]> git.proxmox.com Git - qemu.git/blob - target-alpha/op_helper.c
tcg-sparc: Use TCG_TARGET_REG_BITS in conditional compilation.
[qemu.git] / target-alpha / op_helper.c
1 /*
2 * Alpha emulation cpu micro-operations helpers for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "exec.h"
21 #include "host-utils.h"
22 #include "softfloat.h"
23 #include "helper.h"
24
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
27 void helper_excp (int excp, int error)
28 {
29 env->exception_index = excp;
30 env->error_code = error;
31 cpu_loop_exit();
32 }
33
34 uint64_t helper_load_pcc (void)
35 {
36 /* XXX: TODO */
37 return 0;
38 }
39
40 uint64_t helper_load_fpcr (void)
41 {
42 return cpu_alpha_load_fpcr (env);
43 }
44
45 void helper_store_fpcr (uint64_t val)
46 {
47 cpu_alpha_store_fpcr (env, val);
48 }
49
50 static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
51
52 uint64_t helper_rs(void)
53 {
54 uint64_t tmp;
55
56 spin_lock(&intr_cpu_lock);
57 tmp = env->intr_flag;
58 env->intr_flag = 1;
59 spin_unlock(&intr_cpu_lock);
60
61 return tmp;
62 }
63
64 uint64_t helper_rc(void)
65 {
66 uint64_t tmp;
67
68 spin_lock(&intr_cpu_lock);
69 tmp = env->intr_flag;
70 env->intr_flag = 0;
71 spin_unlock(&intr_cpu_lock);
72
73 return tmp;
74 }
75
76 uint64_t helper_addqv (uint64_t op1, uint64_t op2)
77 {
78 uint64_t tmp = op1;
79 op1 += op2;
80 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
81 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
82 }
83 return op1;
84 }
85
86 uint64_t helper_addlv (uint64_t op1, uint64_t op2)
87 {
88 uint64_t tmp = op1;
89 op1 = (uint32_t)(op1 + op2);
90 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
91 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
92 }
93 return op1;
94 }
95
96 uint64_t helper_subqv (uint64_t op1, uint64_t op2)
97 {
98 uint64_t res;
99 res = op1 - op2;
100 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
101 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
102 }
103 return res;
104 }
105
106 uint64_t helper_sublv (uint64_t op1, uint64_t op2)
107 {
108 uint32_t res;
109 res = op1 - op2;
110 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
111 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
112 }
113 return res;
114 }
115
116 uint64_t helper_mullv (uint64_t op1, uint64_t op2)
117 {
118 int64_t res = (int64_t)op1 * (int64_t)op2;
119
120 if (unlikely((int32_t)res != res)) {
121 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
122 }
123 return (int64_t)((int32_t)res);
124 }
125
126 uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
127 {
128 uint64_t tl, th;
129
130 muls64(&tl, &th, op1, op2);
131 /* If th != 0 && th != -1, then we had an overflow */
132 if (unlikely((th + 1) > 1)) {
133 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
134 }
135 return tl;
136 }
137
138 uint64_t helper_umulh (uint64_t op1, uint64_t op2)
139 {
140 uint64_t tl, th;
141
142 mulu64(&tl, &th, op1, op2);
143 return th;
144 }
145
146 uint64_t helper_ctpop (uint64_t arg)
147 {
148 return ctpop64(arg);
149 }
150
151 uint64_t helper_ctlz (uint64_t arg)
152 {
153 return clz64(arg);
154 }
155
156 uint64_t helper_cttz (uint64_t arg)
157 {
158 return ctz64(arg);
159 }
160
161 static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
