]> git.proxmox.com Git - qemu.git/blob - target-alpha/op_helper.c
fixed invalid type
[qemu.git] / target-alpha / op_helper.c
1 /*
2 * Alpha emulation cpu micro-operations helpers for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "exec.h"
22 #include "host-utils.h"
23 #include "softfloat.h"
24
25 #include "op_helper.h"
26
27 #define MEMSUFFIX _raw
28 #include "op_helper_mem.h"
29
30 #if !defined(CONFIG_USER_ONLY)
31 #define MEMSUFFIX _kernel
32 #include "op_helper_mem.h"
33
34 #define MEMSUFFIX _executive
35 #include "op_helper_mem.h"
36
37 #define MEMSUFFIX _supervisor
38 #include "op_helper_mem.h"
39
40 #define MEMSUFFIX _user
41 #include "op_helper_mem.h"
42
43 /* This is used for pal modes */
44 #define MEMSUFFIX _data
45 #include "op_helper_mem.h"
46 #endif
47
48 void helper_tb_flush (void)
49 {
50 tlb_flush(env, 1);
51 }
52
53 void cpu_dump_EA (target_ulong EA);
54 void helper_print_mem_EA (target_ulong EA)
55 {
56 cpu_dump_EA(EA);
57 }
58
59 /*****************************************************************************/
60 /* Exceptions processing helpers */
61 void helper_excp (uint32_t excp, uint32_t error)
62 {
63 env->exception_index = excp;
64 env->error_code = error;
65 cpu_loop_exit();
66 }
67
68 void helper_amask (void)
69 {
70 switch (env->implver) {
71 case IMPLVER_2106x:
72 /* EV4, EV45, LCA, LCA45 & EV5 */
73 break;
74 case IMPLVER_21164:
75 case IMPLVER_21264:
76 case IMPLVER_21364:
77 T0 &= ~env->amask;
78 break;
79 }
80 }
81
82 void helper_load_pcc (void)
83 {
84 /* XXX: TODO */
85 T0 = 0;
86 }
87
88 void helper_load_implver (void)
89 {
90 T0 = env->implver;
91 }
92
93 void helper_load_fpcr (void)
94 {
95 T0 = 0;
96 #ifdef CONFIG_SOFTFLOAT
97 T0 |= env->fp_status.float_exception_flags << 52;
98 if (env->fp_status.float_exception_flags)
99 T0 |= 1ULL << 63;
100 env->ipr[IPR_EXC_SUM] &= ~0x3E:
101 env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
102 #endif
103 switch (env->fp_status.float_rounding_mode) {
104 case float_round_nearest_even:
105 T0 |= 2ULL << 58;
106 break;
107 case float_round_down:
108 T0 |= 1ULL << 58;
109 break;
110 case float_round_up:
111 T0 |= 3ULL << 58;
112 break;
113 case float_round_to_zero:
114 break;
115 }
116 }
117
118 void helper_store_fpcr (void)
119 {
120 #ifdef CONFIG_SOFTFLOAT
121 set_float_exception_flags((T0 >> 52) & 0x3F, &FP_STATUS);
122 #endif
123 switch ((T0 >> 58) & 3) {
124 case 0:
125 set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
126 break;
127 case 1:
128 set_float_rounding_mode(float_round_down, &FP_STATUS);
129 break;
130 case 2:
131 set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
132 break;
133 case 3:
134 set_float_rounding_mode(float_round_up, &FP_STATUS);
135 break;
136 }
137 }
138
139 void helper_load_irf (void)
140 {
141 /* XXX: TODO */
142 T0 = 0;
143 }
144
145 void helper_set_irf (void)
146 {
147 /* XXX: TODO */
