extract32(insn, 10, 6);
4695 int rm = extract32(insn, 16, 5);
4696 int shift_type = extract32(insn, 22, 2);
4697 bool setflags = extract32(insn, 29, 1);
4698 bool sub_op = extract32(insn, 30, 1);
4699 bool sf = extract32(insn, 31, 1);
4700
4701 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4702 TCGv_i64 tcg_rn, tcg_rm;
4703 TCGv_i64 tcg_result;
4704
4705 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4706 unallocated_encoding(s);
4707 return;
4708 }
4709
4710 tcg_rn = read_cpu_reg(s, rn, sf);
4711 tcg_rm = read_cpu_reg(s, rm, sf);
4712
4713 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4714
4715 tcg_result = tcg_temp_new_i64();
4716
4717 if (!setflags) {
4718 if (sub_op) {
4719 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4720 } else {
4721 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4722 }
4723 } else {
4724 if (sub_op) {
4725 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4726 } else {
4727 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4728 }
4729 }
4730
4731 if (sf) {
4732 tcg_gen_mov_i64(tcg_rd, tcg_result);
4733 } else {
4734 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4735 }
4736 }
4737
4738 /* Data-processing (3 source)
4739 *
4740 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4741 * +--+------+-----------+------+------+----+------+------+------+
4742 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4743 * +--+------+-----------+------+------+----+------+------+------+
4744 */
4745 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4746 {
4747 int rd = extract32(insn, 0, 5);
4748 int rn = extract32(insn, 5, 5);
4749 int ra = extract32(insn, 10, 5);
4750 int rm = extract32(insn, 16, 5);
4751 int op_id = (extract32(insn, 29, 3) << 4) |
4752 (extract32(insn, 21, 3) << 1) |
4753 extract32(insn, 15, 1);
4754 bool sf = extract32(insn, 31, 1);
4755 bool is_sub = extract32(op_id, 0, 1);
4756 bool is_high = extract32(op_id, 2, 1);
4757 bool is_signed = false;
4758 TCGv_i64 tcg_op1;
4759 TCGv_i64 tcg_op2;
4760 TCGv_i64 tcg_tmp;
4761
4762 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4763 switch (op_id) {
4764 case 0x42: /* SMADDL */
4765 case 0x43: /* SMSUBL */
4766 case 0x44: /* SMULH */
4767 is_signed = true;
4768 break;
4769 case 0x0: /* MADD (32bit) */
4770 case 0x1: /* MSUB (32bit) */
4771 case 0x40: /* MADD (64bit) */
4772 case 0x41: /* MSUB (64bit) */
4773 case 0x4a: /* UMADDL */
4774 case 0x4b: /* UMSUBL */
4775 case 0x4c: /* UMULH */
4776 break;
4777 default:
4778 unallocated_encoding(s);
4779 return;
4780 }
4781
4782 if (is_high) {
4783 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
4784 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4785 TCGv_i64 tcg_rn = cpu_reg(s, rn);
4786 TCGv_i64 tcg_rm = cpu_reg(s, rm);
4787
4788 if (is_signed) {
4789 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4790 } else {
4791 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
4792 }
4793 return;
4794 }
4795
4796 tcg_op1 = tcg_temp_new_i64();
4797 tcg_op2 = tcg_temp_new_i64();
4798 tcg_tmp = tcg_temp_new_i64();
4799
4800 if (op_id < 0x42) {
4801 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
4802 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
4803 } else {
4804 if (is_signed) {
4805 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
4806 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
4807 } else {
4808 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
4809 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
4810 }
4811 }
4812
4813 if (ra == 31 && !is_sub) {
4814 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
4815 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
4816 } else {
4817 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
4818 if (is_sub) {
4819 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4820 } else {
4821 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
4822 }
4823 }
4824
4825 if (!sf) {
4826 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
4827 }
4828 }
4829
4830 /* Add/subtract (with carry)
4831 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
4832 * +--+--+--+------------------------+------+-------------+------+-----+
4833 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
4834 * +--+--+--+------------------------+------+-------------+------+-----+
4835 */
4836
4837 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
4838 {
4839 unsigned int sf, op, setflags, rm, rn, rd;
4840 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
4841
4842 sf = extract32(insn, 31, 1);
4843 op = extract32(insn, 30, 1);
4844 setflags = extract32(insn, 29, 1);
4845 rm = extract32(insn, 16, 5);
4846 rn = extract32(insn, 5, 5);
4847 rd = extract32(insn, 0, 5);
4848
4849 tcg_rd = cpu_reg(s, rd);
4850 tcg_rn = cpu_reg(s, rn);
4851
4852 if (op) {
4853 tcg_y = tcg_temp_new_i64();
4854 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
4855 } else {
4856 tcg_y = cpu_reg(s, rm);
4857 }
4858
4859 if (setflags) {
4860 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
4861 } else {
4862 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
4863 }
4864 }
4865
4866 /*
4867 * Rotate right into flags
4868 * 31 30 29 21 15 10 5 4 0
4869 * +--+--+--+-----------------+--------+-----------+------+--+------+
4870 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
4871 * +--+--+--+-----------------+--------+-----------+------+--+------+
4872 */
4873 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
4874 {
4875 int mask = extract32(insn, 0, 4);
4876 int o2 = extract32(insn, 4, 1);
4877 int rn = extract32(insn, 5, 5);
4878 int imm6 = extract32(insn, 15, 6);
4879 int sf_op_s = extract32(insn, 29, 3);
4880 TCGv_i64 tcg_rn;
4881 TCGv_i32 nzcv;
4882
4883 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
4884 unallocated_encoding(s);
4885 return;
4886 }
4887
4888 tcg_rn = read_cpu_reg(s, rn, 1);
4889 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
4890
4891 nzcv = tcg_temp_new_i32();
4892 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
4893
4894 if (mask & 8) { /* N */
4895 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
4896 }
4897 if (mask & 4) { /* Z */
4898 tcg_gen_not_i32(cpu_ZF, nzcv);
4899 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
4900 }
4901 if (mask & 2) { /* C */
4902 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
4903 }
4904 if (mask & 1) { /* V */
4905 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
4906 }
4907 }
4908
4909 /*
4910 * Evaluate into flags
4911 * 31 30 29 21 15 14 10 5 4 0
4912 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4913 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
4914 * +--+--+--+-----------------+---------+----+---------+------+--+------+
4915 */
4916 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
4917 {
4918 int o3_mask = extract32(insn, 0, 5);
4919 int rn = extract32(insn, 5, 5);
4920 int o2 = extract32(insn, 15, 6);
4921 int sz = extract32(insn, 14, 1);
4922 int sf_op_s = extract32(insn, 29, 3);
4923 TCGv_i32 tmp;
4924 int shift;
4925
4926 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
4927 !dc_isar_feature(aa64_condm_4, s)) {
4928 unallocated_encoding(s);
4929 return;
4930 }
4931 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
4932
4933 tmp = tcg_temp_new_i32();
4934 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
4935 tcg_gen_shli_i32(cpu_NF, tmp, shift);
4936 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
4937 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
4938 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
4939 }
4940
4941 /* Conditional compare (immediate / register)
4942 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4943 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4944 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
4945 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
4946 * [1] y [0] [0]
4947 */
4948 static void disas_cc(DisasContext *s, uint32_t insn)
4949 {
4950 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
4951 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
4952 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
4953 DisasCompare c;
4954
4955 if (!extract32(insn, 29, 1)) {
4956 unallocated_encoding(s);
4957 return;
4958 }
4959 if (insn & (1 << 10 | 1 << 4)) {
4960 unallocated_encoding(s);
4961 return;
4962 }
4963 sf = extract32(insn, 31, 1);
4964 op = extract32(insn, 30, 1);
4965 is_imm = extract32(insn, 11, 1);
4966 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
4967 cond = extract32(insn, 12, 4);
4968 rn = extract32(insn, 5, 5);
4969 nzcv = extract32(insn, 0, 4);
4970
4971 /* Set T0 = !COND. */
4972 tcg_t0 = tcg_temp_new_i32();
4973 arm_test_cc(&c, cond);
4974 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
4975
4976 /* Load the arguments for the new comparison. */
4977 if (is_imm) {
4978 tcg_y = tcg_temp_new_i64();
4979 tcg_gen_movi_i64(tcg_y, y);
4980 } else {
4981 tcg_y = cpu_reg(s, y);
4982 }
4983 tcg_rn = cpu_reg(s, rn);
4984
4985 /* Set the flags for the new comparison. */
4986 tcg_tmp = tcg_temp_new_i64();
4987 if (op) {
4988 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4989 } else {
4990 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
4991 }
4992
4993 /* If COND was false, force the flags to #nzcv. Compute two masks
4994 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
4995 * For tcg hosts that support ANDC, we can make do with just T1.
4996 * In either case, allow the tcg optimizer to delete any unused mask.
4997 */
4998 tcg_t1 = tcg_temp_new_i32();
4999 tcg_t2 = tcg_temp_new_i32();
5000 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5001 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5002
5003 if (nzcv & 8) { /* N */
5004 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5005 } else {
5006 if (TCG_TARGET_HAS_andc_i32) {
5007 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5008 } else {
5009 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5010 }
5011 }
5012 if (nzcv & 4) { /* Z */
5013 if (TCG_TARGET_HAS_andc_i32) {
5014 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5015 } else {
5016 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5017 }
5018 } else {
5019 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5020 }
5021 if (nzcv & 2) { /* C */
5022 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5023 } else {
5024 if (TCG_TARGET_HAS_andc_i32) {
5025 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5026 } else {
5027 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5028 }
5029 }
5030 if (nzcv & 1) { /* V */
5031 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5032 } else {
5033 if (TCG_TARGET_HAS_andc_i32) {
5034 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5035 } else {
5036 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5037 }
5038 }
5039 }
5040
5041 /* Conditional select
5042 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5043 * +----+----+---+-----------------+------+------+-----+------+------+
5044 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5045 * +----+----+---+-----------------+------+------+-----+------+------+
5046 */
5047 static void disas_cond_select(DisasContext *s, uint32_t insn)
5048 {
5049 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5050 TCGv_i64 tcg_rd, zero;
5051 DisasCompare64 c;
5052
5053 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5054 /* S == 1 or op2<1> == 1 */
5055 unallocated_encoding(s);
5056 return;
5057 }
5058 sf = extract32(insn, 31, 1);
5059 else_inv = extract32(insn, 30, 1);
5060 rm = extract32(insn, 16, 5);
5061 cond = extract32(insn, 12, 4);
5062 else_inc = extract32(insn, 10, 1);
5063 rn = extract32(insn, 5, 5);
5064 rd = extract32(insn, 0, 5);
5065
5066 tcg_rd = cpu_reg(s, rd);
5067
5068 a64_test_cc(&c, cond);
5069 zero = tcg_constant_i64(0);
5070
5071 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5072 /* CSET & CSETM. */
5073 if (else_inv) {
5074 tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
5075 tcg_rd, c.value, zero);
5076 } else {
5077 tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
5078 tcg_rd, c.value, zero);
5079 }
5080 } else {
5081 TCGv_i64 t_true = cpu_reg(s, rn);
5082 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5083 if (else_inv && else_inc) {
5084 tcg_gen_neg_i64(t_false, t_false);
5085 } else if (else_inv) {
5086 tcg_gen_not_i64(t_false, t_false);
5087 } else if (else_inc) {
5088 tcg_gen_addi_i64(t_false, t_false, 1);
5089 }
5090 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5091 }
5092
5093 if (!sf) {
5094 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5095 }
5096 }
5097
5098 static void handle_clz(DisasContext *s, unsigned int sf,
5099 unsigned int rn, unsigned int rd)
5100 {
5101 TCGv_i64 tcg_rd, tcg_rn;
5102 tcg_rd = cpu_reg(s, rd);
5103 tcg_rn = cpu_reg(s, rn);
5104
5105 if (sf) {
5106 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5107 } else {
5108 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5109 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5110 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5111 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5112 }
5113 }
5114
5115 static void handle_cls(DisasContext *s, unsigned int sf,
5116 unsigned int rn, unsigned int rd)
5117 {
5118 TCGv_i64 tcg_rd, tcg_rn;
5119 tcg_rd = cpu_reg(s, rd);
5120 tcg_rn = cpu_reg(s, rn);
5121
5122 if (sf) {
5123 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5124 } else {
5125 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5126 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5127 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5128 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5129 }
5130 }
5131
5132 static void handle_rbit(DisasContext *s, unsigned int sf,
5133 unsigned int rn, unsigned int rd)
5134 {
5135 TCGv_i64 tcg_rd, tcg_rn;
5136 tcg_rd = cpu_reg(s, rd);
5137 tcg_rn = cpu_reg(s, rn);
5138
5139 if (sf) {
5140 gen_helper_rbit64(tcg_rd, tcg_rn);
5141 } else {
5142 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5143 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5144 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5145 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5146 }
5147 }
5148
5149 /* REV with sf==1, opcode==3 ("REV64") */
5150 static void handle_rev64(DisasContext *s, unsigned int sf,
5151 unsigned int rn, unsigned int rd)
5152 {
5153 if (!sf) {
5154 unallocated_encoding(s);
5155 return;
5156 }
5157 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5158 }
5159
5160 /* REV with sf==0, opcode==2
5161 * REV32 (sf==1, opcode==2)
5162 */
5163 static void handle_rev32(DisasContext *s, unsigned int sf,
5164 unsigned int rn, unsigned int rd)
5165 {
5166 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5167 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5168
5169 if (sf) {
5170 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5171 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5172 } else {
5173 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5174 }
5175 }
5176
5177 /* REV16 (opcode==1) */
5178 static void handle_rev16(DisasContext *s, unsigned int sf,
5179 unsigned int rn, unsigned int rd)
5180 {
5181 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5182 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5183 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5184 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5185
5186 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5187 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5188 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5189 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5190 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5191 }
5192
5193 /* Data-processing (1 source)
5194 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5195 * +----+---+---+-----------------+---------+--------+------+------+
5196 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5197 * +----+---+---+-----------------+---------+--------+------+------+
5198 */
5199 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5200 {
5201 unsigned int sf, opcode, opcode2, rn, rd;
5202 TCGv_i64 tcg_rd;
5203
5204 if (extract32(insn, 29, 1)) {
5205 unallocated_encoding(s);
5206 return;
5207 }
5208
5209 sf = extract32(insn, 31, 1);
5210 opcode = extract32(insn, 10, 6);
5211 opcode2 = extract32(insn, 16, 5);
5212 rn = extract32(insn, 5, 5);
5213 rd = extract32(insn, 0, 5);
5214
5215 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5216
5217 switch (MAP(sf, opcode2, opcode)) {
5218 case MAP(0, 0x00, 0x00): /* RBIT */
5219 case MAP(1, 0x00, 0x00):
5220 handle_rbit(s, sf, rn, rd);
5221 break;
5222 case MAP(0, 0x00, 0x01): /* REV16 */
5223 case MAP(1, 0x00, 0x01):
5224 handle_rev16(s, sf, rn, rd);
5225 break;
5226 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5227 case MAP(1, 0x00, 0x02):
5228 handle_rev32(s, sf, rn, rd);
5229 break;
5230 case MAP(1, 0x00, 0x03): /* REV64 */
5231 handle_rev64(s, sf, rn, rd);
5232 break;
5233 case MAP(0, 0x00, 0x04): /* CLZ */
5234 case MAP(1, 0x00, 0x04):
5235 handle_clz(s, sf, rn, rd);
5236 break;
5237 case MAP(0, 0x00, 0x05): /* CLS */
5238 case MAP(1, 0x00, 0x05):
5239 handle_cls(s, sf, rn, rd);
5240 break;
5241 case MAP(1, 0x01, 0x00): /* PACIA */
5242 if (s->pauth_active) {
5243 tcg_rd = cpu_reg(s, rd);
5244 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5245 } else if (!dc_isar_feature(aa64_pauth, s)) {
5246 goto do_unallocated;
5247 }
5248 break;
5249 case MAP(1, 0x01, 0x01): /* PACIB */
5250 if (s->pauth_active) {
5251 tcg_rd = cpu_reg(s, rd);
5252 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5253 } else if (!dc_isar_feature(aa64_pauth, s)) {
5254 goto do_unallocated;
5255 }
5256 break;
5257 case MAP(1, 0x01, 0x02): /* PACDA */
5258 if (s->pauth_active) {
5259 tcg_rd = cpu_reg(s, rd);
5260 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5261 } else if (!dc_isar_feature(aa64_pauth, s)) {
5262 goto do_unallocated;
5263 }
5264 break;
5265 case MAP(1, 0x01, 0x03): /* PACDB */
5266 if (s->pauth_active) {
5267 tcg_rd = cpu_reg(s, rd);
5268 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5269 } else if (!dc_isar_feature(aa64_pauth, s)) {
5270 goto do_unallocated;
5271 }
5272 break;
5273 case MAP(1, 0x01, 0x04): /* AUTIA */
5274 if (s->pauth_active) {
5275 tcg_rd = cpu_reg(s, rd);
5276 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5277 } else if (!dc_isar_feature(aa64_pauth, s)) {
5278 goto do_unallocated;
5279 }
5280 break;
5281 case MAP(1, 0x01, 0x05): /* AUTIB */
5282 if (s->pauth_active) {
5283 tcg_rd = cpu_reg(s, rd);
5284 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5285 } else if (!dc_isar_feature(aa64_pauth, s)) {
5286 goto do_unallocated;
5287 }
5288 break;
5289 case MAP(1, 0x01, 0x06): /* AUTDA */
5290 if (s->pauth_active) {
5291 tcg_rd = cpu_reg(s, rd);
5292 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5293 } else if (!dc_isar_feature(aa64_pauth, s)) {
5294 goto do_unallocated;
5295 }
5296 break;
5297 case MAP(1, 0x01, 0x07): /* AUTDB */
5298 if (s->pauth_active) {
5299 tcg_rd = cpu_reg(s, rd);
5300 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
5301 } else if (!dc_isar_feature(aa64_pauth, s)) {
5302 goto do_unallocated;
5303 }
5304 break;
5305 case MAP(1, 0x01, 0x08): /* PACIZA */
5306 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5307 goto do_unallocated;
5308 } else if (s->pauth_active) {
5309 tcg_rd = cpu_reg(s, rd);
5310 gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5311 }
5312 break;
5313 case MAP(1, 0x01, 0x09): /* PACIZB */
5314 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5315 goto do_unallocated;
5316 } else if (s->pauth_active) {
5317 tcg_rd = cpu_reg(s, rd);
5318 gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5319 }
5320 break;
5321 case MAP(1, 0x01, 0x0a): /* PACDZA */
5322 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5323 goto do_unallocated;
5324 } else if (s->pauth_active) {
5325 tcg_rd = cpu_reg(s, rd);
5326 gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5327 }
5328 break;
5329 case MAP(1, 0x01, 0x0b): /* PACDZB */
5330 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5331 goto do_unallocated;
5332 } else if (s->pauth_active) {
5333 tcg_rd = cpu_reg(s, rd);
5334 gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5335 }
5336 break;
5337 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5338 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5339 goto do_unallocated;
5340 } else if (s->pauth_active) {
5341 tcg_rd = cpu_reg(s, rd);
5342 gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5343 }
5344 break;
5345 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5346 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5347 goto do_unallocated;
5348 } else if (s->pauth_active) {
5349 tcg_rd = cpu_reg(s, rd);
5350 gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5351 }
5352 break;
5353 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5354 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5355 goto do_unallocated;
5356 } else if (s->pauth_active) {
5357 tcg_rd = cpu_reg(s, rd);
5358 gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5359 }
5360 break;
5361 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5362 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5363 goto do_unallocated;
5364 } else if (s->pauth_active) {
5365 tcg_rd = cpu_reg(s, rd);
5366 gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
5367 }
5368 break;
5369 case MAP(1, 0x01, 0x10): /* XPACI */
5370 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5371 goto do_unallocated;
5372 } else if (s->pauth_active) {
5373 tcg_rd = cpu_reg(s, rd);
5374 gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
5375 }
5376 break;
5377 case MAP(1, 0x01, 0x11): /* XPACD */
5378 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5379 goto do_unallocated;
5380 } else if (s->pauth_active) {
5381 tcg_rd = cpu_reg(s, rd);
5382 gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
5383 }
5384 break;
5385 default:
5386 do_unallocated:
5387 unallocated_encoding(s);
5388 break;
5389 }
5390
5391 #undef MAP
5392 }
5393
5394 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5395 unsigned int rm, unsigned int rn, unsigned int rd)
5396 {
5397 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5398 tcg_rd = cpu_reg(s, rd);
5399
5400 if (!sf && is_signed) {
5401 tcg_n = tcg_temp_new_i64();
5402 tcg_m = tcg_temp_new_i64();
5403 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5404 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5405 } else {
5406 tcg_n = read_cpu_reg(s, rn, sf);
5407 tcg_m = read_cpu_reg(s, rm, sf);
5408 }
5409
5410 if (is_signed) {
5411 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5412 } else {
5413 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5414 }
5415
5416 if (!sf) { /* zero extend final result */
5417 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5418 }
5419 }
5420
5421 /* LSLV, LSRV, ASRV, RORV */
5422 static void handle_shift_reg(DisasContext *s,
5423 enum a64_shift_type shift_type, unsigned int sf,
5424 unsigned int rm, unsigned int rn, unsigned int rd)
5425 {
5426 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5427 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5428 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5429
5430 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5431 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5432 }
5433
5434 /* CRC32[BHWX], CRC32C[BHWX] */
5435 static void handle_crc32(DisasContext *s,
5436 unsigned int sf, unsigned int sz, bool crc32c,
5437 unsigned int rm, unsigned int rn, unsigned int rd)
5438 {
5439 TCGv_i64 tcg_acc, tcg_val;
5440 TCGv_i32 tcg_bytes;
5441
5442 if (!dc_isar_feature(aa64_crc32, s)
5443 || (sf == 1 && sz != 3)
5444 || (sf == 0 && sz == 3)) {
5445 unallocated_encoding(s);
5446 return;
5447 }
5448
5449 if (sz == 3) {
5450 tcg_val = cpu_reg(s, rm);
5451 } else {
5452 uint64_t mask;
5453 switch (sz) {
5454 case 0:
5455 mask = 0xFF;
5456 break;
5457 case 1:
5458 mask = 0xFFFF;
5459 break;
5460 case 2:
5461 mask = 0xFFFFFFFF;
5462 break;
5463 default:
5464 g_assert_not_reached();
5465 }
5466 tcg_val = tcg_temp_new_i64();
5467 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5468 }
5469
5470 tcg_acc = cpu_reg(s, rn);
5471 tcg_bytes = tcg_constant_i32(1 << sz);
5472
5473 if (crc32c) {
5474 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5475 } else {
5476 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5477 }
5478 }
5479
5480 /* Data-processing (2 source)
5481 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5482 * +----+---+---+-----------------+------+--------+------+------+
5483 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5484 * +----+---+---+-----------------+------+--------+------+------+
5485 */
5486 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5487 {
5488 unsigned int sf, rm, opcode, rn, rd, setflag;
5489 sf = extract32(insn, 31, 1);
5490 setflag = extract32(insn, 29, 1);
5491 rm = extract32(insn, 16, 5);
5492 opcode = extract32(insn, 10, 6);
5493 rn = extract32(insn, 5, 5);
5494 rd = extract32(insn, 0, 5);
5495
5496 if (setflag && opcode != 0) {
5497 unallocated_encoding(s);
5498 return;
5499 }
5500
5501 switch (opcode) {
5502 case 0: /* SUBP(S) */
5503 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5504 goto do_unallocated;
5505 } else {
5506 TCGv_i64 tcg_n, tcg_m, tcg_d;
5507
5508 tcg_n = read_cpu_reg_sp(s, rn, true);
5509 tcg_m = read_cpu_reg_sp(s, rm, true);
5510 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5511 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5512 tcg_d = cpu_reg(s, rd);
5513
5514 if (setflag) {
5515 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5516 } else {
5517 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5518 }
5519 }
5520 break;
5521 case 2: /* UDIV */
5522 handle_div(s, false, sf, rm, rn, rd);
5523 break;
5524 case 3: /* SDIV */
5525 handle_div(s, true, sf, rm, rn, rd);
5526 break;
5527 case 4: /* IRG */
5528 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5529 goto do_unallocated;
5530 }
5531 if (s->ata[0]) {
5532 gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
5533 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5534 } else {
5535 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5536 cpu_reg_sp(s, rn));
5537 }
5538 break;
5539 case 5: /* GMI */
5540 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5541 goto do_unallocated;
5542 } else {
5543 TCGv_i64 t = tcg_temp_new_i64();
5544
5545 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5546 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5547 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5548 }
5549 break;
5550 case 8: /* LSLV */
5551 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5552 break;
5553 case 9: /* LSRV */
5554 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5555 break;
5556 case 10: /* ASRV */
5557 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5558 break;
5559 case 11: /* RORV */
5560 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5561 break;
5562 case 12: /* PACGA */
5563 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5564 goto do_unallocated;
5565 }
5566 gen_helper_pacga(cpu_reg(s, rd), tcg_env,
5567 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5568 break;
5569 case 16:
5570 case 17:
5571 case 18:
5572 case 19:
5573 case 20:
5574 case 21:
5575 case 22:
5576 case 23: /* CRC32 */
5577 {
5578 int sz = extract32(opcode, 0, 2);
5579 bool crc32c = extract32(opcode, 2, 1);
5580 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5581 break;
5582 }
5583 default:
5584 do_unallocated:
5585 unallocated_encoding(s);
5586 break;
5587 }
5588 }
5589
5590 /*
5591 * Data processing - register
5592 * 31 30 29 28 25 21 20 16 10 0
5593 * +--+---+--+---+-------+-----+-------+-------+---------+
5594 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5595 * +--+---+--+---+-------+-----+-------+-------+---------+
5596 */
5597 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5598 {
5599 int op0 = extract32(insn, 30, 1);
5600 int op1 = extract32(insn, 28, 1);
5601 int op2 = extract32(insn, 21, 4);
5602 int op3 = extract32(insn, 10, 6);
5603
5604 if (!op1) {
5605 if (op2 & 8) {
5606 if (op2 & 1) {
5607 /* Add/sub (extended register) */
5608 disas_add_sub_ext_reg(s, insn);
5609 } else {
5610 /* Add/sub (shifted register) */
5611 disas_add_sub_reg(s, insn);
5612 }
5613 } else {
5614 /* Logical (shifted register) */
5615 disas_logic_reg(s, insn);
5616 }
5617 return;
5618 }
5619
5620 switch (op2) {
5621 case 0x0:
5622 switch (op3) {
5623 case 0x00: /* Add/subtract (with carry) */
5624 disas_adc_sbc(s, insn);
5625 break;
5626
5627 case 0x01: /* Rotate right into flags */
5628 case 0x21:
5629 disas_rotate_right_into_flags(s, insn);
5630 break;
5631
5632 case 0x02: /* Evaluate into flags */
5633 case 0x12:
5634 case 0x22:
5635 case 0x32:
5636 disas_evaluate_into_flags(s, insn);
5637 break;
5638
5639 default:
5640 goto do_unallocated;
5641 }
5642 break;
5643
5644 case 0x2: /* Conditional compare */
5645 disas_cc(s, insn); /* both imm and reg forms */
5646 break;
5647
5648 case 0x4: /* Conditional select */
5649 disas_cond_select(s, insn);
5650 break;
5651
5652 case 0x6: /* Data-processing */
5653 if (op0) { /* (1 source) */
5654 disas_data_proc_1src(s, insn);
5655 } else { /* (2 source) */
5656 disas_data_proc_2src(s, insn);
5657 }
5658 break;
5659 case 0x8 ... 0xf: /* (3 source) */
5660 disas_data_proc_3src(s, insn);
5661 break;
5662
5663 default:
5664 do_unallocated:
5665 unallocated_encoding(s);
5666 break;
5667 }
5668 }
5669
5670 static void handle_fp_compare(DisasContext *s, int size,
5671 unsigned int rn, unsigned int rm,
5672 bool cmp_with_zero, bool signal_all_nans)
5673 {
5674 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5675 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5676
5677 if (size == MO_64) {
5678 TCGv_i64 tcg_vn, tcg_vm;
5679
5680 tcg_vn = read_fp_dreg(s, rn);
5681 if (cmp_with_zero) {
5682 tcg_vm = tcg_constant_i64(0);
5683 } else {
5684 tcg_vm = read_fp_dreg(s, rm);
5685 }
5686 if (signal_all_nans) {
5687 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5688 } else {
5689 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5690 }
5691 } else {
5692 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5693 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5694
5695 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5696 if (cmp_with_zero) {
5697 tcg_gen_movi_i32(tcg_vm, 0);
5698 } else {
5699 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5700 }
5701
5702 switch (size) {
5703 case MO_32:
5704 if (signal_all_nans) {
5705 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5706 } else {
5707 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5708 }
5709 break;
5710 case MO_16:
5711 if (signal_all_nans) {
5712 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5713 } else {
5714 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5715 }
5716 break;
5717 default:
5718 g_assert_not_reached();
5719 }
5720 }
5721
5722 gen_set_nzcv(tcg_flags);
5723 }
5724
5725 /* Floating point compare
5726 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5727 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5728 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5729 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5730 */
5731 static void disas_fp_compare(DisasContext *s, uint32_t insn)
5732 {
5733 unsigned int mos, type, rm, op, rn, opc, op2r;
5734 int size;
5735
5736 mos = extract32(insn, 29, 3);
5737 type = extract32(insn, 22, 2);
5738 rm = extract32(insn, 16, 5);
5739 op = extract32(insn, 14, 2);
5740 rn = extract32(insn, 5, 5);
5741 opc = extract32(insn, 3, 2);
5742 op2r = extract32(insn, 0, 3);
5743
5744 if (mos || op || op2r) {
5745 unallocated_encoding(s);
5746 return;
5747 }
5748
5749 switch (type) {
5750 case 0:
5751 size = MO_32;
5752 break;
5753 case 1:
5754 size = MO_64;
5755 break;
5756 case 3:
5757 size = MO_16;
5758 if (dc_isar_feature(aa64_fp16, s)) {
5759 break;
5760 }
5761 /* fallthru */
5762 default:
5763 unallocated_encoding(s);
5764 return;
5765 }
5766
5767 if (!fp_access_check(s)) {
5768 return;
5769 }
5770
5771 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
5772 }
5773
5774 /* Floating point conditional compare
5775 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5776 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5777 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
5778 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
5779 */
5780 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
5781 {
5782 unsigned int mos, type, rm, cond, rn, op, nzcv;
5783 TCGLabel *label_continue = NULL;
5784 int size;
5785
5786 mos = extract32(insn, 29, 3);
5787 type = extract32(insn, 22, 2);
5788 rm = extract32(insn, 16, 5);
5789 cond = extract32(insn, 12, 4);
5790 rn = extract32(insn, 5, 5);
5791 op = extract32(insn, 4, 1);
5792 nzcv = extract32(insn, 0, 4);
5793
5794 if (mos) {
5795 unallocated_encoding(s);
5796 return;
5797 }
5798
5799 switch (type) {
5800 case 0:
5801 size = MO_32;
5802 break;
5803 case 1:
5804 size = MO_64;
5805 break;
5806 case 3:
5807 size = MO_16;
5808 if (dc_isar_feature(aa64_fp16, s)) {
5809 break;
5810 }
5811 /* fallthru */
5812 default:
5813 unallocated_encoding(s);
5814 return;
5815 }
5816
5817 if (!fp_access_check(s)) {
5818 return;
5819 }
5820
5821 if (cond < 0x0e) { /* not always */
5822 TCGLabel *label_match = gen_new_label();
5823 label_continue = gen_new_label();
5824 arm_gen_test_cc(cond, label_match);
5825 /* nomatch: */
5826 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
5827 tcg_gen_br(label_continue);
5828 gen_set_label(label_match);
5829 }
5830
5831 handle_fp_compare(s, size, rn, rm, false, op);
5832
5833 if (cond < 0x0e) {
5834 gen_set_label(label_continue);
5835 }
5836 }
5837
5838 /* Floating point conditional select
5839 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
5840 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5841 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
5842 * +---+---+---+-----------+------+---+------+------+-----+------+------+