162 {
163 uint64_t mask;
164
165 mask = 0;
166 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
167 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
168 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
169 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
170 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
171 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
172 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
173 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
174
175 return op & ~mask;
176 }
177
178 uint64_t helper_zap(uint64_t val, uint64_t mask)
179 {
180 return byte_zap(val, mask);
181 }
182
183 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
184 {
185 return byte_zap(val, ~mask);
186 }
187
188 uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
189 {
190 uint8_t opa, opb, res;
191 int i;
192
193 res = 0;
194 for (i = 0; i < 8; i++) {
195 opa = op1 >> (i * 8);
196 opb = op2 >> (i * 8);
197 if (opa >= opb)
198 res |= 1 << i;
199 }
200 return res;
201 }
202
203 uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
204 {
205 uint64_t res = 0;
206 uint8_t opa, opb, opr;
207 int i;
208
209 for (i = 0; i < 8; ++i) {
210 opa = op1 >> (i * 8);
211 opb = op2 >> (i * 8);
212 opr = opa < opb ? opa : opb;
213 res |= (uint64_t)opr << (i * 8);
214 }
215 return res;
216 }
217
218 uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
219 {
220 uint64_t res = 0;
221 int8_t opa, opb;
222 uint8_t opr;
223 int i;
224
225 for (i = 0; i < 8; ++i) {
226 opa = op1 >> (i * 8);
227 opb = op2 >> (i * 8);
228 opr = opa < opb ? opa : opb;
229 res |= (uint64_t)opr << (i * 8);
230 }
231 return res;
232 }
233
234 uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
235 {
236 uint64_t res = 0;
237 uint16_t opa, opb, opr;
238 int i;
239
240 for (i = 0; i < 4; ++i) {
241 opa = op1 >> (i * 16);
242 opb = op2 >> (i * 16);
243 opr = opa < opb ? opa : opb;
244 res |= (uint64_t)opr << (i * 16);
245 }
246 return res;
247 }
248
249 uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
250 {
251 uint64_t res = 0;
252 int16_t opa, opb;
253 uint16_t opr;
254 int i;
255
256 for (i = 0; i < 4; ++i) {
257 opa = op1 >> (i * 16);
258 opb = op2 >> (i * 16);
259 opr = opa < opb ? opa : opb;
260 res |= (uint64_t)opr << (i * 16);
261 }
262 return res;
263 }
264
265 uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
266 {
267 uint64_t res = 0;
268 uint8_t opa, opb, opr;
269 int i;
270
271 for (i = 0; i < 8; ++i) {
272 opa = op1 >> (i * 8);
273 opb = op2 >> (i * 8);
274 opr = opa > opb ? opa : opb;
275 res |= (uint64_t)opr << (i * 8);
276 }
277 return res;
278 }
279
280 uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
281 {
282 uint64_t res = 0;
283 int8_t opa, opb;
284 uint8_t opr;
285 int i;
286
287 for (i = 0; i < 8; ++i) {
288 opa = op1 >> (i * 8);
289 opb = op2 >> (i * 8);
290 opr = opa > opb ? opa : opb;
291 res |= (uint64_t)opr << (i * 8);
292 }
293 return res;
294 }
295
296 uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
297 {
298 uint64_t res = 0;
299 uint16_t opa, opb, opr;
300 int i;
301
302 for (i = 0; i < 4; ++i) {
303 opa = op1 >> (i * 16);
304 opb = op2 >> (i * 16);
305 opr = opa > opb ? opa : opb;
306 res |= (uint64_t)opr << (i * 16);
