]> git.proxmox.com Git - qemu.git/blob - target-alpha/op_helper.c
target-alpha: Fix cvtlq.
[qemu.git] / target-alpha / op_helper.c
1 /*
2 * Alpha emulation cpu micro-operations helpers for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "exec.h"
21 #include "host-utils.h"
22 #include "softfloat.h"
23 #include "helper.h"
24
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
27 void helper_excp (int excp, int error)
28 {
29 env->exception_index = excp;
30 env->error_code = error;
31 cpu_loop_exit();
32 }
33
34 uint64_t helper_load_pcc (void)
35 {
36 /* XXX: TODO */
37 return 0;
38 }
39
40 uint64_t helper_load_fpcr (void)
41 {
42 return cpu_alpha_load_fpcr (env);
43 }
44
45 void helper_store_fpcr (uint64_t val)
46 {
47 cpu_alpha_store_fpcr (env, val);
48 }
49
50 static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
51
52 uint64_t helper_rs(void)
53 {
54 uint64_t tmp;
55
56 spin_lock(&intr_cpu_lock);
57 tmp = env->intr_flag;
58 env->intr_flag = 1;
59 spin_unlock(&intr_cpu_lock);
60
61 return tmp;
62 }
63
64 uint64_t helper_rc(void)
65 {
66 uint64_t tmp;
67
68 spin_lock(&intr_cpu_lock);
69 tmp = env->intr_flag;
70 env->intr_flag = 0;
71 spin_unlock(&intr_cpu_lock);
72
73 return tmp;
74 }
75
76 uint64_t helper_addqv (uint64_t op1, uint64_t op2)
77 {
78 uint64_t tmp = op1;
79 op1 += op2;
80 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
81 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
82 }
83 return op1;
84 }
85
86 uint64_t helper_addlv (uint64_t op1, uint64_t op2)
87 {
88 uint64_t tmp = op1;
89 op1 = (uint32_t)(op1 + op2);
90 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
91 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
92 }
93 return op1;
94 }
95
96 uint64_t helper_subqv (uint64_t op1, uint64_t op2)
97 {
98 uint64_t res;
99 res = op1 - op2;
100 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
101 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
102 }
103 return res;
104 }
105
106 uint64_t helper_sublv (uint64_t op1, uint64_t op2)
107 {
108 uint32_t res;
109 res = op1 - op2;
110 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
111 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
112 }
113 return res;
114 }
115
116 uint64_t helper_mullv (uint64_t op1, uint64_t op2)
117 {
118 int64_t res = (int64_t)op1 * (int64_t)op2;
119
120 if (unlikely((int32_t)res != res)) {
121 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
122 }
123 return (int64_t)((int32_t)res);
124 }
125
126 uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
127 {
128 uint64_t tl, th;
129
130 muls64(&tl, &th, op1, op2);
131 /* If th != 0 && th != -1, then we had an overflow */
132 if (unlikely((th + 1) > 1)) {
133 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
134 }
135 return tl;
136 }
137
138 uint64_t helper_umulh (uint64_t op1, uint64_t op2)
139 {
140 uint64_t tl, th;
141
142 mulu64(&tl, &th, op1, op2);
143 return th;
144 }
145
146 uint64_t helper_ctpop (uint64_t arg)
147 {
148 return ctpop64(arg);
149 }
150
151 uint64_t helper_ctlz (uint64_t arg)
152 {
153 return clz64(arg);
154 }
155
156 uint64_t helper_cttz (uint64_t arg)
157 {
158 return ctz64(arg);
159 }
160
161 static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