148 }
149
150 void helper_clear_irf (void)
151 {
152 /* XXX: TODO */
153 }
154
155 void helper_addqv (void)
156 {
157 T2 = T0;
158 T0 += T1;
159 if (unlikely((T2 ^ T1 ^ (-1ULL)) & (T2 ^ T0) & (1ULL << 63))) {
160 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
161 }
162 }
163
164 void helper_addlv (void)
165 {
166 T2 = T0;
167 T0 = (uint32_t)(T0 + T1);
168 if (unlikely((T2 ^ T1 ^ (-1UL)) & (T2 ^ T0) & (1UL << 31))) {
169 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
170 }
171 }
172
173 void helper_subqv (void)
174 {
175 T2 = T0;
176 T0 -= T1;
177 if (unlikely(((~T2) ^ T0 ^ (-1ULL)) & ((~T2) ^ T1) & (1ULL << 63))) {
178 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
179 }
180 }
181
182 void helper_sublv (void)
183 {
184 T2 = T0;
185 T0 = (uint32_t)(T0 - T1);
186 if (unlikely(((~T2) ^ T0 ^ (-1UL)) & ((~T2) ^ T1) & (1UL << 31))) {
187 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
188 }
189 }
190
191 void helper_mullv (void)
192 {
193 int64_t res = (int64_t)T0 * (int64_t)T1;
194
195 if (unlikely((int32_t)res != res)) {
196 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
197 }
198 T0 = (int64_t)((int32_t)res);
199 }
200
201 void helper_mulqv ()
202 {
203 uint64_t tl, th;
204
205 muls64(&tl, &th, T0, T1);
206 /* If th != 0 && th != -1, then we had an overflow */
207 if (unlikely((th + 1) > 1)) {
208 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
209 }
210 T0 = tl;
211 }
212
213 void helper_ctpop (void)
214 {
215 T0 = ctpop64(T0);
216 }
217
218 void helper_ctlz (void)
219 {
220 T0 = clz64(T0);
221 }
222
223 void helper_cttz (void)
224 {
225 T0 = ctz64(T0);
226 }
227
228 static always_inline uint64_t byte_zap (uint64_t op, uint8_t mskb)
229 {
230 uint64_t mask;
231
232 mask = 0;
233 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
234 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
235 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
236 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
237 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
238 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
239 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
240 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
241
242 return op & ~mask;
243 }
244
245 void helper_mskbl (void)
246 {
247 T0 = byte_zap(T0, 0x01 << (T1 & 7));
248 }
249
250 void helper_extbl (void)
251 {
252 T0 >>= (T1 & 7) * 8;
253 T0 = byte_zap(T0, 0xFE);
254 }
255
256 void helper_insbl (void)
257 {
258 T0 <<= (T1 & 7) * 8;
259 T0 = byte_zap(T0, ~(0x01 << (T1 & 7)));
260 }
261
262 void helper_mskwl (void)
263 {
264 T0 = byte_zap(T0, 0x03 << (T1 & 7));
265 }
266
267 void helper_extwl (void)
268 {
269 T0 >>= (T1 & 7) * 8;
270 T0 = byte_zap(T0, 0xFC);
271 }
272
273 void helper_inswl (void)
274 {
275 T0 <<= (T1 & 7) * 8;
276 T0 = byte_zap(T0, ~(0x03 << (T1 & 7)));
277 }
278
279 void helper_mskll (void)