307 }
308 return res;
309 }
310
311 uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
312 {
313 uint64_t res = 0;
314 int16_t opa, opb;
315 uint16_t opr;
316 int i;
317
318 for (i = 0; i < 4; ++i) {
319 opa = op1 >> (i * 16);
320 opb = op2 >> (i * 16);
321 opr = opa > opb ? opa : opb;
322 res |= (uint64_t)opr << (i * 16);
323 }
324 return res;
325 }
326
327 uint64_t helper_perr (uint64_t op1, uint64_t op2)
328 {
329 uint64_t res = 0;
330 uint8_t opa, opb, opr;
331 int i;
332
333 for (i = 0; i < 8; ++i) {
334 opa = op1 >> (i * 8);
335 opb = op2 >> (i * 8);
336 if (opa >= opb)
337 opr = opa - opb;
338 else
339 opr = opb - opa;
340 res += opr;
341 }
342 return res;
343 }
344
345 uint64_t helper_pklb (uint64_t op1)
346 {
347 return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
348 }
349
350 uint64_t helper_pkwb (uint64_t op1)
351 {
352 return ((op1 & 0xff)
353 | ((op1 >> 8) & 0xff00)
354 | ((op1 >> 16) & 0xff0000)
355 | ((op1 >> 24) & 0xff000000));
356 }
357
358 uint64_t helper_unpkbl (uint64_t op1)
359 {
360 return (op1 & 0xff) | ((op1 & 0xff00) << 24);
361 }
362
363 uint64_t helper_unpkbw (uint64_t op1)
364 {
365 return ((op1 & 0xff)
366 | ((op1 & 0xff00) << 8)
367 | ((op1 & 0xff0000) << 16)
368 | ((op1 & 0xff000000) << 24));
369 }
370
371 /* Floating point helpers */
372
373 /* F floating (VAX) */
374 static inline uint64_t float32_to_f(float32 fa)
375 {
376 uint64_t r, exp, mant, sig;
377 CPU_FloatU a;
378
379 a.f = fa;
380 sig = ((uint64_t)a.l & 0x80000000) << 32;
381 exp = (a.l >> 23) & 0xff;
382 mant = ((uint64_t)a.l & 0x007fffff) << 29;
383
384 if (exp == 255) {
385 /* NaN or infinity */
386 r = 1; /* VAX dirty zero */
387 } else if (exp == 0) {
388 if (mant == 0) {
389 /* Zero */
390 r = 0;
391 } else {
392 /* Denormalized */
393 r = sig | ((exp + 1) << 52) | mant;
394 }
395 } else {
396 if (exp >= 253) {
397 /* Overflow */
398 r = 1; /* VAX dirty zero */
399 } else {
400 r = sig | ((exp + 2) << 52);
401 }
402 }
403
404 return r;
405 }
406
407 static inline float32 f_to_float32(uint64_t a)
408 {
409 uint32_t exp, mant_sig;
410 CPU_FloatU r;
411
412 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
413 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
414
415 if (unlikely(!exp && mant_sig)) {
416 /* Reserved operands / Dirty zero */
417 helper_excp(EXCP_OPCDEC, 0);
418 }
419
420 if (exp < 3) {
421 /* Underflow */
422 r.l = 0;
423 } else {
424 r.l = ((exp - 2) << 23) | mant_sig;
425 }
426
427 return r.f;
428 }
429
430 uint32_t helper_f_to_memory (uint64_t a)
431 {
432 uint32_t r;
433 r = (a & 0x00001fffe0000000ull) >> 13;
434 r |= (a & 0x07ffe00000000000ull) >> 45;
435 r |= (a & 0xc000000000000000ull) >> 48;
436 return r;
437 }
438
439 uint64_t helper_memory_to_f (uint32_t a)
440 {
441 uint64_t r;
442 r = ((uint64_t)(a & 0x0000c000)) << 48;
443 r |= ((uint64_t)(a & 0x003fffff)) << 45;
444 r |= ((uint64_t)(a & 0xffff0000)) << 13;
445 if (!(a & 0x00004000))
446 r |= 0x7ll << 59;
447 return r;
448 }
449
450 uint64_t helper_addf (uint64_t a, uint64_t b)
451 {
452 float32 fa, fb, fr;
453
454 fa = f_to_float32(a);
455 fb = f_to_float32(b);
456 fr = float32_add(fa, fb, &FP_STATUS);
457 return float32_to_f(fr);
458 }
459
460 uint64_t helper_subf (uint64_t a, uint64_t b)
