]> git.proxmox.com Git - qemu.git/blob - target-alpha/int_helper.c
introduce new vma archive format
[qemu.git] / target-alpha / int_helper.c
1 /*
2 * Helpers for integer and multimedia instructions.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "helper.h"
22 #include "qemu/host-utils.h"
23
24
25 uint64_t helper_umulh(uint64_t op1, uint64_t op2)
26 {
27 uint64_t tl, th;
28 mulu64(&tl, &th, op1, op2);
29 return th;
30 }
31
32 uint64_t helper_ctpop(uint64_t arg)
33 {
34 return ctpop64(arg);
35 }
36
37 uint64_t helper_ctlz(uint64_t arg)
38 {
39 return clz64(arg);
40 }
41
42 uint64_t helper_cttz(uint64_t arg)
43 {
44 return ctz64(arg);
45 }
46
47 static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
48 {
49 uint64_t mask;
50
51 mask = 0;
52 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
53 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
54 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
55 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
56 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
57 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
58 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
59 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
60
61 return op & ~mask;
62 }
63
64 uint64_t helper_zap(uint64_t val, uint64_t mask)
65 {
66 return byte_zap(val, mask);
67 }
68
69 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
70 {
71 return byte_zap(val, ~mask);
72 }
73
74 uint64_t helper_cmpbge(uint64_t op1, uint64_t op2)
75 {
76 uint8_t opa, opb, res;
77 int i;
78
79 res = 0;
80 for (i = 0; i < 8; i++) {
81 opa = op1 >> (i * 8);
82 opb = op2 >> (i * 8);
83 if (opa >= opb) {
84 res |= 1 << i;
85 }
86 }
87 return res;
88 }
89
90 uint64_t helper_minub8(uint64_t op1, uint64_t op2)
91 {
92 uint64_t res = 0;
93 uint8_t opa, opb, opr;
94 int i;
95
96 for (i = 0; i < 8; ++i) {
97 opa = op1 >> (i * 8);
98 opb = op2 >> (i * 8);
99 opr = opa < opb ? opa : opb;
100 res |= (uint64_t)opr << (i * 8);
101 }
102 return res;
103 }
104
105 uint64_t helper_minsb8(uint64_t op1, uint64_t op2)
106 {
107 uint64_t res = 0;
108 int8_t opa, opb;
109 uint8_t opr;
110 int i;
111
112 for (i = 0; i < 8; ++i) {
113 opa = op1 >> (i * 8);
114 opb = op2 >> (i * 8);
115 opr = opa < opb ? opa : opb;
116 res |= (uint64_t)opr << (i * 8);
117 }
118 return res;
119 }
120
121 uint64_t helper_minuw4(uint64_t op1, uint64_t op2)
122 {
123 uint64_t res = 0;
124 uint16_t opa, opb, opr;
125 int i;
126
127 for (i = 0; i < 4; ++i) {
128 opa = op1 >> (i * 16);
129 opb = op2 >> (i * 16);
130 opr = opa < opb ? opa : opb;
131 res |= (uint64_t)opr << (i * 16);
132 }
133 return res;
134 }
135
136 uint64_t helper_minsw4(uint64_t op1, uint64_t op2)
137 {
138 uint64_t res = 0;
139 int16_t opa, opb;
140 uint16_t opr;
141 int i;
142
143 for (i = 0; i < 4; ++i) {
144 opa = op1 >> (i * 16);
145 opb = op2 >> (i * 16);
146 opr = opa < opb ? opa : opb;
147 res |= (uint64_t)opr << (i * 16);
148 }
149 return res;
150 }
151
152 uint64_t helper_maxub8(uint64_t op1, uint64_t op2)
153 {
154 uint64_t res = 0;
155 uint8_t opa, opb, opr;
156 int i;
157
158 for (i = 0; i < 8; ++i) {
159 opa = op1 >> (i * 8);
160 opb = op2 >> (i * 8);
161 opr = opa > opb ? opa : opb;
162 res |= (uint64_t)opr << (i * 8);
163 }
164 return res;
165 }
166
167 uint64_t helper_maxsb8(uint64_t op1, uint64_t op2)