162 {
163 uint64_t mask;
164
165 mask = 0;
166 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
167 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
168 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
169 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
170 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
171 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
172 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
173 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
174
175 return op & ~mask;
176 }
177
178 uint64_t helper_zap(uint64_t val, uint64_t mask)
179 {
180 return byte_zap(val, mask);
181 }
182
183 uint64_t helper_zapnot(uint64_t val, uint64_t mask)
184 {
185 return byte_zap(val, ~mask);
186 }
187
188 uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
189 {
190 uint8_t opa, opb, res;
191 int i;
192
193 res = 0;
194 for (i = 0; i < 8; i++) {
195 opa = op1 >> (i * 8);
196 opb = op2 >> (i * 8);
197 if (opa >= opb)
198 res |= 1 << i;
199 }
200 return res;
201 }
202
203 uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
204 {
205 uint64_t res = 0;
206 uint8_t opa, opb, opr;
207 int i;
208
209 for (i = 0; i < 8; ++i) {
210 opa = op1 >> (i * 8);
211 opb = op2 >> (i * 8);
212 opr = opa < opb ? opa : opb;
213 res |= (uint64_t)opr << (i * 8);
214 }
215 return res;
216 }
217
218 uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
219 {
220 uint64_t res = 0;
221 int8_t opa, opb;
222 uint8_t opr;
223 int i;
224
225 for (i = 0; i < 8; ++i) {
226 opa = op1 >> (i * 8);
227 opb = op2 >> (i * 8);
228 opr = opa < opb ? opa : opb;
229 res |= (uint64_t)opr << (i * 8);
230 }
231 return res;
232 }
233
234 uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
235 {
236 uint64_t res = 0;
237 uint16_t opa, opb, opr;
238 int i;
239
240 for (i = 0; i < 4; ++i) {
241 opa = op1 >> (i * 16);
242 opb = op2 >> (i * 16);
243 opr = opa < opb ? opa : opb;
244 res |= (uint64_t)opr << (i * 16);
245 }
246 return res;
247 }
248
249 uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
250 {
251 uint64_t res = 0;
252 int16_t opa, opb;
253 uint16_t opr;
254 int i;
255
256 for (i = 0; i < 4; ++i) {
257 opa = op1 >> (i * 16);
258 opb = op2 >> (i * 16);
259 opr = opa < opb ? opa : opb;
260 res |= (uint64_t)opr << (i * 16);
261 }
262 return res;
263 }
264
265 uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
266 {
267 uint64_t res = 0;
268 uint8_t opa, opb, opr;
269 int i;
270
271 for (i = 0; i < 8; ++i) {
272 opa = op1 >> (i * 8);
273 opb = op2 >> (i * 8);
274 opr = opa > opb ? opa : opb;
275 res |= (uint64_t)opr << (i * 8);
276 }
277 return res;
278 }
279
280 uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
281 {
282 uint64_t res = 0;
283 int8_t opa, opb;
284 uint8_t opr;
285 int i;
286
287 for (i = 0; i < 8; ++i) {
288 opa = op1 >> (i * 8);
289 opb = op2 >> (i * 8);
290 opr = opa > opb ? opa : opb;
291 res |= (uint64_t)opr << (i * 8);
292 }
293 return res;
294 }
295
296 uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
297 {
298 uint64_t res = 0;
299 uint16_t opa, opb, opr;
300 int i;
301
302 for (i = 0; i < 4; ++i) {
303 opa = op1 >> (i * 16);
304 opb = op2 >> (i * 16);