461 {
462 float32 fa, fb, fr;
463
464 fa = f_to_float32(a);
465 fb = f_to_float32(b);
466 fr = float32_sub(fa, fb, &FP_STATUS);
467 return float32_to_f(fr);
468 }
469
470 uint64_t helper_mulf (uint64_t a, uint64_t b)
471 {
472 float32 fa, fb, fr;
473
474 fa = f_to_float32(a);
475 fb = f_to_float32(b);
476 fr = float32_mul(fa, fb, &FP_STATUS);
477 return float32_to_f(fr);
478 }
479
480 uint64_t helper_divf (uint64_t a, uint64_t b)
481 {
482 float32 fa, fb, fr;
483
484 fa = f_to_float32(a);
485 fb = f_to_float32(b);
486 fr = float32_div(fa, fb, &FP_STATUS);
487 return float32_to_f(fr);
488 }
489
490 uint64_t helper_sqrtf (uint64_t t)
491 {
492 float32 ft, fr;
493
494 ft = f_to_float32(t);
495 fr = float32_sqrt(ft, &FP_STATUS);
496 return float32_to_f(fr);
497 }
498
499
500 /* G floating (VAX) */
501 static inline uint64_t float64_to_g(float64 fa)
502 {
503 uint64_t r, exp, mant, sig;
504 CPU_DoubleU a;
505
506 a.d = fa;
507 sig = a.ll & 0x8000000000000000ull;
508 exp = (a.ll >> 52) & 0x7ff;
509 mant = a.ll & 0x000fffffffffffffull;
510
511 if (exp == 2047) {
512 /* NaN or infinity */
513 r = 1; /* VAX dirty zero */
514 } else if (exp == 0) {
515 if (mant == 0) {
516 /* Zero */
517 r = 0;
518 } else {
519 /* Denormalized */
520 r = sig | ((exp + 1) << 52) | mant;
521 }
522 } else {
523 if (exp >= 2045) {
524 /* Overflow */
525 r = 1; /* VAX dirty zero */
526 } else {
527 r = sig | ((exp + 2) << 52);
528 }
529 }
530
531 return r;
532 }
533
534 static inline float64 g_to_float64(uint64_t a)
535 {
536 uint64_t exp, mant_sig;
537 CPU_DoubleU r;
538
539 exp = (a >> 52) & 0x7ff;
540 mant_sig = a & 0x800fffffffffffffull;
541
542 if (!exp && mant_sig) {
543 /* Reserved operands / Dirty zero */
544 helper_excp(EXCP_OPCDEC, 0);
545 }
546
547 if (exp < 3) {
548 /* Underflow */
549 r.ll = 0;
550 } else {
551 r.ll = ((exp - 2) << 52) | mant_sig;
552 }
553
554 return r.d;
555 }
556
557 uint64_t helper_g_to_memory (uint64_t a)
558 {
559 uint64_t r;
560 r = (a & 0x000000000000ffffull) << 48;
561 r |= (a & 0x00000000ffff0000ull) << 16;
562 r |= (a & 0x0000ffff00000000ull) >> 16;
563 r |= (a & 0xffff000000000000ull) >> 48;
564 return r;
565 }
566
567 uint64_t helper_memory_to_g (uint64_t a)
568 {
569 uint64_t r;
570 r = (a & 0x000000000000ffffull) << 48;
571 r |= (a & 0x00000000ffff0000ull) << 16;
572 r |= (a & 0x0000ffff00000000ull) >> 16;
573 r |= (a & 0xffff000000000000ull) >> 48;
574 return r;
575 }
576
577 uint64_t helper_addg (uint64_t a, uint64_t b)
578 {
579 float64 fa, fb, fr;
580
581 fa = g_to_float64(a);
582 fb = g_to_float64(b);
583 fr = float64_add(fa, fb, &FP_STATUS);
584 return float64_to_g(fr);
585 }
586
587 uint64_t helper_subg (uint64_t a, uint64_t b)
588 {
589 float64 fa, fb, fr;
590
591 fa = g_to_float64(a);
592 fb = g_to_float64(b);
593 fr = float64_sub(fa, fb, &FP_STATUS);
594 return float64_to_g(fr);
595 }
596
597 uint64_t helper_mulg (uint64_t a, uint64_t b)
598 {
599 float64 fa, fb, fr;
600
601 fa = g_to_float64(a);
602 fb = g_to_float64(b);
603 fr = float64_mul(fa, fb, &FP_STATUS);
604 return float64_to_g(fr);
605 }
606
607 uint64_t helper_divg (uint64_t a, uint64_t b)
608 {
609 float64 fa, fb, fr;
610
611 fa = g_to_float64(a);
612 fb = g_to_float64(b);