280 {
281 T0 = byte_zap(T0, 0x0F << (T1 & 7));
282 }
283
284 void helper_extll (void)
285 {
286 T0 >>= (T1 & 7) * 8;
287 T0 = byte_zap(T0, 0xF0);
288 }
289
290 void helper_insll (void)
291 {
292 T0 <<= (T1 & 7) * 8;
293 T0 = byte_zap(T0, ~(0x0F << (T1 & 7)));
294 }
295
296 void helper_zap (void)
297 {
298 T0 = byte_zap(T0, T1);
299 }
300
301 void helper_zapnot (void)
302 {
303 T0 = byte_zap(T0, ~T1);
304 }
305
306 void helper_mskql (void)
307 {
308 T0 = byte_zap(T0, 0xFF << (T1 & 7));
309 }
310
311 void helper_extql (void)
312 {
313 T0 >>= (T1 & 7) * 8;
314 T0 = byte_zap(T0, 0x00);
315 }
316
317 void helper_insql (void)
318 {
319 T0 <<= (T1 & 7) * 8;
320 T0 = byte_zap(T0, ~(0xFF << (T1 & 7)));
321 }
322
323 void helper_mskwh (void)
324 {
325 T0 = byte_zap(T0, (0x03 << (T1 & 7)) >> 8);
326 }
327
328 void helper_inswh (void)
329 {
330 T0 >>= 64 - ((T1 & 7) * 8);
331 T0 = byte_zap(T0, ~((0x03 << (T1 & 7)) >> 8));
332 }
333
334 void helper_extwh (void)
335 {
336 T0 <<= 64 - ((T1 & 7) * 8);
337 T0 = byte_zap(T0, ~0x07);
338 }
339
340 void helper_msklh (void)
341 {
342 T0 = byte_zap(T0, (0x0F << (T1 & 7)) >> 8);
343 }
344
345 void helper_inslh (void)
346 {
347 T0 >>= 64 - ((T1 & 7) * 8);
348 T0 = byte_zap(T0, ~((0x0F << (T1 & 7)) >> 8));
349 }
350
351 void helper_extlh (void)
352 {
353 T0 <<= 64 - ((T1 & 7) * 8);
354 T0 = byte_zap(T0, ~0x0F);
355 }
356
357 void helper_mskqh (void)
358 {
359 T0 = byte_zap(T0, (0xFF << (T1 & 7)) >> 8);
360 }
361
362 void helper_insqh (void)
363 {
364 T0 >>= 64 - ((T1 & 7) * 8);
365 T0 = byte_zap(T0, ~((0xFF << (T1 & 7)) >> 8));
366 }
367
368 void helper_extqh (void)
369 {
370 T0 <<= 64 - ((T1 & 7) * 8);
371 T0 = byte_zap(T0, 0x00);
372 }
373
374 void helper_cmpbge (void)
375 {
376 uint8_t opa, opb, res;
377 int i;
378
379 res = 0;
380 for (i = 0; i < 7; i++) {
381 opa = T0 >> (i * 8);
382 opb = T1 >> (i * 8);
383 if (opa >= opb)
384 res |= 1 << i;
385 }
386 T0 = res;
387 }
388
389 void helper_cmov_fir (int freg)
390 {
391 if (FT0 != 0)
392 env->fir[freg] = FT1;
393 }
394
395 void helper_sqrts (void)
396 {
397 FT0 = float32_sqrt(FT0, &FP_STATUS);
398 }
399
400 void helper_cpys (void)
401 {
402 union {
403 double d;
404 uint64_t i;
405 } p, q, r;
406
407 p.d = FT0;
408 q.d = FT1;
409 r.i = p.i & 0x8000000000000000ULL;
410 r.i |= q.i & ~0x8000000000000000ULL;
411 FT0 = r.d;
412 }
413
414 void helper_cpysn (void)
415 {
416 union {
417 double d;
418 uint64_t i;
419 } p, q, r;
420
421 p.d = FT0;
422 q.d = FT1;
423 r.i = (~p.i) & 0x8000000000000000ULL;
424 r.i |= q.i & ~0x8000000000000000ULL;
425 FT0 = r.d;
426 }
427
428 void helper_cpyse (void)
429 {
430 union {
431 double d;
432 uint64_t i;
433 } p, q, r;
434
435 p.d = FT0;
436 q.d = FT1;
437 r.i = p.i & 0xFFF0000000000000ULL;
438 r.i |= q.i & ~0xFFF0000000000000ULL;
439 FT0 = r.d;
440 }
441
442 void helper_itofs (void)
443 {
444 union {