305 opr = opa > opb ? opa : opb;
306 res |= (uint64_t)opr << (i * 16);
307 }
308 return res;
309 }
310
311 uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
312 {
313 uint64_t res = 0;
314 int16_t opa, opb;
315 uint16_t opr;
316 int i;
317
318 for (i = 0; i < 4; ++i) {
319 opa = op1 >> (i * 16);
320 opb = op2 >> (i * 16);
321 opr = opa > opb ? opa : opb;
322 res |= (uint64_t)opr << (i * 16);
323 }
324 return res;
325 }
326
327 uint64_t helper_perr (uint64_t op1, uint64_t op2)
328 {
329 uint64_t res = 0;
330 uint8_t opa, opb, opr;
331 int i;
332
333 for (i = 0; i < 8; ++i) {
334 opa = op1 >> (i * 8);
335 opb = op2 >> (i * 8);
336 if (opa >= opb)
337 opr = opa - opb;
338 else
339 opr = opb - opa;
340 res += opr;
341 }
342 return res;
343 }
344
345 uint64_t helper_pklb (uint64_t op1)
346 {
347 return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
348 }
349
350 uint64_t helper_pkwb (uint64_t op1)
351 {
352 return ((op1 & 0xff)
353 | ((op1 >> 8) & 0xff00)
354 | ((op1 >> 16) & 0xff0000)
355 | ((op1 >> 24) & 0xff000000));
356 }
357
358 uint64_t helper_unpkbl (uint64_t op1)
359 {
360 return (op1 & 0xff) | ((op1 & 0xff00) << 24);
361 }
362
363 uint64_t helper_unpkbw (uint64_t op1)
364 {
365 return ((op1 & 0xff)
366 | ((op1 & 0xff00) << 8)
367 | ((op1 & 0xff0000) << 16)
368 | ((op1 & 0xff000000) << 24));
369 }
370
371 /* Floating point helpers */
372
373 /* F floating (VAX) */
374 static inline uint64_t float32_to_f(float32 fa)
375 {
376 uint64_t r, exp, mant, sig;
377 CPU_FloatU a;
378
379 a.f = fa;
380 sig = ((uint64_t)a.l & 0x80000000) << 32;
381 exp = (a.l >> 23) & 0xff;
382 mant = ((uint64_t)a.l & 0x007fffff) << 29;
383
384 if (exp == 255) {
385 /* NaN or infinity */
386 r = 1; /* VAX dirty zero */
387 } else if (exp == 0) {
388 if (mant == 0) {
389 /* Zero */
390 r = 0;
391 } else {
392 /* Denormalized */
393 r = sig | ((exp + 1) << 52) | mant;
394 }
395 } else {
396 if (exp >= 253) {
397 /* Overflow */
398 r = 1; /* VAX dirty zero */
399 } else {
400 r = sig | ((exp + 2) << 52);
401 }
402 }
403
404 return r;
405 }
406
407 static inline float32 f_to_float32(uint64_t a)
408 {
409 uint32_t exp, mant_sig;
410 CPU_FloatU r;
411
412 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
413 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
414
415 if (unlikely(!exp && mant_sig)) {
416 /* Reserved operands / Dirty zero */
417 helper_excp(EXCP_OPCDEC, 0);
418 }
419
420 if (exp < 3) {
421 /* Underflow */
422 r.l = 0;
423 } else {
424 r.l = ((exp - 2) << 23) | mant_sig;
425 }
426
427 return r.f;
428 }
429
430 uint32_t helper_f_to_memory (uint64_t a)
431 {
432 uint32_t r;
433 r = (a & 0x00001fffe0000000ull) >> 13;
434 r |= (a & 0x07ffe00000000000ull) >> 45;
435 r |= (a & 0xc000000000000000ull) >> 48;
436 return r;
437 }
438
439 uint64_t helper_memory_to_f (uint32_t a)
440 {
441 uint64_t r;
442 r = ((uint64_t)(a & 0x0000c000)) << 48;
443 r |= ((uint64_t)(a & 0x003fffff)) << 45;
444 r |= ((uint64_t)(a & 0xffff0000)) << 13;
445 if (!(a & 0x00004000))
446 r |= 0x7ll << 59;
447 return r;
448 }
449
450 uint64_t helper_addf (uint64_t a, uint64_t b)
451 {
452 float32 fa, fb, fr;
453
454 fa = f_to_float32(a);
455 fb = f_to_float32(b);
456 fr = float32_add(fa, fb, &FP_STATUS);