613 fr = float64_div(fa, fb, &FP_STATUS);
614 return float64_to_g(fr);
615 }
616
617 uint64_t helper_sqrtg (uint64_t a)
618 {
619 float64 fa, fr;
620
621 fa = g_to_float64(a);
622 fr = float64_sqrt(fa, &FP_STATUS);
623 return float64_to_g(fr);
624 }
625
626
627 /* S floating (single) */
628
629 /* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
630 static inline uint64_t float32_to_s_int(uint32_t fi)
631 {
632 uint32_t frac = fi & 0x7fffff;
633 uint32_t sign = fi >> 31;
634 uint32_t exp_msb = (fi >> 30) & 1;
635 uint32_t exp_low = (fi >> 23) & 0x7f;
636 uint32_t exp;
637
638 exp = (exp_msb << 10) | exp_low;
639 if (exp_msb) {
640 if (exp_low == 0x7f)
641 exp = 0x7ff;
642 } else {
643 if (exp_low != 0x00)
644 exp |= 0x380;
645 }
646
647 return (((uint64_t)sign << 63)
648 | ((uint64_t)exp << 52)
649 | ((uint64_t)frac << 29));
650 }
651
652 static inline uint64_t float32_to_s(float32 fa)
653 {
654 CPU_FloatU a;
655 a.f = fa;
656 return float32_to_s_int(a.l);
657 }
658
659 static inline uint32_t s_to_float32_int(uint64_t a)
660 {
661 return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
662 }
663
664 static inline float32 s_to_float32(uint64_t a)
665 {
666 CPU_FloatU r;
667 r.l = s_to_float32_int(a);
668 return r.f;
669 }
670
671 uint32_t helper_s_to_memory (uint64_t a)
672 {
673 return s_to_float32_int(a);
674 }
675
676 uint64_t helper_memory_to_s (uint32_t a)
677 {
678 return float32_to_s_int(a);
679 }
680
681 uint64_t helper_adds (uint64_t a, uint64_t b)
682 {
683 float32 fa, fb, fr;
684
685 fa = s_to_float32(a);
686 fb = s_to_float32(b);
687 fr = float32_add(fa, fb, &FP_STATUS);
688 return float32_to_s(fr);
689 }
690
691 uint64_t helper_subs (uint64_t a, uint64_t b)
692 {
693 float32 fa, fb, fr;
694
695 fa = s_to_float32(a);
696 fb = s_to_float32(b);
697 fr = float32_sub(fa, fb, &FP_STATUS);
698 return float32_to_s(fr);
699 }
700
701 uint64_t helper_muls (uint64_t a, uint64_t b)
702 {
703 float32 fa, fb, fr;
704
705 fa = s_to_float32(a);
706 fb = s_to_float32(b);
707 fr = float32_mul(fa, fb, &FP_STATUS);
708 return float32_to_s(fr);
709 }
710
711 uint64_t helper_divs (uint64_t a, uint64_t b)
712 {
713 float32 fa, fb, fr;
714
715 fa = s_to_float32(a);
716 fb = s_to_float32(b);
717 fr = float32_div(fa, fb, &FP_STATUS);
718 return float32_to_s(fr);
719 }
720
721 uint64_t helper_sqrts (uint64_t a)
722 {
723 float32 fa, fr;
724
725 fa = s_to_float32(a);
726 fr = float32_sqrt(fa, &FP_STATUS);
727 return float32_to_s(fr);
728 }
729
730
731 /* T floating (double) */
732 static inline float64 t_to_float64(uint64_t a)
733 {
734 /* Memory format is the same as float64 */
735 CPU_DoubleU r;
736 r.ll = a;
737 return r.d;
738 }
739
740 static inline uint64_t float64_to_t(float64 fa)
741 {
742 /* Memory format is the same as float64 */
743 CPU_DoubleU r;
744 r.d = fa;
745 return r.ll;
746 }
747
748 uint64_t helper_addt (uint64_t a, uint64_t b)
749 {
750 float64 fa, fb, fr;
751
752 fa = t_to_float64(a);
753 fb = t_to_float64(b);
754 fr = float64_add(fa, fb, &FP_STATUS);
755 return float64_to_t(fr);
756 }
757
758 uint64_t helper_subt (uint64_t a, uint64_t b)
759 {
760 float64 fa, fb, fr;
761
762 fa = t_to_float64(a);
763 fb = t_to_float64(b);
764 fr = float64_sub(fa, fb, &FP_STATUS);