445 double d;
446 uint64_t i;
447 } p;
448
449 p.d = FT0;
450 FT0 = int64_to_float32(p.i, &FP_STATUS);
451 }
452
453 void helper_ftois (void)
454 {
455 union {
456 double d;
457 uint64_t i;
458 } p;
459
460 p.i = float32_to_int64(FT0, &FP_STATUS);
461 FT0 = p.d;
462 }
463
464 void helper_sqrtt (void)
465 {
466 FT0 = float64_sqrt(FT0, &FP_STATUS);
467 }
468
469 void helper_cmptun (void)
470 {
471 union {
472 double d;
473 uint64_t i;
474 } p;
475
476 p.i = 0;
477 if (float64_is_nan(FT0) || float64_is_nan(FT1))
478 p.i = 0x4000000000000000ULL;
479 FT0 = p.d;
480 }
481
482 void helper_cmpteq (void)
483 {
484 union {
485 double d;
486 uint64_t i;
487 } p;
488
489 p.i = 0;
490 if (float64_eq(FT0, FT1, &FP_STATUS))
491 p.i = 0x4000000000000000ULL;
492 FT0 = p.d;
493 }
494
495 void helper_cmptle (void)
496 {
497 union {
498 double d;
499 uint64_t i;
500 } p;
501
502 p.i = 0;
503 if (float64_le(FT0, FT1, &FP_STATUS))
504 p.i = 0x4000000000000000ULL;
505 FT0 = p.d;
506 }
507
508 void helper_cmptlt (void)
509 {
510 union {
511 double d;
512 uint64_t i;
513 } p;
514
515 p.i = 0;
516 if (float64_lt(FT0, FT1, &FP_STATUS))
517 p.i = 0x4000000000000000ULL;
518 FT0 = p.d;
519 }
520
521 void helper_itoft (void)
522 {
523 union {
524 double d;
525 uint64_t i;
526 } p;
527
528 p.d = FT0;
529 FT0 = int64_to_float64(p.i, &FP_STATUS);
530 }
531
532 void helper_ftoit (void)
533 {
534 union {
535 double d;
536 uint64_t i;
537 } p;
538
539 p.i = float64_to_int64(FT0, &FP_STATUS);
540 FT0 = p.d;
541 }
542
543 static always_inline int vaxf_is_valid (float ff)
544 {
545 union {
546 float f;
547 uint32_t i;
548 } p;
549 uint32_t exp, mant;
550
551 p.f = ff;
552 exp = (p.i >> 23) & 0xFF;
553 mant = p.i & 0x007FFFFF;
554 if (exp == 0 && ((p.i & 0x80000000) || mant != 0)) {
555 /* Reserved operands / Dirty zero */
556 return 0;
557 }
558
559 return 1;
560 }
561
562 static always_inline float vaxf_to_ieee32 (float ff)
563 {
564 union {
565 float f;
566 uint32_t i;
567 } p;
568 uint32_t exp;
569
570 p.f = ff;
571 exp = (p.i >> 23) & 0xFF;
572 if (exp < 3) {
573 /* Underflow */
574 p.f = 0.0;
575 } else {
576 p.f *= 0.25;
577 }
578
579 return p.f;
580 }
581
582 static always_inline float ieee32_to_vaxf (float fi)
583 {
584 union {
585 float f;
586 uint32_t i;
587 } p;
588 uint32_t exp, mant;
589
590 p.f = fi;
591 exp = (p.i >> 23) & 0xFF;
592 mant = p.i & 0x007FFFFF;
593 if (exp == 255) {
594 /* NaN or infinity */
595 p.i = 1;
596 } else if (exp == 0) {
597 if (mant == 0) {
598 /* Zero */
599 p.i = 0;
600 } else {
601 /* Denormalized */
602 p.f *= 2.0;
603 }
604 } else {
605 if (exp >= 253) {
606 /* Overflow */
607 p.i = 1;
608 } else {
609 p.f *= 4.0;
610 }
611 }
612
613 return p.f;
614 }
615
616 void helper_addf (void)
617 {
618 float ft0, ft1, ft2;
619
620 if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
621 /* XXX: TODO */
622 }