457 return float32_to_f(fr);
458 }
459
460 uint64_t helper_subf (uint64_t a, uint64_t b)
461 {
462 float32 fa, fb, fr;
463
464 fa = f_to_float32(a);
465 fb = f_to_float32(b);
466 fr = float32_sub(fa, fb, &FP_STATUS);
467 return float32_to_f(fr);
468 }
469
470 uint64_t helper_mulf (uint64_t a, uint64_t b)
471 {
472 float32 fa, fb, fr;
473
474 fa = f_to_float32(a);
475 fb = f_to_float32(b);
476 fr = float32_mul(fa, fb, &FP_STATUS);
477 return float32_to_f(fr);
478 }
479
480 uint64_t helper_divf (uint64_t a, uint64_t b)
481 {
482 float32 fa, fb, fr;
483
484 fa = f_to_float32(a);
485 fb = f_to_float32(b);
486 fr = float32_div(fa, fb, &FP_STATUS);
487 return float32_to_f(fr);
488 }
489
490 uint64_t helper_sqrtf (uint64_t t)
491 {
492 float32 ft, fr;
493
494 ft = f_to_float32(t);
495 fr = float32_sqrt(ft, &FP_STATUS);
496 return float32_to_f(fr);
497 }
498
499
500 /* G floating (VAX) */
501 static inline uint64_t float64_to_g(float64 fa)
502 {
503 uint64_t r, exp, mant, sig;
504 CPU_DoubleU a;
505
506 a.d = fa;
507 sig = a.ll & 0x8000000000000000ull;
508 exp = (a.ll >> 52) & 0x7ff;
509 mant = a.ll & 0x000fffffffffffffull;
510
511 if (exp == 2047) {
512 /* NaN or infinity */
513 r = 1; /* VAX dirty zero */
514 } else if (exp == 0) {
515 if (mant == 0) {
516 /* Zero */
517 r = 0;
518 } else {
519 /* Denormalized */
520 r = sig | ((exp + 1) << 52) | mant;
521 }
522 } else {
523 if (exp >= 2045) {
524 /* Overflow */
525 r = 1; /* VAX dirty zero */
526 } else {
527 r = sig | ((exp + 2) << 52);
528 }
529 }
530
531 return r;
532 }
533
534 static inline float64 g_to_float64(uint64_t a)
535 {
536 uint64_t exp, mant_sig;
537 CPU_DoubleU r;
538
539 exp = (a >> 52) & 0x7ff;
540 mant_sig = a & 0x800fffffffffffffull;
541
542 if (!exp && mant_sig) {
543 /* Reserved operands / Dirty zero */
544 helper_excp(EXCP_OPCDEC, 0);
545 }
546
547 if (exp < 3) {
548 /* Underflow */
549 r.ll = 0;
550 } else {
551 r.ll = ((exp - 2) << 52) | mant_sig;
552 }
553
554 return r.d;
555 }
556
557 uint64_t helper_g_to_memory (uint64_t a)
558 {
559 uint64_t r;
560 r = (a & 0x000000000000ffffull) << 48;
561 r |= (a & 0x00000000ffff0000ull) << 16;
562 r |= (a & 0x0000ffff00000000ull) >> 16;
563 r |= (a & 0xffff000000000000ull) >> 48;
564 return r;
565 }
566
567 uint64_t helper_memory_to_g (uint64_t a)
568 {
569 uint64_t r;
570 r = (a & 0x000000000000ffffull) << 48;
571 r |= (a & 0x00000000ffff0000ull) << 16;
572 r |= (a & 0x0000ffff00000000ull) >> 16;
573 r |= (a & 0xffff000000000000ull) >> 48;
574 return r;
575 }
576
577 uint64_t helper_addg (uint64_t a, uint64_t b)
578 {
579 float64 fa, fb, fr;
580
581 fa = g_to_float64(a);
582 fb = g_to_float64(b);
583 fr = float64_add(fa, fb, &FP_STATUS);
584 return float64_to_g(fr);
585 }
586
587 uint64_t helper_subg (uint64_t a, uint64_t b)
588 {
589 float64 fa, fb, fr;
590
591 fa = g_to_float64(a);
592 fb = g_to_float64(b);
593 fr = float64_sub(fa, fb, &FP_STATUS);
594 return float64_to_g(fr);
595 }
596
597 uint64_t helper_mulg (uint64_t a, uint64_t b)
598 {
599 float64 fa, fb, fr;
600
601 fa = g_to_float64(a);
602 fb = g_to_float64(b);
603 fr = float64_mul(fa, fb, &FP_STATUS);
604 return float64_to_g(fr);
605 }
606