765 return float64_to_t(fr);
766 }
767
768 uint64_t helper_mult (uint64_t a, uint64_t b)
769 {
770 float64 fa, fb, fr;
771
772 fa = t_to_float64(a);
773 fb = t_to_float64(b);
774 fr = float64_mul(fa, fb, &FP_STATUS);
775 return float64_to_t(fr);
776 }
777
778 uint64_t helper_divt (uint64_t a, uint64_t b)
779 {
780 float64 fa, fb, fr;
781
782 fa = t_to_float64(a);
783 fb = t_to_float64(b);
784 fr = float64_div(fa, fb, &FP_STATUS);
785 return float64_to_t(fr);
786 }
787
788 uint64_t helper_sqrtt (uint64_t a)
789 {
790 float64 fa, fr;
791
792 fa = t_to_float64(a);
793 fr = float64_sqrt(fa, &FP_STATUS);
794 return float64_to_t(fr);
795 }
796
797
798 /* Sign copy */
799 uint64_t helper_cpys(uint64_t a, uint64_t b)
800 {
801 return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
802 }
803
804 uint64_t helper_cpysn(uint64_t a, uint64_t b)
805 {
806 return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
807 }
808
809 uint64_t helper_cpyse(uint64_t a, uint64_t b)
810 {
811 return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
812 }
813
814
815 /* Comparisons */
816 uint64_t helper_cmptun (uint64_t a, uint64_t b)
817 {
818 float64 fa, fb;
819
820 fa = t_to_float64(a);
821 fb = t_to_float64(b);
822
823 if (float64_is_nan(fa) || float64_is_nan(fb))
824 return 0x4000000000000000ULL;
825 else
826 return 0;
827 }
828
829 uint64_t helper_cmpteq(uint64_t a, uint64_t b)
830 {
831 float64 fa, fb;
832
833 fa = t_to_float64(a);
834 fb = t_to_float64(b);
835
836 if (float64_eq(fa, fb, &FP_STATUS))
837 return 0x4000000000000000ULL;
838 else
839 return 0;
840 }
841
842 uint64_t helper_cmptle(uint64_t a, uint64_t b)
843 {
844 float64 fa, fb;
845
846 fa = t_to_float64(a);
847 fb = t_to_float64(b);
848
849 if (float64_le(fa, fb, &FP_STATUS))
850 return 0x4000000000000000ULL;
851 else
852 return 0;
853 }
854
855 uint64_t helper_cmptlt(uint64_t a, uint64_t b)
856 {
857 float64 fa, fb;
858
859 fa = t_to_float64(a);
860 fb = t_to_float64(b);
861
862 if (float64_lt(fa, fb, &FP_STATUS))
863 return 0x4000000000000000ULL;
864 else
865 return 0;
866 }
867
868 uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
869 {
870 float64 fa, fb;
871
872 fa = g_to_float64(a);
873 fb = g_to_float64(b);
874
875 if (float64_eq(fa, fb, &FP_STATUS))
876 return 0x4000000000000000ULL;
877 else
878 return 0;
879 }
880
881 uint64_t helper_cmpgle(uint64_t a, uint64_t b)
882 {
883 float64 fa, fb;
884
885 fa = g_to_float64(a);
886 fb = g_to_float64(b);
887
888 if (float64_le(fa, fb, &FP_STATUS))
889 return 0x4000000000000000ULL;
890 else
891 return 0;
892 }
893
894 uint64_t helper_cmpglt(uint64_t a, uint64_t b)
895 {
896 float64 fa, fb;
897
898 fa = g_to_float64(a);
899 fb = g_to_float64(b);
900
901 if (float64_lt(fa, fb, &FP_STATUS))
902 return 0x4000000000000000ULL;
903 else
904 return 0;
905 }
906
907 /* Floating point format conversion */
908 uint64_t helper_cvtts (uint64_t a)
909 {
910 float64 fa;
911 float32 fr;
912
913 fa = t_to_float64(a);
914 fr = float64_to_float32(fa, &FP_STATUS);
915 return float32_to_s(fr);
916 }
917
918 uint64_t helper_cvtst (uint64_t a)
919 {
920 float32 fa;
921 float64 fr;
922
923 fa = s_to_float32(a);
924 fr = float32_to_float64(fa, &FP_STATUS);
925 return float64_to_t(fr);
926 }