623 ft0 = vaxf_to_ieee32(FT0);
624 ft1 = vaxf_to_ieee32(FT1);
625 ft2 = float32_add(ft0, ft1, &FP_STATUS);
626 FT0 = ieee32_to_vaxf(ft2);
627 }
628
629 void helper_subf (void)
630 {
631 float ft0, ft1, ft2;
632
633 if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
634 /* XXX: TODO */
635 }
636 ft0 = vaxf_to_ieee32(FT0);
637 ft1 = vaxf_to_ieee32(FT1);
638 ft2 = float32_sub(ft0, ft1, &FP_STATUS);
639 FT0 = ieee32_to_vaxf(ft2);
640 }
641
642 void helper_mulf (void)
643 {
644 float ft0, ft1, ft2;
645
646 if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
647 /* XXX: TODO */
648 }
649 ft0 = vaxf_to_ieee32(FT0);
650 ft1 = vaxf_to_ieee32(FT1);
651 ft2 = float32_mul(ft0, ft1, &FP_STATUS);
652 FT0 = ieee32_to_vaxf(ft2);
653 }
654
655 void helper_divf (void)
656 {
657 float ft0, ft1, ft2;
658
659 if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
660 /* XXX: TODO */
661 }
662 ft0 = vaxf_to_ieee32(FT0);
663 ft1 = vaxf_to_ieee32(FT1);
664 ft2 = float32_div(ft0, ft1, &FP_STATUS);
665 FT0 = ieee32_to_vaxf(ft2);
666 }
667
668 void helper_sqrtf (void)
669 {
670 float ft0, ft1;
671
672 if (!vaxf_is_valid(FT0) || !vaxf_is_valid(FT1)) {
673 /* XXX: TODO */
674 }
675 ft0 = vaxf_to_ieee32(FT0);
676 ft1 = float32_sqrt(ft0, &FP_STATUS);
677 FT0 = ieee32_to_vaxf(ft1);
678 }
679
680 void helper_itoff (void)
681 {
682 /* XXX: TODO */
683 }
684
685 static always_inline int vaxg_is_valid (double ff)
686 {
687 union {
688 double f;
689 uint64_t i;
690 } p;
691 uint64_t exp, mant;
692
693 p.f = ff;
694 exp = (p.i >> 52) & 0x7FF;
695 mant = p.i & 0x000FFFFFFFFFFFFFULL;
696 if (exp == 0 && ((p.i & 0x8000000000000000ULL) || mant != 0)) {
697 /* Reserved operands / Dirty zero */
698 return 0;
699 }
700
701 return 1;
702 }
703
704 static always_inline double vaxg_to_ieee64 (double fg)
705 {
706 union {
707 double f;
708 uint64_t i;
709 } p;
710 uint32_t exp;
711
712 p.f = fg;
713 exp = (p.i >> 52) & 0x7FF;
714 if (exp < 3) {
715 /* Underflow */
716 p.f = 0.0;
717 } else {
718 p.f *= 0.25;
719 }
720
721 return p.f;
722 }
723
724 static always_inline double ieee64_to_vaxg (double fi)
725 {
726 union {
727 double f;
728 uint64_t i;
729 } p;
730 uint64_t mant;
731 uint32_t exp;
732
733 p.f = fi;
734 exp = (p.i >> 52) & 0x7FF;
735 mant = p.i & 0x000FFFFFFFFFFFFFULL;
736 if (exp == 255) {
737 /* NaN or infinity */
738 p.i = 1; /* VAX dirty zero */
739 } else if (exp == 0) {
740 if (mant == 0) {
741 /* Zero */
742 p.i = 0;
743 } else {
744 /* Denormalized */
745 p.f *= 2.0;
746 }
747 } else {
748 if (exp >= 2045) {
749 /* Overflow */
750 p.i = 1; /* VAX dirty zero */
751 } else {
752 p.f *= 4.0;
753 }
754 }
755
756 return p.f;
757 }
758
759 void helper_addg (void)
760 {
761 double ft0, ft1, ft2;
762
763 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
764 /* XXX: TODO */
765 }
766 ft0 = vaxg_to_ieee64(FT0);
767 ft1 = vaxg_to_ieee64(FT1);