5843 */
5844 static void disas_fp_csel(DisasContext *s, uint32_t insn)
5845 {
5846 unsigned int mos, type, rm, cond, rn, rd;
5847 TCGv_i64 t_true, t_false;
5848 DisasCompare64 c;
5849 MemOp sz;
5850
5851 mos = extract32(insn, 29, 3);
5852 type = extract32(insn, 22, 2);
5853 rm = extract32(insn, 16, 5);
5854 cond = extract32(insn, 12, 4);
5855 rn = extract32(insn, 5, 5);
5856 rd = extract32(insn, 0, 5);
5857
5858 if (mos) {
5859 unallocated_encoding(s);
5860 return;
5861 }
5862
5863 switch (type) {
5864 case 0:
5865 sz = MO_32;
5866 break;
5867 case 1:
5868 sz = MO_64;
5869 break;
5870 case 3:
5871 sz = MO_16;
5872 if (dc_isar_feature(aa64_fp16, s)) {
5873 break;
5874 }
5875 /* fallthru */
5876 default:
5877 unallocated_encoding(s);
5878 return;
5879 }
5880
5881 if (!fp_access_check(s)) {
5882 return;
5883 }
5884
5885 /* Zero extend sreg & hreg inputs to 64 bits now. */
5886 t_true = tcg_temp_new_i64();
5887 t_false = tcg_temp_new_i64();
5888 read_vec_element(s, t_true, rn, 0, sz);
5889 read_vec_element(s, t_false, rm, 0, sz);
5890
5891 a64_test_cc(&c, cond);
5892 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
5893 t_true, t_false);
5894
5895 /* Note that sregs & hregs write back zeros to the high bits,
5896 and we've already done the zero-extension. */
5897 write_fp_dreg(s, rd, t_true);
5898 }
5899
5900 /* Floating-point data-processing (1 source) - half precision */
5901 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
5902 {
5903 TCGv_ptr fpst = NULL;
5904 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
5905 TCGv_i32 tcg_res = tcg_temp_new_i32();
5906
5907 switch (opcode) {
5908 case 0x0: /* FMOV */
5909 tcg_gen_mov_i32(tcg_res, tcg_op);
5910 break;
5911 case 0x1: /* FABS */
5912 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
5913 break;
5914 case 0x2: /* FNEG */
5915 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
5916 break;
5917 case 0x3: /* FSQRT */
5918 fpst = fpstatus_ptr(FPST_FPCR_F16);
5919 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
5920 break;
5921 case 0x8: /* FRINTN */
5922 case 0x9: /* FRINTP */
5923 case 0xa: /* FRINTM */
5924 case 0xb: /* FRINTZ */
5925 case 0xc: /* FRINTA */
5926 {
5927 TCGv_i32 tcg_rmode;
5928
5929 fpst = fpstatus_ptr(FPST_FPCR_F16);
5930 tcg_rmode = gen_set_rmode(opcode & 7, fpst);
5931 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5932 gen_restore_rmode(tcg_rmode, fpst);
5933 break;
5934 }
5935 case 0xe: /* FRINTX */
5936 fpst = fpstatus_ptr(FPST_FPCR_F16);
5937 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
5938 break;
5939 case 0xf: /* FRINTI */
5940 fpst = fpstatus_ptr(FPST_FPCR_F16);
5941 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
5942 break;
5943 default:
5944 g_assert_not_reached();
5945 }
5946
5947 write_fp_sreg(s, rd, tcg_res);
5948 }
5949
5950 /* Floating-point data-processing (1 source) - single precision */
5951 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
5952 {
5953 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
5954 TCGv_i32 tcg_op, tcg_res;
5955 TCGv_ptr fpst;
5956 int rmode = -1;
5957
5958 tcg_op = read_fp_sreg(s, rn);
5959 tcg_res = tcg_temp_new_i32();
5960
5961 switch (opcode) {
5962 case 0x0: /* FMOV */
5963 tcg_gen_mov_i32(tcg_res, tcg_op);
5964 goto done;
5965 case 0x1: /* FABS */
5966 gen_helper_vfp_abss(tcg_res, tcg_op);
5967 goto done;
5968 case 0x2: /* FNEG */
5969 gen_helper_vfp_negs(tcg_res, tcg_op);
5970 goto done;
5971 case 0x3: /* FSQRT */
5972 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
5973 goto done;
5974 case 0x6: /* BFCVT */
5975 gen_fpst = gen_helper_bfcvt;
5976 break;
5977 case 0x8: /* FRINTN */
5978 case 0x9: /* FRINTP */
5979 case 0xa: /* FRINTM */
5980 case 0xb: /* FRINTZ */
5981 case 0xc: /* FRINTA */
5982 rmode = opcode & 7;
5983 gen_fpst = gen_helper_rints;
5984 break;
5985 case 0xe: /* FRINTX */
5986 gen_fpst = gen_helper_rints_exact;
5987 break;
5988 case 0xf: /* FRINTI */
5989 gen_fpst = gen_helper_rints;
5990 break;
5991 case 0x10: /* FRINT32Z */
5992 rmode = FPROUNDING_ZERO;
5993 gen_fpst = gen_helper_frint32_s;
5994 break;
5995 case 0x11: /* FRINT32X */
5996 gen_fpst = gen_helper_frint32_s;
5997 break;
5998 case 0x12: /* FRINT64Z */
5999 rmode = FPROUNDING_ZERO;
6000 gen_fpst = gen_helper_frint64_s;
6001 break;
6002 case 0x13: /* FRINT64X */
6003 gen_fpst = gen_helper_frint64_s;
6004 break;
6005 default:
6006 g_assert_not_reached();
6007 }
6008
6009 fpst = fpstatus_ptr(FPST_FPCR);
6010 if (rmode >= 0) {
6011 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6012 gen_fpst(tcg_res, tcg_op, fpst);
6013 gen_restore_rmode(tcg_rmode, fpst);
6014 } else {
6015 gen_fpst(tcg_res, tcg_op, fpst);
6016 }
6017
6018 done:
6019 write_fp_sreg(s, rd, tcg_res);
6020 }
6021
6022 /* Floating-point data-processing (1 source) - double precision */
6023 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6024 {
6025 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6026 TCGv_i64 tcg_op, tcg_res;
6027 TCGv_ptr fpst;
6028 int rmode = -1;
6029
6030 switch (opcode) {
6031 case 0x0: /* FMOV */
6032 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6033 return;
6034 }
6035
6036 tcg_op = read_fp_dreg(s, rn);
6037 tcg_res = tcg_temp_new_i64();
6038
6039 switch (opcode) {
6040 case 0x1: /* FABS */
6041 gen_helper_vfp_absd(tcg_res, tcg_op);
6042 goto done;
6043 case 0x2: /* FNEG */
6044 gen_helper_vfp_negd(tcg_res, tcg_op);
6045 goto done;
6046 case 0x3: /* FSQRT */
6047 gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
6048 goto done;
6049 case 0x8: /* FRINTN */
6050 case 0x9: /* FRINTP */
6051 case 0xa: /* FRINTM */
6052 case 0xb: /* FRINTZ */
6053 case 0xc: /* FRINTA */
6054 rmode = opcode & 7;
6055 gen_fpst = gen_helper_rintd;
6056 break;
6057 case 0xe: /* FRINTX */
6058 gen_fpst = gen_helper_rintd_exact;
6059 break;
6060 case 0xf: /* FRINTI */
6061 gen_fpst = gen_helper_rintd;
6062 break;
6063 case 0x10: /* FRINT32Z */
6064 rmode = FPROUNDING_ZERO;
6065 gen_fpst = gen_helper_frint32_d;
6066 break;
6067 case 0x11: /* FRINT32X */
6068 gen_fpst = gen_helper_frint32_d;
6069 break;
6070 case 0x12: /* FRINT64Z */
6071 rmode = FPROUNDING_ZERO;
6072 gen_fpst = gen_helper_frint64_d;
6073 break;
6074 case 0x13: /* FRINT64X */
6075 gen_fpst = gen_helper_frint64_d;
6076 break;
6077 default:
6078 g_assert_not_reached();
6079 }
6080
6081 fpst = fpstatus_ptr(FPST_FPCR);
6082 if (rmode >= 0) {
6083 TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
6084 gen_fpst(tcg_res, tcg_op, fpst);
6085 gen_restore_rmode(tcg_rmode, fpst);
6086 } else {
6087 gen_fpst(tcg_res, tcg_op, fpst);
6088 }
6089
6090 done:
6091 write_fp_dreg(s, rd, tcg_res);
6092 }
6093
6094 static void handle_fp_fcvt(DisasContext *s, int opcode,
6095 int rd, int rn, int dtype, int ntype)
6096 {
6097 switch (ntype) {
6098 case 0x0:
6099 {
6100 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6101 if (dtype == 1) {
6102 /* Single to double */
6103 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6104 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
6105 write_fp_dreg(s, rd, tcg_rd);
6106 } else {
6107 /* Single to half */
6108 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6109 TCGv_i32 ahp = get_ahp_flag();
6110 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6111
6112 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6113 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6114 write_fp_sreg(s, rd, tcg_rd);
6115 }
6116 break;
6117 }
6118 case 0x1:
6119 {
6120 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6121 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6122 if (dtype == 0) {
6123 /* Double to single */
6124 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
6125 } else {
6126 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6127 TCGv_i32 ahp = get_ahp_flag();
6128 /* Double to half */
6129 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6130 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6131 }
6132 write_fp_sreg(s, rd, tcg_rd);
6133 break;
6134 }
6135 case 0x3:
6136 {
6137 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6138 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6139 TCGv_i32 tcg_ahp = get_ahp_flag();
6140 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6141 if (dtype == 0) {
6142 /* Half to single */
6143 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6144 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6145 write_fp_sreg(s, rd, tcg_rd);
6146 } else {
6147 /* Half to double */
6148 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6149 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6150 write_fp_dreg(s, rd, tcg_rd);
6151 }
6152 break;
6153 }
6154 default:
6155 g_assert_not_reached();
6156 }
6157 }
6158
6159 /* Floating point data-processing (1 source)
6160 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6161 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6162 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6163 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6164 */
6165 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6166 {
6167 int mos = extract32(insn, 29, 3);
6168 int type = extract32(insn, 22, 2);
6169 int opcode = extract32(insn, 15, 6);
6170 int rn = extract32(insn, 5, 5);
6171 int rd = extract32(insn, 0, 5);
6172
6173 if (mos) {
6174 goto do_unallocated;
6175 }
6176
6177 switch (opcode) {
6178 case 0x4: case 0x5: case 0x7:
6179 {
6180 /* FCVT between half, single and double precision */
6181 int dtype = extract32(opcode, 0, 2);
6182 if (type == 2 || dtype == type) {
6183 goto do_unallocated;
6184 }
6185 if (!fp_access_check(s)) {
6186 return;
6187 }
6188
6189 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6190 break;
6191 }
6192
6193 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6194 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6195 goto do_unallocated;
6196 }
6197 /* fall through */
6198 case 0x0 ... 0x3:
6199 case 0x8 ... 0xc:
6200 case 0xe ... 0xf:
6201 /* 32-to-32 and 64-to-64 ops */
6202 switch (type) {
6203 case 0:
6204 if (!fp_access_check(s)) {
6205 return;
6206 }
6207 handle_fp_1src_single(s, opcode, rd, rn);
6208 break;
6209 case 1:
6210 if (!fp_access_check(s)) {
6211 return;
6212 }
6213 handle_fp_1src_double(s, opcode, rd, rn);
6214 break;
6215 case 3:
6216 if (!dc_isar_feature(aa64_fp16, s)) {
6217 goto do_unallocated;
6218 }
6219
6220 if (!fp_access_check(s)) {
6221 return;
6222 }
6223 handle_fp_1src_half(s, opcode, rd, rn);
6224 break;
6225 default:
6226 goto do_unallocated;
6227 }
6228 break;
6229
6230 case 0x6:
6231 switch (type) {
6232 case 1: /* BFCVT */
6233 if (!dc_isar_feature(aa64_bf16, s)) {
6234 goto do_unallocated;
6235 }
6236 if (!fp_access_check(s)) {
6237 return;
6238 }
6239 handle_fp_1src_single(s, opcode, rd, rn);
6240 break;
6241 default:
6242 goto do_unallocated;
6243 }
6244 break;
6245
6246 default:
6247 do_unallocated:
6248 unallocated_encoding(s);
6249 break;
6250 }
6251 }
6252
6253 /* Floating-point data-processing (2 source) - single precision */
6254 static void handle_fp_2src_single(DisasContext *s, int opcode,
6255 int rd, int rn, int rm)
6256 {
6257 TCGv_i32 tcg_op1;
6258 TCGv_i32 tcg_op2;
6259 TCGv_i32 tcg_res;
6260 TCGv_ptr fpst;
6261
6262 tcg_res = tcg_temp_new_i32();
6263 fpst = fpstatus_ptr(FPST_FPCR);
6264 tcg_op1 = read_fp_sreg(s, rn);
6265 tcg_op2 = read_fp_sreg(s, rm);
6266
6267 switch (opcode) {
6268 case 0x0: /* FMUL */
6269 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6270 break;
6271 case 0x1: /* FDIV */
6272 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6273 break;
6274 case 0x2: /* FADD */
6275 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6276 break;
6277 case 0x3: /* FSUB */
6278 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6279 break;
6280 case 0x4: /* FMAX */
6281 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6282 break;
6283 case 0x5: /* FMIN */
6284 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6285 break;
6286 case 0x6: /* FMAXNM */
6287 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6288 break;
6289 case 0x7: /* FMINNM */
6290 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6291 break;
6292 case 0x8: /* FNMUL */
6293 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6294 gen_helper_vfp_negs(tcg_res, tcg_res);
6295 break;
6296 }
6297
6298 write_fp_sreg(s, rd, tcg_res);
6299 }
6300
6301 /* Floating-point data-processing (2 source) - double precision */
6302 static void handle_fp_2src_double(DisasContext *s, int opcode,
6303 int rd, int rn, int rm)
6304 {
6305 TCGv_i64 tcg_op1;
6306 TCGv_i64 tcg_op2;
6307 TCGv_i64 tcg_res;
6308 TCGv_ptr fpst;
6309
6310 tcg_res = tcg_temp_new_i64();
6311 fpst = fpstatus_ptr(FPST_FPCR);
6312 tcg_op1 = read_fp_dreg(s, rn);
6313 tcg_op2 = read_fp_dreg(s, rm);
6314
6315 switch (opcode) {
6316 case 0x0: /* FMUL */
6317 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6318 break;
6319 case 0x1: /* FDIV */
6320 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6321 break;
6322 case 0x2: /* FADD */
6323 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6324 break;
6325 case 0x3: /* FSUB */
6326 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6327 break;
6328 case 0x4: /* FMAX */
6329 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6330 break;
6331 case 0x5: /* FMIN */
6332 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6333 break;
6334 case 0x6: /* FMAXNM */
6335 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6336 break;
6337 case 0x7: /* FMINNM */
6338 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6339 break;
6340 case 0x8: /* FNMUL */
6341 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6342 gen_helper_vfp_negd(tcg_res, tcg_res);
6343 break;
6344 }
6345
6346 write_fp_dreg(s, rd, tcg_res);
6347 }
6348
6349 /* Floating-point data-processing (2 source) - half precision */
6350 static void handle_fp_2src_half(DisasContext *s, int opcode,
6351 int rd, int rn, int rm)
6352 {
6353 TCGv_i32 tcg_op1;
6354 TCGv_i32 tcg_op2;
6355 TCGv_i32 tcg_res;
6356 TCGv_ptr fpst;
6357
6358 tcg_res = tcg_temp_new_i32();
6359 fpst = fpstatus_ptr(FPST_FPCR_F16);
6360 tcg_op1 = read_fp_hreg(s, rn);
6361 tcg_op2 = read_fp_hreg(s, rm);
6362
6363 switch (opcode) {
6364 case 0x0: /* FMUL */
6365 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6366 break;
6367 case 0x1: /* FDIV */
6368 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6369 break;
6370 case 0x2: /* FADD */
6371 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6372 break;
6373 case 0x3: /* FSUB */
6374 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6375 break;
6376 case 0x4: /* FMAX */
6377 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6378 break;
6379 case 0x5: /* FMIN */
6380 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6381 break;
6382 case 0x6: /* FMAXNM */
6383 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6384 break;
6385 case 0x7: /* FMINNM */
6386 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6387 break;
6388 case 0x8: /* FNMUL */
6389 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6390 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6391 break;
6392 default:
6393 g_assert_not_reached();
6394 }
6395
6396 write_fp_sreg(s, rd, tcg_res);
6397 }
6398
6399 /* Floating point data-processing (2 source)
6400 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6401 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6402 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6403 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6404 */
6405 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6406 {
6407 int mos = extract32(insn, 29, 3);
6408 int type = extract32(insn, 22, 2);
6409 int rd = extract32(insn, 0, 5);
6410 int rn = extract32(insn, 5, 5);
6411 int rm = extract32(insn, 16, 5);
6412 int opcode = extract32(insn, 12, 4);
6413
6414 if (opcode > 8 || mos) {
6415 unallocated_encoding(s);
6416 return;
6417 }
6418
6419 switch (type) {
6420 case 0:
6421 if (!fp_access_check(s)) {
6422 return;
6423 }
6424 handle_fp_2src_single(s, opcode, rd, rn, rm);
6425 break;
6426 case 1:
6427 if (!fp_access_check(s)) {
6428 return;
6429 }
6430 handle_fp_2src_double(s, opcode, rd, rn, rm);
6431 break;
6432 case 3:
6433 if (!dc_isar_feature(aa64_fp16, s)) {
6434 unallocated_encoding(s);
6435 return;
6436 }
6437 if (!fp_access_check(s)) {
6438 return;
6439 }
6440 handle_fp_2src_half(s, opcode, rd, rn, rm);
6441 break;
6442 default:
6443 unallocated_encoding(s);
6444 }
6445 }
6446
6447 /* Floating-point data-processing (3 source) - single precision */
6448 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6449 int rd, int rn, int rm, int ra)
6450 {
6451 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6452 TCGv_i32 tcg_res = tcg_temp_new_i32();
6453 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6454
6455 tcg_op1 = read_fp_sreg(s, rn);
6456 tcg_op2 = read_fp_sreg(s, rm);
6457 tcg_op3 = read_fp_sreg(s, ra);
6458
6459 /* These are fused multiply-add, and must be done as one
6460 * floating point operation with no rounding between the
6461 * multiplication and addition steps.
6462 * NB that doing the negations here as separate steps is
6463 * correct : an input NaN should come out with its sign bit
6464 * flipped if it is a negated-input.
6465 */
6466 if (o1 == true) {
6467 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6468 }
6469
6470 if (o0 != o1) {
6471 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6472 }
6473
6474 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6475
6476 write_fp_sreg(s, rd, tcg_res);
6477 }
6478
6479 /* Floating-point data-processing (3 source) - double precision */
6480 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6481 int rd, int rn, int rm, int ra)
6482 {
6483 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6484 TCGv_i64 tcg_res = tcg_temp_new_i64();
6485 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6486
6487 tcg_op1 = read_fp_dreg(s, rn);
6488 tcg_op2 = read_fp_dreg(s, rm);
6489 tcg_op3 = read_fp_dreg(s, ra);
6490
6491 /* These are fused multiply-add, and must be done as one
6492 * floating point operation with no rounding between the
6493 * multiplication and addition steps.
6494 * NB that doing the negations here as separate steps is
6495 * correct : an input NaN should come out with its sign bit
6496 * flipped if it is a negated-input.
6497 */
6498 if (o1 == true) {
6499 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6500 }
6501
6502 if (o0 != o1) {
6503 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6504 }
6505
6506 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6507
6508 write_fp_dreg(s, rd, tcg_res);
6509 }
6510
6511 /* Floating-point data-processing (3 source) - half precision */
6512 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6513 int rd, int rn, int rm, int ra)
6514 {
6515 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6516 TCGv_i32 tcg_res = tcg_temp_new_i32();
6517 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6518
6519 tcg_op1 = read_fp_hreg(s, rn);
6520 tcg_op2 = read_fp_hreg(s, rm);
6521 tcg_op3 = read_fp_hreg(s, ra);
6522
6523 /* These are fused multiply-add, and must be done as one
6524 * floating point operation with no rounding between the
6525 * multiplication and addition steps.
6526 * NB that doing the negations here as separate steps is
6527 * correct : an input NaN should come out with its sign bit
6528 * flipped if it is a negated-input.
6529 */
6530 if (o1 == true) {
6531 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6532 }
6533
6534 if (o0 != o1) {
6535 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6536 }
6537
6538 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6539
6540 write_fp_sreg(s, rd, tcg_res);
6541 }
6542
6543 /* Floating point data-processing (3 source)
6544 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6545 * +---+---+---+-----------+------+----+------+----+------+------+------+
6546 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6547 * +---+---+---+-----------+------+----+------+----+------+------+------+
6548 */
6549 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6550 {
6551 int mos = extract32(insn, 29, 3);
6552 int type = extract32(insn, 22, 2);
6553 int rd = extract32(insn, 0, 5);
6554 int rn = extract32(insn, 5, 5);
6555 int ra = extract32(insn, 10, 5);
6556 int rm = extract32(insn, 16, 5);
6557 bool o0 = extract32(insn, 15, 1);
6558 bool o1 = extract32(insn, 21, 1);
6559
6560 if (mos) {
6561 unallocated_encoding(s);
6562 return;
6563 }
6564
6565 switch (type) {
6566 case 0:
6567 if (!fp_access_check(s)) {
6568 return;
6569 }
6570 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6571 break;
6572 case 1:
6573 if (!fp_access_check(s)) {
6574 return;
6575 }
6576 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6577 break;
6578 case 3:
6579 if (!dc_isar_feature(aa64_fp16, s)) {
6580 unallocated_encoding(s);
6581 return;
6582 }
6583 if (!fp_access_check(s)) {
6584 return;
6585 }
6586 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6587 break;
6588 default:
6589 unallocated_encoding(s);
6590 }
6591 }
6592
6593 /* Floating point immediate
6594 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6595 * +---+---+---+-----------+------+---+------------+-------+------+------+
6596 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6597 * +---+---+---+-----------+------+---+------------+-------+------+------+
6598 */
6599 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6600 {
6601 int rd = extract32(insn, 0, 5);
6602 int imm5 = extract32(insn, 5, 5);
6603 int imm8 = extract32(insn, 13, 8);
6604 int type = extract32(insn, 22, 2);
6605 int mos = extract32(insn, 29, 3);
6606 uint64_t imm;
6607 MemOp sz;
6608
6609 if (mos || imm5) {
6610 unallocated_encoding(s);
6611 return;
6612 }
6613
6614 switch (type) {
6615 case 0:
6616 sz = MO_32;
6617 break;
6618 case 1:
6619 sz = MO_64;
6620 break;
6621 case 3:
6622 sz = MO_16;
6623 if (dc_isar_feature(aa64_fp16, s)) {
6624 break;
6625 }
6626 /* fallthru */
6627 default:
6628 unallocated_encoding(s);
6629 return;
6630 }
6631
6632 if (!fp_access_check(s)) {
6633 return;
6634 }
6635
6636 imm = vfp_expand_imm(sz, imm8);
6637 write_fp_dreg(s, rd, tcg_constant_i64(imm));
6638 }
6639
6640 /* Handle floating point <=> fixed point conversions. Note that we can
6641 * also deal with fp <=> integer conversions as a special case (scale == 64)
6642 * OPTME: consider handling that special case specially or at least skipping
6643 * the call to scalbn in the helpers for zero shifts.
6644 */
6645 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6646 bool itof, int rmode, int scale, int sf, int type)
6647 {
6648 bool is_signed = !(opcode & 1);
6649 TCGv_ptr tcg_fpstatus;
6650 TCGv_i32 tcg_shift, tcg_single;
6651 TCGv_i64 tcg_double;
6652
6653 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6654
6655 tcg_shift = tcg_constant_i32(64 - scale);
6656
6657 if (itof) {
6658 TCGv_i64 tcg_int = cpu_reg(s, rn);
6659 if (!sf) {
6660 TCGv_i64 tcg_extend = tcg_temp_new_i64();
6661
6662 if (is_signed) {
6663 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
6664 } else {
6665 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
6666 }
6667
6668 tcg_int = tcg_extend;
6669 }
6670
6671 switch (type) {
6672 case 1: /* float64 */
6673 tcg_double = tcg_temp_new_i64();
6674 if (is_signed) {
6675 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6676 tcg_shift, tcg_fpstatus);
6677 } else {
6678 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6679 tcg_shift, tcg_fpstatus);
6680 }
6681 write_fp_dreg(s, rd, tcg_double);
6682 break;
6683
6684 case 0: /* float32 */
6685 tcg_single = tcg_temp_new_i32();
6686 if (is_signed) {
6687 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6688 tcg_shift, tcg_fpstatus);
6689 } else {
6690 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6691 tcg_shift, tcg_fpstatus);
6692 }
6693 write_fp_sreg(s, rd, tcg_single);
6694 break;
6695
6696 case 3: /* float16 */
6697 tcg_single = tcg_temp_new_i32();
6698 if (is_signed) {
6699 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
6700 tcg_shift, tcg_fpstatus);
6701 } else {
6702 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
6703 tcg_shift, tcg_fpstatus);
6704 }
6705 write_fp_sreg(s, rd, tcg_single);
6706 break;
6707
6708 default:
6709 g_assert_not_reached();
6710 }
6711 } else {
6712 TCGv_i64 tcg_int = cpu_reg(s, rd);
6713 TCGv_i32 tcg_rmode;
6714
6715 if (extract32(opcode, 2, 1)) {
6716 /* There are too many rounding modes to all fit into rmode,
6717 * so FCVTA[US] is a special case.
6718 */
6719 rmode = FPROUNDING_TIEAWAY;
6720 }
6721
6722 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
6723
6724 switch (type) {
6725 case 1: /* float64 */
6726 tcg_double = read_fp_dreg(s, rn);
6727 if (is_signed) {
6728 if (!sf) {
6729 gen_helper_vfp_tosld(tcg_int, tcg_double,
6730 tcg_shift, tcg_fpstatus);
6731 } else {
6732 gen_helper_vfp_tosqd(tcg_int, tcg_double,
6733 tcg_shift, tcg_fpstatus);
6734 }
6735 } else {
6736 if (!sf) {
6737 gen_helper_vfp_tould(tcg_int, tcg_double,
6738 tcg_shift, tcg_fpstatus);
6739 } else {
6740 gen_helper_vfp_touqd(tcg_int, tcg_double,
6741 tcg_shift, tcg_fpstatus);
6742 }
6743 }
6744 if (!sf) {
6745 tcg_gen_ext32u_i64(tcg_int, tcg_int);
6746 }
6747 break;
6748
6749 case 0: /* float32 */
6750 tcg_single = read_fp_sreg(s, rn);
6751 if (sf) {
6752 if (is_signed) {
6753 gen_helper_vfp_tosqs(tcg_int, tcg_single,
6754 tcg_shift, tcg_fpstatus);
6755 } else {
6756 gen_helper_vfp_touqs(tcg_int, tcg_single,
6757 tcg_shift, tcg_fpstatus);
6758 }
6759 } else {
6760 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6761 if (is_signed) {
6762 gen_helper_vfp_tosls(tcg_dest, tcg_single,
6763 tcg_shift, tcg_fpstatus);
6764 } else {
6765 gen_helper_vfp_touls(tcg_dest, tcg_single,
6766 tcg_shift, tcg_fpstatus);
6767 }
6768 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6769 }
6770 break;
6771
6772 case 3: /* float16 */
6773 tcg_single = read_fp_sreg(s, rn);
6774 if (sf) {
6775 if (is_signed) {
6776 gen_helper_vfp_tosqh(tcg_int, tcg_single,
6777 tcg_shift, tcg_fpstatus);
6778 } else {
6779 gen_helper_vfp_touqh(tcg_int, tcg_single,
6780 tcg_shift, tcg_fpstatus);
6781 }
6782 } else {
6783 TCGv_i32 tcg_dest = tcg_temp_new_i32();
6784 if (is_signed) {
6785 gen_helper_vfp_toslh(tcg_dest, tcg_single,
6786 tcg_shift, tcg_fpstatus);
6787 } else {
6788 gen_helper_vfp_toulh(tcg_dest, tcg_single,
6789 tcg_shift, tcg_fpstatus);
6790 }
6791 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
6792 }
6793 break;
6794
6795 default:
6796 g_assert_not_reached();
6797 }
6798
6799 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
6800 }
6801 }
6802
6803 /* Floating point <-> fixed point conversions
6804 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6805 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6806 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
6807 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
6808 */
6809 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
6810 {
6811 int rd = extract32(insn, 0, 5);
6812 int rn = extract32(insn, 5, 5);
6813 int scale = extract32(insn, 10, 6);
6814 int opcode = extract32(insn, 16, 3);
6815 int rmode = extract32(insn, 19, 2);
6816 int type = extract32(insn, 22, 2);
6817 bool sbit = extract32(insn, 29, 1);
6818 bool sf = extract32(insn, 31, 1);
6819 bool itof;
6820
6821 if (sbit || (!sf && scale < 32)) {
6822 unallocated_encoding(s);
6823 return;
6824 }
6825
6826 switch (type) {
6827 case 0: /* float32 */
6828 case 1: /* float64 */
6829 break;
6830 case 3: /* float16 */
6831 if (dc_isar_feature(aa64_fp16, s)) {
6832 break;
6833 }
6834 /* fallthru */
6835 default:
6836 unallocated_encoding(s);
6837 return;
6838 }
6839
6840 switch ((rmode << 3) | opcode) {
6841 case 0x2: /* SCVTF */
6842 case 0x3: /* UCVTF */
6843 itof = true;
6844 break;
6845 case 0x18: /* FCVTZS */
6846 case 0x19: /* FCVTZU */
6847 itof = false;
6848 break;
6849 default:
6850 unallocated_encoding(s);
6851 return;
6852 }
6853
6854 if (!fp_access_check(s)) {
6855 return;
6856 }
6857
6858 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
6859 }
6860
6861 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
6862 {
6863 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
6864 * without conversion.
6865 */
6866
6867 if (itof) {
6868 TCGv_i64 tcg_rn = cpu_reg(s, rn);
6869 TCGv_i64 tmp;
6870
6871 switch (type) {
6872 case 0:
6873 /* 32 bit */
6874 tmp = tcg_temp_new_i64();
6875 tcg_gen_ext32u_i64(tmp, tcg_rn);
6876 write_fp_dreg(s, rd, tmp);
6877 break;
6878 case 1:
6879 /* 64 bit */
6880 write_fp_dreg(s, rd, tcg_rn);
6881 break;
6882 case 2:
6883 /* 64 bit to top half. */
6884 tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
6885 clear_vec_high(s, true, rd);
6886 break;
6887 case 3:
6888 /* 16 bit */
6889 tmp = tcg_temp_new_i64();
6890 tcg_gen_ext16u_i64(tmp, tcg_rn);
6891 write_fp_dreg(s, rd, tmp);
6892 break;
6893 default:
6894 g_assert_not_reached();
6895 }
6896 } else {
6897 TCGv_i64 tcg_rd = cpu_reg(s, rd);
6898
6899 switch (type) {
6900 case 0:
6901 /* 32 bit */
6902 tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
6903 break;
6904 case 1:
6905 /* 64 bit */
6906 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
6907 break;
6908 case 2:
6909 /* 64 bits from top half */
6910 tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
6911 break;
6912 case 3:
6913 /* 16 bit */
6914 tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
6915 break;
6916 default:
6917 g_assert_not_reached();
6918 }
6919 }
6920 }
6921
6922 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
6923 {
6924 TCGv_i64 t = read_fp_dreg(s, rn);
6925 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
6926
6927 gen_helper_fjcvtzs(t, t, fpstatus);
6928
6929 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
6930 tcg_gen_extrh_i64_i32(cpu_ZF, t);
6931 tcg_gen_movi_i32(cpu_CF, 0);
6932 tcg_gen_movi_i32(cpu_NF, 0);
6933 tcg_gen_movi_i32(cpu_VF, 0);
6934 }
6935
6936 /* Floating point <-> integer conversions
6937 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
6938 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6939 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
6940 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
6941 */
6942 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
6943 {
6944 int rd = extract32(insn, 0, 5);
6945 int rn = extract32(insn, 5, 5);
6946 int opcode = extract32(insn, 16, 3);
6947 int rmode = extract32(insn, 19, 2);
6948 int type = extract32(insn, 22, 2);
6949 bool sbit = extract32(insn, 29, 1);
6950 bool sf = extract32(insn, 31, 1);
6951 bool itof = false;
6952
6953 if (sbit) {
6954 goto do_unallocated;
6955 }
6956
6957 switch (opcode) {
6958 case 2: /* SCVTF */
6959 case 3: /* UCVTF */
6960 itof = true;
6961 /* fallthru */
6962 case 4: /* FCVTAS */
6963 case 5: /* FCVTAU */
6964 if (rmode != 0) {
6965 goto do_unallocated;
6966 }
6967 /* fallthru */
6968 case 0: /* FCVT[NPMZ]S */
6969 case 1: /* FCVT[NPMZ]U */
6970 switch (type) {
6971 case 0: /* float32 */
6972 case 1: /* float64 */
6973 break;
6974 case 3: /* float16 */
6975 if (!dc_isar_feature(aa64_fp16, s)) {
6976 goto do_unallocated;
6977 }
6978 break;
6979 default:
6980 goto do_unallocated;
6981 }
6982 if (!fp_access_check(s)) {
6983 return;
6984 }
6985 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
6986 break;
6987
6988 default:
6989 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
6990 case 0b01100110: /* FMOV half <-> 32-bit int */
6991 case 0b01100111:
6992 case 0b11100110: /* FMOV half <-> 64-bit int */
6993 case 0b11100111:
6994 if (!dc_isar_feature(aa64_fp16, s)) {
6995 goto do_unallocated;
6996 }
6997 /* fallthru */
6998 case 0b00000110: /* FMOV 32-bit */
6999 case 0b00000111:
7000 case 0b10100110: /* FMOV 64-bit */
7001 case 0b10100111:
7002 case 0b11001110: /* FMOV top half of 128-bit */
7003 case 0b11001111:
7004 if (!fp_access_check(s)) {
7005 return;
7006 }
7007 itof = opcode & 1;
7008 handle_fmov(s, rd, rn, type, itof);
7009 break;
7010
7011 case 0b00111110: /* FJCVTZS */
7012 if (!dc_isar_feature(aa64_jscvt, s)) {
7013 goto do_unallocated;
7014 } else if (fp_access_check(s)) {
7015 handle_fjcvtzs(s, rd, rn);
7016 }
7017 break;
7018
7019 default:
7020 do_unallocated:
7021 unallocated_encoding(s);
7022 return;
7023 }
7024 break;
7025 }
7026 }
7027
7028 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7029 * 31 30 29 28 25 24 0
7030 * +---+---+---+---------+-----------------------------+
7031 * | | 0 | | 1 1 1 1 | |
7032 * +---+---+---+---------+-----------------------------+
7033 */
7034 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7035 {
7036 if (extract32(insn, 24, 1)) {
7037 /* Floating point data-processing (3 source) */
7038 disas_fp_3src(s, insn);
7039 } else if (extract32(insn, 21, 1) == 0) {
7040 /* Floating point to fixed point conversions */
7041 disas_fp_fixed_conv(s, insn);
7042 } else {
7043 switch (extract32(insn, 10, 2)) {
7044 case 1:
7045 /* Floating point conditional compare */
7046 disas_fp_ccomp(s, insn);
7047 break;
7048 case 2:
7049 /* Floating point data-processing (2 source) */
7050 disas_fp_2src(s, insn);
7051 break;
7052 case 3:
7053 /* Floating point conditional select */
7054 disas_fp_csel(s, insn);
7055 break;
7056 case 0:
7057 switch (ctz32(extract32(insn, 12, 4))) {
7058 case 0: /* [15:12] == xxx1 */
7059 /* Floating point immediate */
7060 disas_fp_imm(s, insn);
7061 break;
7062 case 1: /* [15:12] == xx10 */
7063 /* Floating point compare */
7064 disas_fp_compare(s, insn);
7065 break;
7066 case 2: /* [15:12] == x100 */
7067 /* Floating point data-processing (1 source) */
7068 disas_fp_1src(s, insn);
7069 break;
7070 case 3: /* [15:12] == 1000 */
7071 unallocated_encoding(s);
7072 break;
7073 default: /* [15:12] == 0000 */
7074 /* Floating point <-> integer conversions */
7075 disas_fp_int_conv(s, insn);
7076 break;
7077 }
7078 break;
7079 }
7080 }
7081 }
7082
7083 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7084 int pos)
7085 {
7086 /* Extract 64 bits from the middle of two concatenated 64 bit
7087 * vector register slices left:right. The extracted bits start
7088 * at 'pos' bits into the right (least significant) side.