927
928 uint64_t helper_cvtqs (uint64_t a)
929 {
930 float32 fr = int64_to_float32(a, &FP_STATUS);
931 return float32_to_s(fr);
932 }
933
934 uint64_t helper_cvttq (uint64_t a)
935 {
936 float64 fa = t_to_float64(a);
937 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
938 }
939
940 uint64_t helper_cvtqt (uint64_t a)
941 {
942 float64 fr = int64_to_float64(a, &FP_STATUS);
943 return float64_to_t(fr);
944 }
945
946 uint64_t helper_cvtqf (uint64_t a)
947 {
948 float32 fr = int64_to_float32(a, &FP_STATUS);
949 return float32_to_f(fr);
950 }
951
952 uint64_t helper_cvtgf (uint64_t a)
953 {
954 float64 fa;
955 float32 fr;
956
957 fa = g_to_float64(a);
958 fr = float64_to_float32(fa, &FP_STATUS);
959 return float32_to_f(fr);
960 }
961
962 uint64_t helper_cvtgq (uint64_t a)
963 {
964 float64 fa = g_to_float64(a);
965 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
966 }
967
968 uint64_t helper_cvtqg (uint64_t a)
969 {
970 float64 fr;
971 fr = int64_to_float64(a, &FP_STATUS);
972 return float64_to_g(fr);
973 }
974
975 uint64_t helper_cvtlq (uint64_t a)
976 {
977 int32_t lo = a >> 29;
978 int32_t hi = a >> 32;
979 return (lo & 0x3FFFFFFF) | (hi & 0xc0000000);
980 }
981
982 static inline uint64_t __helper_cvtql(uint64_t a, int s, int v)
983 {
984 uint64_t r;
985
986 r = ((uint64_t)(a & 0xC0000000)) << 32;
987 r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
988
989 if (v && (int64_t)((int32_t)r) != (int64_t)r) {
990 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
991 }
992 if (s) {
993 /* TODO */
994 }
995 return r;
996 }
997
998 uint64_t helper_cvtql (uint64_t a)
999 {
1000 return __helper_cvtql(a, 0, 0);
1001 }
1002
1003 uint64_t helper_cvtqlv (uint64_t a)
1004 {
1005 return __helper_cvtql(a, 0, 1);
1006 }
1007
1008 uint64_t helper_cvtqlsv (uint64_t a)
1009 {
1010 return __helper_cvtql(a, 1, 1);
1011 }
1012
1013 /* PALcode support special instructions */
1014 #if !defined (CONFIG_USER_ONLY)
1015 void helper_hw_rei (void)
1016 {
1017 env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
1018 env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
1019 /* XXX: re-enable interrupts and memory mapping */
1020 }
1021
1022 void helper_hw_ret (uint64_t a)
1023 {
1024 env->pc = a & ~3;
1025 env->ipr[IPR_EXC_ADDR] = a & 1;
1026 /* XXX: re-enable interrupts and memory mapping */
1027 }
1028
1029 uint64_t helper_mfpr (int iprn, uint64_t val)
1030 {
1031 uint64_t tmp;
1032
1033 if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
1034 val = tmp;
1035
1036 return val;
1037 }
1038
1039 void helper_mtpr (int iprn, uint64_t val)
1040 {
1041 cpu_alpha_mtpr(env, iprn, val, NULL);
1042 }
1043
1044 void helper_set_alt_mode (void)
1045 {
1046 env->saved_mode = env->ps & 0xC;
1047 env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
1048 }
1049
1050 void helper_restore_mode (void)
1051 {
1052 env->ps = (env->ps & ~0xC) | env->saved_mode;
1053 }
1054
1055 #endif
1056
1057 /*****************************************************************************/
1058 /* Softmmu support */
1059 #if !defined (CONFIG_USER_ONLY)
1060
1061 /* XXX: the two following helpers are pure hacks.
1062 * Hopefully, we emulate the PALcode, then we should never see
1063 * HW_LD / HW_ST instructions.