768 ft2 = float64_add(ft0, ft1, &FP_STATUS);
769 FT0 = ieee64_to_vaxg(ft2);
770 }
771
772 void helper_subg (void)
773 {
774 double ft0, ft1, ft2;
775
776 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
777 /* XXX: TODO */
778 }
779 ft0 = vaxg_to_ieee64(FT0);
780 ft1 = vaxg_to_ieee64(FT1);
781 ft2 = float64_sub(ft0, ft1, &FP_STATUS);
782 FT0 = ieee64_to_vaxg(ft2);
783 }
784
785 void helper_mulg (void)
786 {
787 double ft0, ft1, ft2;
788
789 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
790 /* XXX: TODO */
791 }
792 ft0 = vaxg_to_ieee64(FT0);
793 ft1 = vaxg_to_ieee64(FT1);
794 ft2 = float64_mul(ft0, ft1, &FP_STATUS);
795 FT0 = ieee64_to_vaxg(ft2);
796 }
797
798 void helper_divg (void)
799 {
800 double ft0, ft1, ft2;
801
802 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
803 /* XXX: TODO */
804 }
805 ft0 = vaxg_to_ieee64(FT0);
806 ft1 = vaxg_to_ieee64(FT1);
807 ft2 = float64_div(ft0, ft1, &FP_STATUS);
808 FT0 = ieee64_to_vaxg(ft2);
809 }
810
811 void helper_sqrtg (void)
812 {
813 double ft0, ft1;
814
815 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
816 /* XXX: TODO */
817 }
818 ft0 = vaxg_to_ieee64(FT0);
819 ft1 = float64_sqrt(ft0, &FP_STATUS);
820 FT0 = ieee64_to_vaxg(ft1);
821 }
822
823 void helper_cmpgeq (void)
824 {
825 union {
826 double d;
827 uint64_t u;
828 } p;
829 double ft0, ft1;
830
831 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
832 /* XXX: TODO */
833 }
834 ft0 = vaxg_to_ieee64(FT0);
835 ft1 = vaxg_to_ieee64(FT1);
836 p.u = 0;
837 if (float64_eq(ft0, ft1, &FP_STATUS))
838 p.u = 0x4000000000000000ULL;
839 FT0 = p.d;
840 }
841
842 void helper_cmpglt (void)
843 {
844 union {
845 double d;
846 uint64_t u;
847 } p;
848 double ft0, ft1;
849
850 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
851 /* XXX: TODO */
852 }
853 ft0 = vaxg_to_ieee64(FT0);
854 ft1 = vaxg_to_ieee64(FT1);
855 p.u = 0;
856 if (float64_lt(ft0, ft1, &FP_STATUS))
857 p.u = 0x4000000000000000ULL;
858 FT0 = p.d;
859 }
860
861 void helper_cmpgle (void)
862 {
863 union {
864 double d;
865 uint64_t u;
866 } p;
867 double ft0, ft1;
868
869 if (!vaxg_is_valid(FT0) || !vaxg_is_valid(FT1)) {
870 /* XXX: TODO */
871 }
872 ft0 = vaxg_to_ieee64(FT0);
873 ft1 = vaxg_to_ieee64(FT1);
874 p.u = 0;
875 if (float64_le(ft0, ft1, &FP_STATUS))
876 p.u = 0x4000000000000000ULL;
877 FT0 = p.d;
878 }
879
880 void helper_cvtqs (void)
881 {
882 union {
883 double d;
884 uint64_t u;
885 } p;
886
887 p.d = FT0;
888 FT0 = (float)p.u;
889 }
890
891 void helper_cvttq (void)
892 {
893 union {
894 double d;
895 uint64_t u;
896 } p;
897
898 p.u = FT0;
899 FT0 = p.d;
900 }
901
902 void helper_cvtqt (void)
903 {
904 union {
905 double d;
906 uint64_t u;
907 } p;
908
909 p.d = FT0;
910 FT0 = p.u;
911 }
912
913 void helper_cvtqf (void)
914 {
915 union {
916 double d;
917 uint64_t u;
918 } p;
919
920 p.d = FT0;
921 FT0 = ieee32_to_vaxf(p.u);