7089 * We return the result in tcg_right, and guarantee not to
7090 * trash tcg_left.
7091 */
7092 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7093 assert(pos > 0 && pos < 64);
7094
7095 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7096 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7097 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7098 }
7099
7100 /* EXT
7101 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7102 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7103 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7104 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7105 */
7106 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7107 {
7108 int is_q = extract32(insn, 30, 1);
7109 int op2 = extract32(insn, 22, 2);
7110 int imm4 = extract32(insn, 11, 4);
7111 int rm = extract32(insn, 16, 5);
7112 int rn = extract32(insn, 5, 5);
7113 int rd = extract32(insn, 0, 5);
7114 int pos = imm4 << 3;
7115 TCGv_i64 tcg_resl, tcg_resh;
7116
7117 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7118 unallocated_encoding(s);
7119 return;
7120 }
7121
7122 if (!fp_access_check(s)) {
7123 return;
7124 }
7125
7126 tcg_resh = tcg_temp_new_i64();
7127 tcg_resl = tcg_temp_new_i64();
7128
7129 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7130 * either extracting 128 bits from a 128:128 concatenation, or
7131 * extracting 64 bits from a 64:64 concatenation.
7132 */
7133 if (!is_q) {
7134 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7135 if (pos != 0) {
7136 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7137 do_ext64(s, tcg_resh, tcg_resl, pos);
7138 }
7139 } else {
7140 TCGv_i64 tcg_hh;
7141 typedef struct {
7142 int reg;
7143 int elt;
7144 } EltPosns;
7145 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7146 EltPosns *elt = eltposns;
7147
7148 if (pos >= 64) {
7149 elt++;
7150 pos -= 64;
7151 }
7152
7153 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7154 elt++;
7155 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7156 elt++;
7157 if (pos != 0) {
7158 do_ext64(s, tcg_resh, tcg_resl, pos);
7159 tcg_hh = tcg_temp_new_i64();
7160 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7161 do_ext64(s, tcg_hh, tcg_resh, pos);
7162 }
7163 }
7164
7165 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7166 if (is_q) {
7167 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7168 }
7169 clear_vec_high(s, is_q, rd);
7170 }
7171
7172 /* TBL/TBX
7173 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7174 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7175 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7176 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7177 */
7178 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7179 {
7180 int op2 = extract32(insn, 22, 2);
7181 int is_q = extract32(insn, 30, 1);
7182 int rm = extract32(insn, 16, 5);
7183 int rn = extract32(insn, 5, 5);
7184 int rd = extract32(insn, 0, 5);
7185 int is_tbx = extract32(insn, 12, 1);
7186 int len = (extract32(insn, 13, 2) + 1) * 16;
7187
7188 if (op2 != 0) {
7189 unallocated_encoding(s);
7190 return;
7191 }
7192
7193 if (!fp_access_check(s)) {
7194 return;
7195 }
7196
7197 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7198 vec_full_reg_offset(s, rm), tcg_env,
7199 is_q ? 16 : 8, vec_full_reg_size(s),
7200 (len << 6) | (is_tbx << 5) | rn,
7201 gen_helper_simd_tblx);
7202 }
7203
7204 /* ZIP/UZP/TRN
7205 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7206 * +---+---+-------------+------+---+------+---+------------------+------+
7207 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7208 * +---+---+-------------+------+---+------+---+------------------+------+
7209 */
7210 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7211 {
7212 int rd = extract32(insn, 0, 5);
7213 int rn = extract32(insn, 5, 5);
7214 int rm = extract32(insn, 16, 5);
7215 int size = extract32(insn, 22, 2);
7216 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7217 * bit 2 indicates 1 vs 2 variant of the insn.
7218 */
7219 int opcode = extract32(insn, 12, 2);
7220 bool part = extract32(insn, 14, 1);
7221 bool is_q = extract32(insn, 30, 1);
7222 int esize = 8 << size;
7223 int i;
7224 int datasize = is_q ? 128 : 64;
7225 int elements = datasize / esize;
7226 TCGv_i64 tcg_res[2], tcg_ele;
7227
7228 if (opcode == 0 || (size == 3 && !is_q)) {
7229 unallocated_encoding(s);
7230 return;
7231 }
7232
7233 if (!fp_access_check(s)) {
7234 return;
7235 }
7236
7237 tcg_res[0] = tcg_temp_new_i64();
7238 tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
7239 tcg_ele = tcg_temp_new_i64();
7240
7241 for (i = 0; i < elements; i++) {
7242 int o, w;
7243
7244 switch (opcode) {
7245 case 1: /* UZP1/2 */
7246 {
7247 int midpoint = elements / 2;
7248 if (i < midpoint) {
7249 read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
7250 } else {
7251 read_vec_element(s, tcg_ele, rm,
7252 2 * (i - midpoint) + part, size);
7253 }
7254 break;
7255 }
7256 case 2: /* TRN1/2 */
7257 if (i & 1) {
7258 read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
7259 } else {
7260 read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
7261 }
7262 break;
7263 case 3: /* ZIP1/2 */
7264 {
7265 int base = part * elements / 2;
7266 if (i & 1) {
7267 read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
7268 } else {
7269 read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
7270 }
7271 break;
7272 }
7273 default:
7274 g_assert_not_reached();
7275 }
7276
7277 w = (i * esize) / 64;
7278 o = (i * esize) % 64;
7279 if (o == 0) {
7280 tcg_gen_mov_i64(tcg_res[w], tcg_ele);
7281 } else {
7282 tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
7283 tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
7284 }
7285 }
7286
7287 for (i = 0; i <= is_q; ++i) {
7288 write_vec_element(s, tcg_res[i], rd, i, MO_64);
7289 }
7290 clear_vec_high(s, is_q, rd);
7291 }
7292
7293 /*
7294 * do_reduction_op helper
7295 *
7296 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7297 * important for correct NaN propagation that we do these
7298 * operations in exactly the order specified by the pseudocode.
7299 *
7300 * This is a recursive function, TCG temps should be freed by the
7301 * calling function once it is done with the values.
7302 */
7303 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7304 int esize, int size, int vmap, TCGv_ptr fpst)
7305 {
7306 if (esize == size) {
7307 int element;
7308 MemOp msize = esize == 16 ? MO_16 : MO_32;
7309 TCGv_i32 tcg_elem;
7310
7311 /* We should have one register left here */
7312 assert(ctpop8(vmap) == 1);
7313 element = ctz32(vmap);
7314 assert(element < 8);
7315
7316 tcg_elem = tcg_temp_new_i32();
7317 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7318 return tcg_elem;
7319 } else {
7320 int bits = size / 2;
7321 int shift = ctpop8(vmap) / 2;
7322 int vmap_lo = (vmap >> shift) & vmap;
7323 int vmap_hi = (vmap & ~vmap_lo);
7324 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7325
7326 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7327 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7328 tcg_res = tcg_temp_new_i32();
7329
7330 switch (fpopcode) {
7331 case 0x0c: /* fmaxnmv half-precision */
7332 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7333 break;
7334 case 0x0f: /* fmaxv half-precision */
7335 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7336 break;
7337 case 0x1c: /* fminnmv half-precision */
7338 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7339 break;
7340 case 0x1f: /* fminv half-precision */
7341 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7342 break;
7343 case 0x2c: /* fmaxnmv */
7344 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7345 break;
7346 case 0x2f: /* fmaxv */
7347 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7348 break;
7349 case 0x3c: /* fminnmv */
7350 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7351 break;
7352 case 0x3f: /* fminv */
7353 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7354 break;
7355 default:
7356 g_assert_not_reached();
7357 }
7358 return tcg_res;
7359 }
7360 }
7361
7362 /* AdvSIMD across lanes
7363 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7364 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7365 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7366 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7367 */
7368 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7369 {
7370 int rd = extract32(insn, 0, 5);
7371 int rn = extract32(insn, 5, 5);
7372 int size = extract32(insn, 22, 2);
7373 int opcode = extract32(insn, 12, 5);
7374 bool is_q = extract32(insn, 30, 1);
7375 bool is_u = extract32(insn, 29, 1);
7376 bool is_fp = false;
7377 bool is_min = false;
7378 int esize;
7379 int elements;
7380 int i;
7381 TCGv_i64 tcg_res, tcg_elt;
7382
7383 switch (opcode) {
7384 case 0x1b: /* ADDV */
7385 if (is_u) {
7386 unallocated_encoding(s);
7387 return;
7388 }
7389 /* fall through */
7390 case 0x3: /* SADDLV, UADDLV */
7391 case 0xa: /* SMAXV, UMAXV */
7392 case 0x1a: /* SMINV, UMINV */
7393 if (size == 3 || (size == 2 && !is_q)) {
7394 unallocated_encoding(s);
7395 return;
7396 }
7397 break;
7398 case 0xc: /* FMAXNMV, FMINNMV */
7399 case 0xf: /* FMAXV, FMINV */
7400 /* Bit 1 of size field encodes min vs max and the actual size
7401 * depends on the encoding of the U bit. If not set (and FP16
7402 * enabled) then we do half-precision float instead of single
7403 * precision.
7404 */
7405 is_min = extract32(size, 1, 1);
7406 is_fp = true;
7407 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7408 size = 1;
7409 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7410 unallocated_encoding(s);
7411 return;
7412 } else {
7413 size = 2;
7414 }
7415 break;
7416 default:
7417 unallocated_encoding(s);
7418 return;
7419 }
7420
7421 if (!fp_access_check(s)) {
7422 return;
7423 }
7424
7425 esize = 8 << size;
7426 elements = (is_q ? 128 : 64) / esize;
7427
7428 tcg_res = tcg_temp_new_i64();
7429 tcg_elt = tcg_temp_new_i64();
7430
7431 /* These instructions operate across all lanes of a vector
7432 * to produce a single result. We can guarantee that a 64
7433 * bit intermediate is sufficient:
7434 * + for [US]ADDLV the maximum element size is 32 bits, and
7435 * the result type is 64 bits
7436 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7437 * same as the element size, which is 32 bits at most
7438 * For the integer operations we can choose to work at 64
7439 * or 32 bits and truncate at the end; for simplicity
7440 * we use 64 bits always. The floating point
7441 * ops do require 32 bit intermediates, though.
7442 */
7443 if (!is_fp) {
7444 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7445
7446 for (i = 1; i < elements; i++) {
7447 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7448
7449 switch (opcode) {
7450 case 0x03: /* SADDLV / UADDLV */
7451 case 0x1b: /* ADDV */
7452 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7453 break;
7454 case 0x0a: /* SMAXV / UMAXV */
7455 if (is_u) {
7456 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7457 } else {
7458 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7459 }
7460 break;
7461 case 0x1a: /* SMINV / UMINV */
7462 if (is_u) {
7463 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7464 } else {
7465 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7466 }
7467 break;
7468 default:
7469 g_assert_not_reached();
7470 }
7471
7472 }
7473 } else {
7474 /* Floating point vector reduction ops which work across 32
7475 * bit (single) or 16 bit (half-precision) intermediates.
7476 * Note that correct NaN propagation requires that we do these
7477 * operations in exactly the order specified by the pseudocode.
7478 */
7479 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7480 int fpopcode = opcode | is_min << 4 | is_u << 5;
7481 int vmap = (1 << elements) - 1;
7482 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7483 (is_q ? 128 : 64), vmap, fpst);
7484 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7485 }
7486
7487 /* Now truncate the result to the width required for the final output */
7488 if (opcode == 0x03) {
7489 /* SADDLV, UADDLV: result is 2*esize */
7490 size++;
7491 }
7492
7493 switch (size) {
7494 case 0:
7495 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7496 break;
7497 case 1:
7498 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7499 break;
7500 case 2:
7501 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7502 break;
7503 case 3:
7504 break;
7505 default:
7506 g_assert_not_reached();
7507 }
7508
7509 write_fp_dreg(s, rd, tcg_res);
7510 }
7511
7512 /* DUP (Element, Vector)
7513 *
7514 * 31 30 29 21 20 16 15 10 9 5 4 0
7515 * +---+---+-------------------+--------+-------------+------+------+
7516 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7517 * +---+---+-------------------+--------+-------------+------+------+
7518 *
7519 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7520 */
7521 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7522 int imm5)
7523 {
7524 int size = ctz32(imm5);
7525 int index;
7526
7527 if (size > 3 || (size == 3 && !is_q)) {
7528 unallocated_encoding(s);
7529 return;
7530 }
7531
7532 if (!fp_access_check(s)) {
7533 return;
7534 }
7535
7536 index = imm5 >> (size + 1);
7537 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7538 vec_reg_offset(s, rn, index, size),
7539 is_q ? 16 : 8, vec_full_reg_size(s));
7540 }
7541
7542 /* DUP (element, scalar)
7543 * 31 21 20 16 15 10 9 5 4 0
7544 * +-----------------------+--------+-------------+------+------+
7545 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7546 * +-----------------------+--------+-------------+------+------+
7547 */
7548 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7549 int imm5)
7550 {
7551 int size = ctz32(imm5);
7552 int index;
7553 TCGv_i64 tmp;
7554
7555 if (size > 3) {
7556 unallocated_encoding(s);
7557 return;
7558 }
7559
7560 if (!fp_access_check(s)) {
7561 return;
7562 }
7563
7564 index = imm5 >> (size + 1);
7565
7566 /* This instruction just extracts the specified element and
7567 * zero-extends it into the bottom of the destination register.
7568 */
7569 tmp = tcg_temp_new_i64();
7570 read_vec_element(s, tmp, rn, index, size);
7571 write_fp_dreg(s, rd, tmp);
7572 }
7573
7574 /* DUP (General)
7575 *
7576 * 31 30 29 21 20 16 15 10 9 5 4 0
7577 * +---+---+-------------------+--------+-------------+------+------+
7578 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7579 * +---+---+-------------------+--------+-------------+------+------+
7580 *
7581 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7582 */
7583 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7584 int imm5)
7585 {
7586 int size = ctz32(imm5);
7587 uint32_t dofs, oprsz, maxsz;
7588
7589 if (size > 3 || ((size == 3) && !is_q)) {
7590 unallocated_encoding(s);
7591 return;
7592 }
7593
7594 if (!fp_access_check(s)) {
7595 return;
7596 }
7597
7598 dofs = vec_full_reg_offset(s, rd);
7599 oprsz = is_q ? 16 : 8;
7600 maxsz = vec_full_reg_size(s);
7601
7602 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7603 }
7604
7605 /* INS (Element)
7606 *
7607 * 31 21 20 16 15 14 11 10 9 5 4 0
7608 * +-----------------------+--------+------------+---+------+------+
7609 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7610 * +-----------------------+--------+------------+---+------+------+
7611 *
7612 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7613 * index: encoded in imm5<4:size+1>
7614 */
7615 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7616 int imm4, int imm5)
7617 {
7618 int size = ctz32(imm5);
7619 int src_index, dst_index;
7620 TCGv_i64 tmp;
7621
7622 if (size > 3) {
7623 unallocated_encoding(s);
7624 return;
7625 }
7626
7627 if (!fp_access_check(s)) {
7628 return;
7629 }
7630
7631 dst_index = extract32(imm5, 1+size, 5);
7632 src_index = extract32(imm4, size, 4);
7633
7634 tmp = tcg_temp_new_i64();
7635
7636 read_vec_element(s, tmp, rn, src_index, size);
7637 write_vec_element(s, tmp, rd, dst_index, size);
7638
7639 /* INS is considered a 128-bit write for SVE. */
7640 clear_vec_high(s, true, rd);
7641 }
7642
7643
7644 /* INS (General)
7645 *
7646 * 31 21 20 16 15 10 9 5 4 0
7647 * +-----------------------+--------+-------------+------+------+
7648 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
7649 * +-----------------------+--------+-------------+------+------+
7650 *
7651 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7652 * index: encoded in imm5<4:size+1>
7653 */
7654 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
7655 {
7656 int size = ctz32(imm5);
7657 int idx;
7658
7659 if (size > 3) {
7660 unallocated_encoding(s);
7661 return;
7662 }
7663
7664 if (!fp_access_check(s)) {
7665 return;
7666 }
7667
7668 idx = extract32(imm5, 1 + size, 4 - size);
7669 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
7670
7671 /* INS is considered a 128-bit write for SVE. */
7672 clear_vec_high(s, true, rd);
7673 }
7674
7675 /*
7676 * UMOV (General)
7677 * SMOV (General)
7678 *
7679 * 31 30 29 21 20 16 15 12 10 9 5 4 0
7680 * +---+---+-------------------+--------+-------------+------+------+
7681 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
7682 * +---+---+-------------------+--------+-------------+------+------+
7683 *
7684 * U: unsigned when set
7685 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7686 */
7687 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
7688 int rn, int rd, int imm5)
7689 {
7690 int size = ctz32(imm5);
7691 int element;
7692 TCGv_i64 tcg_rd;
7693
7694 /* Check for UnallocatedEncodings */
7695 if (is_signed) {
7696 if (size > 2 || (size == 2 && !is_q)) {
7697 unallocated_encoding(s);
7698 return;
7699 }
7700 } else {
7701 if (size > 3
7702 || (size < 3 && is_q)
7703 || (size == 3 && !is_q)) {
7704 unallocated_encoding(s);
7705 return;
7706 }
7707 }
7708
7709 if (!fp_access_check(s)) {
7710 return;
7711 }
7712
7713 element = extract32(imm5, 1+size, 4);
7714
7715 tcg_rd = cpu_reg(s, rd);
7716 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
7717 if (is_signed && !is_q) {
7718 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7719 }
7720 }
7721
7722 /* AdvSIMD copy
7723 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7724 * +---+---+----+-----------------+------+---+------+---+------+------+
7725 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7726 * +---+---+----+-----------------+------+---+------+---+------+------+
7727 */
7728 static void disas_simd_copy(DisasContext *s, uint32_t insn)
7729 {
7730 int rd = extract32(insn, 0, 5);
7731 int rn = extract32(insn, 5, 5);
7732 int imm4 = extract32(insn, 11, 4);
7733 int op = extract32(insn, 29, 1);
7734 int is_q = extract32(insn, 30, 1);
7735 int imm5 = extract32(insn, 16, 5);
7736
7737 if (op) {
7738 if (is_q) {
7739 /* INS (element) */
7740 handle_simd_inse(s, rd, rn, imm4, imm5);
7741 } else {
7742 unallocated_encoding(s);
7743 }
7744 } else {
7745 switch (imm4) {
7746 case 0:
7747 /* DUP (element - vector) */
7748 handle_simd_dupe(s, is_q, rd, rn, imm5);
7749 break;
7750 case 1:
7751 /* DUP (general) */
7752 handle_simd_dupg(s, is_q, rd, rn, imm5);
7753 break;
7754 case 3:
7755 if (is_q) {
7756 /* INS (general) */
7757 handle_simd_insg(s, rd, rn, imm5);
7758 } else {
7759 unallocated_encoding(s);
7760 }
7761 break;
7762 case 5:
7763 case 7:
7764 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
7765 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
7766 break;
7767 default:
7768 unallocated_encoding(s);
7769 break;
7770 }
7771 }
7772 }
7773
7774 /* AdvSIMD modified immediate
7775 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
7776 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7777 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
7778 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
7779 *
7780 * There are a number of operations that can be carried out here:
7781 * MOVI - move (shifted) imm into register
7782 * MVNI - move inverted (shifted) imm into register
7783 * ORR - bitwise OR of (shifted) imm with register
7784 * BIC - bitwise clear of (shifted) imm with register
7785 * With ARMv8.2 we also have:
7786 * FMOV half-precision
7787 */
7788 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
7789 {
7790 int rd = extract32(insn, 0, 5);
7791 int cmode = extract32(insn, 12, 4);
7792 int o2 = extract32(insn, 11, 1);
7793 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
7794 bool is_neg = extract32(insn, 29, 1);
7795 bool is_q = extract32(insn, 30, 1);
7796 uint64_t imm = 0;
7797
7798 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
7799 /* Check for FMOV (vector, immediate) - half-precision */
7800 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
7801 unallocated_encoding(s);
7802 return;
7803 }
7804 }
7805
7806 if (!fp_access_check(s)) {
7807 return;
7808 }
7809
7810 if (cmode == 15 && o2 && !is_neg) {
7811 /* FMOV (vector, immediate) - half-precision */
7812 imm = vfp_expand_imm(MO_16, abcdefgh);
7813 /* now duplicate across the lanes */
7814 imm = dup_const(MO_16, imm);
7815 } else {
7816 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
7817 }
7818
7819 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
7820 /* MOVI or MVNI, with MVNI negation handled above. */
7821 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
7822 vec_full_reg_size(s), imm);
7823 } else {
7824 /* ORR or BIC, with BIC negation to AND handled above. */
7825 if (is_neg) {
7826 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
7827 } else {
7828 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
7829 }
7830 }
7831 }
7832
7833 /* AdvSIMD scalar copy
7834 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
7835 * +-----+----+-----------------+------+---+------+---+------+------+
7836 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7837 * +-----+----+-----------------+------+---+------+---+------+------+
7838 */
7839 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
7840 {
7841 int rd = extract32(insn, 0, 5);
7842 int rn = extract32(insn, 5, 5);
7843 int imm4 = extract32(insn, 11, 4);
7844 int imm5 = extract32(insn, 16, 5);
7845 int op = extract32(insn, 29, 1);
7846
7847 if (op != 0 || imm4 != 0) {
7848 unallocated_encoding(s);
7849 return;
7850 }
7851
7852 /* DUP (element, scalar) */
7853 handle_simd_dupes(s, rd, rn, imm5);
7854 }
7855
7856 /* AdvSIMD scalar pairwise
7857 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7858 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7859 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7860 * +-----+---+-----------+------+-----------+--------+-----+------+------+
7861 */
7862 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
7863 {
7864 int u = extract32(insn, 29, 1);
7865 int size = extract32(insn, 22, 2);
7866 int opcode = extract32(insn, 12, 5);
7867 int rn = extract32(insn, 5, 5);
7868 int rd = extract32(insn, 0, 5);
7869 TCGv_ptr fpst;
7870
7871 /* For some ops (the FP ones), size[1] is part of the encoding.
7872 * For ADDP strictly it is not but size[1] is always 1 for valid
7873 * encodings.
7874 */
7875 opcode |= (extract32(size, 1, 1) << 5);
7876
7877 switch (opcode) {
7878 case 0x3b: /* ADDP */
7879 if (u || size != 3) {
7880 unallocated_encoding(s);
7881 return;
7882 }
7883 if (!fp_access_check(s)) {
7884 return;
7885 }
7886
7887 fpst = NULL;
7888 break;
7889 case 0xc: /* FMAXNMP */
7890 case 0xd: /* FADDP */
7891 case 0xf: /* FMAXP */
7892 case 0x2c: /* FMINNMP */
7893 case 0x2f: /* FMINP */
7894 /* FP op, size[0] is 32 or 64 bit*/
7895 if (!u) {
7896 if (!dc_isar_feature(aa64_fp16, s)) {
7897 unallocated_encoding(s);
7898 return;
7899 } else {
7900 size = MO_16;
7901 }
7902 } else {
7903 size = extract32(size, 0, 1) ? MO_64 : MO_32;
7904 }
7905
7906 if (!fp_access_check(s)) {
7907 return;
7908 }
7909
7910 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7911 break;
7912 default:
7913 unallocated_encoding(s);
7914 return;
7915 }
7916
7917 if (size == MO_64) {
7918 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7919 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7920 TCGv_i64 tcg_res = tcg_temp_new_i64();
7921
7922 read_vec_element(s, tcg_op1, rn, 0, MO_64);
7923 read_vec_element(s, tcg_op2, rn, 1, MO_64);
7924
7925 switch (opcode) {
7926 case 0x3b: /* ADDP */
7927 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
7928 break;
7929 case 0xc: /* FMAXNMP */
7930 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7931 break;
7932 case 0xd: /* FADDP */
7933 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7934 break;
7935 case 0xf: /* FMAXP */
7936 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7937 break;
7938 case 0x2c: /* FMINNMP */
7939 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7940 break;
7941 case 0x2f: /* FMINP */
7942 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7943 break;
7944 default:
7945 g_assert_not_reached();
7946 }
7947
7948 write_fp_dreg(s, rd, tcg_res);
7949 } else {
7950 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7951 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7952 TCGv_i32 tcg_res = tcg_temp_new_i32();
7953
7954 read_vec_element_i32(s, tcg_op1, rn, 0, size);
7955 read_vec_element_i32(s, tcg_op2, rn, 1, size);
7956
7957 if (size == MO_16) {
7958 switch (opcode) {
7959 case 0xc: /* FMAXNMP */
7960 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7961 break;
7962 case 0xd: /* FADDP */
7963 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
7964 break;
7965 case 0xf: /* FMAXP */
7966 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
7967 break;
7968 case 0x2c: /* FMINNMP */
7969 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
7970 break;
7971 case 0x2f: /* FMINP */
7972 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
7973 break;
7974 default:
7975 g_assert_not_reached();
7976 }
7977 } else {
7978 switch (opcode) {
7979 case 0xc: /* FMAXNMP */
7980 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7981 break;
7982 case 0xd: /* FADDP */
7983 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7984 break;
7985 case 0xf: /* FMAXP */
7986 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7987 break;
7988 case 0x2c: /* FMINNMP */
7989 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7990 break;
7991 case 0x2f: /* FMINP */
7992 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7993 break;
7994 default:
7995 g_assert_not_reached();
7996 }
7997 }
7998
7999 write_fp_sreg(s, rd, tcg_res);
8000 }
8001 }
8002
8003 /*
8004 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8005 *
8006 * This code is handles the common shifting code and is used by both
8007 * the vector and scalar code.
8008 */
8009 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8010 TCGv_i64 tcg_rnd, bool accumulate,
8011 bool is_u, int size, int shift)
8012 {
8013 bool extended_result = false;
8014 bool round = tcg_rnd != NULL;
8015 int ext_lshift = 0;
8016 TCGv_i64 tcg_src_hi;
8017
8018 if (round && size == 3) {
8019 extended_result = true;
8020 ext_lshift = 64 - shift;
8021 tcg_src_hi = tcg_temp_new_i64();
8022 } else if (shift == 64) {
8023 if (!accumulate && is_u) {
8024 /* result is zero */
8025 tcg_gen_movi_i64(tcg_res, 0);
8026 return;
8027 }
8028 }
8029
8030 /* Deal with the rounding step */
8031 if (round) {
8032 if (extended_result) {
8033 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8034 if (!is_u) {
8035 /* take care of sign extending tcg_res */
8036 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8037 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8038 tcg_src, tcg_src_hi,
8039 tcg_rnd, tcg_zero);
8040 } else {
8041 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8042 tcg_src, tcg_zero,
8043 tcg_rnd, tcg_zero);
8044 }
8045 } else {
8046 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8047 }
8048 }
8049
8050 /* Now do the shift right */
8051 if (round && extended_result) {
8052 /* extended case, >64 bit precision required */
8053 if (ext_lshift == 0) {
8054 /* special case, only high bits matter */
8055 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8056 } else {
8057 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8058 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8059 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8060 }
8061 } else {
8062 if (is_u) {
8063 if (shift == 64) {
8064 /* essentially shifting in 64 zeros */
8065 tcg_gen_movi_i64(tcg_src, 0);
8066 } else {
8067 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8068 }
8069 } else {
8070 if (shift == 64) {
8071 /* effectively extending the sign-bit */
8072 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8073 } else {
8074 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8075 }
8076 }
8077 }
8078
8079 if (accumulate) {
8080 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8081 } else {
8082 tcg_gen_mov_i64(tcg_res, tcg_src);
8083 }
8084 }
8085
8086 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8087 static void handle_scalar_simd_shri(DisasContext *s,
8088 bool is_u, int immh, int immb,
8089 int opcode, int rn, int rd)
8090 {
8091 const int size = 3;
8092 int immhb = immh << 3 | immb;
8093 int shift = 2 * (8 << size) - immhb;
8094 bool accumulate = false;
8095 bool round = false;
8096 bool insert = false;
8097 TCGv_i64 tcg_rn;
8098 TCGv_i64 tcg_rd;
8099 TCGv_i64 tcg_round;
8100
8101 if (!extract32(immh, 3, 1)) {
8102 unallocated_encoding(s);
8103 return;
8104 }
8105
8106 if (!fp_access_check(s)) {
8107 return;
8108 }
8109
8110 switch (opcode) {
8111 case 0x02: /* SSRA / USRA (accumulate) */
8112 accumulate = true;
8113 break;
8114 case 0x04: /* SRSHR / URSHR (rounding) */
8115 round = true;
8116 break;
8117 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8118 accumulate = round = true;
8119 break;
8120 case 0x08: /* SRI */
8121 insert = true;
8122 break;
8123 }
8124
8125 if (round) {
8126 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8127 } else {
8128 tcg_round = NULL;
8129 }
8130
8131 tcg_rn = read_fp_dreg(s, rn);
8132 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8133
8134 if (insert) {
8135 /* shift count same as element size is valid but does nothing;
8136 * special case to avoid potential shift by 64.
8137 */
8138 int esize = 8 << size;
8139 if (shift != esize) {
8140 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8141 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8142 }
8143 } else {
8144 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8145 accumulate, is_u, size, shift);
8146 }
8147
8148 write_fp_dreg(s, rd, tcg_rd);
8149 }
8150
8151 /* SHL/SLI - Scalar shift left */
8152 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8153 int immh, int immb, int opcode,
8154 int rn, int rd)
8155 {
8156 int size = 32 - clz32(immh) - 1;
8157 int immhb = immh << 3 | immb;
8158 int shift = immhb - (8 << size);
8159 TCGv_i64 tcg_rn;
8160 TCGv_i64 tcg_rd;
8161
8162 if (!extract32(immh, 3, 1)) {
8163 unallocated_encoding(s);
8164 return;
8165 }
8166
8167 if (!fp_access_check(s)) {
8168 return;
8169 }
8170
8171 tcg_rn = read_fp_dreg(s, rn);
8172 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8173
8174 if (insert) {
8175 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8176 } else {
8177 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8178 }
8179
8180 write_fp_dreg(s, rd, tcg_rd);
8181 }
8182
8183 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8184 * (signed/unsigned) narrowing */
8185 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8186 bool is_u_shift, bool is_u_narrow,
8187 int immh, int immb, int opcode,
8188 int rn, int rd)
8189 {
8190 int immhb = immh << 3 | immb;
8191 int size = 32 - clz32(immh) - 1;
8192 int esize = 8 << size;
8193 int shift = (2 * esize) - immhb;
8194 int elements = is_scalar ? 1 : (64 / esize);
8195 bool round = extract32(opcode, 0, 1);
8196 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8197 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8198 TCGv_i32 tcg_rd_narrowed;
8199 TCGv_i64 tcg_final;
8200
8201 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8202 { gen_helper_neon_narrow_sat_s8,
8203 gen_helper_neon_unarrow_sat8 },
8204 { gen_helper_neon_narrow_sat_s16,
8205 gen_helper_neon_unarrow_sat16 },
8206 { gen_helper_neon_narrow_sat_s32,
8207 gen_helper_neon_unarrow_sat32 },
8208 { NULL, NULL },
8209 };
8210 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8211 gen_helper_neon_narrow_sat_u8,
8212 gen_helper_neon_narrow_sat_u16,
8213 gen_helper_neon_narrow_sat_u32,
8214 NULL
8215 };
8216 NeonGenNarrowEnvFn *narrowfn;
8217
8218 int i;
8219
8220 assert(size < 4);
8221
8222 if (extract32(immh, 3, 1)) {
8223 unallocated_encoding(s);
8224 return;
8225 }
8226
8227 if (!fp_access_check(s)) {
8228 return;
8229 }
8230
8231 if (is_u_shift) {
8232 narrowfn = unsigned_narrow_fns[size];
8233 } else {
8234 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8235 }
8236
8237 tcg_rn = tcg_temp_new_i64();
8238 tcg_rd = tcg_temp_new_i64();
8239 tcg_rd_narrowed = tcg_temp_new_i32();
8240 tcg_final = tcg_temp_new_i64();
8241
8242 if (round) {
8243 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8244 } else {
8245 tcg_round = NULL;
8246 }
8247
8248 for (i = 0; i < elements; i++) {
8249 read_vec_element(s, tcg_rn, rn, i, ldop);
8250 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8251 false, is_u_shift, size+1, shift);
8252 narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
8253 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8254 if (i == 0) {
8255 tcg_gen_mov_i64(tcg_final, tcg_rd);
8256 } else {
8257 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8258 }
8259 }
8260
8261 if (!is_q) {
8262 write_vec_element(s, tcg_final, rd, 0, MO_64);
8263 } else {
8264 write_vec_element(s, tcg_final, rd, 1, MO_64);
8265 }
8266 clear_vec_high(s, is_q, rd);
8267 }
8268
8269 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8270 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8271 bool src_unsigned, bool dst_unsigned,
8272 int immh, int immb, int rn, int rd)
8273 {
8274 int immhb = immh << 3 | immb;
8275 int size = 32 - clz32(immh) - 1;
8276 int shift = immhb - (8 << size);
8277 int pass;
8278
8279 assert(immh != 0);
8280 assert(!(scalar && is_q));
8281
8282 if (!scalar) {
8283 if (!is_q && extract32(immh, 3, 1)) {
8284 unallocated_encoding(s);
8285 return;
8286 }
8287
8288 /* Since we use the variable-shift helpers we must
8289 * replicate the shift count into each element of
8290 * the tcg_shift value.