607 uint64_t helper_divg (uint64_t a, uint64_t b)
608 {
609 float64 fa, fb, fr;
610
611 fa = g_to_float64(a);
612 fb = g_to_float64(b);
613 fr = float64_div(fa, fb, &FP_STATUS);
614 return float64_to_g(fr);
615 }
616
617 uint64_t helper_sqrtg (uint64_t a)
618 {
619 float64 fa, fr;
620
621 fa = g_to_float64(a);
622 fr = float64_sqrt(fa, &FP_STATUS);
623 return float64_to_g(fr);
624 }
625
626
627 /* S floating (single) */
628 static inline uint64_t float32_to_s(float32 fa)
629 {
630 CPU_FloatU a;
631 uint64_t r;
632
633 a.f = fa;
634
635 r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29);
636 if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000)))
637 r |= 0x7ll << 59;
638 return r;
639 }
640
641 static inline float32 s_to_float32(uint64_t a)
642 {
643 CPU_FloatU r;
644 r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
645 return r.f;
646 }
647
648 uint32_t helper_s_to_memory (uint64_t a)
649 {
650 /* Memory format is the same as float32 */
651 float32 fa = s_to_float32(a);
652 return *(uint32_t*)(&fa);
653 }
654
655 uint64_t helper_memory_to_s (uint32_t a)
656 {
657 /* Memory format is the same as float32 */
658 return float32_to_s(*(float32*)(&a));
659 }
660
661 uint64_t helper_adds (uint64_t a, uint64_t b)
662 {
663 float32 fa, fb, fr;
664
665 fa = s_to_float32(a);
666 fb = s_to_float32(b);
667 fr = float32_add(fa, fb, &FP_STATUS);
668 return float32_to_s(fr);
669 }
670
671 uint64_t helper_subs (uint64_t a, uint64_t b)
672 {
673 float32 fa, fb, fr;
674
675 fa = s_to_float32(a);
676 fb = s_to_float32(b);
677 fr = float32_sub(fa, fb, &FP_STATUS);
678 return float32_to_s(fr);
679 }
680
681 uint64_t helper_muls (uint64_t a, uint64_t b)
682 {
683 float32 fa, fb, fr;
684
685 fa = s_to_float32(a);
686 fb = s_to_float32(b);
687 fr = float32_mul(fa, fb, &FP_STATUS);
688 return float32_to_s(fr);
689 }
690
691 uint64_t helper_divs (uint64_t a, uint64_t b)
692 {
693 float32 fa, fb, fr;
694
695 fa = s_to_float32(a);
696 fb = s_to_float32(b);
697 fr = float32_div(fa, fb, &FP_STATUS);
698 return float32_to_s(fr);
699 }
700
701 uint64_t helper_sqrts (uint64_t a)
702 {
703 float32 fa, fr;
704
705 fa = s_to_float32(a);
706 fr = float32_sqrt(fa, &FP_STATUS);
707 return float32_to_s(fr);
708 }
709
710
711 /* T floating (double) */
712 static inline float64 t_to_float64(uint64_t a)
713 {
714 /* Memory format is the same as float64 */
715 CPU_DoubleU r;
716 r.ll = a;
717 return r.d;
718 }
719
720 static inline uint64_t float64_to_t(float64 fa)
721 {
722 /* Memory format is the same as float64 */
723 CPU_DoubleU r;
724 r.d = fa;
725 return r.ll;
726 }
727
728 uint64_t helper_addt (uint64_t a, uint64_t b)
729 {
730 float64 fa, fb, fr;
731
732 fa = t_to_float64(a);
733 fb = t_to_float64(b);
734 fr = float64_add(fa, fb, &FP_STATUS);
735 return float64_to_t(fr);
736 }
737
738 uint64_t helper_subt (uint64_t a, uint64_t b)
739 {
740 float64 fa, fb, fr;
741
742 fa = t_to_float64(a);
743 fb = t_to_float64(b);
744 fr = float64_sub(fa, fb, &FP_STATUS);
745 return float64_to_t(fr);
746 }
747
748 uint64_t helper_mult (uint64_t a, uint64_t b)
749 {
750 float64 fa, fb, fr;
751
752 fa = t_to_float64(a);
753 fb = t_to_float64(b);
754 fr = float64_mul(fa, fb, &FP_STATUS);