922 }
923
924 void helper_cvtgf (void)
925 {
926 double ft0;
927
928 ft0 = vaxg_to_ieee64(FT0);
929 FT0 = ieee32_to_vaxf(ft0);
930 }
931
932 void helper_cvtgd (void)
933 {
934 /* XXX: TODO */
935 }
936
937 void helper_cvtgq (void)
938 {
939 union {
940 double d;
941 uint64_t u;
942 } p;
943
944 p.u = vaxg_to_ieee64(FT0);
945 FT0 = p.d;
946 }
947
948 void helper_cvtqg (void)
949 {
950 union {
951 double d;
952 uint64_t u;
953 } p;
954
955 p.d = FT0;
956 FT0 = ieee64_to_vaxg(p.u);
957 }
958
959 void helper_cvtdg (void)
960 {
961 /* XXX: TODO */
962 }
963
964 void helper_cvtlq (void)
965 {
966 union {
967 double d;
968 uint64_t u;
969 } p, q;
970
971 p.d = FT0;
972 q.u = (p.u >> 29) & 0x3FFFFFFF;
973 q.u |= (p.u >> 32);
974 q.u = (int64_t)((int32_t)q.u);
975 FT0 = q.d;
976 }
977
978 static always_inline void __helper_cvtql (int s, int v)
979 {
980 union {
981 double d;
982 uint64_t u;
983 } p, q;
984
985 p.d = FT0;
986 q.u = ((uint64_t)(p.u & 0xC0000000)) << 32;
987 q.u |= ((uint64_t)(p.u & 0x7FFFFFFF)) << 29;
988 FT0 = q.d;
989 if (v && (int64_t)((int32_t)p.u) != (int64_t)p.u) {
990 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
991 }
992 if (s) {
993 /* TODO */
994 }
995 }
996
997 void helper_cvtql (void)
998 {
999 __helper_cvtql(0, 0);
1000 }
1001
1002 void helper_cvtqlv (void)
1003 {
1004 __helper_cvtql(0, 1);
1005 }
1006
1007 void helper_cvtqlsv (void)
1008 {
1009 __helper_cvtql(1, 1);
1010 }
1011
1012 void helper_cmpfeq (void)
1013 {
1014 if (float64_eq(FT0, FT1, &FP_STATUS))
1015 T0 = 1;
1016 else
1017 T0 = 0;
1018 }
1019
1020 void helper_cmpfne (void)
1021 {
1022 if (float64_eq(FT0, FT1, &FP_STATUS))
1023 T0 = 0;
1024 else
1025 T0 = 1;
1026 }
1027
1028 void helper_cmpflt (void)
1029 {
1030 if (float64_lt(FT0, FT1, &FP_STATUS))
1031 T0 = 1;
1032 else
1033 T0 = 0;
1034 }
1035
1036 void helper_cmpfle (void)
1037 {
1038 if (float64_lt(FT0, FT1, &FP_STATUS))
1039 T0 = 1;
1040 else
1041 T0 = 0;
1042 }
1043
1044 void helper_cmpfgt (void)
1045 {
1046 if (float64_le(FT0, FT1, &FP_STATUS))
1047 T0 = 0;
1048 else
1049 T0 = 1;
1050 }
1051
1052 void helper_cmpfge (void)
1053 {
1054 if (float64_lt(FT0, FT1, &FP_STATUS))
1055 T0 = 0;
1056 else
1057 T0 = 1;
1058 }
1059
1060 #if !defined (CONFIG_USER_ONLY)
1061 void helper_mfpr (int iprn)
1062 {
1063 uint64_t val;
1064
1065 if (cpu_alpha_mfpr(env, iprn, &val) == 0)
1066 T0 = val;
1067 }
1068
1069 void helper_mtpr (int iprn)
1070 {
1071 cpu_alpha_mtpr(env, iprn, T0, NULL);
1072 }
1073 #endif
1074
1075 /*****************************************************************************/
1076 /* Softmmu support */
1077 #if !defined (CONFIG_USER_ONLY)
1078
1079 #ifdef __s390__
1080 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
1081 #else
1082 # define GETPC() (__builtin_return_address(0))
1083 #endif
1084
1085 /* XXX: the two following helpers are pure hacks.