8291 */
8292 switch (size) {
8293 case 0:
8294 shift |= shift << 8;
8295 /* fall through */
8296 case 1:
8297 shift |= shift << 16;
8298 break;
8299 case 2:
8300 case 3:
8301 break;
8302 default:
8303 g_assert_not_reached();
8304 }
8305 }
8306
8307 if (!fp_access_check(s)) {
8308 return;
8309 }
8310
8311 if (size == 3) {
8312 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8313 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8314 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8315 { NULL, gen_helper_neon_qshl_u64 },
8316 };
8317 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8318 int maxpass = is_q ? 2 : 1;
8319
8320 for (pass = 0; pass < maxpass; pass++) {
8321 TCGv_i64 tcg_op = tcg_temp_new_i64();
8322
8323 read_vec_element(s, tcg_op, rn, pass, MO_64);
8324 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8325 write_vec_element(s, tcg_op, rd, pass, MO_64);
8326 }
8327 clear_vec_high(s, is_q, rd);
8328 } else {
8329 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8330 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8331 {
8332 { gen_helper_neon_qshl_s8,
8333 gen_helper_neon_qshl_s16,
8334 gen_helper_neon_qshl_s32 },
8335 { gen_helper_neon_qshlu_s8,
8336 gen_helper_neon_qshlu_s16,
8337 gen_helper_neon_qshlu_s32 }
8338 }, {
8339 { NULL, NULL, NULL },
8340 { gen_helper_neon_qshl_u8,
8341 gen_helper_neon_qshl_u16,
8342 gen_helper_neon_qshl_u32 }
8343 }
8344 };
8345 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8346 MemOp memop = scalar ? size : MO_32;
8347 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8348
8349 for (pass = 0; pass < maxpass; pass++) {
8350 TCGv_i32 tcg_op = tcg_temp_new_i32();
8351
8352 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8353 genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
8354 if (scalar) {
8355 switch (size) {
8356 case 0:
8357 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8358 break;
8359 case 1:
8360 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8361 break;
8362 case 2:
8363 break;
8364 default:
8365 g_assert_not_reached();
8366 }
8367 write_fp_sreg(s, rd, tcg_op);
8368 } else {
8369 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8370 }
8371 }
8372
8373 if (!scalar) {
8374 clear_vec_high(s, is_q, rd);
8375 }
8376 }
8377 }
8378
8379 /* Common vector code for handling integer to FP conversion */
8380 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8381 int elements, int is_signed,
8382 int fracbits, int size)
8383 {
8384 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8385 TCGv_i32 tcg_shift = NULL;
8386
8387 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8388 int pass;
8389
8390 if (fracbits || size == MO_64) {
8391 tcg_shift = tcg_constant_i32(fracbits);
8392 }
8393
8394 if (size == MO_64) {
8395 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8396 TCGv_i64 tcg_double = tcg_temp_new_i64();
8397
8398 for (pass = 0; pass < elements; pass++) {
8399 read_vec_element(s, tcg_int64, rn, pass, mop);
8400
8401 if (is_signed) {
8402 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8403 tcg_shift, tcg_fpst);
8404 } else {
8405 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8406 tcg_shift, tcg_fpst);
8407 }
8408 if (elements == 1) {
8409 write_fp_dreg(s, rd, tcg_double);
8410 } else {
8411 write_vec_element(s, tcg_double, rd, pass, MO_64);
8412 }
8413 }
8414 } else {
8415 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8416 TCGv_i32 tcg_float = tcg_temp_new_i32();
8417
8418 for (pass = 0; pass < elements; pass++) {
8419 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8420
8421 switch (size) {
8422 case MO_32:
8423 if (fracbits) {
8424 if (is_signed) {
8425 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8426 tcg_shift, tcg_fpst);
8427 } else {
8428 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8429 tcg_shift, tcg_fpst);
8430 }
8431 } else {
8432 if (is_signed) {
8433 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8434 } else {
8435 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8436 }
8437 }
8438 break;
8439 case MO_16:
8440 if (fracbits) {
8441 if (is_signed) {
8442 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8443 tcg_shift, tcg_fpst);
8444 } else {
8445 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8446 tcg_shift, tcg_fpst);
8447 }
8448 } else {
8449 if (is_signed) {
8450 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8451 } else {
8452 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8453 }
8454 }
8455 break;
8456 default:
8457 g_assert_not_reached();
8458 }
8459
8460 if (elements == 1) {
8461 write_fp_sreg(s, rd, tcg_float);
8462 } else {
8463 write_vec_element_i32(s, tcg_float, rd, pass, size);
8464 }
8465 }
8466 }
8467
8468 clear_vec_high(s, elements << size == 16, rd);
8469 }
8470
8471 /* UCVTF/SCVTF - Integer to FP conversion */
8472 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8473 bool is_q, bool is_u,
8474 int immh, int immb, int opcode,
8475 int rn, int rd)
8476 {
8477 int size, elements, fracbits;
8478 int immhb = immh << 3 | immb;
8479
8480 if (immh & 8) {
8481 size = MO_64;
8482 if (!is_scalar && !is_q) {
8483 unallocated_encoding(s);
8484 return;
8485 }
8486 } else if (immh & 4) {
8487 size = MO_32;
8488 } else if (immh & 2) {
8489 size = MO_16;
8490 if (!dc_isar_feature(aa64_fp16, s)) {
8491 unallocated_encoding(s);
8492 return;
8493 }
8494 } else {
8495 /* immh == 0 would be a failure of the decode logic */
8496 g_assert(immh == 1);
8497 unallocated_encoding(s);
8498 return;
8499 }
8500
8501 if (is_scalar) {
8502 elements = 1;
8503 } else {
8504 elements = (8 << is_q) >> size;
8505 }
8506 fracbits = (16 << size) - immhb;
8507
8508 if (!fp_access_check(s)) {
8509 return;
8510 }
8511
8512 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8513 }
8514
8515 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8516 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8517 bool is_q, bool is_u,
8518 int immh, int immb, int rn, int rd)
8519 {
8520 int immhb = immh << 3 | immb;
8521 int pass, size, fracbits;
8522 TCGv_ptr tcg_fpstatus;
8523 TCGv_i32 tcg_rmode, tcg_shift;
8524
8525 if (immh & 0x8) {
8526 size = MO_64;
8527 if (!is_scalar && !is_q) {
8528 unallocated_encoding(s);
8529 return;
8530 }
8531 } else if (immh & 0x4) {
8532 size = MO_32;
8533 } else if (immh & 0x2) {
8534 size = MO_16;
8535 if (!dc_isar_feature(aa64_fp16, s)) {
8536 unallocated_encoding(s);
8537 return;
8538 }
8539 } else {
8540 /* Should have split out AdvSIMD modified immediate earlier. */
8541 assert(immh == 1);
8542 unallocated_encoding(s);
8543 return;
8544 }
8545
8546 if (!fp_access_check(s)) {
8547 return;
8548 }
8549
8550 assert(!(is_scalar && is_q));
8551
8552 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8553 tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
8554 fracbits = (16 << size) - immhb;
8555 tcg_shift = tcg_constant_i32(fracbits);
8556
8557 if (size == MO_64) {
8558 int maxpass = is_scalar ? 1 : 2;
8559
8560 for (pass = 0; pass < maxpass; pass++) {
8561 TCGv_i64 tcg_op = tcg_temp_new_i64();
8562
8563 read_vec_element(s, tcg_op, rn, pass, MO_64);
8564 if (is_u) {
8565 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8566 } else {
8567 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8568 }
8569 write_vec_element(s, tcg_op, rd, pass, MO_64);
8570 }
8571 clear_vec_high(s, is_q, rd);
8572 } else {
8573 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
8574 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
8575
8576 switch (size) {
8577 case MO_16:
8578 if (is_u) {
8579 fn = gen_helper_vfp_touhh;
8580 } else {
8581 fn = gen_helper_vfp_toshh;
8582 }
8583 break;
8584 case MO_32:
8585 if (is_u) {
8586 fn = gen_helper_vfp_touls;
8587 } else {
8588 fn = gen_helper_vfp_tosls;
8589 }
8590 break;
8591 default:
8592 g_assert_not_reached();
8593 }
8594
8595 for (pass = 0; pass < maxpass; pass++) {
8596 TCGv_i32 tcg_op = tcg_temp_new_i32();
8597
8598 read_vec_element_i32(s, tcg_op, rn, pass, size);
8599 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
8600 if (is_scalar) {
8601 write_fp_sreg(s, rd, tcg_op);
8602 } else {
8603 write_vec_element_i32(s, tcg_op, rd, pass, size);
8604 }
8605 }
8606 if (!is_scalar) {
8607 clear_vec_high(s, is_q, rd);
8608 }
8609 }
8610
8611 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
8612 }
8613
8614 /* AdvSIMD scalar shift by immediate
8615 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8616 * +-----+---+-------------+------+------+--------+---+------+------+
8617 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8618 * +-----+---+-------------+------+------+--------+---+------+------+
8619 *
8620 * This is the scalar version so it works on a fixed sized registers
8621 */
8622 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
8623 {
8624 int rd = extract32(insn, 0, 5);
8625 int rn = extract32(insn, 5, 5);
8626 int opcode = extract32(insn, 11, 5);
8627 int immb = extract32(insn, 16, 3);
8628 int immh = extract32(insn, 19, 4);
8629 bool is_u = extract32(insn, 29, 1);
8630
8631 if (immh == 0) {
8632 unallocated_encoding(s);
8633 return;
8634 }
8635
8636 switch (opcode) {
8637 case 0x08: /* SRI */
8638 if (!is_u) {
8639 unallocated_encoding(s);
8640 return;
8641 }
8642 /* fall through */
8643 case 0x00: /* SSHR / USHR */
8644 case 0x02: /* SSRA / USRA */
8645 case 0x04: /* SRSHR / URSHR */
8646 case 0x06: /* SRSRA / URSRA */
8647 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
8648 break;
8649 case 0x0a: /* SHL / SLI */
8650 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
8651 break;
8652 case 0x1c: /* SCVTF, UCVTF */
8653 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
8654 opcode, rn, rd);
8655 break;
8656 case 0x10: /* SQSHRUN, SQSHRUN2 */
8657 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
8658 if (!is_u) {
8659 unallocated_encoding(s);
8660 return;
8661 }
8662 handle_vec_simd_sqshrn(s, true, false, false, true,
8663 immh, immb, opcode, rn, rd);
8664 break;
8665 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
8666 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
8667 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
8668 immh, immb, opcode, rn, rd);
8669 break;
8670 case 0xc: /* SQSHLU */
8671 if (!is_u) {
8672 unallocated_encoding(s);
8673 return;
8674 }
8675 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
8676 break;
8677 case 0xe: /* SQSHL, UQSHL */
8678 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
8679 break;
8680 case 0x1f: /* FCVTZS, FCVTZU */
8681 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
8682 break;
8683 default:
8684 unallocated_encoding(s);
8685 break;
8686 }
8687 }
8688
8689 /* AdvSIMD scalar three different
8690 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8691 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8692 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8693 * +-----+---+-----------+------+---+------+--------+-----+------+------+
8694 */
8695 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
8696 {
8697 bool is_u = extract32(insn, 29, 1);
8698 int size = extract32(insn, 22, 2);
8699 int opcode = extract32(insn, 12, 4);
8700 int rm = extract32(insn, 16, 5);
8701 int rn = extract32(insn, 5, 5);
8702 int rd = extract32(insn, 0, 5);
8703
8704 if (is_u) {
8705 unallocated_encoding(s);
8706 return;
8707 }
8708
8709 switch (opcode) {
8710 case 0x9: /* SQDMLAL, SQDMLAL2 */
8711 case 0xb: /* SQDMLSL, SQDMLSL2 */
8712 case 0xd: /* SQDMULL, SQDMULL2 */
8713 if (size == 0 || size == 3) {
8714 unallocated_encoding(s);
8715 return;
8716 }
8717 break;
8718 default:
8719 unallocated_encoding(s);
8720 return;
8721 }
8722
8723 if (!fp_access_check(s)) {
8724 return;
8725 }
8726
8727 if (size == 2) {
8728 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8729 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8730 TCGv_i64 tcg_res = tcg_temp_new_i64();
8731
8732 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
8733 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
8734
8735 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
8736 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
8737
8738 switch (opcode) {
8739 case 0xd: /* SQDMULL, SQDMULL2 */
8740 break;
8741 case 0xb: /* SQDMLSL, SQDMLSL2 */
8742 tcg_gen_neg_i64(tcg_res, tcg_res);
8743 /* fall through */
8744 case 0x9: /* SQDMLAL, SQDMLAL2 */
8745 read_vec_element(s, tcg_op1, rd, 0, MO_64);
8746 gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
8747 tcg_res, tcg_op1);
8748 break;
8749 default:
8750 g_assert_not_reached();
8751 }
8752
8753 write_fp_dreg(s, rd, tcg_res);
8754 } else {
8755 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
8756 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
8757 TCGv_i64 tcg_res = tcg_temp_new_i64();
8758
8759 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
8760 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
8761
8762 switch (opcode) {
8763 case 0xd: /* SQDMULL, SQDMULL2 */
8764 break;
8765 case 0xb: /* SQDMLSL, SQDMLSL2 */
8766 gen_helper_neon_negl_u32(tcg_res, tcg_res);
8767 /* fall through */
8768 case 0x9: /* SQDMLAL, SQDMLAL2 */
8769 {
8770 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
8771 read_vec_element(s, tcg_op3, rd, 0, MO_32);
8772 gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
8773 tcg_res, tcg_op3);
8774 break;
8775 }
8776 default:
8777 g_assert_not_reached();
8778 }
8779
8780 tcg_gen_ext32u_i64(tcg_res, tcg_res);
8781 write_fp_dreg(s, rd, tcg_res);
8782 }
8783 }
8784
8785 static void handle_3same_64(DisasContext *s, int opcode, bool u,
8786 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
8787 {
8788 /* Handle 64x64->64 opcodes which are shared between the scalar
8789 * and vector 3-same groups. We cover every opcode where size == 3
8790 * is valid in either the three-reg-same (integer, not pairwise)
8791 * or scalar-three-reg-same groups.
8792 */
8793 TCGCond cond;
8794
8795 switch (opcode) {
8796 case 0x1: /* SQADD */
8797 if (u) {
8798 gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8799 } else {
8800 gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8801 }
8802 break;
8803 case 0x5: /* SQSUB */
8804 if (u) {
8805 gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8806 } else {
8807 gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8808 }
8809 break;
8810 case 0x6: /* CMGT, CMHI */
8811 cond = u ? TCG_COND_GTU : TCG_COND_GT;
8812 do_cmop:
8813 /* 64 bit integer comparison, result = test ? -1 : 0. */
8814 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
8815 break;
8816 case 0x7: /* CMGE, CMHS */
8817 cond = u ? TCG_COND_GEU : TCG_COND_GE;
8818 goto do_cmop;
8819 case 0x11: /* CMTST, CMEQ */
8820 if (u) {
8821 cond = TCG_COND_EQ;
8822 goto do_cmop;
8823 }
8824 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
8825 break;
8826 case 0x8: /* SSHL, USHL */
8827 if (u) {
8828 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
8829 } else {
8830 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
8831 }
8832 break;
8833 case 0x9: /* SQSHL, UQSHL */
8834 if (u) {
8835 gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8836 } else {
8837 gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8838 }
8839 break;
8840 case 0xa: /* SRSHL, URSHL */
8841 if (u) {
8842 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
8843 } else {
8844 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
8845 }
8846 break;
8847 case 0xb: /* SQRSHL, UQRSHL */
8848 if (u) {
8849 gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8850 } else {
8851 gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
8852 }
8853 break;
8854 case 0x10: /* ADD, SUB */
8855 if (u) {
8856 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
8857 } else {
8858 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
8859 }
8860 break;
8861 default:
8862 g_assert_not_reached();
8863 }
8864 }
8865
8866 /* Handle the 3-same-operands float operations; shared by the scalar
8867 * and vector encodings. The caller must filter out any encodings
8868 * not allocated for the encoding it is dealing with.
8869 */
8870 static void handle_3same_float(DisasContext *s, int size, int elements,
8871 int fpopcode, int rd, int rn, int rm)
8872 {
8873 int pass;
8874 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
8875
8876 for (pass = 0; pass < elements; pass++) {
8877 if (size) {
8878 /* Double */
8879 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8880 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8881 TCGv_i64 tcg_res = tcg_temp_new_i64();
8882
8883 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8884 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8885
8886 switch (fpopcode) {
8887 case 0x39: /* FMLS */
8888 /* As usual for ARM, separate negation for fused multiply-add */
8889 gen_helper_vfp_negd(tcg_op1, tcg_op1);
8890 /* fall through */
8891 case 0x19: /* FMLA */
8892 read_vec_element(s, tcg_res, rd, pass, MO_64);
8893 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
8894 tcg_res, fpst);
8895 break;
8896 case 0x18: /* FMAXNM */
8897 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8898 break;
8899 case 0x1a: /* FADD */
8900 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8901 break;
8902 case 0x1b: /* FMULX */
8903 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
8904 break;
8905 case 0x1c: /* FCMEQ */
8906 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8907 break;
8908 case 0x1e: /* FMAX */
8909 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8910 break;
8911 case 0x1f: /* FRECPS */
8912 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8913 break;
8914 case 0x38: /* FMINNM */
8915 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8916 break;
8917 case 0x3a: /* FSUB */
8918 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8919 break;
8920 case 0x3e: /* FMIN */
8921 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8922 break;
8923 case 0x3f: /* FRSQRTS */
8924 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8925 break;
8926 case 0x5b: /* FMUL */
8927 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
8928 break;
8929 case 0x5c: /* FCMGE */
8930 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8931 break;
8932 case 0x5d: /* FACGE */
8933 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8934 break;
8935 case 0x5f: /* FDIV */
8936 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
8937 break;
8938 case 0x7a: /* FABD */
8939 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
8940 gen_helper_vfp_absd(tcg_res, tcg_res);
8941 break;
8942 case 0x7c: /* FCMGT */
8943 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8944 break;
8945 case 0x7d: /* FACGT */
8946 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
8947 break;
8948 default:
8949 g_assert_not_reached();
8950 }
8951
8952 write_vec_element(s, tcg_res, rd, pass, MO_64);
8953 } else {
8954 /* Single */
8955 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8956 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8957 TCGv_i32 tcg_res = tcg_temp_new_i32();
8958
8959 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
8960 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
8961
8962 switch (fpopcode) {
8963 case 0x39: /* FMLS */
8964 /* As usual for ARM, separate negation for fused multiply-add */
8965 gen_helper_vfp_negs(tcg_op1, tcg_op1);
8966 /* fall through */
8967 case 0x19: /* FMLA */
8968 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
8969 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
8970 tcg_res, fpst);
8971 break;
8972 case 0x1a: /* FADD */
8973 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8974 break;
8975 case 0x1b: /* FMULX */
8976 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
8977 break;
8978 case 0x1c: /* FCMEQ */
8979 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8980 break;
8981 case 0x1e: /* FMAX */
8982 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8983 break;
8984 case 0x1f: /* FRECPS */
8985 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
8986 break;
8987 case 0x18: /* FMAXNM */
8988 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8989 break;
8990 case 0x38: /* FMINNM */
8991 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8992 break;
8993 case 0x3a: /* FSUB */
8994 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
8995 break;
8996 case 0x3e: /* FMIN */
8997 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8998 break;
8999 case 0x3f: /* FRSQRTS */
9000 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9001 break;
9002 case 0x5b: /* FMUL */
9003 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9004 break;
9005 case 0x5c: /* FCMGE */
9006 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9007 break;
9008 case 0x5d: /* FACGE */
9009 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9010 break;
9011 case 0x5f: /* FDIV */
9012 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9013 break;
9014 case 0x7a: /* FABD */
9015 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9016 gen_helper_vfp_abss(tcg_res, tcg_res);
9017 break;
9018 case 0x7c: /* FCMGT */
9019 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9020 break;
9021 case 0x7d: /* FACGT */
9022 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9023 break;
9024 default:
9025 g_assert_not_reached();
9026 }
9027
9028 if (elements == 1) {
9029 /* scalar single so clear high part */
9030 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9031
9032 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9033 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9034 } else {
9035 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9036 }
9037 }
9038 }
9039
9040 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9041 }
9042
9043 /* AdvSIMD scalar three same
9044 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9045 * +-----+---+-----------+------+---+------+--------+---+------+------+
9046 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9047 * +-----+---+-----------+------+---+------+--------+---+------+------+
9048 */
9049 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9050 {
9051 int rd = extract32(insn, 0, 5);
9052 int rn = extract32(insn, 5, 5);
9053 int opcode = extract32(insn, 11, 5);
9054 int rm = extract32(insn, 16, 5);
9055 int size = extract32(insn, 22, 2);
9056 bool u = extract32(insn, 29, 1);
9057 TCGv_i64 tcg_rd;
9058
9059 if (opcode >= 0x18) {
9060 /* Floating point: U, size[1] and opcode indicate operation */
9061 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9062 switch (fpopcode) {
9063 case 0x1b: /* FMULX */
9064 case 0x1f: /* FRECPS */
9065 case 0x3f: /* FRSQRTS */
9066 case 0x5d: /* FACGE */
9067 case 0x7d: /* FACGT */
9068 case 0x1c: /* FCMEQ */
9069 case 0x5c: /* FCMGE */
9070 case 0x7c: /* FCMGT */
9071 case 0x7a: /* FABD */
9072 break;
9073 default:
9074 unallocated_encoding(s);
9075 return;
9076 }
9077
9078 if (!fp_access_check(s)) {
9079 return;
9080 }
9081
9082 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9083 return;
9084 }
9085
9086 switch (opcode) {
9087 case 0x1: /* SQADD, UQADD */
9088 case 0x5: /* SQSUB, UQSUB */
9089 case 0x9: /* SQSHL, UQSHL */
9090 case 0xb: /* SQRSHL, UQRSHL */
9091 break;
9092 case 0x8: /* SSHL, USHL */
9093 case 0xa: /* SRSHL, URSHL */
9094 case 0x6: /* CMGT, CMHI */
9095 case 0x7: /* CMGE, CMHS */
9096 case 0x11: /* CMTST, CMEQ */
9097 case 0x10: /* ADD, SUB (vector) */
9098 if (size != 3) {
9099 unallocated_encoding(s);
9100 return;
9101 }
9102 break;
9103 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9104 if (size != 1 && size != 2) {
9105 unallocated_encoding(s);
9106 return;
9107 }
9108 break;
9109 default:
9110 unallocated_encoding(s);
9111 return;
9112 }
9113
9114 if (!fp_access_check(s)) {
9115 return;
9116 }
9117
9118 tcg_rd = tcg_temp_new_i64();
9119
9120 if (size == 3) {
9121 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9122 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9123
9124 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9125 } else {
9126 /* Do a single operation on the lowest element in the vector.
9127 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9128 * no side effects for all these operations.
9129 * OPTME: special-purpose helpers would avoid doing some
9130 * unnecessary work in the helper for the 8 and 16 bit cases.
9131 */
9132 NeonGenTwoOpEnvFn *genenvfn;
9133 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9134 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9135 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9136
9137 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9138 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9139
9140 switch (opcode) {
9141 case 0x1: /* SQADD, UQADD */
9142 {
9143 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9144 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9145 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9146 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9147 };
9148 genenvfn = fns[size][u];
9149 break;
9150 }
9151 case 0x5: /* SQSUB, UQSUB */
9152 {
9153 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9154 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9155 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9156 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9157 };
9158 genenvfn = fns[size][u];
9159 break;
9160 }
9161 case 0x9: /* SQSHL, UQSHL */
9162 {
9163 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9164 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9165 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9166 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9167 };
9168 genenvfn = fns[size][u];
9169 break;
9170 }
9171 case 0xb: /* SQRSHL, UQRSHL */
9172 {
9173 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9174 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9175 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9176 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9177 };
9178 genenvfn = fns[size][u];
9179 break;
9180 }
9181 case 0x16: /* SQDMULH, SQRDMULH */
9182 {
9183 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9184 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9185 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9186 };
9187 assert(size == 1 || size == 2);
9188 genenvfn = fns[size - 1][u];
9189 break;
9190 }
9191 default:
9192 g_assert_not_reached();
9193 }
9194
9195 genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
9196 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9197 }
9198
9199 write_fp_dreg(s, rd, tcg_rd);
9200 }
9201
9202 /* AdvSIMD scalar three same FP16
9203 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9204 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9205 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9206 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9207 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9208 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9209 */
9210 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9211 uint32_t insn)
9212 {
9213 int rd = extract32(insn, 0, 5);
9214 int rn = extract32(insn, 5, 5);
9215 int opcode = extract32(insn, 11, 3);
9216 int rm = extract32(insn, 16, 5);
9217 bool u = extract32(insn, 29, 1);
9218 bool a = extract32(insn, 23, 1);
9219 int fpopcode = opcode | (a << 3) | (u << 4);
9220 TCGv_ptr fpst;
9221 TCGv_i32 tcg_op1;
9222 TCGv_i32 tcg_op2;
9223 TCGv_i32 tcg_res;
9224
9225 switch (fpopcode) {
9226 case 0x03: /* FMULX */
9227 case 0x04: /* FCMEQ (reg) */
9228 case 0x07: /* FRECPS */
9229 case 0x0f: /* FRSQRTS */
9230 case 0x14: /* FCMGE (reg) */
9231 case 0x15: /* FACGE */
9232 case 0x1a: /* FABD */
9233 case 0x1c: /* FCMGT (reg) */
9234 case 0x1d: /* FACGT */
9235 break;
9236 default:
9237 unallocated_encoding(s);
9238 return;
9239 }
9240
9241 if (!dc_isar_feature(aa64_fp16, s)) {
9242 unallocated_encoding(s);
9243 }
9244
9245 if (!fp_access_check(s)) {
9246 return;
9247 }
9248
9249 fpst = fpstatus_ptr(FPST_FPCR_F16);
9250
9251 tcg_op1 = read_fp_hreg(s, rn);
9252 tcg_op2 = read_fp_hreg(s, rm);
9253 tcg_res = tcg_temp_new_i32();
9254
9255 switch (fpopcode) {
9256 case 0x03: /* FMULX */
9257 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9258 break;
9259 case 0x04: /* FCMEQ (reg) */
9260 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9261 break;
9262 case 0x07: /* FRECPS */
9263 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9264 break;
9265 case 0x0f: /* FRSQRTS */
9266 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9267 break;
9268 case 0x14: /* FCMGE (reg) */
9269 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9270 break;
9271 case 0x15: /* FACGE */
9272 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9273 break;
9274 case 0x1a: /* FABD */
9275 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9276 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9277 break;
9278 case 0x1c: /* FCMGT (reg) */
9279 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9280 break;
9281 case 0x1d: /* FACGT */
9282 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9283 break;
9284 default:
9285 g_assert_not_reached();
9286 }
9287
9288 write_fp_sreg(s, rd, tcg_res);
9289 }
9290
9291 /* AdvSIMD scalar three same extra
9292 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9293 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9294 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9295 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9296 */
9297 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9298 uint32_t insn)
9299 {
9300 int rd = extract32(insn, 0, 5);
9301 int rn = extract32(insn, 5, 5);
9302 int opcode = extract32(insn, 11, 4);
9303 int rm = extract32(insn, 16, 5);
9304 int size = extract32(insn, 22, 2);
9305 bool u = extract32(insn, 29, 1);
9306 TCGv_i32 ele1, ele2, ele3;
9307 TCGv_i64 res;
9308 bool feature;
9309
9310 switch (u * 16 + opcode) {
9311 case 0x10: /* SQRDMLAH (vector) */
9312 case 0x11: /* SQRDMLSH (vector) */
9313 if (size != 1 && size != 2) {
9314 unallocated_encoding(s);
9315 return;
9316 }
9317 feature = dc_isar_feature(aa64_rdm, s);
9318 break;
9319 default:
9320 unallocated_encoding(s);
9321 return;
9322 }
9323 if (!feature) {
9324 unallocated_encoding(s);
9325 return;
9326 }
9327 if (!fp_access_check(s)) {
9328 return;
9329 }
9330
9331 /* Do a single operation on the lowest element in the vector.
9332 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9333 * with no side effects for all these operations.
9334 * OPTME: special-purpose helpers would avoid doing some
9335 * unnecessary work in the helper for the 16 bit cases.
9336 */
9337 ele1 = tcg_temp_new_i32();
9338 ele2 = tcg_temp_new_i32();
9339 ele3 = tcg_temp_new_i32();
9340
9341 read_vec_element_i32(s, ele1, rn, 0, size);
9342 read_vec_element_i32(s, ele2, rm, 0, size);
9343 read_vec_element_i32(s, ele3, rd, 0, size);
9344
9345 switch (opcode) {
9346 case 0x0: /* SQRDMLAH */
9347 if (size == 1) {
9348 gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
9349 } else {
9350 gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
9351 }
9352 break;
9353 case 0x1: /* SQRDMLSH */
9354 if (size == 1) {
9355 gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
9356 } else {
9357 gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
9358 }
9359 break;
9360 default:
9361 g_assert_not_reached();
9362 }
9363
9364 res = tcg_temp_new_i64();
9365 tcg_gen_extu_i32_i64(res, ele3);
9366 write_fp_dreg(s, rd, res);
9367 }
9368
9369 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9370 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9371 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9372 {
9373 /* Handle 64->64 opcodes which are shared between the scalar and
9374 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9375 * is valid in either group and also the double-precision fp ops.
9376 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9377 * requires them.
9378 */
9379 TCGCond cond;
9380
9381 switch (opcode) {
9382 case 0x4: /* CLS, CLZ */
9383 if (u) {
9384 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9385 } else {
9386 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9387 }
9388 break;
9389 case 0x5: /* NOT */
9390 /* This opcode is shared with CNT and RBIT but we have earlier
9391 * enforced that size == 3 if and only if this is the NOT insn.