1064 */
1065 uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
1066 {
1067 uint64_t tlb_addr, physaddr;
1068 int index, mmu_idx;
1069 void *retaddr;
1070
1071 mmu_idx = cpu_mmu_index(env);
1072 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1073 redo:
1074 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1075 if ((virtaddr & TARGET_PAGE_MASK) ==
1076 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1077 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1078 } else {
1079 /* the page is not in the TLB : fill it */
1080 retaddr = GETPC();
1081 tlb_fill(virtaddr, 0, mmu_idx, retaddr);
1082 goto redo;
1083 }
1084 return physaddr;
1085 }
1086
1087 uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
1088 {
1089 uint64_t tlb_addr, physaddr;
1090 int index, mmu_idx;
1091 void *retaddr;
1092
1093 mmu_idx = cpu_mmu_index(env);
1094 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1095 redo:
1096 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1097 if ((virtaddr & TARGET_PAGE_MASK) ==
1098 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1099 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1100 } else {
1101 /* the page is not in the TLB : fill it */
1102 retaddr = GETPC();
1103 tlb_fill(virtaddr, 1, mmu_idx, retaddr);
1104 goto redo;
1105 }
1106 return physaddr;
1107 }
1108
1109 void helper_ldl_raw(uint64_t t0, uint64_t t1)
1110 {
1111 ldl_raw(t1, t0);
1112 }
1113
1114 void helper_ldq_raw(uint64_t t0, uint64_t t1)
1115 {
1116 ldq_raw(t1, t0);
1117 }
1118
1119 void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1120 {
1121 env->lock = t1;
1122 ldl_raw(t1, t0);
1123 }
1124
1125 void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1126 {
1127 env->lock = t1;
1128 ldl_raw(t1, t0);
1129 }
1130
1131 void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1132 {
1133 ldl_kernel(t1, t0);
1134 }
1135
1136 void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1137 {
1138 ldq_kernel(t1, t0);
1139 }
1140
1141 void helper_ldl_data(uint64_t t0, uint64_t t1)
1142 {
1143 ldl_data(t1, t0);
1144 }
1145
1146 void helper_ldq_data(uint64_t t0, uint64_t t1)
1147 {
1148 ldq_data(t1, t0);
1149 }
1150
1151 void helper_stl_raw(uint64_t t0, uint64_t t1)
1152 {
1153 stl_raw(t1, t0);
1154 }
1155
1156 void helper_stq_raw(uint64_t t0, uint64_t t1)
1157 {
1158 stq_raw(t1, t0);
1159 }
1160
1161 uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1162 {
1163 uint64_t ret;
1164
1165 if (t1 == env->lock) {
1166 stl_raw(t1, t0);
1167 ret = 0;
1168 } else
1169 ret = 1;
1170
1171 env->lock = 1;
1172
1173 return ret;
1174 }
1175
1176 uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1177 {
1178 uint64_t ret;
1179
1180 if (t1 == env->lock) {
1181 stq_raw(t1, t0);
1182 ret = 0;
1183 } else
1184 ret = 1;
1185
1186 env->lock = 1;
1187
1188 return ret;
1189 }
1190
1191 #define MMUSUFFIX _mmu
1192
1193 #define SHIFT 0
1194 #include "softmmu_template.h"
1195
1196 #define SHIFT 1
1197 #include "softmmu_template.h"
1198
1199 #define SHIFT 2
1200 #include "softmmu_template.h"
1201
1202 #define SHIFT 3
1203 #include "softmmu_template.h"
1204
1205 /* try to fill the TLB and return an exception if error. If retaddr is
1206 NULL, it means that the function was called in C code (i.e. not
1207 from generated code or from helper.c) */
1208 /* XXX: fix it to restore all registers */
1209 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1210 {
1211 TranslationBlock *tb;
1212 CPUState *saved_env;
1213 unsigned long pc;
1214 int ret;
1215
1216 /* XXX: hack to restore env in all cases, even if not called from
1217 generated code */
1218 saved_env = env;
1219 env = cpu_single_env;
1220 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1221 if (!likely(ret == 0)) {
1222 if (likely(retaddr)) {
1223 /* now we have a real cpu fault */
1224 pc = (unsigned long)retaddr;
1225 tb = tb_find_pc(pc);
1226 if (likely(tb)) {
1227 /* the PC is inside the translated code. It means that we have
1228 a virtual CPU fault */
1229 cpu_restore_state(tb, env, pc, NULL);
1230 }
1231 }
1232 /* Exception index and error code are already set */
1233 cpu_loop_exit();
1234 }
1235 env = saved_env;
1236 }
1237
1238 #endif