1086 * Hopefully, we emulate the PALcode, then we should never see
1087 * HW_LD / HW_ST instructions.
1088 */
1089 void helper_ld_phys_to_virt (void)
1090 {
1091 uint64_t tlb_addr, physaddr;
1092 int index, mmu_idx;
1093 void *retaddr;
1094
1095 mmu_idx = cpu_mmu_index(env);
1096 index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1097 redo:
1098 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1099 if ((T0 & TARGET_PAGE_MASK) ==
1100 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1101 physaddr = T0 + env->tlb_table[mmu_idx][index].addend;
1102 } else {
1103 /* the page is not in the TLB : fill it */
1104 retaddr = GETPC();
1105 tlb_fill(T0, 0, mmu_idx, retaddr);
1106 goto redo;
1107 }
1108 T0 = physaddr;
1109 }
1110
1111 void helper_st_phys_to_virt (void)
1112 {
1113 uint64_t tlb_addr, physaddr;
1114 int index, mmu_idx;
1115 void *retaddr;
1116
1117 mmu_idx = cpu_mmu_index(env);
1118 index = (T0 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1119 redo:
1120 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1121 if ((T0 & TARGET_PAGE_MASK) ==
1122 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1123 physaddr = T0 + env->tlb_table[mmu_idx][index].addend;
1124 } else {
1125 /* the page is not in the TLB : fill it */
1126 retaddr = GETPC();
1127 tlb_fill(T0, 1, mmu_idx, retaddr);
1128 goto redo;
1129 }
1130 T0 = physaddr;
1131 }
1132
1133 #define MMUSUFFIX _mmu
1134
1135 #define SHIFT 0
1136 #include "softmmu_template.h"
1137
1138 #define SHIFT 1
1139 #include "softmmu_template.h"
1140
1141 #define SHIFT 2
1142 #include "softmmu_template.h"
1143
1144 #define SHIFT 3
1145 #include "softmmu_template.h"
1146
1147 /* try to fill the TLB and return an exception if error. If retaddr is
1148 NULL, it means that the function was called in C code (i.e. not
1149 from generated code or from helper.c) */
1150 /* XXX: fix it to restore all registers */
1151 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1152 {
1153 TranslationBlock *tb;
1154 CPUState *saved_env;
1155 unsigned long pc;
1156 int ret;
1157
1158 /* XXX: hack to restore env in all cases, even if not called from
1159 generated code */
1160 saved_env = env;
1161 env = cpu_single_env;
1162 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1163 if (!likely(ret == 0)) {
1164 if (likely(retaddr)) {
1165 /* now we have a real cpu fault */
1166 pc = (unsigned long)retaddr;
1167 tb = tb_find_pc(pc);
1168 if (likely(tb)) {
1169 /* the PC is inside the translated code. It means that we have
1170 a virtual CPU fault */
1171 cpu_restore_state(tb, env, pc, NULL);
1172 }
1173 }
1174 /* Exception index and error code are already set */
1175 cpu_loop_exit();
1176 }
1177 env = saved_env;
1178 }
1179
1180 #endif