9392 */
9393 tcg_gen_not_i64(tcg_rd, tcg_rn);
9394 break;
9395 case 0x7: /* SQABS, SQNEG */
9396 if (u) {
9397 gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
9398 } else {
9399 gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
9400 }
9401 break;
9402 case 0xa: /* CMLT */
9403 cond = TCG_COND_LT;
9404 do_cmop:
9405 /* 64 bit integer comparison against zero, result is test ? -1 : 0. */
9406 tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
9407 break;
9408 case 0x8: /* CMGT, CMGE */
9409 cond = u ? TCG_COND_GE : TCG_COND_GT;
9410 goto do_cmop;
9411 case 0x9: /* CMEQ, CMLE */
9412 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9413 goto do_cmop;
9414 case 0xb: /* ABS, NEG */
9415 if (u) {
9416 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9417 } else {
9418 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9419 }
9420 break;
9421 case 0x2f: /* FABS */
9422 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9423 break;
9424 case 0x6f: /* FNEG */
9425 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9426 break;
9427 case 0x7f: /* FSQRT */
9428 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
9429 break;
9430 case 0x1a: /* FCVTNS */
9431 case 0x1b: /* FCVTMS */
9432 case 0x1c: /* FCVTAS */
9433 case 0x3a: /* FCVTPS */
9434 case 0x3b: /* FCVTZS */
9435 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9436 break;
9437 case 0x5a: /* FCVTNU */
9438 case 0x5b: /* FCVTMU */
9439 case 0x5c: /* FCVTAU */
9440 case 0x7a: /* FCVTPU */
9441 case 0x7b: /* FCVTZU */
9442 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9443 break;
9444 case 0x18: /* FRINTN */
9445 case 0x19: /* FRINTM */
9446 case 0x38: /* FRINTP */
9447 case 0x39: /* FRINTZ */
9448 case 0x58: /* FRINTA */
9449 case 0x79: /* FRINTI */
9450 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9451 break;
9452 case 0x59: /* FRINTX */
9453 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9454 break;
9455 case 0x1e: /* FRINT32Z */
9456 case 0x5e: /* FRINT32X */
9457 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9458 break;
9459 case 0x1f: /* FRINT64Z */
9460 case 0x5f: /* FRINT64X */
9461 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9462 break;
9463 default:
9464 g_assert_not_reached();
9465 }
9466 }
9467
9468 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9469 bool is_scalar, bool is_u, bool is_q,
9470 int size, int rn, int rd)
9471 {
9472 bool is_double = (size == MO_64);
9473 TCGv_ptr fpst;
9474
9475 if (!fp_access_check(s)) {
9476 return;
9477 }
9478
9479 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9480
9481 if (is_double) {
9482 TCGv_i64 tcg_op = tcg_temp_new_i64();
9483 TCGv_i64 tcg_zero = tcg_constant_i64(0);
9484 TCGv_i64 tcg_res = tcg_temp_new_i64();
9485 NeonGenTwoDoubleOpFn *genfn;
9486 bool swap = false;
9487 int pass;
9488
9489 switch (opcode) {
9490 case 0x2e: /* FCMLT (zero) */
9491 swap = true;
9492 /* fallthrough */
9493 case 0x2c: /* FCMGT (zero) */
9494 genfn = gen_helper_neon_cgt_f64;
9495 break;
9496 case 0x2d: /* FCMEQ (zero) */
9497 genfn = gen_helper_neon_ceq_f64;
9498 break;
9499 case 0x6d: /* FCMLE (zero) */
9500 swap = true;
9501 /* fall through */
9502 case 0x6c: /* FCMGE (zero) */
9503 genfn = gen_helper_neon_cge_f64;
9504 break;
9505 default:
9506 g_assert_not_reached();
9507 }
9508
9509 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9510 read_vec_element(s, tcg_op, rn, pass, MO_64);
9511 if (swap) {
9512 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9513 } else {
9514 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9515 }
9516 write_vec_element(s, tcg_res, rd, pass, MO_64);
9517 }
9518
9519 clear_vec_high(s, !is_scalar, rd);
9520 } else {
9521 TCGv_i32 tcg_op = tcg_temp_new_i32();
9522 TCGv_i32 tcg_zero = tcg_constant_i32(0);
9523 TCGv_i32 tcg_res = tcg_temp_new_i32();
9524 NeonGenTwoSingleOpFn *genfn;
9525 bool swap = false;
9526 int pass, maxpasses;
9527
9528 if (size == MO_16) {
9529 switch (opcode) {
9530 case 0x2e: /* FCMLT (zero) */
9531 swap = true;
9532 /* fall through */
9533 case 0x2c: /* FCMGT (zero) */
9534 genfn = gen_helper_advsimd_cgt_f16;
9535 break;
9536 case 0x2d: /* FCMEQ (zero) */
9537 genfn = gen_helper_advsimd_ceq_f16;
9538 break;
9539 case 0x6d: /* FCMLE (zero) */
9540 swap = true;
9541 /* fall through */
9542 case 0x6c: /* FCMGE (zero) */
9543 genfn = gen_helper_advsimd_cge_f16;
9544 break;
9545 default:
9546 g_assert_not_reached();
9547 }
9548 } else {
9549 switch (opcode) {
9550 case 0x2e: /* FCMLT (zero) */
9551 swap = true;
9552 /* fall through */
9553 case 0x2c: /* FCMGT (zero) */
9554 genfn = gen_helper_neon_cgt_f32;
9555 break;
9556 case 0x2d: /* FCMEQ (zero) */
9557 genfn = gen_helper_neon_ceq_f32;
9558 break;
9559 case 0x6d: /* FCMLE (zero) */
9560 swap = true;
9561 /* fall through */
9562 case 0x6c: /* FCMGE (zero) */
9563 genfn = gen_helper_neon_cge_f32;
9564 break;
9565 default:
9566 g_assert_not_reached();
9567 }
9568 }
9569
9570 if (is_scalar) {
9571 maxpasses = 1;
9572 } else {
9573 int vector_size = 8 << is_q;
9574 maxpasses = vector_size >> size;
9575 }
9576
9577 for (pass = 0; pass < maxpasses; pass++) {
9578 read_vec_element_i32(s, tcg_op, rn, pass, size);
9579 if (swap) {
9580 genfn(tcg_res, tcg_zero, tcg_op, fpst);
9581 } else {
9582 genfn(tcg_res, tcg_op, tcg_zero, fpst);
9583 }
9584 if (is_scalar) {
9585 write_fp_sreg(s, rd, tcg_res);
9586 } else {
9587 write_vec_element_i32(s, tcg_res, rd, pass, size);
9588 }
9589 }
9590
9591 if (!is_scalar) {
9592 clear_vec_high(s, is_q, rd);
9593 }
9594 }
9595 }
9596
9597 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
9598 bool is_scalar, bool is_u, bool is_q,
9599 int size, int rn, int rd)
9600 {
9601 bool is_double = (size == 3);
9602 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9603
9604 if (is_double) {
9605 TCGv_i64 tcg_op = tcg_temp_new_i64();
9606 TCGv_i64 tcg_res = tcg_temp_new_i64();
9607 int pass;
9608
9609 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9610 read_vec_element(s, tcg_op, rn, pass, MO_64);
9611 switch (opcode) {
9612 case 0x3d: /* FRECPE */
9613 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
9614 break;
9615 case 0x3f: /* FRECPX */
9616 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
9617 break;
9618 case 0x7d: /* FRSQRTE */
9619 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
9620 break;
9621 default:
9622 g_assert_not_reached();
9623 }
9624 write_vec_element(s, tcg_res, rd, pass, MO_64);
9625 }
9626 clear_vec_high(s, !is_scalar, rd);
9627 } else {
9628 TCGv_i32 tcg_op = tcg_temp_new_i32();
9629 TCGv_i32 tcg_res = tcg_temp_new_i32();
9630 int pass, maxpasses;
9631
9632 if (is_scalar) {
9633 maxpasses = 1;
9634 } else {
9635 maxpasses = is_q ? 4 : 2;
9636 }
9637
9638 for (pass = 0; pass < maxpasses; pass++) {
9639 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
9640
9641 switch (opcode) {
9642 case 0x3c: /* URECPE */
9643 gen_helper_recpe_u32(tcg_res, tcg_op);
9644 break;
9645 case 0x3d: /* FRECPE */
9646 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
9647 break;
9648 case 0x3f: /* FRECPX */
9649 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
9650 break;
9651 case 0x7d: /* FRSQRTE */
9652 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
9653 break;
9654 default:
9655 g_assert_not_reached();
9656 }
9657
9658 if (is_scalar) {
9659 write_fp_sreg(s, rd, tcg_res);
9660 } else {
9661 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9662 }
9663 }
9664 if (!is_scalar) {
9665 clear_vec_high(s, is_q, rd);
9666 }
9667 }
9668 }
9669
9670 static void handle_2misc_narrow(DisasContext *s, bool scalar,
9671 int opcode, bool u, bool is_q,
9672 int size, int rn, int rd)
9673 {
9674 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
9675 * in the source becomes a size element in the destination).
9676 */
9677 int pass;
9678 TCGv_i32 tcg_res[2];
9679 int destelt = is_q ? 2 : 0;
9680 int passes = scalar ? 1 : 2;
9681
9682 if (scalar) {
9683 tcg_res[1] = tcg_constant_i32(0);
9684 }
9685
9686 for (pass = 0; pass < passes; pass++) {
9687 TCGv_i64 tcg_op = tcg_temp_new_i64();
9688 NeonGenNarrowFn *genfn = NULL;
9689 NeonGenNarrowEnvFn *genenvfn = NULL;
9690
9691 if (scalar) {
9692 read_vec_element(s, tcg_op, rn, pass, size + 1);
9693 } else {
9694 read_vec_element(s, tcg_op, rn, pass, MO_64);
9695 }
9696 tcg_res[pass] = tcg_temp_new_i32();
9697
9698 switch (opcode) {
9699 case 0x12: /* XTN, SQXTUN */
9700 {
9701 static NeonGenNarrowFn * const xtnfns[3] = {
9702 gen_helper_neon_narrow_u8,
9703 gen_helper_neon_narrow_u16,
9704 tcg_gen_extrl_i64_i32,
9705 };
9706 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
9707 gen_helper_neon_unarrow_sat8,
9708 gen_helper_neon_unarrow_sat16,
9709 gen_helper_neon_unarrow_sat32,
9710 };
9711 if (u) {
9712 genenvfn = sqxtunfns[size];
9713 } else {
9714 genfn = xtnfns[size];
9715 }
9716 break;
9717 }
9718 case 0x14: /* SQXTN, UQXTN */
9719 {
9720 static NeonGenNarrowEnvFn * const fns[3][2] = {
9721 { gen_helper_neon_narrow_sat_s8,
9722 gen_helper_neon_narrow_sat_u8 },
9723 { gen_helper_neon_narrow_sat_s16,
9724 gen_helper_neon_narrow_sat_u16 },
9725 { gen_helper_neon_narrow_sat_s32,
9726 gen_helper_neon_narrow_sat_u32 },
9727 };
9728 genenvfn = fns[size][u];
9729 break;
9730 }
9731 case 0x16: /* FCVTN, FCVTN2 */
9732 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
9733 if (size == 2) {
9734 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
9735 } else {
9736 TCGv_i32 tcg_lo = tcg_temp_new_i32();
9737 TCGv_i32 tcg_hi = tcg_temp_new_i32();
9738 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9739 TCGv_i32 ahp = get_ahp_flag();
9740
9741 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
9742 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9743 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9744 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
9745 }
9746 break;
9747 case 0x36: /* BFCVTN, BFCVTN2 */
9748 {
9749 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9750 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
9751 }
9752 break;
9753 case 0x56: /* FCVTXN, FCVTXN2 */
9754 /* 64 bit to 32 bit float conversion
9755 * with von Neumann rounding (round to odd)
9756 */
9757 assert(size == 2);
9758 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
9759 break;
9760 default:
9761 g_assert_not_reached();
9762 }
9763
9764 if (genfn) {
9765 genfn(tcg_res[pass], tcg_op);
9766 } else if (genenvfn) {
9767 genenvfn(tcg_res[pass], tcg_env, tcg_op);
9768 }
9769 }
9770
9771 for (pass = 0; pass < 2; pass++) {
9772 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
9773 }
9774 clear_vec_high(s, is_q, rd);
9775 }
9776
9777 /* Remaining saturating accumulating ops */
9778 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
9779 bool is_q, int size, int rn, int rd)
9780 {
9781 bool is_double = (size == 3);
9782
9783 if (is_double) {
9784 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9785 TCGv_i64 tcg_rd = tcg_temp_new_i64();
9786 int pass;
9787
9788 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
9789 read_vec_element(s, tcg_rn, rn, pass, MO_64);
9790 read_vec_element(s, tcg_rd, rd, pass, MO_64);
9791
9792 if (is_u) { /* USQADD */
9793 gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9794 } else { /* SUQADD */
9795 gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9796 }
9797 write_vec_element(s, tcg_rd, rd, pass, MO_64);
9798 }
9799 clear_vec_high(s, !is_scalar, rd);
9800 } else {
9801 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9802 TCGv_i32 tcg_rd = tcg_temp_new_i32();
9803 int pass, maxpasses;
9804
9805 if (is_scalar) {
9806 maxpasses = 1;
9807 } else {
9808 maxpasses = is_q ? 4 : 2;
9809 }
9810
9811 for (pass = 0; pass < maxpasses; pass++) {
9812 if (is_scalar) {
9813 read_vec_element_i32(s, tcg_rn, rn, pass, size);
9814 read_vec_element_i32(s, tcg_rd, rd, pass, size);
9815 } else {
9816 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
9817 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9818 }
9819
9820 if (is_u) { /* USQADD */
9821 switch (size) {
9822 case 0:
9823 gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9824 break;
9825 case 1:
9826 gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9827 break;
9828 case 2:
9829 gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9830 break;
9831 default:
9832 g_assert_not_reached();
9833 }
9834 } else { /* SUQADD */
9835 switch (size) {
9836 case 0:
9837 gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9838 break;
9839 case 1:
9840 gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9841 break;
9842 case 2:
9843 gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
9844 break;
9845 default:
9846 g_assert_not_reached();
9847 }
9848 }
9849
9850 if (is_scalar) {
9851 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
9852 }
9853 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
9854 }
9855 clear_vec_high(s, is_q, rd);
9856 }
9857 }
9858
9859 /* AdvSIMD scalar two reg misc
9860 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9861 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9862 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9863 * +-----+---+-----------+------+-----------+--------+-----+------+------+
9864 */
9865 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
9866 {
9867 int rd = extract32(insn, 0, 5);
9868 int rn = extract32(insn, 5, 5);
9869 int opcode = extract32(insn, 12, 5);
9870 int size = extract32(insn, 22, 2);
9871 bool u = extract32(insn, 29, 1);
9872 bool is_fcvt = false;
9873 int rmode;
9874 TCGv_i32 tcg_rmode;
9875 TCGv_ptr tcg_fpstatus;
9876
9877 switch (opcode) {
9878 case 0x3: /* USQADD / SUQADD*/
9879 if (!fp_access_check(s)) {
9880 return;
9881 }
9882 handle_2misc_satacc(s, true, u, false, size, rn, rd);
9883 return;
9884 case 0x7: /* SQABS / SQNEG */
9885 break;
9886 case 0xa: /* CMLT */
9887 if (u) {
9888 unallocated_encoding(s);
9889 return;
9890 }
9891 /* fall through */
9892 case 0x8: /* CMGT, CMGE */
9893 case 0x9: /* CMEQ, CMLE */
9894 case 0xb: /* ABS, NEG */
9895 if (size != 3) {
9896 unallocated_encoding(s);
9897 return;
9898 }
9899 break;
9900 case 0x12: /* SQXTUN */
9901 if (!u) {
9902 unallocated_encoding(s);
9903 return;
9904 }
9905 /* fall through */
9906 case 0x14: /* SQXTN, UQXTN */
9907 if (size == 3) {
9908 unallocated_encoding(s);
9909 return;
9910 }
9911 if (!fp_access_check(s)) {
9912 return;
9913 }
9914 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
9915 return;
9916 case 0xc ... 0xf:
9917 case 0x16 ... 0x1d:
9918 case 0x1f:
9919 /* Floating point: U, size[1] and opcode indicate operation;
9920 * size[0] indicates single or double precision.
9921 */
9922 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
9923 size = extract32(size, 0, 1) ? 3 : 2;
9924 switch (opcode) {
9925 case 0x2c: /* FCMGT (zero) */
9926 case 0x2d: /* FCMEQ (zero) */
9927 case 0x2e: /* FCMLT (zero) */
9928 case 0x6c: /* FCMGE (zero) */
9929 case 0x6d: /* FCMLE (zero) */
9930 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
9931 return;
9932 case 0x1d: /* SCVTF */
9933 case 0x5d: /* UCVTF */
9934 {
9935 bool is_signed = (opcode == 0x1d);
9936 if (!fp_access_check(s)) {
9937 return;
9938 }
9939 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
9940 return;
9941 }
9942 case 0x3d: /* FRECPE */
9943 case 0x3f: /* FRECPX */
9944 case 0x7d: /* FRSQRTE */
9945 if (!fp_access_check(s)) {
9946 return;
9947 }
9948 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
9949 return;
9950 case 0x1a: /* FCVTNS */
9951 case 0x1b: /* FCVTMS */
9952 case 0x3a: /* FCVTPS */
9953 case 0x3b: /* FCVTZS */
9954 case 0x5a: /* FCVTNU */
9955 case 0x5b: /* FCVTMU */
9956 case 0x7a: /* FCVTPU */
9957 case 0x7b: /* FCVTZU */
9958 is_fcvt = true;
9959 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
9960 break;
9961 case 0x1c: /* FCVTAS */
9962 case 0x5c: /* FCVTAU */
9963 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
9964 is_fcvt = true;
9965 rmode = FPROUNDING_TIEAWAY;
9966 break;
9967 case 0x56: /* FCVTXN, FCVTXN2 */
9968 if (size == 2) {
9969 unallocated_encoding(s);
9970 return;
9971 }
9972 if (!fp_access_check(s)) {
9973 return;
9974 }
9975 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
9976 return;
9977 default:
9978 unallocated_encoding(s);
9979 return;
9980 }
9981 break;
9982 default:
9983 unallocated_encoding(s);
9984 return;
9985 }
9986
9987 if (!fp_access_check(s)) {
9988 return;
9989 }
9990
9991 if (is_fcvt) {
9992 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
9993 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9994 } else {
9995 tcg_fpstatus = NULL;
9996 tcg_rmode = NULL;
9997 }
9998
9999 if (size == 3) {
10000 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10001 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10002
10003 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10004 write_fp_dreg(s, rd, tcg_rd);
10005 } else {
10006 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10007 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10008
10009 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10010
10011 switch (opcode) {
10012 case 0x7: /* SQABS, SQNEG */
10013 {
10014 NeonGenOneOpEnvFn *genfn;
10015 static NeonGenOneOpEnvFn * const fns[3][2] = {
10016 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10017 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10018 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10019 };
10020 genfn = fns[size][u];
10021 genfn(tcg_rd, tcg_env, tcg_rn);
10022 break;
10023 }
10024 case 0x1a: /* FCVTNS */
10025 case 0x1b: /* FCVTMS */
10026 case 0x1c: /* FCVTAS */
10027 case 0x3a: /* FCVTPS */
10028 case 0x3b: /* FCVTZS */
10029 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10030 tcg_fpstatus);
10031 break;
10032 case 0x5a: /* FCVTNU */
10033 case 0x5b: /* FCVTMU */
10034 case 0x5c: /* FCVTAU */
10035 case 0x7a: /* FCVTPU */
10036 case 0x7b: /* FCVTZU */
10037 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10038 tcg_fpstatus);
10039 break;
10040 default:
10041 g_assert_not_reached();
10042 }
10043
10044 write_fp_sreg(s, rd, tcg_rd);
10045 }
10046
10047 if (is_fcvt) {
10048 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
10049 }
10050 }
10051
10052 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10053 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10054 int immh, int immb, int opcode, int rn, int rd)
10055 {
10056 int size = 32 - clz32(immh) - 1;
10057 int immhb = immh << 3 | immb;
10058 int shift = 2 * (8 << size) - immhb;
10059 GVecGen2iFn *gvec_fn;
10060
10061 if (extract32(immh, 3, 1) && !is_q) {
10062 unallocated_encoding(s);
10063 return;
10064 }
10065 tcg_debug_assert(size <= 3);
10066
10067 if (!fp_access_check(s)) {
10068 return;
10069 }
10070
10071 switch (opcode) {
10072 case 0x02: /* SSRA / USRA (accumulate) */
10073 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10074 break;
10075
10076 case 0x08: /* SRI */
10077 gvec_fn = gen_gvec_sri;
10078 break;
10079
10080 case 0x00: /* SSHR / USHR */
10081 if (is_u) {
10082 if (shift == 8 << size) {
10083 /* Shift count the same size as element size produces zero. */
10084 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10085 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10086 return;
10087 }
10088 gvec_fn = tcg_gen_gvec_shri;
10089 } else {
10090 /* Shift count the same size as element size produces all sign. */
10091 if (shift == 8 << size) {
10092 shift -= 1;
10093 }
10094 gvec_fn = tcg_gen_gvec_sari;
10095 }
10096 break;
10097
10098 case 0x04: /* SRSHR / URSHR (rounding) */
10099 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10100 break;
10101
10102 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10103 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10104 break;
10105
10106 default:
10107 g_assert_not_reached();
10108 }
10109
10110 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10111 }
10112
10113 /* SHL/SLI - Vector shift left */
10114 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10115 int immh, int immb, int opcode, int rn, int rd)
10116 {
10117 int size = 32 - clz32(immh) - 1;
10118 int immhb = immh << 3 | immb;
10119 int shift = immhb - (8 << size);
10120
10121 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10122 assert(size >= 0 && size <= 3);
10123
10124 if (extract32(immh, 3, 1) && !is_q) {
10125 unallocated_encoding(s);
10126 return;
10127 }
10128
10129 if (!fp_access_check(s)) {
10130 return;
10131 }
10132
10133 if (insert) {
10134 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10135 } else {
10136 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10137 }
10138 }
10139
10140 /* USHLL/SHLL - Vector shift left with widening */
10141 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10142 int immh, int immb, int opcode, int rn, int rd)
10143 {
10144 int size = 32 - clz32(immh) - 1;
10145 int immhb = immh << 3 | immb;
10146 int shift = immhb - (8 << size);
10147 int dsize = 64;
10148 int esize = 8 << size;
10149 int elements = dsize/esize;
10150 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10151 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10152 int i;
10153
10154 if (size >= 3) {
10155 unallocated_encoding(s);
10156 return;
10157 }
10158
10159 if (!fp_access_check(s)) {
10160 return;
10161 }
10162
10163 /* For the LL variants the store is larger than the load,
10164 * so if rd == rn we would overwrite parts of our input.
10165 * So load everything right now and use shifts in the main loop.
10166 */
10167 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10168
10169 for (i = 0; i < elements; i++) {
10170 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10171 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10172 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10173 write_vec_element(s, tcg_rd, rd, i, size + 1);
10174 }
10175 }
10176
10177 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10178 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10179 int immh, int immb, int opcode, int rn, int rd)
10180 {
10181 int immhb = immh << 3 | immb;
10182 int size = 32 - clz32(immh) - 1;
10183 int dsize = 64;
10184 int esize = 8 << size;
10185 int elements = dsize/esize;
10186 int shift = (2 * esize) - immhb;
10187 bool round = extract32(opcode, 0, 1);
10188 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10189 TCGv_i64 tcg_round;
10190 int i;
10191
10192 if (extract32(immh, 3, 1)) {
10193 unallocated_encoding(s);
10194 return;
10195 }
10196
10197 if (!fp_access_check(s)) {
10198 return;
10199 }
10200
10201 tcg_rn = tcg_temp_new_i64();
10202 tcg_rd = tcg_temp_new_i64();
10203 tcg_final = tcg_temp_new_i64();
10204 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10205
10206 if (round) {
10207 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10208 } else {
10209 tcg_round = NULL;
10210 }
10211
10212 for (i = 0; i < elements; i++) {
10213 read_vec_element(s, tcg_rn, rn, i, size+1);
10214 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10215 false, true, size+1, shift);
10216
10217 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10218 }
10219
10220 if (!is_q) {
10221 write_vec_element(s, tcg_final, rd, 0, MO_64);
10222 } else {
10223 write_vec_element(s, tcg_final, rd, 1, MO_64);
10224 }
10225
10226 clear_vec_high(s, is_q, rd);
10227 }
10228
10229
10230 /* AdvSIMD shift by immediate
10231 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10232 * +---+---+---+-------------+------+------+--------+---+------+------+
10233 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10234 * +---+---+---+-------------+------+------+--------+---+------+------+
10235 */
10236 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10237 {
10238 int rd = extract32(insn, 0, 5);
10239 int rn = extract32(insn, 5, 5);
10240 int opcode = extract32(insn, 11, 5);
10241 int immb = extract32(insn, 16, 3);
10242 int immh = extract32(insn, 19, 4);
10243 bool is_u = extract32(insn, 29, 1);
10244 bool is_q = extract32(insn, 30, 1);
10245
10246 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10247 assert(immh != 0);
10248
10249 switch (opcode) {
10250 case 0x08: /* SRI */
10251 if (!is_u) {
10252 unallocated_encoding(s);
10253 return;
10254 }
10255 /* fall through */
10256 case 0x00: /* SSHR / USHR */
10257 case 0x02: /* SSRA / USRA (accumulate) */
10258 case 0x04: /* SRSHR / URSHR (rounding) */
10259 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10260 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10261 break;
10262 case 0x0a: /* SHL / SLI */
10263 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10264 break;
10265 case 0x10: /* SHRN */
10266 case 0x11: /* RSHRN / SQRSHRUN */
10267 if (is_u) {
10268 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10269 opcode, rn, rd);
10270 } else {
10271 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10272 }
10273 break;
10274 case 0x12: /* SQSHRN / UQSHRN */
10275 case 0x13: /* SQRSHRN / UQRSHRN */
10276 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10277 opcode, rn, rd);
10278 break;
10279 case 0x14: /* SSHLL / USHLL */
10280 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10281 break;
10282 case 0x1c: /* SCVTF / UCVTF */
10283 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10284 opcode, rn, rd);
10285 break;
10286 case 0xc: /* SQSHLU */
10287 if (!is_u) {
10288 unallocated_encoding(s);
10289 return;
10290 }
10291 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10292 break;
10293 case 0xe: /* SQSHL, UQSHL */
10294 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10295 break;
10296 case 0x1f: /* FCVTZS/ FCVTZU */
10297 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10298 return;
10299 default:
10300 unallocated_encoding(s);
10301 return;
10302 }
10303 }
10304
10305 /* Generate code to do a "long" addition or subtraction, ie one done in
10306 * TCGv_i64 on vector lanes twice the width specified by size.
10307 */
10308 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10309 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10310 {
10311 static NeonGenTwo64OpFn * const fns[3][2] = {
10312 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10313 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10314 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10315 };
10316 NeonGenTwo64OpFn *genfn;
10317 assert(size < 3);
10318
10319 genfn = fns[size][is_sub];
10320 genfn(tcg_res, tcg_op1, tcg_op2);
10321 }
10322
10323 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10324 int opcode, int rd, int rn, int rm)
10325 {
10326 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10327 TCGv_i64 tcg_res[2];
10328 int pass, accop;
10329
10330 tcg_res[0] = tcg_temp_new_i64();
10331 tcg_res[1] = tcg_temp_new_i64();
10332
10333 /* Does this op do an adding accumulate, a subtracting accumulate,
10334 * or no accumulate at all?
10335 */
10336 switch (opcode) {
10337 case 5:
10338 case 8:
10339 case 9:
10340 accop = 1;
10341 break;
10342 case 10:
10343 case 11:
10344 accop = -1;
10345 break;
10346 default:
10347 accop = 0;
10348 break;
10349 }
10350
10351 if (accop != 0) {
10352 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10353 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10354 }
10355
10356 /* size == 2 means two 32x32->64 operations; this is worth special
10357 * casing because we can generally handle it inline.
10358 */
10359 if (size == 2) {
10360 for (pass = 0; pass < 2; pass++) {
10361 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10362 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10363 TCGv_i64 tcg_passres;
10364 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10365
10366 int elt = pass + is_q * 2;
10367
10368 read_vec_element(s, tcg_op1, rn, elt, memop);
10369 read_vec_element(s, tcg_op2, rm, elt, memop);
10370
10371 if (accop == 0) {
10372 tcg_passres = tcg_res[pass];
10373 } else {
10374 tcg_passres = tcg_temp_new_i64();
10375 }
10376
10377 switch (opcode) {
10378 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10379 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10380 break;
10381 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10382 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10383 break;
10384 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10385 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10386 {
10387 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10388 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10389
10390 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10391 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10392 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10393 tcg_passres,
10394 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10395 break;
10396 }
10397 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10398 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10399 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10400 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10401 break;
10402 case 9: /* SQDMLAL, SQDMLAL2 */
10403 case 11: /* SQDMLSL, SQDMLSL2 */
10404 case 13: /* SQDMULL, SQDMULL2 */
10405 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10406 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
10407 tcg_passres, tcg_passres);
10408 break;
10409 default:
10410 g_assert_not_reached();
10411 }
10412
10413 if (opcode == 9 || opcode == 11) {
10414 /* saturating accumulate ops */
10415 if (accop < 0) {
10416 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10417 }
10418 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
10419 tcg_res[pass], tcg_passres);
10420 } else if (accop > 0) {
10421 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10422 } else if (accop < 0) {
10423 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10424 }
10425 }
10426 } else {
10427 /* size 0 or 1, generally helper functions */
10428 for (pass = 0; pass < 2; pass++) {
10429 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10430 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10431 TCGv_i64 tcg_passres;
10432 int elt = pass + is_q * 2;
10433
10434 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10435 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10436
10437 if (accop == 0) {
10438 tcg_passres = tcg_res[pass];
10439 } else {
10440 tcg_passres = tcg_temp_new_i64();
10441 }
10442
10443 switch (opcode) {
10444 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10445 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10446 {
10447 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10448 static NeonGenWidenFn * const widenfns[2][2] = {
10449 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10450 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10451 };
10452 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10453
10454 widenfn(tcg_op2_64, tcg_op2);
10455 widenfn(tcg_passres, tcg_op1);
10456 gen_neon_addl(size, (opcode == 2), tcg_passres,
10457 tcg_passres, tcg_op2_64);
10458 break;
10459 }
10460 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10461 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10462 if (size == 0) {
10463 if (is_u) {
10464 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
10465 } else {
10466 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
10467 }
10468 } else {
10469 if (is_u) {
10470 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
10471 } else {
10472 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
10473 }
10474 }
10475 break;
10476 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10477 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10478 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10479 if (size == 0) {
10480 if (is_u) {
10481 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
10482 } else {
10483 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
10484 }
10485 } else {
10486 if (is_u) {
10487 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
10488 } else {
10489 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10490 }
10491 }
10492 break;
10493 case 9: /* SQDMLAL, SQDMLAL2 */
10494 case 11: /* SQDMLSL, SQDMLSL2 */
10495 case 13: /* SQDMULL, SQDMULL2 */
10496 assert(size == 1);
10497 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
10498 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
10499 tcg_passres, tcg_passres);
10500 break;
10501 default:
10502 g_assert_not_reached();
10503 }
10504
10505 if (accop != 0) {
10506 if (opcode == 9 || opcode == 11) {
10507 /* saturating accumulate ops */
10508 if (accop < 0) {
10509 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10510 }
10511 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
10512 tcg_res[pass],
10513 tcg_passres);
10514 } else {
10515 gen_neon_addl(size, (accop < 0), tcg_res[pass],
10516 tcg_res[pass], tcg_passres);
10517 }
10518 }
10519 }
10520 }
10521
10522 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
10523 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
10524 }
10525
10526 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
10527 int opcode, int rd, int rn, int rm)
10528 {
10529 TCGv_i64 tcg_res[2];
10530 int part = is_q ? 2 : 0;
10531 int pass;
10532
10533 for (pass = 0; pass < 2; pass++) {
10534 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10535 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10536 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
10537 static NeonGenWidenFn * const widenfns[3][2] = {
10538 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10539 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
10540 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
10541 };
10542 NeonGenWidenFn *widenfn = widenfns[size][is_u];
10543
10544 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10545 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
10546 widenfn(tcg_op2_wide, tcg_op2);
10547 tcg_res[pass] = tcg_temp_new_i64();
10548 gen_neon_addl(size, (opcode == 3),
10549 tcg_res[pass], tcg_op1, tcg_op2_wide);
10550 }
10551
10552 for (pass = 0; pass < 2; pass++) {
10553 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10554 }
10555 }
10556
10557 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
10558 {
10559 tcg_gen_addi_i64(in, in, 1U << 31);
10560 tcg_gen_extrh_i64_i32(res, in);
10561 }
10562
10563 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
10564 int opcode, int rd, int rn, int rm)
10565 {
10566 TCGv_i32 tcg_res[2];
10567 int part = is_q ? 2 : 0;
10568 int pass;
10569
10570 for (pass = 0; pass < 2; pass++) {
10571 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10572 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10573 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
10574 static NeonGenNarrowFn * const narrowfns[3][2] = {
10575 { gen_helper_neon_narrow_high_u8,
10576 gen_helper_neon_narrow_round_high_u8 },
10577 { gen_helper_neon_narrow_high_u16,
10578 gen_helper_neon_narrow_round_high_u16 },
10579 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
10580 };
10581 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
10582
10583 read_vec_element(s, tcg_op1, rn, pass, MO_64);
10584 read_vec_element(s, tcg_op2, rm, pass, MO_64);
10585
10586 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
10587
10588 tcg_res[pass] = tcg_temp_new_i32();
10589 gennarrow(tcg_res[pass], tcg_wideres);
10590 }
10591
10592 for (pass = 0; pass < 2; pass++) {
10593 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
10594 }
10595 clear_vec_high(s, is_q, rd);
10596 }
10597
10598 /* AdvSIMD three different
10599 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
10600 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10601 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
10602 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
10603 */
10604 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
10605 {
10606 /* Instructions in this group fall into three basic classes
10607 * (in each case with the operation working on each element in
10608 * the input vectors):
10609 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
10610 * 128 bit input)
10611 * (2) wide 64 x 128 -> 128
10612 * (3) narrowing 128 x 128 -> 64
10613 * Here we do initial decode, catch unallocated cases and
10614 * dispatch to separate functions for each class.
10615 */
10616 int is_q = extract32(insn, 30, 1);
10617 int is_u = extract32(insn, 29, 1);
10618 int size = extract32(insn, 22, 2);
10619 int opcode = extract32(insn, 12, 4);
10620 int rm = extract32(insn, 16, 5);
10621 int rn = extract32(insn, 5, 5);
10622 int rd = extract32(insn, 0, 5);
10623
10624 switch (opcode) {
10625 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
10626 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
10627 /* 64 x 128 -> 128 */
10628 if (size == 3) {
10629 unallocated_encoding(s);
10630 return;
10631 }
10632 if (!fp_access_check(s)) {
10633 return;
10634 }
10635 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
10636 break;
10637 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
10638 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
10639 /* 128 x 128 -> 64 */
10640 if (size == 3) {
10641 unallocated_encoding(s);
10642 return;
10643 }
10644 if (!fp_access_check(s)) {
10645 return;
10646 }
10647 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
10648 break;
10649 case 14: /* PMULL, PMULL2 */
10650 if (is_u) {
10651 unallocated_encoding(s);
10652 return;
10653 }
10654 switch (size) {
10655 case 0: /* PMULL.P8 */
10656 if (!fp_access_check(s)) {
10657 return;
10658 }
10659 /* The Q field specifies lo/hi half input for this insn. */
10660 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10661 gen_helper_neon_pmull_h);
10662 break;
10663
10664 case 3: /* PMULL.P64 */
10665 if (!dc_isar_feature(aa64_pmull, s)) {
10666 unallocated_encoding(s);
10667 return;
10668 }
10669 if (!fp_access_check(s)) {
10670 return;
10671 }
10672 /* The Q field specifies lo/hi half input for this insn. */
10673 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
10674 gen_helper_gvec_pmull_q);
10675 break;
10676
10677 default:
10678 unallocated_encoding(s);
10679 break;
10680 }
10681 return;
10682 case 9: /* SQDMLAL, SQDMLAL2 */
10683 case 11: /* SQDMLSL, SQDMLSL2 */
10684 case 13: /* SQDMULL, SQDMULL2 */
10685 if (is_u || size == 0) {
10686 unallocated_encoding(s);
10687 return;
10688 }
10689 /* fall through */
10690 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10691 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10692 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10693 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10694 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10695 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10696 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
10697 /* 64 x 64 -> 128 */
10698 if (size == 3) {
10699 unallocated_encoding(s);
10700 return;
10701 }
10702 if (!fp_access_check(s)) {
10703 return;
10704 }
10705
10706 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
10707 break;
10708 default:
10709 /* opcode 15 not allocated */
10710 unallocated_encoding(s);
10711 break;
10712 }
10713 }
10714
10715 /* Logic op (opcode == 3) subgroup of C3.6.16. */
10716 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
10717 {
10718 int rd = extract32(insn, 0, 5);
10719 int rn = extract32(insn, 5, 5);
10720 int rm = extract32(insn, 16, 5);
10721 int size = extract32(insn, 22, 2);
10722 bool is_u = extract32(insn, 29, 1);
10723 bool is_q = extract32(insn, 30, 1);
10724
10725 if (!fp_access_check(s)) {
10726 return;
10727 }
10728
10729 switch (size + 4 * is_u) {
10730 case 0: /* AND */
10731 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
10732 return;
10733 case 1: /* BIC */
10734 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
10735 return;
10736 case 2: /* ORR */
10737 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
10738 return;
10739 case 3: /* ORN */
10740 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
10741 return;
10742 case 4: /* EOR */
10743 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
10744 return;
10745
10746 case 5: /* BSL bitwise select */
10747 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
10748 return;
10749 case 6: /* BIT, bitwise insert if true */
10750 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
10751 return;
10752 case 7: /* BIF, bitwise insert if false */
10753 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
10754 return;
10755
10756 default:
10757 g_assert_not_reached();
10758 }
10759 }
10760
10761 /* Pairwise op subgroup of C3.6.16.
10762 *
10763 * This is called directly or via the handle_3same_float for float pairwise
10764 * operations where the opcode and size are calculated differently.