168 {
169 uint64_t res = 0;
170 int8_t opa, opb;
171 uint8_t opr;
172 int i;
173
174 for (i = 0; i < 8; ++i) {
175 opa = op1 >> (i * 8);
176 opb = op2 >> (i * 8);
177 opr = opa > opb ? opa : opb;
178 res |= (uint64_t)opr << (i * 8);
179 }
180 return res;
181 }
182
183 uint64_t helper_maxuw4(uint64_t op1, uint64_t op2)
184 {
185 uint64_t res = 0;
186 uint16_t opa, opb, opr;
187 int i;
188
189 for (i = 0; i < 4; ++i) {
190 opa = op1 >> (i * 16);
191 opb = op2 >> (i * 16);
192 opr = opa > opb ? opa : opb;
193 res |= (uint64_t)opr << (i * 16);
194 }
195 return res;
196 }
197
198 uint64_t helper_maxsw4(uint64_t op1, uint64_t op2)
199 {
200 uint64_t res = 0;
201 int16_t opa, opb;
202 uint16_t opr;
203 int i;
204
205 for (i = 0; i < 4; ++i) {
206 opa = op1 >> (i * 16);
207 opb = op2 >> (i * 16);
208 opr = opa > opb ? opa : opb;
209 res |= (uint64_t)opr << (i * 16);
210 }
211 return res;
212 }
213
214 uint64_t helper_perr(uint64_t op1, uint64_t op2)
215 {
216 uint64_t res = 0;
217 uint8_t opa, opb, opr;
218 int i;
219
220 for (i = 0; i < 8; ++i) {
221 opa = op1 >> (i * 8);
222 opb = op2 >> (i * 8);
223 if (opa >= opb) {
224 opr = opa - opb;
225 } else {
226 opr = opb - opa;
227 }
228 res += opr;
229 }
230 return res;
231 }
232
233 uint64_t helper_pklb(uint64_t op1)
234 {
235 return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
236 }
237
238 uint64_t helper_pkwb(uint64_t op1)
239 {
240 return ((op1 & 0xff)
241 | ((op1 >> 8) & 0xff00)
242 | ((op1 >> 16) & 0xff0000)
243 | ((op1 >> 24) & 0xff000000));
244 }
245
246 uint64_t helper_unpkbl(uint64_t op1)
247 {
248 return (op1 & 0xff) | ((op1 & 0xff00) << 24);
249 }
250
251 uint64_t helper_unpkbw(uint64_t op1)
252 {
253 return ((op1 & 0xff)
254 | ((op1 & 0xff00) << 8)
255 | ((op1 & 0xff0000) << 16)
256 | ((op1 & 0xff000000) << 24));
257 }
258
259 uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
260 {
261 uint64_t tmp = op1;
262 op1 += op2;
263 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
264 arith_excp(env, GETPC(), EXC_M_IOV, 0);
265 }
266 return op1;
267 }
268
269 uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
270 {
271 uint64_t tmp = op1;
272 op1 = (uint32_t)(op1 + op2);
273 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
274 arith_excp(env, GETPC(), EXC_M_IOV, 0);
275 }
276 return op1;
277 }
278
279 uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
280 {
281 uint64_t res;
282 res = op1 - op2;
283 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
284 arith_excp(env, GETPC(), EXC_M_IOV, 0);
285 }
286 return res;
287 }
288
289 uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
290 {
291 uint32_t res;
292 res = op1 - op2;
293 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
294 arith_excp(env, GETPC(), EXC_M_IOV, 0);
295 }
296 return res;
297 }
298
299 uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
300 {
301 int64_t res = (int64_t)op1 * (int64_t)op2;
302
303 if (unlikely((int32_t)res != res)) {
304 arith_excp(env, GETPC(), EXC_M_IOV, 0);
305 }
306 return (int64_t)((int32_t)res);
307 }
308
309 uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
310 {
311 uint64_t tl, th;
312
313 muls64(&tl, &th, op1, op2);
314 /* If th != 0 && th != -1, then we had an overflow */
315 if (unlikely((th + 1) > 1)) {
316 arith_excp(env, GETPC(), EXC_M_IOV, 0);
317 }
318 return tl;
319 }