10765 */
10766 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
10767 int size, int rn, int rm, int rd)
10768 {
10769 TCGv_ptr fpst;
10770 int pass;
10771
10772 /* Floating point operations need fpst */
10773 if (opcode >= 0x58) {
10774 fpst = fpstatus_ptr(FPST_FPCR);
10775 } else {
10776 fpst = NULL;
10777 }
10778
10779 if (!fp_access_check(s)) {
10780 return;
10781 }
10782
10783 /* These operations work on the concatenated rm:rn, with each pair of
10784 * adjacent elements being operated on to produce an element in the result.
10785 */
10786 if (size == 3) {
10787 TCGv_i64 tcg_res[2];
10788
10789 for (pass = 0; pass < 2; pass++) {
10790 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10791 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10792 int passreg = (pass == 0) ? rn : rm;
10793
10794 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
10795 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
10796 tcg_res[pass] = tcg_temp_new_i64();
10797
10798 switch (opcode) {
10799 case 0x17: /* ADDP */
10800 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
10801 break;
10802 case 0x58: /* FMAXNMP */
10803 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10804 break;
10805 case 0x5a: /* FADDP */
10806 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10807 break;
10808 case 0x5e: /* FMAXP */
10809 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10810 break;
10811 case 0x78: /* FMINNMP */
10812 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10813 break;
10814 case 0x7e: /* FMINP */
10815 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10816 break;
10817 default:
10818 g_assert_not_reached();
10819 }
10820 }
10821
10822 for (pass = 0; pass < 2; pass++) {
10823 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10824 }
10825 } else {
10826 int maxpass = is_q ? 4 : 2;
10827 TCGv_i32 tcg_res[4];
10828
10829 for (pass = 0; pass < maxpass; pass++) {
10830 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10831 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10832 NeonGenTwoOpFn *genfn = NULL;
10833 int passreg = pass < (maxpass / 2) ? rn : rm;
10834 int passelt = (is_q && (pass & 1)) ? 2 : 0;
10835
10836 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
10837 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
10838 tcg_res[pass] = tcg_temp_new_i32();
10839
10840 switch (opcode) {
10841 case 0x17: /* ADDP */
10842 {
10843 static NeonGenTwoOpFn * const fns[3] = {
10844 gen_helper_neon_padd_u8,
10845 gen_helper_neon_padd_u16,
10846 tcg_gen_add_i32,
10847 };
10848 genfn = fns[size];
10849 break;
10850 }
10851 case 0x14: /* SMAXP, UMAXP */
10852 {
10853 static NeonGenTwoOpFn * const fns[3][2] = {
10854 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
10855 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
10856 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
10857 };
10858 genfn = fns[size][u];
10859 break;
10860 }
10861 case 0x15: /* SMINP, UMINP */
10862 {
10863 static NeonGenTwoOpFn * const fns[3][2] = {
10864 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
10865 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
10866 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
10867 };
10868 genfn = fns[size][u];
10869 break;
10870 }
10871 /* The FP operations are all on single floats (32 bit) */
10872 case 0x58: /* FMAXNMP */
10873 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10874 break;
10875 case 0x5a: /* FADDP */
10876 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10877 break;
10878 case 0x5e: /* FMAXP */
10879 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10880 break;
10881 case 0x78: /* FMINNMP */
10882 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10883 break;
10884 case 0x7e: /* FMINP */
10885 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
10886 break;
10887 default:
10888 g_assert_not_reached();
10889 }
10890
10891 /* FP ops called directly, otherwise call now */
10892 if (genfn) {
10893 genfn(tcg_res[pass], tcg_op1, tcg_op2);
10894 }
10895 }
10896
10897 for (pass = 0; pass < maxpass; pass++) {
10898 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
10899 }
10900 clear_vec_high(s, is_q, rd);
10901 }
10902 }
10903
10904 /* Floating point op subgroup of C3.6.16. */
10905 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
10906 {
10907 /* For floating point ops, the U, size[1] and opcode bits
10908 * together indicate the operation. size[0] indicates single
10909 * or double.
10910 */
10911 int fpopcode = extract32(insn, 11, 5)
10912 | (extract32(insn, 23, 1) << 5)
10913 | (extract32(insn, 29, 1) << 6);
10914 int is_q = extract32(insn, 30, 1);
10915 int size = extract32(insn, 22, 1);
10916 int rm = extract32(insn, 16, 5);
10917 int rn = extract32(insn, 5, 5);
10918 int rd = extract32(insn, 0, 5);
10919
10920 int datasize = is_q ? 128 : 64;
10921 int esize = 32 << size;
10922 int elements = datasize / esize;
10923
10924 if (size == 1 && !is_q) {
10925 unallocated_encoding(s);
10926 return;
10927 }
10928
10929 switch (fpopcode) {
10930 case 0x58: /* FMAXNMP */
10931 case 0x5a: /* FADDP */
10932 case 0x5e: /* FMAXP */
10933 case 0x78: /* FMINNMP */
10934 case 0x7e: /* FMINP */
10935 if (size && !is_q) {
10936 unallocated_encoding(s);
10937 return;
10938 }
10939 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
10940 rn, rm, rd);
10941 return;
10942 case 0x1b: /* FMULX */
10943 case 0x1f: /* FRECPS */
10944 case 0x3f: /* FRSQRTS */
10945 case 0x5d: /* FACGE */
10946 case 0x7d: /* FACGT */
10947 case 0x19: /* FMLA */
10948 case 0x39: /* FMLS */
10949 case 0x18: /* FMAXNM */
10950 case 0x1a: /* FADD */
10951 case 0x1c: /* FCMEQ */
10952 case 0x1e: /* FMAX */
10953 case 0x38: /* FMINNM */
10954 case 0x3a: /* FSUB */
10955 case 0x3e: /* FMIN */
10956 case 0x5b: /* FMUL */
10957 case 0x5c: /* FCMGE */
10958 case 0x5f: /* FDIV */
10959 case 0x7a: /* FABD */
10960 case 0x7c: /* FCMGT */
10961 if (!fp_access_check(s)) {
10962 return;
10963 }
10964 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
10965 return;
10966
10967 case 0x1d: /* FMLAL */
10968 case 0x3d: /* FMLSL */
10969 case 0x59: /* FMLAL2 */
10970 case 0x79: /* FMLSL2 */
10971 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
10972 unallocated_encoding(s);
10973 return;
10974 }
10975 if (fp_access_check(s)) {
10976 int is_s = extract32(insn, 23, 1);
10977 int is_2 = extract32(insn, 29, 1);
10978 int data = (is_2 << 1) | is_s;
10979 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
10980 vec_full_reg_offset(s, rn),
10981 vec_full_reg_offset(s, rm), tcg_env,
10982 is_q ? 16 : 8, vec_full_reg_size(s),
10983 data, gen_helper_gvec_fmlal_a64);
10984 }
10985 return;
10986
10987 default:
10988 unallocated_encoding(s);
10989 return;
10990 }
10991 }
10992
10993 /* Integer op subgroup of C3.6.16. */
10994 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
10995 {
10996 int is_q = extract32(insn, 30, 1);
10997 int u = extract32(insn, 29, 1);
10998 int size = extract32(insn, 22, 2);
10999 int opcode = extract32(insn, 11, 5);
11000 int rm = extract32(insn, 16, 5);
11001 int rn = extract32(insn, 5, 5);
11002 int rd = extract32(insn, 0, 5);
11003 int pass;
11004 TCGCond cond;
11005
11006 switch (opcode) {
11007 case 0x13: /* MUL, PMUL */
11008 if (u && size != 0) {
11009 unallocated_encoding(s);
11010 return;
11011 }
11012 /* fall through */
11013 case 0x0: /* SHADD, UHADD */
11014 case 0x2: /* SRHADD, URHADD */
11015 case 0x4: /* SHSUB, UHSUB */
11016 case 0xc: /* SMAX, UMAX */
11017 case 0xd: /* SMIN, UMIN */
11018 case 0xe: /* SABD, UABD */
11019 case 0xf: /* SABA, UABA */
11020 case 0x12: /* MLA, MLS */
11021 if (size == 3) {
11022 unallocated_encoding(s);
11023 return;
11024 }
11025 break;
11026 case 0x16: /* SQDMULH, SQRDMULH */
11027 if (size == 0 || size == 3) {
11028 unallocated_encoding(s);
11029 return;
11030 }
11031 break;
11032 default:
11033 if (size == 3 && !is_q) {
11034 unallocated_encoding(s);
11035 return;
11036 }
11037 break;
11038 }
11039
11040 if (!fp_access_check(s)) {
11041 return;
11042 }
11043
11044 switch (opcode) {
11045 case 0x01: /* SQADD, UQADD */
11046 if (u) {
11047 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11048 } else {
11049 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11050 }
11051 return;
11052 case 0x05: /* SQSUB, UQSUB */
11053 if (u) {
11054 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11055 } else {
11056 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11057 }
11058 return;
11059 case 0x08: /* SSHL, USHL */
11060 if (u) {
11061 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11062 } else {
11063 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11064 }
11065 return;
11066 case 0x0c: /* SMAX, UMAX */
11067 if (u) {
11068 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11069 } else {
11070 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11071 }
11072 return;
11073 case 0x0d: /* SMIN, UMIN */
11074 if (u) {
11075 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11076 } else {
11077 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11078 }
11079 return;
11080 case 0xe: /* SABD, UABD */
11081 if (u) {
11082 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11083 } else {
11084 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11085 }
11086 return;
11087 case 0xf: /* SABA, UABA */
11088 if (u) {
11089 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11090 } else {
11091 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11092 }
11093 return;
11094 case 0x10: /* ADD, SUB */
11095 if (u) {
11096 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11097 } else {
11098 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11099 }
11100 return;
11101 case 0x13: /* MUL, PMUL */
11102 if (!u) { /* MUL */
11103 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11104 } else { /* PMUL */
11105 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11106 }
11107 return;
11108 case 0x12: /* MLA, MLS */
11109 if (u) {
11110 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11111 } else {
11112 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11113 }
11114 return;
11115 case 0x16: /* SQDMULH, SQRDMULH */
11116 {
11117 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11118 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11119 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11120 };
11121 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11122 }
11123 return;
11124 case 0x11:
11125 if (!u) { /* CMTST */
11126 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11127 return;
11128 }
11129 /* else CMEQ */
11130 cond = TCG_COND_EQ;
11131 goto do_gvec_cmp;
11132 case 0x06: /* CMGT, CMHI */
11133 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11134 goto do_gvec_cmp;
11135 case 0x07: /* CMGE, CMHS */
11136 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11137 do_gvec_cmp:
11138 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11139 vec_full_reg_offset(s, rn),
11140 vec_full_reg_offset(s, rm),
11141 is_q ? 16 : 8, vec_full_reg_size(s));
11142 return;
11143 }
11144
11145 if (size == 3) {
11146 assert(is_q);
11147 for (pass = 0; pass < 2; pass++) {
11148 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11149 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11150 TCGv_i64 tcg_res = tcg_temp_new_i64();
11151
11152 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11153 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11154
11155 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11156
11157 write_vec_element(s, tcg_res, rd, pass, MO_64);
11158 }
11159 } else {
11160 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11161 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11162 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11163 TCGv_i32 tcg_res = tcg_temp_new_i32();
11164 NeonGenTwoOpFn *genfn = NULL;
11165 NeonGenTwoOpEnvFn *genenvfn = NULL;
11166
11167 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11168 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11169
11170 switch (opcode) {
11171 case 0x0: /* SHADD, UHADD */
11172 {
11173 static NeonGenTwoOpFn * const fns[3][2] = {
11174 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11175 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11176 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11177 };
11178 genfn = fns[size][u];
11179 break;
11180 }
11181 case 0x2: /* SRHADD, URHADD */
11182 {
11183 static NeonGenTwoOpFn * const fns[3][2] = {
11184 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11185 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11186 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11187 };
11188 genfn = fns[size][u];
11189 break;
11190 }
11191 case 0x4: /* SHSUB, UHSUB */
11192 {
11193 static NeonGenTwoOpFn * const fns[3][2] = {
11194 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11195 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11196 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11197 };
11198 genfn = fns[size][u];
11199 break;
11200 }
11201 case 0x9: /* SQSHL, UQSHL */
11202 {
11203 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11204 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11205 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11206 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11207 };
11208 genenvfn = fns[size][u];
11209 break;
11210 }
11211 case 0xa: /* SRSHL, URSHL */
11212 {
11213 static NeonGenTwoOpFn * const fns[3][2] = {
11214 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11215 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11216 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11217 };
11218 genfn = fns[size][u];
11219 break;
11220 }
11221 case 0xb: /* SQRSHL, UQRSHL */
11222 {
11223 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11224 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11225 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11226 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11227 };
11228 genenvfn = fns[size][u];
11229 break;
11230 }
11231 default:
11232 g_assert_not_reached();
11233 }
11234
11235 if (genenvfn) {
11236 genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
11237 } else {
11238 genfn(tcg_res, tcg_op1, tcg_op2);
11239 }
11240
11241 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11242 }
11243 }
11244 clear_vec_high(s, is_q, rd);
11245 }
11246
11247 /* AdvSIMD three same
11248 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11249 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11250 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11251 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11252 */
11253 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11254 {
11255 int opcode = extract32(insn, 11, 5);
11256
11257 switch (opcode) {
11258 case 0x3: /* logic ops */
11259 disas_simd_3same_logic(s, insn);
11260 break;
11261 case 0x17: /* ADDP */
11262 case 0x14: /* SMAXP, UMAXP */
11263 case 0x15: /* SMINP, UMINP */
11264 {
11265 /* Pairwise operations */
11266 int is_q = extract32(insn, 30, 1);
11267 int u = extract32(insn, 29, 1);
11268 int size = extract32(insn, 22, 2);
11269 int rm = extract32(insn, 16, 5);
11270 int rn = extract32(insn, 5, 5);
11271 int rd = extract32(insn, 0, 5);
11272 if (opcode == 0x17) {
11273 if (u || (size == 3 && !is_q)) {
11274 unallocated_encoding(s);
11275 return;
11276 }
11277 } else {
11278 if (size == 3) {
11279 unallocated_encoding(s);
11280 return;
11281 }
11282 }
11283 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11284 break;
11285 }
11286 case 0x18 ... 0x31:
11287 /* floating point ops, sz[1] and U are part of opcode */
11288 disas_simd_3same_float(s, insn);
11289 break;
11290 default:
11291 disas_simd_3same_int(s, insn);
11292 break;
11293 }
11294 }
11295
11296 /*
11297 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11298 *
11299 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11300 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11301 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11302 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11303 *
11304 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11305 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11306 *
11307 */
11308 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11309 {
11310 int opcode = extract32(insn, 11, 3);
11311 int u = extract32(insn, 29, 1);
11312 int a = extract32(insn, 23, 1);
11313 int is_q = extract32(insn, 30, 1);
11314 int rm = extract32(insn, 16, 5);
11315 int rn = extract32(insn, 5, 5);
11316 int rd = extract32(insn, 0, 5);
11317 /*
11318 * For these floating point ops, the U, a and opcode bits
11319 * together indicate the operation.
11320 */
11321 int fpopcode = opcode | (a << 3) | (u << 4);
11322 int datasize = is_q ? 128 : 64;
11323 int elements = datasize / 16;
11324 bool pairwise;
11325 TCGv_ptr fpst;
11326 int pass;
11327
11328 switch (fpopcode) {
11329 case 0x0: /* FMAXNM */
11330 case 0x1: /* FMLA */
11331 case 0x2: /* FADD */
11332 case 0x3: /* FMULX */
11333 case 0x4: /* FCMEQ */
11334 case 0x6: /* FMAX */
11335 case 0x7: /* FRECPS */
11336 case 0x8: /* FMINNM */
11337 case 0x9: /* FMLS */
11338 case 0xa: /* FSUB */
11339 case 0xe: /* FMIN */
11340 case 0xf: /* FRSQRTS */
11341 case 0x13: /* FMUL */
11342 case 0x14: /* FCMGE */
11343 case 0x15: /* FACGE */
11344 case 0x17: /* FDIV */
11345 case 0x1a: /* FABD */
11346 case 0x1c: /* FCMGT */
11347 case 0x1d: /* FACGT */
11348 pairwise = false;
11349 break;
11350 case 0x10: /* FMAXNMP */
11351 case 0x12: /* FADDP */
11352 case 0x16: /* FMAXP */
11353 case 0x18: /* FMINNMP */
11354 case 0x1e: /* FMINP */
11355 pairwise = true;
11356 break;
11357 default:
11358 unallocated_encoding(s);
11359 return;
11360 }
11361
11362 if (!dc_isar_feature(aa64_fp16, s)) {
11363 unallocated_encoding(s);
11364 return;
11365 }
11366
11367 if (!fp_access_check(s)) {
11368 return;
11369 }
11370
11371 fpst = fpstatus_ptr(FPST_FPCR_F16);
11372
11373 if (pairwise) {
11374 int maxpass = is_q ? 8 : 4;
11375 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11376 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11377 TCGv_i32 tcg_res[8];
11378
11379 for (pass = 0; pass < maxpass; pass++) {
11380 int passreg = pass < (maxpass / 2) ? rn : rm;
11381 int passelt = (pass << 1) & (maxpass - 1);
11382
11383 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11384 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11385 tcg_res[pass] = tcg_temp_new_i32();
11386
11387 switch (fpopcode) {
11388 case 0x10: /* FMAXNMP */
11389 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11390 fpst);
11391 break;
11392 case 0x12: /* FADDP */
11393 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11394 break;
11395 case 0x16: /* FMAXP */
11396 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11397 break;
11398 case 0x18: /* FMINNMP */
11399 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11400 fpst);
11401 break;
11402 case 0x1e: /* FMINP */
11403 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11404 break;
11405 default:
11406 g_assert_not_reached();
11407 }
11408 }
11409
11410 for (pass = 0; pass < maxpass; pass++) {
11411 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11412 }
11413 } else {
11414 for (pass = 0; pass < elements; pass++) {
11415 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11416 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11417 TCGv_i32 tcg_res = tcg_temp_new_i32();
11418
11419 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
11420 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
11421
11422 switch (fpopcode) {
11423 case 0x0: /* FMAXNM */
11424 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11425 break;
11426 case 0x1: /* FMLA */
11427 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11428 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11429 fpst);
11430 break;
11431 case 0x2: /* FADD */
11432 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
11433 break;
11434 case 0x3: /* FMULX */
11435 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
11436 break;
11437 case 0x4: /* FCMEQ */
11438 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11439 break;
11440 case 0x6: /* FMAX */
11441 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
11442 break;
11443 case 0x7: /* FRECPS */
11444 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11445 break;
11446 case 0x8: /* FMINNM */
11447 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
11448 break;
11449 case 0x9: /* FMLS */
11450 /* As usual for ARM, separate negation for fused multiply-add */
11451 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
11452 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11453 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
11454 fpst);
11455 break;
11456 case 0xa: /* FSUB */
11457 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11458 break;
11459 case 0xe: /* FMIN */
11460 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
11461 break;
11462 case 0xf: /* FRSQRTS */
11463 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11464 break;
11465 case 0x13: /* FMUL */
11466 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
11467 break;
11468 case 0x14: /* FCMGE */
11469 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11470 break;
11471 case 0x15: /* FACGE */
11472 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11473 break;
11474 case 0x17: /* FDIV */
11475 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
11476 break;
11477 case 0x1a: /* FABD */
11478 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
11479 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
11480 break;
11481 case 0x1c: /* FCMGT */
11482 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11483 break;
11484 case 0x1d: /* FACGT */
11485 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
11486 break;
11487 default:
11488 g_assert_not_reached();
11489 }
11490
11491 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
11492 }
11493 }
11494
11495 clear_vec_high(s, is_q, rd);
11496 }
11497
11498 /* AdvSIMD three same extra
11499 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
11500 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11501 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
11502 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
11503 */
11504 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
11505 {
11506 int rd = extract32(insn, 0, 5);
11507 int rn = extract32(insn, 5, 5);
11508 int opcode = extract32(insn, 11, 4);
11509 int rm = extract32(insn, 16, 5);
11510 int size = extract32(insn, 22, 2);
11511 bool u = extract32(insn, 29, 1);
11512 bool is_q = extract32(insn, 30, 1);
11513 bool feature;
11514 int rot;
11515
11516 switch (u * 16 + opcode) {
11517 case 0x10: /* SQRDMLAH (vector) */
11518 case 0x11: /* SQRDMLSH (vector) */
11519 if (size != 1 && size != 2) {
11520 unallocated_encoding(s);
11521 return;
11522 }
11523 feature = dc_isar_feature(aa64_rdm, s);
11524 break;
11525 case 0x02: /* SDOT (vector) */
11526 case 0x12: /* UDOT (vector) */
11527 if (size != MO_32) {
11528 unallocated_encoding(s);
11529 return;
11530 }
11531 feature = dc_isar_feature(aa64_dp, s);
11532 break;
11533 case 0x03: /* USDOT */
11534 if (size != MO_32) {
11535 unallocated_encoding(s);
11536 return;
11537 }
11538 feature = dc_isar_feature(aa64_i8mm, s);
11539 break;
11540 case 0x04: /* SMMLA */
11541 case 0x14: /* UMMLA */
11542 case 0x05: /* USMMLA */
11543 if (!is_q || size != MO_32) {
11544 unallocated_encoding(s);
11545 return;
11546 }
11547 feature = dc_isar_feature(aa64_i8mm, s);
11548 break;
11549 case 0x18: /* FCMLA, #0 */
11550 case 0x19: /* FCMLA, #90 */
11551 case 0x1a: /* FCMLA, #180 */
11552 case 0x1b: /* FCMLA, #270 */
11553 case 0x1c: /* FCADD, #90 */
11554 case 0x1e: /* FCADD, #270 */
11555 if (size == 0
11556 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
11557 || (size == 3 && !is_q)) {
11558 unallocated_encoding(s);
11559 return;
11560 }
11561 feature = dc_isar_feature(aa64_fcma, s);
11562 break;
11563 case 0x1d: /* BFMMLA */
11564 if (size != MO_16 || !is_q) {
11565 unallocated_encoding(s);
11566 return;
11567 }
11568 feature = dc_isar_feature(aa64_bf16, s);
11569 break;
11570 case 0x1f:
11571 switch (size) {
11572 case 1: /* BFDOT */
11573 case 3: /* BFMLAL{B,T} */
11574 feature = dc_isar_feature(aa64_bf16, s);
11575 break;
11576 default:
11577 unallocated_encoding(s);
11578 return;
11579 }
11580 break;
11581 default:
11582 unallocated_encoding(s);
11583 return;
11584 }
11585 if (!feature) {
11586 unallocated_encoding(s);
11587 return;
11588 }
11589 if (!fp_access_check(s)) {
11590 return;
11591 }
11592
11593 switch (opcode) {
11594 case 0x0: /* SQRDMLAH (vector) */
11595 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
11596 return;
11597
11598 case 0x1: /* SQRDMLSH (vector) */
11599 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
11600 return;
11601
11602 case 0x2: /* SDOT / UDOT */
11603 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
11604 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
11605 return;
11606
11607 case 0x3: /* USDOT */
11608 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
11609 return;
11610
11611 case 0x04: /* SMMLA, UMMLA */
11612 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
11613 u ? gen_helper_gvec_ummla_b
11614 : gen_helper_gvec_smmla_b);
11615 return;
11616 case 0x05: /* USMMLA */
11617 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
11618 return;
11619
11620 case 0x8: /* FCMLA, #0 */
11621 case 0x9: /* FCMLA, #90 */
11622 case 0xa: /* FCMLA, #180 */
11623 case 0xb: /* FCMLA, #270 */
11624 rot = extract32(opcode, 0, 2);
11625 switch (size) {
11626 case 1:
11627 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
11628 gen_helper_gvec_fcmlah);
11629 break;
11630 case 2:
11631 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11632 gen_helper_gvec_fcmlas);
11633 break;
11634 case 3:
11635 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
11636 gen_helper_gvec_fcmlad);
11637 break;
11638 default:
11639 g_assert_not_reached();
11640 }
11641 return;
11642
11643 case 0xc: /* FCADD, #90 */
11644 case 0xe: /* FCADD, #270 */
11645 rot = extract32(opcode, 1, 1);
11646 switch (size) {
11647 case 1:
11648 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11649 gen_helper_gvec_fcaddh);
11650 break;
11651 case 2:
11652 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11653 gen_helper_gvec_fcadds);
11654 break;
11655 case 3:
11656 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
11657 gen_helper_gvec_fcaddd);
11658 break;
11659 default:
11660 g_assert_not_reached();
11661 }
11662 return;
11663
11664 case 0xd: /* BFMMLA */
11665 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
11666 return;
11667 case 0xf:
11668 switch (size) {
11669 case 1: /* BFDOT */
11670 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
11671 break;
11672 case 3: /* BFMLAL{B,T} */
11673 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
11674 gen_helper_gvec_bfmlal);
11675 break;
11676 default:
11677 g_assert_not_reached();
11678 }
11679 return;
11680
11681 default:
11682 g_assert_not_reached();
11683 }
11684 }
11685
11686 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
11687 int size, int rn, int rd)
11688 {
11689 /* Handle 2-reg-misc ops which are widening (so each size element
11690 * in the source becomes a 2*size element in the destination.
11691 * The only instruction like this is FCVTL.
11692 */
11693 int pass;
11694
11695 if (size == 3) {
11696 /* 32 -> 64 bit fp conversion */
11697 TCGv_i64 tcg_res[2];
11698 int srcelt = is_q ? 2 : 0;
11699
11700 for (pass = 0; pass < 2; pass++) {
11701 TCGv_i32 tcg_op = tcg_temp_new_i32();
11702 tcg_res[pass] = tcg_temp_new_i64();
11703
11704 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
11705 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
11706 }
11707 for (pass = 0; pass < 2; pass++) {
11708 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11709 }
11710 } else {
11711 /* 16 -> 32 bit fp conversion */
11712 int srcelt = is_q ? 4 : 0;
11713 TCGv_i32 tcg_res[4];
11714 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
11715 TCGv_i32 ahp = get_ahp_flag();
11716
11717 for (pass = 0; pass < 4; pass++) {
11718 tcg_res[pass] = tcg_temp_new_i32();
11719
11720 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
11721 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
11722 fpst, ahp);
11723 }
11724 for (pass = 0; pass < 4; pass++) {
11725 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11726 }
11727 }
11728 }
11729
11730 static void handle_rev(DisasContext *s, int opcode, bool u,
11731 bool is_q, int size, int rn, int rd)
11732 {
11733 int op = (opcode << 1) | u;
11734 int opsz = op + size;
11735 int grp_size = 3 - opsz;
11736 int dsize = is_q ? 128 : 64;
11737 int i;
11738
11739 if (opsz >= 3) {
11740 unallocated_encoding(s);
11741 return;
11742 }
11743
11744 if (!fp_access_check(s)) {
11745 return;
11746 }
11747
11748 if (size == 0) {
11749 /* Special case bytes, use bswap op on each group of elements */
11750 int groups = dsize / (8 << grp_size);
11751
11752 for (i = 0; i < groups; i++) {
11753 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
11754
11755 read_vec_element(s, tcg_tmp, rn, i, grp_size);
11756 switch (grp_size) {
11757 case MO_16:
11758 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11759 break;
11760 case MO_32:
11761 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
11762 break;
11763 case MO_64:
11764 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
11765 break;
11766 default:
11767 g_assert_not_reached();
11768 }
11769 write_vec_element(s, tcg_tmp, rd, i, grp_size);
11770 }
11771 clear_vec_high(s, is_q, rd);
11772 } else {
11773 int revmask = (1 << grp_size) - 1;
11774 int esize = 8 << size;
11775 int elements = dsize / esize;
11776 TCGv_i64 tcg_rn = tcg_temp_new_i64();
11777 TCGv_i64 tcg_rd[2];
11778
11779 for (i = 0; i < 2; i++) {
11780 tcg_rd[i] = tcg_temp_new_i64();
11781 tcg_gen_movi_i64(tcg_rd[i], 0);
11782 }
11783
11784 for (i = 0; i < elements; i++) {
11785 int e_rev = (i & 0xf) ^ revmask;
11786 int w = (e_rev * esize) / 64;
11787 int o = (e_rev * esize) % 64;
11788
11789 read_vec_element(s, tcg_rn, rn, i, size);
11790 tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
11791 }
11792
11793 for (i = 0; i < 2; i++) {
11794 write_vec_element(s, tcg_rd[i], rd, i, MO_64);
11795 }
11796 clear_vec_high(s, true, rd);
11797 }
11798 }
11799
11800 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
11801 bool is_q, int size, int rn, int rd)
11802 {
11803 /* Implement the pairwise operations from 2-misc:
11804 * SADDLP, UADDLP, SADALP, UADALP.
11805 * These all add pairs of elements in the input to produce a
11806 * double-width result element in the output (possibly accumulating).
11807 */
11808 bool accum = (opcode == 0x6);
11809 int maxpass = is_q ? 2 : 1;
11810 int pass;
11811 TCGv_i64 tcg_res[2];
11812
11813 if (size == 2) {
11814 /* 32 + 32 -> 64 op */
11815 MemOp memop = size + (u ? 0 : MO_SIGN);
11816
11817 for (pass = 0; pass < maxpass; pass++) {
11818 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11819 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11820
11821 tcg_res[pass] = tcg_temp_new_i64();
11822
11823 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
11824 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
11825 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11826 if (accum) {
11827 read_vec_element(s, tcg_op1, rd, pass, MO_64);
11828 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
11829 }
11830 }
11831 } else {
11832 for (pass = 0; pass < maxpass; pass++) {
11833 TCGv_i64 tcg_op = tcg_temp_new_i64();
11834 NeonGenOne64OpFn *genfn;
11835 static NeonGenOne64OpFn * const fns[2][2] = {
11836 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
11837 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
11838 };
11839
11840 genfn = fns[size][u];
11841
11842 tcg_res[pass] = tcg_temp_new_i64();
11843
11844 read_vec_element(s, tcg_op, rn, pass, MO_64);
11845 genfn(tcg_res[pass], tcg_op);
11846
11847 if (accum) {
11848 read_vec_element(s, tcg_op, rd, pass, MO_64);
11849 if (size == 0) {
11850 gen_helper_neon_addl_u16(tcg_res[pass],
11851 tcg_res[pass], tcg_op);
11852 } else {
11853 gen_helper_neon_addl_u32(tcg_res[pass],
11854 tcg_res[pass], tcg_op);
11855 }
11856 }
11857 }
11858 }
11859 if (!is_q) {
11860 tcg_res[1] = tcg_constant_i64(0);
11861 }
11862 for (pass = 0; pass < 2; pass++) {
11863 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11864 }
11865 }
11866
11867 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
11868 {
11869 /* Implement SHLL and SHLL2 */
11870 int pass;
11871 int part = is_q ? 2 : 0;
11872 TCGv_i64 tcg_res[2];
11873
11874 for (pass = 0; pass < 2; pass++) {
11875 static NeonGenWidenFn * const widenfns[3] = {
11876 gen_helper_neon_widen_u8,
11877 gen_helper_neon_widen_u16,
11878 tcg_gen_extu_i32_i64,
11879 };
11880 NeonGenWidenFn *widenfn = widenfns[size];
11881 TCGv_i32 tcg_op = tcg_temp_new_i32();
11882
11883 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
11884 tcg_res[pass] = tcg_temp_new_i64();
11885 widenfn(tcg_res[pass], tcg_op);
11886 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
11887 }
11888
11889 for (pass = 0; pass < 2; pass++) {
11890 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11891 }
11892 }
11893
11894 /* AdvSIMD two reg misc
11895 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
11896 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11897 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
11898 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
11899 */
11900 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
11901 {
11902 int size = extract32(insn, 22, 2);
11903 int opcode = extract32(insn, 12, 5);
11904 bool u = extract32(insn, 29, 1);
11905 bool is_q = extract32(insn, 30, 1);
11906 int rn = extract32(insn, 5, 5);
11907 int rd = extract32(insn, 0, 5);
11908 bool need_fpstatus = false;
11909 int rmode = -1;
11910 TCGv_i32 tcg_rmode;
11911 TCGv_ptr tcg_fpstatus;
11912
11913 switch (opcode) {
11914 case 0x0: /* REV64, REV32 */
11915 case 0x1: /* REV16 */
11916 handle_rev(s, opcode, u, is_q, size, rn, rd);
11917 return;
11918 case 0x5: /* CNT, NOT, RBIT */
11919 if (u && size == 0) {
11920 /* NOT */
11921 break;
11922 } else if (u && size == 1) {
11923 /* RBIT */
11924 break;
11925 } else if (!u && size == 0) {
11926 /* CNT */
11927 break;
11928 }
11929 unallocated_encoding(s);
11930 return;
11931 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
11932 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
11933 if (size == 3) {
11934 unallocated_encoding(s);
11935 return;
11936 }
11937 if (!fp_access_check(s)) {
11938 return;
11939 }
11940
11941 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
11942 return;
11943 case 0x4: /* CLS, CLZ */
11944 if (size == 3) {
11945 unallocated_encoding(s);
11946 return;
11947 }
11948 break;
11949 case 0x2: /* SADDLP, UADDLP */
11950 case 0x6: /* SADALP, UADALP */
11951 if (size == 3) {
11952 unallocated_encoding(s);
11953 return;
11954 }
11955 if (!fp_access_check(s)) {
11956 return;
11957 }
11958 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
11959 return;
11960 case 0x13: /* SHLL, SHLL2 */
11961 if (u == 0 || size == 3) {
11962 unallocated_encoding(s);
11963 return;
11964 }
11965 if (!fp_access_check(s)) {
11966 return;
11967 }
11968 handle_shll(s, is_q, size, rn, rd);
11969 return;
11970 case 0xa: /* CMLT */
11971 if (u == 1) {
11972 unallocated_encoding(s);
11973 return;
11974 }
11975 /* fall through */
11976 case 0x8: /* CMGT, CMGE */
11977 case 0x9: /* CMEQ, CMLE */
11978 case 0xb: /* ABS, NEG */
11979 if (size == 3 && !is_q) {
11980 unallocated_encoding(s);
11981 return;
11982 }
11983 break;
11984 case 0x3: /* SUQADD, USQADD */
11985 if (size == 3 && !is_q) {
11986 unallocated_encoding(s);
11987 return;
11988 }
11989 if (!fp_access_check(s)) {
11990 return;
11991 }
11992 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
11993 return;
11994 case 0x7: /* SQABS, SQNEG */
11995 if (size == 3 && !is_q) {
11996 unallocated_encoding(s);
11997 return;
11998 }
11999 break;
12000 case 0xc ... 0xf:
12001 case 0x16 ... 0x1f:
12002 {
12003 /* Floating point: U, size[1] and opcode indicate operation;
12004 * size[0] indicates single or double precision.
12005 */
12006 int is_double = extract32(size, 0, 1);
12007 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12008 size = is_double ? 3 : 2;
12009 switch (opcode) {
12010 case 0x2f: /* FABS */
12011 case 0x6f: /* FNEG */
12012 if (size == 3 && !is_q) {
12013 unallocated_encoding(s);
12014 return;
12015 }
12016 break;
12017 case 0x1d: /* SCVTF */
12018 case 0x5d: /* UCVTF */
12019 {
12020 bool is_signed = (opcode == 0x1d) ? true : false;
12021 int elements = is_double ? 2 : is_q ? 4 : 2;
12022 if (is_double && !is_q) {
12023 unallocated_encoding(s);
12024 return;
12025 }
12026 if (!fp_access_check(s)) {
12027 return;
12028 }
12029 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12030 return;
12031 }
12032 case 0x2c: /* FCMGT (zero) */
12033 case 0x2d: /* FCMEQ (zero) */
12034 case 0x2e: /* FCMLT (zero) */
12035 case 0x6c: /* FCMGE (zero) */
12036 case 0x6d: /* FCMLE (zero) */
12037 if (size == 3 && !is_q) {
12038 unallocated_encoding(s);
12039 return;
12040 }
12041 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12042 return;
12043 case 0x7f: /* FSQRT */
12044 if (size == 3 && !is_q) {
12045 unallocated_encoding(s);
12046 return;
12047 }
12048 break;
12049 case 0x1a: /* FCVTNS */
12050 case 0x1b: /* FCVTMS */
12051 case 0x3a: /* FCVTPS */
12052 case 0x3b: /* FCVTZS */
12053 case 0x5a: /* FCVTNU */
12054 case 0x5b: /* FCVTMU */
12055 case 0x7a: /* FCVTPU */
12056 case 0x7b: /* FCVTZU */
12057 need_fpstatus = true;
12058 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12059 if (size == 3 && !is_q) {
12060 unallocated_encoding(s);
12061 return;
12062 }
12063 break;
12064 case 0x5c: /* FCVTAU */
12065 case 0x1c: /* FCVTAS */
12066 need_fpstatus = true;
12067 rmode = FPROUNDING_TIEAWAY;
12068 if (size == 3 && !is_q) {
12069 unallocated_encoding(s);
12070 return;
12071 }
12072 break;
12073 case 0x3c: /* URECPE */
12074 if (size == 3) {
12075 unallocated_encoding(s);
12076 return;
12077 }
12078 /* fall through */
12079 case 0x3d: /* FRECPE */
12080 case 0x7d: /* FRSQRTE */
12081 if (size == 3 && !is_q) {
12082 unallocated_encoding(s);
12083 return;
12084 }
12085 if (!fp_access_check(s)) {
12086 return;
12087 }
12088 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12089 return;
12090 case 0x56: /* FCVTXN, FCVTXN2 */
12091 if (size == 2) {
12092 unallocated_encoding(s);
12093 return;
12094 }
12095 /* fall through */
12096 case 0x16: /* FCVTN, FCVTN2 */
12097 /* handle_2misc_narrow does a 2*size -> size operation, but these
12098 * instructions encode the source size rather than dest size.
12099 */
12100 if (!fp_access_check(s)) {
12101 return;
12102 }
12103 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12104 return;
12105 case 0x36: /* BFCVTN, BFCVTN2 */
12106 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12107 unallocated_encoding(s);
12108 return;
12109 }
12110 if (!fp_access_check(s)) {
12111 return;
12112 }
12113 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12114 return;
12115 case 0x17: /* FCVTL, FCVTL2 */
12116 if (!fp_access_check(s)) {
12117 return;
12118 }
12119 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12120 return;
12121 case 0x18: /* FRINTN */
12122 case 0x19: /* FRINTM */
12123 case 0x38: /* FRINTP */
12124 case 0x39: /* FRINTZ */
12125 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12126 /* fall through */
12127 case 0x59: /* FRINTX */
12128 case 0x79: /* FRINTI */
12129 need_fpstatus = true;
12130 if (size == 3 && !is_q) {
12131 unallocated_encoding(s);
12132 return;
12133 }
12134 break;
12135 case 0x58: /* FRINTA */
12136 rmode = FPROUNDING_TIEAWAY;
12137 need_fpstatus = true;
12138 if (size == 3 && !is_q) {
12139 unallocated_encoding(s);
12140 return;
12141 }
12142 break;
12143 case 0x7c: /* URSQRTE */
12144 if (size == 3) {
12145 unallocated_encoding(s);
12146 return;
12147 }
12148 break;
12149 case 0x1e: /* FRINT32Z */
12150 case 0x1f: /* FRINT64Z */
12151 rmode = FPROUNDING_ZERO;
12152 /* fall through */
12153 case 0x5e: /* FRINT32X */
12154 case 0x5f: /* FRINT64X */
12155 need_fpstatus = true;
12156 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12157 unallocated_encoding(s);
12158 return;
12159 }
12160 break;
12161 default:
12162 unallocated_encoding(s);
12163 return;
12164 }
12165 break;
12166 }
12167 default:
12168 unallocated_encoding(s);
12169 return;
12170 }
12171
12172 if (!fp_access_check(s)) {
12173 return;
12174 }
12175
12176 if (need_fpstatus || rmode >= 0) {
12177 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12178 } else {
12179 tcg_fpstatus = NULL;
12180 }
12181 if (rmode >= 0) {
12182 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12183 } else {
12184 tcg_rmode = NULL;
12185 }
12186
12187 switch (opcode) {
12188 case 0x5:
12189 if (u && size == 0) { /* NOT */
12190 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12191 return;
12192 }
12193 break;
12194 case 0x8: /* CMGT, CMGE */
12195 if (u) {
12196 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12197 } else {
12198 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12199 }
12200 return;
12201 case 0x9: /* CMEQ, CMLE */
12202 if (u) {
12203 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12204 } else {
12205 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12206 }
12207 return;
12208 case 0xa: /* CMLT */
12209 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12210 return;
12211 case 0xb:
12212 if (u) { /* ABS, NEG */
12213 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12214 } else {
12215 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12216 }
12217 return;
12218 }
12219
12220 if (size == 3) {
12221 /* All 64-bit element operations can be shared with scalar 2misc */
12222 int pass;
12223
12224 /* Coverity claims (size == 3 && !is_q) has been eliminated
12225 * from all paths leading to here.
12226 */
12227 tcg_debug_assert(is_q);
12228 for (pass = 0; pass < 2; pass++) {
12229 TCGv_i64 tcg_op = tcg_temp_new_i64();
12230 TCGv_i64 tcg_res = tcg_temp_new_i64();
12231
12232 read_vec_element(s, tcg_op, rn, pass, MO_64);
12233
12234 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12235 tcg_rmode, tcg_fpstatus);
12236
12237 write_vec_element(s, tcg_res, rd, pass, MO_64);
12238 }
12239 } else {
12240 int pass;
12241
12242 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12243 TCGv_i32 tcg_op = tcg_temp_new_i32();
12244 TCGv_i32 tcg_res = tcg_temp_new_i32();
12245
12246 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12247
12248 if (size == 2) {
12249 /* Special cases for 32 bit elements */
12250 switch (opcode) {
12251 case 0x4: /* CLS */
12252 if (u) {
12253 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12254 } else {
12255 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12256 }
12257 break;
12258 case 0x7: /* SQABS, SQNEG */
12259 if (u) {
12260 gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
12261 } else {
12262 gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
12263 }
12264 break;
12265 case 0x2f: /* FABS */
12266 gen_helper_vfp_abss(tcg_res, tcg_op);
12267 break;
12268 case 0x6f: /* FNEG */
12269 gen_helper_vfp_negs(tcg_res, tcg_op);
12270 break;
12271 case 0x7f: /* FSQRT */
12272 gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
12273 break;
12274 case 0x1a: /* FCVTNS */
12275 case 0x1b: /* FCVTMS */
12276 case 0x1c: /* FCVTAS */
12277 case 0x3a: /* FCVTPS */
12278 case 0x3b: /* FCVTZS */
12279 gen_helper_vfp_tosls(tcg_res, tcg_op,
12280 tcg_constant_i32(0), tcg_fpstatus);
12281 break;
12282 case 0x5a: /* FCVTNU */
12283 case 0x5b: /* FCVTMU */
12284 case 0x5c: /* FCVTAU */
12285 case 0x7a: /* FCVTPU */
12286 case 0x7b: /* FCVTZU */
12287 gen_helper_vfp_touls(tcg_res, tcg_op,
12288 tcg_constant_i32(0), tcg_fpstatus);
12289 break;
12290 case 0x18: /* FRINTN */
12291 case 0x19: /* FRINTM */
12292 case 0x38: /* FRINTP */
12293 case 0x39: /* FRINTZ */
12294 case 0x58: /* FRINTA */
12295 case 0x79: /* FRINTI */
12296 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12297 break;
12298 case 0x59: /* FRINTX */
12299 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12300 break;
12301 case 0x7c: /* URSQRTE */
12302 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12303 break;
12304 case 0x1e: /* FRINT32Z */
12305 case 0x5e: /* FRINT32X */
12306 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12307 break;
12308 case 0x1f: /* FRINT64Z */
12309 case 0x5f: /* FRINT64X */
12310 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12311 break;
12312 default:
12313 g_assert_not_reached();
12314 }
12315 } else {
12316 /* Use helpers for 8 and 16 bit elements */
12317 switch (opcode) {
12318 case 0x5: /* CNT, RBIT */
12319 /* For these two insns size is part of the opcode specifier
12320 * (handled earlier); they always operate on byte elements.
12321 */
12322 if (u) {
12323 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12324 } else {
12325 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12326 }
12327 break;
12328 case 0x7: /* SQABS, SQNEG */
12329 {
12330 NeonGenOneOpEnvFn *genfn;
12331 static NeonGenOneOpEnvFn * const fns[2][2] = {
12332 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12333 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12334 };
12335 genfn = fns[size][u];
12336 genfn(tcg_res, tcg_env, tcg_op);
12337 break;
12338 }
12339 case 0x4: /* CLS, CLZ */
12340 if (u) {
12341 if (size == 0) {
12342 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12343 } else {
12344 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12345 }
12346 } else {
12347 if (size == 0) {
12348 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12349 } else {
12350 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12351 }
12352 }
12353 break;
12354 default:
12355 g_assert_not_reached();
12356 }
12357 }
12358
12359 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12360 }
12361 }
12362 clear_vec_high(s, is_q, rd);
12363
12364 if (tcg_rmode) {
12365 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12366 }
12367 }
12368
12369 /* AdvSIMD [scalar] two register miscellaneous (FP16)
12370 *
12371 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
12372 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12373 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
12374 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
12375 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
12376 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
12377 *
12378 * This actually covers two groups where scalar access is governed by
12379 * bit 28. A bunch of the instructions (float to integral) only exist
12380 * in the vector form and are un-allocated for the scalar decode. Also
12381 * in the scalar decode Q is always 1.
12382 */
12383 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
12384 {
12385 int fpop, opcode, a, u;
12386 int rn, rd;
12387 bool is_q;
12388 bool is_scalar;
12389 bool only_in_vector = false;
12390
12391 int pass;
12392 TCGv_i32 tcg_rmode = NULL;
12393 TCGv_ptr tcg_fpstatus = NULL;
12394 bool need_fpst = true;
12395 int rmode = -1;
12396
12397 if (!dc_isar_feature(aa64_fp16, s)) {
12398 unallocated_encoding(s);
12399 return;
12400 }
12401
12402 rd = extract32(insn, 0, 5);
12403 rn = extract32(insn, 5, 5);
12404
12405 a = extract32(insn, 23, 1);
12406 u = extract32(insn, 29, 1);
12407 is_scalar = extract32(insn, 28, 1);
12408 is_q = extract32(insn, 30, 1);
12409
12410 opcode = extract32(insn, 12, 5);
12411 fpop = deposit32(opcode, 5, 1, a);
12412 fpop = deposit32(fpop, 6, 1, u);
12413
12414 switch (fpop) {
12415 case 0x1d: /* SCVTF */
12416 case 0x5d: /* UCVTF */
12417 {
12418 int elements;
12419
12420 if (is_scalar) {
12421 elements = 1;
12422 } else {
12423 elements = (is_q ? 8 : 4);
12424 }
12425
12426 if (!fp_access_check(s)) {
12427 return;
12428 }
12429 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
12430 return;
12431 }
12432 break;
12433 case 0x2c: /* FCMGT (zero) */
12434 case 0x2d: /* FCMEQ (zero) */
12435 case 0x2e: /* FCMLT (zero) */
12436 case 0x6c: /* FCMGE (zero) */
12437 case 0x6d: /* FCMLE (zero) */
12438 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
12439 return;
12440 case 0x3d: /* FRECPE */
12441 case 0x3f: /* FRECPX */
12442 break;
12443 case 0x18: /* FRINTN */
12444 only_in_vector = true;
12445 rmode = FPROUNDING_TIEEVEN;
12446 break;
12447 case 0x19: /* FRINTM */
12448 only_in_vector = true;
12449 rmode = FPROUNDING_NEGINF;
12450 break;
12451 case 0x38: /* FRINTP */
12452 only_in_vector = true;
12453 rmode = FPROUNDING_POSINF;
12454 break;
12455 case 0x39: /* FRINTZ */
12456 only_in_vector = true;
12457 rmode = FPROUNDING_ZERO;
12458 break;
12459 case 0x58: /* FRINTA */
12460 only_in_vector = true;
12461 rmode = FPROUNDING_TIEAWAY;
12462 break;
12463 case 0x59: /* FRINTX */
12464 case 0x79: /* FRINTI */
12465 only_in_vector = true;
12466 /* current rounding mode */
12467 break;
12468 case 0x1a: /* FCVTNS */
12469 rmode = FPROUNDING_TIEEVEN;
12470 break;
12471 case 0x1b: /* FCVTMS */
12472 rmode = FPROUNDING_NEGINF;
12473 break;
12474 case 0x1c: /* FCVTAS */
12475 rmode = FPROUNDING_TIEAWAY;
12476 break;
12477 case 0x3a: /* FCVTPS */
12478 rmode = FPROUNDING_POSINF;
12479 break;
12480 case 0x3b: /* FCVTZS */
12481 rmode = FPROUNDING_ZERO;
12482 break;
12483 case 0x5a: /* FCVTNU */
12484 rmode = FPROUNDING_TIEEVEN;
12485 break;
12486 case 0x5b: /* FCVTMU */
12487 rmode = FPROUNDING_NEGINF;
12488 break;
12489 case 0x5c: /* FCVTAU */
12490 rmode = FPROUNDING_TIEAWAY;
12491 break;
12492 case 0x7a: /* FCVTPU */
12493 rmode = FPROUNDING_POSINF;
12494 break;
12495 case 0x7b: /* FCVTZU */
12496 rmode = FPROUNDING_ZERO;
12497 break;
12498 case 0x2f: /* FABS */
12499 case 0x6f: /* FNEG */
12500 need_fpst = false;
12501 break;
12502 case 0x7d: /* FRSQRTE */
12503 case 0x7f: /* FSQRT (vector) */
12504 break;
12505 default:
12506 unallocated_encoding(s);
12507 return;
12508 }
12509
12510
12511 /* Check additional constraints for the scalar encoding */
12512 if (is_scalar) {
12513 if (!is_q) {
12514 unallocated_encoding(s);
12515 return;
12516 }
12517 /* FRINTxx is only in the vector form */
12518 if (only_in_vector) {
12519 unallocated_encoding(s);
12520 return;
12521 }
12522 }
12523
12524 if (!fp_access_check(s)) {
12525 return;
12526 }
12527
12528 if (rmode >= 0 || need_fpst) {
12529 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
12530 }
12531
12532 if (rmode >= 0) {
12533 tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
12534 }
12535
12536 if (is_scalar) {
12537 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
12538 TCGv_i32 tcg_res = tcg_temp_new_i32();
12539
12540 switch (fpop) {
12541 case 0x1a: /* FCVTNS */
12542 case 0x1b: /* FCVTMS */
12543 case 0x1c: /* FCVTAS */
12544 case 0x3a: /* FCVTPS */
12545 case 0x3b: /* FCVTZS */
12546 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12547 break;
12548 case 0x3d: /* FRECPE */
12549 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12550 break;
12551 case 0x3f: /* FRECPX */
12552 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
12553 break;
12554 case 0x5a: /* FCVTNU */
12555 case 0x5b: /* FCVTMU */
12556 case 0x5c: /* FCVTAU */
12557 case 0x7a: /* FCVTPU */
12558 case 0x7b: /* FCVTZU */
12559 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12560 break;
12561 case 0x6f: /* FNEG */
12562 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12563 break;
12564 case 0x7d: /* FRSQRTE */
12565 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12566 break;
12567 default:
12568 g_assert_not_reached();
12569 }
12570
12571 /* limit any sign extension going on */
12572 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
12573 write_fp_sreg(s, rd, tcg_res);
12574 } else {
12575 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
12576 TCGv_i32 tcg_op = tcg_temp_new_i32();
12577 TCGv_i32 tcg_res = tcg_temp_new_i32();
12578
12579 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
12580
12581 switch (fpop) {
12582 case 0x1a: /* FCVTNS */
12583 case 0x1b: /* FCVTMS */
12584 case 0x1c: /* FCVTAS */
12585 case 0x3a: /* FCVTPS */
12586 case 0x3b: /* FCVTZS */
12587 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
12588 break;
12589 case 0x3d: /* FRECPE */
12590 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
12591 break;
12592 case 0x5a: /* FCVTNU */
12593 case 0x5b: /* FCVTMU */
12594 case 0x5c: /* FCVTAU */
12595 case 0x7a: /* FCVTPU */
12596 case 0x7b: /* FCVTZU */
12597 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
12598 break;
12599 case 0x18: /* FRINTN */
12600 case 0x19: /* FRINTM */
12601 case 0x38: /* FRINTP */
12602 case 0x39: /* FRINTZ */
12603 case 0x58: /* FRINTA */
12604 case 0x79: /* FRINTI */
12605 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
12606 break;
12607 case 0x59: /* FRINTX */
12608 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
12609 break;
12610 case 0x2f: /* FABS */
12611 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
12612 break;
12613 case 0x6f: /* FNEG */
12614 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
12615 break;
12616 case 0x7d: /* FRSQRTE */
12617 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
12618 break;
12619 case 0x7f: /* FSQRT */
12620 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
12621 break;
12622 default:
12623 g_assert_not_reached();
12624 }
12625
12626 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12627 }
12628
12629 clear_vec_high(s, is_q, rd);
12630 }
12631
12632 if (tcg_rmode) {
12633 gen_restore_rmode(tcg_rmode, tcg_fpstatus);
12634 }
12635 }
12636
12637 /* AdvSIMD scalar x indexed element
12638 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12639 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12640 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12641 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
12642 * AdvSIMD vector x indexed element
12643 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
12644 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12645 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
12646 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
12647 */
12648 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
12649 {
12650 /* This encoding has two kinds of instruction:
12651 * normal, where we perform elt x idxelt => elt for each
12652 * element in the vector
12653 * long, where we perform elt x idxelt and generate a result of
12654 * double the width of the input element
12655 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
12656 */
12657 bool is_scalar = extract32(insn, 28, 1);
12658 bool is_q = extract32(insn, 30, 1);
12659 bool u = extract32(insn, 29, 1);
12660 int size = extract32(insn, 22, 2);
12661 int l = extract32(insn, 21, 1);
12662 int m = extract32(insn, 20, 1);
12663 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
12664 int rm = extract32(insn, 16, 4);
12665 int opcode = extract32(insn, 12, 4);
12666 int h = extract32(insn, 11, 1);
12667 int rn = extract32(insn, 5, 5);
12668 int rd = extract32(insn, 0, 5);
12669 bool is_long = false;
12670 int is_fp = 0;
12671 bool is_fp16 = false;
12672 int index;
12673 TCGv_ptr fpst;
12674
12675 switch (16 * u + opcode) {
12676 case 0x08: /* MUL */
12677 case 0x10: /* MLA */
12678 case 0x14: /* MLS */
12679 if (is_scalar) {
12680 unallocated_encoding(s);
12681 return;
12682 }
12683 break;
12684 case 0x02: /* SMLAL, SMLAL2 */
12685 case 0x12: /* UMLAL, UMLAL2 */
12686 case 0x06: /* SMLSL, SMLSL2 */
12687 case 0x16: /* UMLSL, UMLSL2 */
12688 case 0x0a: /* SMULL, SMULL2 */
12689 case 0x1a: /* UMULL, UMULL2 */
12690 if (is_scalar) {
12691 unallocated_encoding(s);
12692 return;
12693 }
12694 is_long = true;
12695 break;
12696 case 0x03: /* SQDMLAL, SQDMLAL2 */
12697 case 0x07: /* SQDMLSL, SQDMLSL2 */
12698 case 0x0b: /* SQDMULL, SQDMULL2 */
12699 is_long = true;
12700 break;
12701 case 0x0c: /* SQDMULH */
12702 case 0x0d: /* SQRDMULH */
12703 break;
12704 case 0x01: /* FMLA */
12705 case 0x05: /* FMLS */
12706 case 0x09: /* FMUL */
12707 case 0x19: /* FMULX */
12708 is_fp = 1;
12709 break;
12710 case 0x1d: /* SQRDMLAH */
12711 case 0x1f: /* SQRDMLSH */
12712 if (!dc_isar_feature(aa64_rdm, s)) {
12713 unallocated_encoding(s);
12714 return;
12715 }
12716 break;
12717 case 0x0e: /* SDOT */
12718 case 0x1e: /* UDOT */
12719 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
12720 unallocated_encoding(s);
12721 return;
12722 }
12723 break;
12724 case 0x0f:
12725 switch (size) {
12726 case 0: /* SUDOT */
12727 case 2: /* USDOT */
12728 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
12729 unallocated_encoding(s);
12730 return;
12731 }
12732 size = MO_32;
12733 break;
12734 case 1: /* BFDOT */
12735 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12736 unallocated_encoding(s);
12737 return;
12738 }
12739 size = MO_32;
12740 break;
12741 case 3: /* BFMLAL{B,T} */
12742 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
12743 unallocated_encoding(s);
12744 return;
12745 }
12746 /* can't set is_fp without other incorrect size checks */
12747 size = MO_16;
12748 break;
12749 default:
12750 unallocated_encoding(s);
12751 return;
12752 }
12753 break;
12754 case 0x11: /* FCMLA #0 */
12755 case 0x13: /* FCMLA #90 */
12756 case 0x15: /* FCMLA #180 */
12757 case 0x17: /* FCMLA #270 */
12758 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
12759 unallocated_encoding(s);
12760 return;
12761 }
12762 is_fp = 2;
12763 break;
12764 case 0x00: /* FMLAL */
12765 case 0x04: /* FMLSL */
12766 case 0x18: /* FMLAL2 */
12767 case 0x1c: /* FMLSL2 */
12768 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
12769 unallocated_encoding(s);
12770 return;
12771 }
12772 size = MO_16;
12773 /* is_fp, but we pass tcg_env not fp_status. */
12774 break;
12775 default:
12776 unallocated_encoding(s);
12777 return;
12778 }
12779
12780 switch (is_fp) {
12781 case 1: /* normal fp */
12782 /* convert insn encoded size to MemOp size */
12783 switch (size) {
12784 case 0: /* half-precision */
12785 size = MO_16;
12786 is_fp16 = true;
12787 break;
12788 case MO_32: /* single precision */
12789 case MO_64: /* double precision */
12790 break;
12791 default:
12792 unallocated_encoding(s);
12793 return;
12794 }
12795 break;
12796
12797 case 2: /* complex fp */
12798 /* Each indexable element is a complex pair. */
12799 size += 1;
12800 switch (size) {
12801 case MO_32:
12802 if (h && !is_q) {
12803 unallocated_encoding(s);
12804 return;
12805 }
12806 is_fp16 = true;
12807 break;
12808 case MO_64:
12809 break;
12810 default:
12811 unallocated_encoding(s);
12812 return;
12813 }
12814 break;
12815
12816 default: /* integer */
12817 switch (size) {
12818 case MO_8:
12819 case MO_64:
12820 unallocated_encoding(s);
12821 return;
12822 }
12823 break;
12824 }
12825 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
12826 unallocated_encoding(s);
12827 return;
12828 }
12829
12830 /* Given MemOp size, adjust register and indexing. */
12831 switch (size) {
12832 case MO_16:
12833 index = h << 2 | l << 1 | m;
12834 break;
12835 case MO_32:
12836 index = h << 1 | l;
12837 rm |= m << 4;
12838 break;
12839 case MO_64:
12840 if (l || !is_q) {
12841 unallocated_encoding(s);
12842 return;
12843 }
12844 index = h;
12845 rm |= m << 4;
12846 break;
12847 default:
12848 g_assert_not_reached();
12849 }
12850
12851 if (!fp_access_check(s)) {
12852 return;
12853 }
12854
12855 if (is_fp) {
12856 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
12857 } else {
12858 fpst = NULL;
12859 }
12860
12861 switch (16 * u + opcode) {
12862 case 0x0e: /* SDOT */
12863 case 0x1e: /* UDOT */
12864 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12865 u ? gen_helper_gvec_udot_idx_b
12866 : gen_helper_gvec_sdot_idx_b);
12867 return;
12868 case 0x0f:
12869 switch (extract32(insn, 22, 2)) {
12870 case 0: /* SUDOT */
12871 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12872 gen_helper_gvec_sudot_idx_b);
12873 return;
12874 case 1: /* BFDOT */
12875 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12876 gen_helper_gvec_bfdot_idx);
12877 return;
12878 case 2: /* USDOT */
12879 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
12880 gen_helper_gvec_usdot_idx_b);
12881 return;
12882 case 3: /* BFMLAL{B,T} */
12883 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
12884 gen_helper_gvec_bfmlal_idx);
12885 return;
12886 }
12887 g_assert_not_reached();
12888 case 0x11: /* FCMLA #0 */
12889 case 0x13: /* FCMLA #90 */
12890 case 0x15: /* FCMLA #180 */
12891 case 0x17: /* FCMLA #270 */
12892 {
12893 int rot = extract32(insn, 13, 2);
12894 int data = (index << 2) | rot;
12895 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
12896 vec_full_reg_offset(s, rn),
12897 vec_full_reg_offset(s, rm),
12898 vec_full_reg_offset(s, rd), fpst,
12899 is_q ? 16 : 8, vec_full_reg_size(s), data,
12900 size == MO_64
12901 ? gen_helper_gvec_fcmlas_idx
12902 : gen_helper_gvec_fcmlah_idx);
12903 }
12904 return;
12905
12906 case 0x00: /* FMLAL */
12907 case 0x04: /* FMLSL */
12908 case 0x18: /* FMLAL2 */
12909 case 0x1c: /* FMLSL2 */
12910 {
12911 int is_s = extract32(opcode, 2, 1);
12912 int is_2 = u;
12913 int data = (index << 2) | (is_2 << 1) | is_s;
12914 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
12915 vec_full_reg_offset(s, rn),
12916 vec_full_reg_offset(s, rm), tcg_env,
12917 is_q ? 16 : 8, vec_full_reg_size(s),
12918 data, gen_helper_gvec_fmlal_idx_a64);
12919 }
12920 return;
12921
12922 case 0x08: /* MUL */
12923 if (!is_long && !is_scalar) {
12924 static gen_helper_gvec_3 * const fns[3] = {
12925 gen_helper_gvec_mul_idx_h,
12926 gen_helper_gvec_mul_idx_s,
12927 gen_helper_gvec_mul_idx_d,
12928 };
12929 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
12930 vec_full_reg_offset(s, rn),
12931 vec_full_reg_offset(s, rm),
12932 is_q ? 16 : 8, vec_full_reg_size(s),
12933 index, fns[size - 1]);
12934 return;
12935 }
12936 break;
12937
12938 case 0x10: /* MLA */
12939 if (!is_long && !is_scalar) {
12940 static gen_helper_gvec_4 * const fns[3] = {
12941 gen_helper_gvec_mla_idx_h,
12942 gen_helper_gvec_mla_idx_s,
12943 gen_helper_gvec_mla_idx_d,
12944 };
12945 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12946 vec_full_reg_offset(s, rn),
12947 vec_full_reg_offset(s, rm),
12948 vec_full_reg_offset(s, rd),
12949 is_q ? 16 : 8, vec_full_reg_size(s),
12950 index, fns[size - 1]);
12951 return;
12952 }
12953 break;
12954
12955 case 0x14: /* MLS */
12956 if (!is_long && !is_scalar) {
12957 static gen_helper_gvec_4 * const fns[3] = {
12958 gen_helper_gvec_mls_idx_h,
12959 gen_helper_gvec_mls_idx_s,
12960 gen_helper_gvec_mls_idx_d,
12961 };
12962 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
12963 vec_full_reg_offset(s, rn),
12964 vec_full_reg_offset(s, rm),
12965 vec_full_reg_offset(s, rd),
12966 is_q ? 16 : 8, vec_full_reg_size(s),
12967 index, fns[size - 1]);
12968 return;
12969 }
12970 break;
12971 }
12972
12973 if (size == 3) {
12974 TCGv_i64 tcg_idx = tcg_temp_new_i64();
12975 int pass;
12976
12977 assert(is_fp && is_q && !is_long);
12978
12979 read_vec_element(s, tcg_idx, rm, index, MO_64);
12980
12981 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
12982 TCGv_i64 tcg_op = tcg_temp_new_i64();
12983 TCGv_i64 tcg_res = tcg_temp_new_i64();
12984
12985 read_vec_element(s, tcg_op, rn, pass, MO_64);
12986
12987 switch (16 * u + opcode) {
12988 case 0x05: /* FMLS */
12989 /* As usual for ARM, separate negation for fused multiply-add */
12990 gen_helper_vfp_negd(tcg_op, tcg_op);
12991 /* fall through */
12992 case 0x01: /* FMLA */
12993 read_vec_element(s, tcg_res, rd, pass, MO_64);
12994 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
12995 break;
12996 case 0x09: /* FMUL */
12997 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
12998 break;
12999 case 0x19: /* FMULX */
13000 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13001 break;
13002 default:
13003 g_assert_not_reached();
13004 }
13005
13006 write_vec_element(s, tcg_res, rd, pass, MO_64);
13007 }
13008
13009 clear_vec_high(s, !is_scalar, rd);
13010 } else if (!is_long) {
13011 /* 32 bit floating point, or 16 or 32 bit integer.
13012 * For the 16 bit scalar case we use the usual Neon helpers and
13013 * rely on the fact that 0 op 0 == 0 with no side effects.
13014 */
13015 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13016 int pass, maxpasses;
13017
13018 if (is_scalar) {
13019 maxpasses = 1;
13020 } else {
13021 maxpasses = is_q ? 4 : 2;
13022 }
13023
13024 read_vec_element_i32(s, tcg_idx, rm, index, size);
13025
13026 if (size == 1 && !is_scalar) {
13027 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13028 * the index into both halves of the 32 bit tcg_idx and then use
13029 * the usual Neon helpers.
13030 */
13031 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13032 }
13033
13034 for (pass = 0; pass < maxpasses; pass++) {
13035 TCGv_i32 tcg_op = tcg_temp_new_i32();
13036 TCGv_i32 tcg_res = tcg_temp_new_i32();
13037
13038 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13039
13040 switch (16 * u + opcode) {
13041 case 0x08: /* MUL */
13042 case 0x10: /* MLA */
13043 case 0x14: /* MLS */
13044 {
13045 static NeonGenTwoOpFn * const fns[2][2] = {
13046 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13047 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13048 };
13049 NeonGenTwoOpFn *genfn;
13050 bool is_sub = opcode == 0x4;
13051
13052 if (size == 1) {
13053 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13054 } else {
13055 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13056 }
13057 if (opcode == 0x8) {
13058 break;
13059 }
13060 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13061 genfn = fns[size - 1][is_sub];
13062 genfn(tcg_res, tcg_op, tcg_res);
13063 break;
13064 }
13065 case 0x05: /* FMLS */
13066 case 0x01: /* FMLA */
13067 read_vec_element_i32(s, tcg_res, rd, pass,
13068 is_scalar ? size : MO_32);
13069 switch (size) {
13070 case 1:
13071 if (opcode == 0x5) {
13072 /* As usual for ARM, separate negation for fused
13073 * multiply-add */
13074 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13075 }
13076 if (is_scalar) {
13077 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13078 tcg_res, fpst);
13079 } else {
13080 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13081 tcg_res, fpst);
13082 }
13083 break;
13084 case 2:
13085 if (opcode == 0x5) {
13086 /* As usual for ARM, separate negation for
13087 * fused multiply-add */
13088 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13089 }
13090 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13091 tcg_res, fpst);
13092 break;
13093 default:
13094 g_assert_not_reached();
13095 }
13096 break;
13097 case 0x09: /* FMUL */
13098 switch (size) {
13099 case 1:
13100 if (is_scalar) {
13101 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13102 tcg_idx, fpst);
13103 } else {
13104 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13105 tcg_idx, fpst);
13106 }
13107 break;
13108 case 2:
13109 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13110 break;
13111 default:
13112 g_assert_not_reached();
13113 }
13114 break;
13115 case 0x19: /* FMULX */
13116 switch (size) {
13117 case 1:
13118 if (is_scalar) {
13119 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13120 tcg_idx, fpst);
13121 } else {
13122 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13123 tcg_idx, fpst);
13124 }
13125 break;
13126 case 2:
13127 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13128 break;
13129 default:
13130 g_assert_not_reached();
13131 }
13132 break;
13133 case 0x0c: /* SQDMULH */
13134 if (size == 1) {
13135 gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
13136 tcg_op, tcg_idx);
13137 } else {
13138 gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
13139 tcg_op, tcg_idx);
13140 }
13141 break;
13142 case 0x0d: /* SQRDMULH */
13143 if (size == 1) {
13144 gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
13145 tcg_op, tcg_idx);
13146 } else {
13147 gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
13148 tcg_op, tcg_idx);
13149 }
13150 break;
13151 case 0x1d: /* SQRDMLAH */
13152 read_vec_element_i32(s, tcg_res, rd, pass,
13153 is_scalar ? size : MO_32);
13154 if (size == 1) {
13155 gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
13156 tcg_op, tcg_idx, tcg_res);
13157 } else {
13158 gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
13159 tcg_op, tcg_idx, tcg_res);
13160 }
13161 break;
13162 case 0x1f: /* SQRDMLSH */
13163 read_vec_element_i32(s, tcg_res, rd, pass,
13164 is_scalar ? size : MO_32);
13165 if (size == 1) {
13166 gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
13167 tcg_op, tcg_idx, tcg_res);
13168 } else {
13169 gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
13170 tcg_op, tcg_idx, tcg_res);
13171 }
13172 break;
13173 default:
13174 g_assert_not_reached();
13175 }
13176
13177 if (is_scalar) {
13178 write_fp_sreg(s, rd, tcg_res);
13179 } else {
13180 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13181 }
13182 }
13183
13184 clear_vec_high(s, is_q, rd);
13185 } else {
13186 /* long ops: 16x16->32 or 32x32->64 */
13187 TCGv_i64 tcg_res[2];
13188 int pass;
13189 bool satop = extract32(opcode, 0, 1);
13190 MemOp memop = MO_32;
13191
13192 if (satop || !u) {
13193 memop |= MO_SIGN;
13194 }
13195
13196 if (size == 2) {
13197 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13198
13199 read_vec_element(s, tcg_idx, rm, index, memop);
13200
13201 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13202 TCGv_i64 tcg_op = tcg_temp_new_i64();
13203 TCGv_i64 tcg_passres;
13204 int passelt;
13205
13206 if (is_scalar) {
13207 passelt = 0;
13208 } else {
13209 passelt = pass + (is_q * 2);
13210 }
13211
13212 read_vec_element(s, tcg_op, rn, passelt, memop);
13213
13214 tcg_res[pass] = tcg_temp_new_i64();
13215
13216 if (opcode == 0xa || opcode == 0xb) {
13217 /* Non-accumulating ops */
13218 tcg_passres = tcg_res[pass];
13219 } else {
13220 tcg_passres = tcg_temp_new_i64();
13221 }
13222
13223 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13224
13225 if (satop) {
13226 /* saturating, doubling */
13227 gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
13228 tcg_passres, tcg_passres);
13229 }
13230
13231 if (opcode == 0xa || opcode == 0xb) {
13232 continue;
13233 }
13234
13235 /* Accumulating op: handle accumulate step */
13236 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13237
13238 switch (opcode) {
13239 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13240 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13241 break;
13242 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13243 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13244 break;
13245 case 0x7: /* SQDMLSL, SQDMLSL2 */
13246 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13247 /* fall through */
13248 case 0x3: /* SQDMLAL, SQDMLAL2 */
13249 gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
13250 tcg_res[pass],
13251 tcg_passres);
13252 break;
13253 default:
13254 g_assert_not_reached();
13255 }
13256 }
13257
13258 clear_vec_high(s, !is_scalar, rd);
13259 } else {
13260 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13261
13262 assert(size == 1);
13263 read_vec_element_i32(s, tcg_idx, rm, index, size);
13264
13265 if (!is_scalar) {
13266 /* The simplest way to handle the 16x16 indexed ops is to
13267 * duplicate the index into both halves of the 32 bit tcg_idx
13268 * and then use the usual Neon helpers.
13269 */
13270 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13271 }
13272
13273 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13274 TCGv_i32 tcg_op = tcg_temp_new_i32();
13275 TCGv_i64 tcg_passres;
13276
13277 if (is_scalar) {
13278 read_vec_element_i32(s, tcg_op, rn, pass, size);
13279 } else {
13280 read_vec_element_i32(s, tcg_op, rn,
13281 pass + (is_q * 2), MO_32);
13282 }
13283
13284 tcg_res[pass] = tcg_temp_new_i64();
13285
13286 if (opcode == 0xa || opcode == 0xb) {
13287 /* Non-accumulating ops */
13288 tcg_passres = tcg_res[pass];
13289 } else {
13290 tcg_passres = tcg_temp_new_i64();
13291 }
13292
13293 if (memop & MO_SIGN) {
13294 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13295 } else {
13296 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13297 }
13298 if (satop) {
13299 gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
13300 tcg_passres, tcg_passres);
13301 }
13302
13303 if (opcode == 0xa || opcode == 0xb) {
13304 continue;
13305 }
13306
13307 /* Accumulating op: handle accumulate step */
13308 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13309
13310 switch (opcode) {
13311 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13312 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13313 tcg_passres);
13314 break;
13315 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13316 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13317 tcg_passres);
13318 break;
13319 case 0x7: /* SQDMLSL, SQDMLSL2 */
13320 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13321 /* fall through */
13322 case 0x3: /* SQDMLAL, SQDMLAL2 */
13323 gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
13324 tcg_res[pass],
13325 tcg_passres);
13326 break;
13327 default:
13328 g_assert_not_reached();
13329 }
13330 }
13331
13332 if (is_scalar) {
13333 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
13334 }
13335 }
13336
13337 if (is_scalar) {
13338 tcg_res[1] = tcg_constant_i64(0);
13339 }
13340
13341 for (pass = 0; pass < 2; pass++) {
13342 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13343 }
13344 }
13345 }
13346
13347 /* Crypto AES
13348 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13349 * +-----------------+------+-----------+--------+-----+------+------+
13350 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13351 * +-----------------+------+-----------+--------+-----+------+------+
13352 */
13353 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
13354 {
13355 int size = extract32(insn, 22, 2);
13356 int opcode = extract32(insn, 12, 5);
13357 int rn = extract32(insn, 5, 5);
13358 int rd = extract32(insn, 0, 5);
13359 gen_helper_gvec_2 *genfn2 = NULL;
13360 gen_helper_gvec_3 *genfn3 = NULL;
13361
13362 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
13363 unallocated_encoding(s);
13364 return;
13365 }
13366
13367 switch (opcode) {
13368 case 0x4: /* AESE */
13369 genfn3 = gen_helper_crypto_aese;
13370 break;
13371 case 0x6: /* AESMC */
13372 genfn2 = gen_helper_crypto_aesmc;
13373 break;
13374 case 0x5: /* AESD */
13375 genfn3 = gen_helper_crypto_aesd;
13376 break;
13377 case 0x7: /* AESIMC */
13378 genfn2 = gen_helper_crypto_aesimc;
13379 break;
13380 default:
13381 unallocated_encoding(s);
13382 return;
13383 }
13384
13385 if (!fp_access_check(s)) {
13386 return;
13387 }
13388 if (genfn2) {
13389 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
13390 } else {
13391 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
13392 }
13393 }
13394
13395 /* Crypto three-reg SHA
13396 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
13397 * +-----------------+------+---+------+---+--------+-----+------+------+
13398 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
13399 * +-----------------+------+---+------+---+--------+-----+------+------+
13400 */
13401 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
13402 {
13403 int size = extract32(insn, 22, 2);
13404 int opcode = extract32(insn, 12, 3);
13405 int rm = extract32(insn, 16, 5);
13406 int rn = extract32(insn, 5, 5);
13407 int rd = extract32(insn, 0, 5);
13408 gen_helper_gvec_3 *genfn;
13409 bool feature;
13410
13411 if (size != 0) {
13412 unallocated_encoding(s);
13413 return;
13414 }
13415
13416 switch (opcode) {
13417 case 0: /* SHA1C */
13418 genfn = gen_helper_crypto_sha1c;
13419 feature = dc_isar_feature(aa64_sha1, s);
13420 break;
13421 case 1: /* SHA1P */
13422 genfn = gen_helper_crypto_sha1p;
13423 feature = dc_isar_feature(aa64_sha1, s);
13424 break;
13425 case 2: /* SHA1M */
13426 genfn = gen_helper_crypto_sha1m;
13427 feature = dc_isar_feature(aa64_sha1, s);
13428 break;
13429 case 3: /* SHA1SU0 */
13430 genfn = gen_helper_crypto_sha1su0;
13431 feature = dc_isar_feature(aa64_sha1, s);
13432 break;
13433 case 4: /* SHA256H */
13434 genfn = gen_helper_crypto_sha256h;
13435 feature = dc_isar_feature(aa64_sha256, s);
13436 break;
13437 case 5: /* SHA256H2 */
13438 genfn = gen_helper_crypto_sha256h2;
13439 feature = dc_isar_feature(aa64_sha256, s);
13440 break;
13441 case 6: /* SHA256SU1 */
13442 genfn = gen_helper_crypto_sha256su1;
13443 feature = dc_isar_feature(aa64_sha256, s);
13444 break;
13445 default:
13446 unallocated_encoding(s);
13447 return;
13448 }
13449
13450 if (!feature) {
13451 unallocated_encoding(s);
13452 return;
13453 }
13454
13455 if (!fp_access_check(s)) {
13456 return;
13457 }
13458 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
13459 }
13460
13461 /* Crypto two-reg SHA
13462 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
13463 * +-----------------+------+-----------+--------+-----+------+------+
13464 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
13465 * +-----------------+------+-----------+--------+-----+------+------+
13466 */
13467 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
13468 {
13469 int size = extract32(insn, 22, 2);
13470 int opcode = extract32(insn, 12, 5);
13471 int rn = extract32(insn, 5, 5);
13472 int rd = extract32(insn, 0, 5);
13473 gen_helper_gvec_2 *genfn;
13474 bool feature;
13475
13476 if (size != 0) {
13477 unallocated_encoding(s);
13478 return;
13479 }
13480
13481 switch (opcode) {
13482 case 0: /* SHA1H */
13483 feature = dc_isar_feature(aa64_sha1, s);
13484 genfn = gen_helper_crypto_sha1h;
13485 break;
13486 case 1: /* SHA1SU1 */
13487 feature = dc_isar_feature(aa64_sha1, s);
13488 genfn = gen_helper_crypto_sha1su1;
13489 break;
13490 case 2: /* SHA256SU0 */
13491 feature = dc_isar_feature(aa64_sha256, s);
13492 genfn = gen_helper_crypto_sha256su0;
13493 break;
13494 default:
13495 unallocated_encoding(s);
13496 return;
13497 }
13498
13499 if (!feature) {
13500 unallocated_encoding(s);
13501 return;
13502 }
13503
13504 if (!fp_access_check(s)) {
13505 return;
13506 }
13507 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
13508 }
13509
13510 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
13511 {
13512 tcg_gen_rotli_i64(d, m, 1);
13513 tcg_gen_xor_i64(d, d, n);
13514 }
13515
13516 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
13517 {
13518 tcg_gen_rotli_vec(vece, d, m, 1);
13519 tcg_gen_xor_vec(vece, d, d, n);
13520 }
13521
13522 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
13523 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
13524 {
13525 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
13526 static const GVecGen3 op = {
13527 .fni8 = gen_rax1_i64,
13528 .fniv = gen_rax1_vec,
13529 .opt_opc = vecop_list,
13530 .fno = gen_helper_crypto_rax1,
13531 .vece = MO_64,
13532 };
13533 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
13534 }
13535
13536 /* Crypto three-reg SHA512
13537 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13538 * +-----------------------+------+---+---+-----+--------+------+------+
13539 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
13540 * +-----------------------+------+---+---+-----+--------+------+------+
13541 */
13542 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
13543 {
13544 int opcode = extract32(insn, 10, 2);
13545 int o = extract32(insn, 14, 1);
13546 int rm = extract32(insn, 16, 5);
13547 int rn = extract32(insn, 5, 5);
13548 int rd = extract32(insn, 0, 5);
13549 bool feature;
13550 gen_helper_gvec_3 *oolfn = NULL;
13551 GVecGen3Fn *gvecfn = NULL;
13552
13553 if (o == 0) {
13554 switch (opcode) {
13555 case 0: /* SHA512H */
13556 feature = dc_isar_feature(aa64_sha512, s);
13557 oolfn = gen_helper_crypto_sha512h;
13558 break;
13559 case 1: /* SHA512H2 */
13560 feature = dc_isar_feature(aa64_sha512, s);
13561 oolfn = gen_helper_crypto_sha512h2;
13562 break;
13563 case 2: /* SHA512SU1 */
13564 feature = dc_isar_feature(aa64_sha512, s);
13565 oolfn = gen_helper_crypto_sha512su1;
13566 break;
13567 case 3: /* RAX1 */
13568 feature = dc_isar_feature(aa64_sha3, s);
13569 gvecfn = gen_gvec_rax1;
13570 break;
13571 default:
13572 g_assert_not_reached();
13573 }
13574 } else {
13575 switch (opcode) {
13576 case 0: /* SM3PARTW1 */
13577 feature = dc_isar_feature(aa64_sm3, s);
13578 oolfn = gen_helper_crypto_sm3partw1;
13579 break;
13580 case 1: /* SM3PARTW2 */
13581 feature = dc_isar_feature(aa64_sm3, s);
13582 oolfn = gen_helper_crypto_sm3partw2;
13583 break;
13584 case 2: /* SM4EKEY */
13585 feature = dc_isar_feature(aa64_sm4, s);
13586 oolfn = gen_helper_crypto_sm4ekey;
13587 break;
13588 default:
13589 unallocated_encoding(s);
13590 return;
13591 }
13592 }
13593
13594 if (!feature) {
13595 unallocated_encoding(s);
13596 return;
13597 }
13598
13599 if (!fp_access_check(s)) {
13600 return;
13601 }
13602
13603 if (oolfn) {
13604 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
13605 } else {
13606 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
13607 }
13608 }
13609
13610 /* Crypto two-reg SHA512
13611 * 31 12 11 10 9 5 4 0
13612 * +-----------------------------------------+--------+------+------+
13613 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
13614 * +-----------------------------------------+--------+------+------+
13615 */
13616 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
13617 {
13618 int opcode = extract32(insn, 10, 2);
13619 int rn = extract32(insn, 5, 5);
13620 int rd = extract32(insn, 0, 5);
13621 bool feature;
13622
13623 switch (opcode) {
13624 case 0: /* SHA512SU0 */
13625 feature = dc_isar_feature(aa64_sha512, s);
13626 break;
13627 case 1: /* SM4E */
13628 feature = dc_isar_feature(aa64_sm4, s);
13629 break;
13630 default:
13631 unallocated_encoding(s);
13632 return;
13633 }
13634
13635 if (!feature) {
13636 unallocated_encoding(s);
13637 return;
13638 }
13639
13640 if (!fp_access_check(s)) {
13641 return;
13642 }
13643
13644 switch (opcode) {
13645 case 0: /* SHA512SU0 */
13646 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
13647 break;
13648 case 1: /* SM4E */
13649 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
13650 break;
13651 default:
13652 g_assert_not_reached();
13653 }
13654 }
13655
13656 /* Crypto four-register
13657 * 31 23 22 21 20 16 15 14 10 9 5 4 0
13658 * +-------------------+-----+------+---+------+------+------+
13659 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
13660 * +-------------------+-----+------+---+------+------+------+
13661 */
13662 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
13663 {
13664 int op0 = extract32(insn, 21, 2);
13665 int rm = extract32(insn, 16, 5);
13666 int ra = extract32(insn, 10, 5);
13667 int rn = extract32(insn, 5, 5);
13668 int rd = extract32(insn, 0, 5);
13669 bool feature;
13670
13671 switch (op0) {
13672 case 0: /* EOR3 */
13673 case 1: /* BCAX */
13674 feature = dc_isar_feature(aa64_sha3, s);
13675 break;
13676 case 2: /* SM3SS1 */
13677 feature = dc_isar_feature(aa64_sm3, s);
13678 break;
13679 default:
13680 unallocated_encoding(s);
13681 return;
13682 }
13683
13684 if (!feature) {
13685 unallocated_encoding(s);
13686 return;
13687 }
13688
13689 if (!fp_access_check(s)) {
13690 return;
13691 }
13692
13693 if (op0 < 2) {
13694 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
13695 int pass;
13696
13697 tcg_op1 = tcg_temp_new_i64();
13698 tcg_op2 = tcg_temp_new_i64();
13699 tcg_op3 = tcg_temp_new_i64();
13700 tcg_res[0] = tcg_temp_new_i64();
13701 tcg_res[1] = tcg_temp_new_i64();
13702
13703 for (pass = 0; pass < 2; pass++) {
13704 read_vec_element(s, tcg_op1, rn, pass, MO_64);
13705 read_vec_element(s, tcg_op2, rm, pass, MO_64);
13706 read_vec_element(s, tcg_op3, ra, pass, MO_64);
13707
13708 if (op0 == 0) {
13709 /* EOR3 */
13710 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
13711 } else {
13712 /* BCAX */
13713 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
13714 }
13715 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
13716 }
13717 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
13718 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
13719 } else {
13720 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
13721
13722 tcg_op1 = tcg_temp_new_i32();
13723 tcg_op2 = tcg_temp_new_i32();
13724 tcg_op3 = tcg_temp_new_i32();
13725 tcg_res = tcg_temp_new_i32();
13726 tcg_zero = tcg_constant_i32(0);
13727
13728 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
13729 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
13730 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
13731
13732 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
13733 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
13734 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
13735 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
13736
13737 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
13738 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
13739 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
13740 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
13741 }
13742 }
13743
13744 /* Crypto XAR
13745 * 31 21 20 16 15 10 9 5 4 0
13746 * +-----------------------+------+--------+------+------+
13747 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
13748 * +-----------------------+------+--------+------+------+
13749 */
13750 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
13751 {
13752 int rm = extract32(insn, 16, 5);
13753 int imm6 = extract32(insn, 10, 6);
13754 int rn = extract32(insn, 5, 5);
13755 int rd = extract32(insn, 0, 5);
13756
13757 if (!dc_isar_feature(aa64_sha3, s)) {
13758 unallocated_encoding(s);
13759 return;
13760 }
13761
13762 if (!fp_access_check(s)) {
13763 return;
13764 }
13765
13766 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
13767 vec_full_reg_offset(s, rn),
13768 vec_full_reg_offset(s, rm), imm6, 16,
13769 vec_full_reg_size(s));
13770 }
13771
13772 /* Crypto three-reg imm2
13773 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
13774 * +-----------------------+------+-----+------+--------+------+------+
13775 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
13776 * +-----------------------+------+-----+------+--------+------+------+
13777 */
13778 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
13779 {
13780 static gen_helper_gvec_3 * const fns[4] = {
13781 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
13782 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
13783 };
13784 int opcode = extract32(insn, 10, 2);
13785 int imm2 = extract32(insn, 12, 2);
13786 int rm = extract32(insn, 16, 5);
13787 int rn = extract32(insn, 5, 5);
13788 int rd = extract32(insn, 0, 5);
13789
13790 if (!dc_isar_feature(aa64_sm3, s)) {
13791 unallocated_encoding(s);
13792 return;
13793 }
13794
13795 if (!fp_access_check(s)) {
13796 return;
13797 }
13798
13799 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
13800 }
13801
13802 /* C3.6 Data processing - SIMD, inc Crypto
13803 *
13804 * As the decode gets a little complex we are using a table based
13805 * approach for this part of the decode.
13806 */
13807 static const AArch64DecodeTable data_proc_simd[] = {
13808 /* pattern , mask , fn */
13809 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
13810 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
13811 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
13812 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
13813 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
13814 { 0x0e000400, 0x9fe08400, disas_simd_copy },
13815 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
13816 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
13817 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
13818 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
13819 { 0x0e000000, 0xbf208c00, disas_simd_tb },
13820 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
13821 { 0x2e000000, 0xbf208400, disas_simd_ext },
13822 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
13823 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
13824 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
13825 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
13826 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
13827 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
13828 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
13829 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
13830 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
13831 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
13832 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
13833 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
13834 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
13835 { 0xce000000, 0xff808000, disas_crypto_four_reg },
13836 { 0xce800000, 0xffe00000, disas_crypto_xar },
13837 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
13838 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
13839 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
13840 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
13841 { 0x00000000, 0x00000000, NULL }
13842 };
13843
13844 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
13845 {
13846 /* Note that this is called with all non-FP cases from
13847 * table C3-6 so it must UNDEF for entries not specifically
13848 * allocated to instructions in that table.
13849 */
13850 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
13851 if (fn) {
13852 fn(s, insn);
13853 } else {
13854 unallocated_encoding(s);
13855 }
13856 }
13857
13858 /* C3.6 Data processing - SIMD and floating point */
13859 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
13860 {
13861 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
13862 disas_data_proc_fp(s, insn);
13863 } else {
13864 /* SIMD, including crypto */
13865 disas_data_proc_simd(s, insn);
13866 }
13867 }
13868
13869 static bool trans_OK(DisasContext *s, arg_OK *a)
13870 {
13871 return true;
13872 }
13873
13874 static bool trans_FAIL(DisasContext *s, arg_OK *a)
13875 {
13876 s->is_nonstreaming = true;
13877 return true;
13878 }
13879
13880 /**
13881 * is_guarded_page:
13882 * @env: The cpu environment
13883 * @s: The DisasContext
13884 *
13885 * Return true if the page is guarded.
13886 */
13887 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
13888 {
13889 uint64_t addr = s->base.pc_first;
13890 #ifdef CONFIG_USER_ONLY
13891 return page_get_flags(addr) & PAGE_BTI;
13892 #else
13893 CPUTLBEntryFull *full;
13894 void *host;
13895 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
13896 int flags;
13897
13898 /*
13899 * We test this immediately after reading an insn, which means
13900 * that the TLB entry must be present and valid, and thus this
13901 * access will never raise an exception.
13902 */
13903 flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
13904 false, &host, &full, 0);
13905 assert(!(flags & TLB_INVALID_MASK));
13906
13907 return full->extra.arm.guarded;
13908 #endif
13909 }
13910
13911 /**
13912 * btype_destination_ok:
13913 * @insn: The instruction at the branch destination
13914 * @bt: SCTLR_ELx.BT
13915 * @btype: PSTATE.BTYPE, and is non-zero
13916 *
13917 * On a guarded page, there are a limited number of insns
13918 * that may be present at the branch target:
13919 * - branch target identifiers,
13920 * - paciasp, pacibsp,
13921 * - BRK insn
13922 * - HLT insn
13923 * Anything else causes a Branch Target Exception.
13924 *
13925 * Return true if the branch is compatible, false to raise BTITRAP.
13926 */
13927 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
13928 {
13929 if ((insn & 0xfffff01fu) == 0xd503201fu) {
13930 /* HINT space */
13931 switch (extract32(insn, 5, 7)) {
13932 case 0b011001: /* PACIASP */
13933 case 0b011011: /* PACIBSP */
13934 /*
13935 * If SCTLR_ELx.BT, then PACI*SP are not compatible
13936 * with btype == 3. Otherwise all btype are ok.
13937 */
13938 return !bt || btype != 3;
13939 case 0b100000: /* BTI */
13940 /* Not compatible with any btype. */
13941 return false;
13942 case 0b100010: /* BTI c */
13943 /* Not compatible with btype == 3 */
13944 return btype != 3;
13945 case 0b100100: /* BTI j */
13946 /* Not compatible with btype == 2 */
13947 return btype != 2;
13948 case 0b100110: /* BTI jc */
13949 /* Compatible with any btype. */
13950 return true;
13951 }
13952 } else {
13953 switch (insn & 0xffe0001fu) {
13954 case 0xd4200000u: /* BRK */
13955 case 0xd4400000u: /* HLT */
13956 /* Give priority to the breakpoint exception. */
13957 return true;
13958 }
13959 }
13960 return false;
13961 }
13962
13963 /* C3.1 A64 instruction index by encoding */
13964 static void disas_a64_legacy(DisasContext *s, uint32_t insn)
13965 {
13966 switch (extract32(insn, 25, 4)) {
13967 case 0x5:
13968 case 0xd: /* Data processing - register */
13969 disas_data_proc_reg(s, insn);
13970 break;
13971 case 0x7:
13972 case 0xf: /* Data processing - SIMD and floating point */
13973 disas_data_proc_simd_fp(s, insn);
13974 break;
13975 default:
13976 unallocated_encoding(s);
13977 break;
13978 }
13979 }
13980
13981 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
13982 CPUState *cpu)
13983 {
13984 DisasContext *dc = container_of(dcbase, DisasContext, base);
13985 CPUARMState *env = cpu_env(cpu);
13986 ARMCPU *arm_cpu = env_archcpu(env);
13987 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
13988 int bound, core_mmu_idx;
13989
13990 dc->isar = &arm_cpu->isar;
13991 dc->condjmp = 0;
13992 dc->pc_save = dc->base.pc_first;
13993 dc->aarch64 = true;
13994 dc->thumb = false;
13995 dc->sctlr_b = 0;
13996 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
13997 dc->condexec_mask = 0;
13998 dc->condexec_cond = 0;
13999 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14000 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14001 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14002 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14003 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14004 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14005 #if !defined(CONFIG_USER_ONLY)
14006 dc->user = (dc->current_el == 0);
14007 #endif
14008 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14009 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14010 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14011 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14012 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14013 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14014 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14015 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14016 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14017 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14018 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14019 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14020 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14021 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14022 dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
14023 dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
14024 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14025 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14026 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14027 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14028 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14029 dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
14030 dc->vec_len = 0;
14031 dc->vec_stride = 0;
14032 dc->cp_regs = arm_cpu->cp_regs;
14033 dc->features = env->features;
14034 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14035 dc->gm_blocksize = arm_cpu->gm_blocksize;
14036
14037 #ifdef CONFIG_USER_ONLY
14038 /* In sve_probe_page, we assume TBI is enabled. */
14039 tcg_debug_assert(dc->tbid & 1);
14040 #endif
14041
14042 dc->lse2 = dc_isar_feature(aa64_lse2, dc);
14043
14044 /* Single step state. The code-generation logic here is:
14045 * SS_ACTIVE == 0:
14046 * generate code with no special handling for single-stepping (except
14047 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14048 * this happens anyway because those changes are all system register or
14049 * PSTATE writes).
14050 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14051 * emit code for one insn
14052 * emit code to clear PSTATE.SS
14053 * emit code to generate software step exception for completed step
14054 * end TB (as usual for having generated an exception)
14055 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14056 * emit code to generate a software step exception
14057 * end the TB
14058 */
14059 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14060 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14061 dc->is_ldex = false;
14062
14063 /* Bound the number of insns to execute to those left on the page. */
14064 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14065
14066 /* If architectural single step active, limit to 1. */
14067 if (dc->ss_active) {
14068 bound = 1;
14069 }
14070 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14071 }
14072
14073 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14074 {
14075 }
14076
14077 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14078 {
14079 DisasContext *dc = container_of(dcbase, DisasContext, base);
14080 target_ulong pc_arg = dc->base.pc_next;
14081
14082 if (tb_cflags(dcbase->tb) & CF_PCREL) {
14083 pc_arg &= ~TARGET_PAGE_MASK;
14084 }
14085 tcg_gen_insn_start(pc_arg, 0, 0);
14086 dc->insn_start = tcg_last_op();
14087 }
14088
14089 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14090 {
14091 DisasContext *s = container_of(dcbase, DisasContext, base);
14092 CPUARMState *env = cpu_env(cpu);
14093 uint64_t pc = s->base.pc_next;
14094 uint32_t insn;
14095
14096 /* Singlestep exceptions have the highest priority. */
14097 if (s->ss_active && !s->pstate_ss) {
14098 /* Singlestep state is Active-pending.
14099 * If we're in this state at the start of a TB then either
14100 * a) we just took an exception to an EL which is being debugged
14101 * and this is the first insn in the exception handler
14102 * b) debug exceptions were masked and we just unmasked them
14103 * without changing EL (eg by clearing PSTATE.D)
14104 * In either case we're going to take a swstep exception in the
14105 * "did not step an insn" case, and so the syndrome ISV and EX
14106 * bits should be zero.
14107 */
14108 assert(s->base.num_insns == 1);
14109 gen_swstep_exception(s, 0, 0);
14110 s->base.is_jmp = DISAS_NORETURN;
14111 s->base.pc_next = pc + 4;
14112 return;
14113 }
14114
14115 if (pc & 3) {
14116 /*
14117 * PC alignment fault. This has priority over the instruction abort
14118 * that we would receive from a translation fault via arm_ldl_code.
14119 * This should only be possible after an indirect branch, at the
14120 * start of the TB.
14121 */
14122 assert(s->base.num_insns == 1);
14123 gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
14124 s->base.is_jmp = DISAS_NORETURN;
14125 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14126 return;
14127 }
14128
14129 s->pc_curr = pc;
14130 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14131 s->insn = insn;
14132 s->base.pc_next = pc + 4;
14133
14134 s->fp_access_checked = false;
14135 s->sve_access_checked = false;
14136
14137 if (s->pstate_il) {
14138 /*
14139 * Illegal execution state. This has priority over BTI
14140 * exceptions, but comes after instruction abort exceptions.
14141 */
14142 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14143 return;
14144 }
14145
14146 if (dc_isar_feature(aa64_bti, s)) {
14147 if (s->base.num_insns == 1) {
14148 /*
14149 * At the first insn of the TB, compute s->guarded_page.
14150 * We delayed computing this until successfully reading
14151 * the first insn of the TB, above. This (mostly) ensures
14152 * that the softmmu tlb entry has been populated, and the
14153 * page table GP bit is available.
14154 *
14155 * Note that we need to compute this even if btype == 0,
14156 * because this value is used for BR instructions later
14157 * where ENV is not available.
14158 */
14159 s->guarded_page = is_guarded_page(env, s);
14160
14161 /* First insn can have btype set to non-zero. */
14162 tcg_debug_assert(s->btype >= 0);
14163
14164 /*
14165 * Note that the Branch Target Exception has fairly high
14166 * priority -- below debugging exceptions but above most
14167 * everything else. This allows us to handle this now
14168 * instead of waiting until the insn is otherwise decoded.
14169 */
14170 if (s->btype != 0
14171 && s->guarded_page
14172 && !btype_destination_ok(insn, s->bt, s->btype)) {
14173 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14174 return;
14175 }
14176 } else {
14177 /* Not the first insn: btype must be 0. */
14178 tcg_debug_assert(s->btype == 0);
14179 }
14180 }
14181
14182 s->is_nonstreaming = false;
14183 if (s->sme_trap_nonstreaming) {
14184 disas_sme_fa64(s, insn);
14185 }
14186
14187 if (!disas_a64(s, insn) &&
14188 !disas_sme(s, insn) &&
14189 !disas_sve(s, insn)) {
14190 disas_a64_legacy(s, insn);
14191 }
14192
14193 /*
14194 * After execution of most insns, btype is reset to 0.
14195 * Note that we set btype == -1 when the insn sets btype.
14196 */
14197 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14198 reset_btype(s);
14199 }
14200 }
14201
14202 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14203 {
14204 DisasContext *dc = container_of(dcbase, DisasContext, base);
14205
14206 if (unlikely(dc->ss_active)) {
14207 /* Note that this means single stepping WFI doesn't halt the CPU.
14208 * For conditional branch insns this is harmless unreachable code as
14209 * gen_goto_tb() has already handled emitting the debug exception
14210 * (and thus a tb-jump is not possible when singlestepping).
14211 */
14212 switch (dc->base.is_jmp) {
14213 default:
14214 gen_a64_update_pc(dc, 4);
14215 /* fall through */
14216 case DISAS_EXIT:
14217 case DISAS_JUMP:
14218 gen_step_complete_exception(dc);
14219 break;
14220 case DISAS_NORETURN:
14221 break;
14222 }
14223 } else {
14224 switch (dc->base.is_jmp) {
14225 case DISAS_NEXT:
14226 case DISAS_TOO_MANY:
14227 gen_goto_tb(dc, 1, 4);
14228 break;
14229 default:
14230 case DISAS_UPDATE_EXIT:
14231 gen_a64_update_pc(dc, 4);
14232 /* fall through */
14233 case DISAS_EXIT:
14234 tcg_gen_exit_tb(NULL, 0);
14235 break;
14236 case DISAS_UPDATE_NOCHAIN:
14237 gen_a64_update_pc(dc, 4);
14238 /* fall through */
14239 case DISAS_JUMP:
14240 tcg_gen_lookup_and_goto_ptr();
14241 break;
14242 case DISAS_NORETURN:
14243 case DISAS_SWI:
14244 break;
14245 case DISAS_WFE:
14246 gen_a64_update_pc(dc, 4);
14247 gen_helper_wfe(tcg_env);
14248 break;
14249 case DISAS_YIELD:
14250 gen_a64_update_pc(dc, 4);
14251 gen_helper_yield(tcg_env);
14252 break;
14253 case DISAS_WFI:
14254 /*
14255 * This is a special case because we don't want to just halt
14256 * the CPU if trying to debug across a WFI.
14257 */
14258 gen_a64_update_pc(dc, 4);
14259 gen_helper_wfi(tcg_env, tcg_constant_i32(4));
14260 /*
14261 * The helper doesn't necessarily throw an exception, but we
14262 * must go back to the main loop to check for interrupts anyway.
14263 */
14264 tcg_gen_exit_tb(NULL, 0);
14265 break;
14266 }
14267 }
14268 }
14269
14270 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14271 CPUState *cpu, FILE *logfile)
14272 {
14273 DisasContext *dc = container_of(dcbase, DisasContext, base);
14274
14275 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
14276 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
14277 }
14278
14279 const TranslatorOps aarch64_translator_ops = {
14280 .init_disas_context = aarch64_tr_init_disas_context,
14281 .tb_start = aarch64_tr_tb_start,
14282 .insn_start = aarch64_tr_insn_start,
14283 .translate_insn = aarch64_tr_translate_insn,
14284 .tb_stop = aarch64_tr_tb_stop,
14285 .disas_log = aarch64_tr_disas_log,
14286 };