755 return float64_to_t(fr);
756 }
757
758 uint64_t helper_divt (uint64_t a, uint64_t b)
759 {
760 float64 fa, fb, fr;
761
762 fa = t_to_float64(a);
763 fb = t_to_float64(b);
764 fr = float64_div(fa, fb, &FP_STATUS);
765 return float64_to_t(fr);
766 }
767
768 uint64_t helper_sqrtt (uint64_t a)
769 {
770 float64 fa, fr;
771
772 fa = t_to_float64(a);
773 fr = float64_sqrt(fa, &FP_STATUS);
774 return float64_to_t(fr);
775 }
776
777
778 /* Sign copy */
779 uint64_t helper_cpys(uint64_t a, uint64_t b)
780 {
781 return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
782 }
783
784 uint64_t helper_cpysn(uint64_t a, uint64_t b)
785 {
786 return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
787 }
788
789 uint64_t helper_cpyse(uint64_t a, uint64_t b)
790 {
791 return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
792 }
793
794
795 /* Comparisons */
796 uint64_t helper_cmptun (uint64_t a, uint64_t b)
797 {
798 float64 fa, fb;
799
800 fa = t_to_float64(a);
801 fb = t_to_float64(b);
802
803 if (float64_is_nan(fa) || float64_is_nan(fb))
804 return 0x4000000000000000ULL;
805 else
806 return 0;
807 }
808
809 uint64_t helper_cmpteq(uint64_t a, uint64_t b)
810 {
811 float64 fa, fb;
812
813 fa = t_to_float64(a);
814 fb = t_to_float64(b);
815
816 if (float64_eq(fa, fb, &FP_STATUS))
817 return 0x4000000000000000ULL;
818 else
819 return 0;
820 }
821
822 uint64_t helper_cmptle(uint64_t a, uint64_t b)
823 {
824 float64 fa, fb;
825
826 fa = t_to_float64(a);
827 fb = t_to_float64(b);
828
829 if (float64_le(fa, fb, &FP_STATUS))
830 return 0x4000000000000000ULL;
831 else
832 return 0;
833 }
834
835 uint64_t helper_cmptlt(uint64_t a, uint64_t b)
836 {
837 float64 fa, fb;
838
839 fa = t_to_float64(a);
840 fb = t_to_float64(b);
841
842 if (float64_lt(fa, fb, &FP_STATUS))
843 return 0x4000000000000000ULL;
844 else
845 return 0;
846 }
847
848 uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
849 {
850 float64 fa, fb;
851
852 fa = g_to_float64(a);
853 fb = g_to_float64(b);
854
855 if (float64_eq(fa, fb, &FP_STATUS))
856 return 0x4000000000000000ULL;
857 else
858 return 0;
859 }
860
861 uint64_t helper_cmpgle(uint64_t a, uint64_t b)
862 {
863 float64 fa, fb;
864
865 fa = g_to_float64(a);
866 fb = g_to_float64(b);
867
868 if (float64_le(fa, fb, &FP_STATUS))
869 return 0x4000000000000000ULL;
870 else
871 return 0;
872 }
873
874 uint64_t helper_cmpglt(uint64_t a, uint64_t b)
875 {
876 float64 fa, fb;
877
878 fa = g_to_float64(a);
879 fb = g_to_float64(b);
880
881 if (float64_lt(fa, fb, &FP_STATUS))
882 return 0x4000000000000000ULL;
883 else
884 return 0;
885 }
886
887 /* Floating point format conversion */
888 uint64_t helper_cvtts (uint64_t a)
889 {
890 float64 fa;
891 float32 fr;
892
893 fa = t_to_float64(a);
894 fr = float64_to_float32(fa, &FP_STATUS);
895 return float32_to_s(fr);
896 }
897
898 uint64_t helper_cvtst (uint64_t a)
899 {
900 float32 fa;
901 float64 fr;
902
903 fa = s_to_float32(a);
904 fr = float32_to_float64(fa, &FP_STATUS);
905 return float64_to_t(fr);
906 }
907
908 uint64_t helper_cvtqs (uint64_t a)
909 {
910 float32 fr = int64_to_float32(a, &FP_STATUS);
911 return float32_to_s(fr);
912 }
913
914 uint64_t helper_cvttq (uint64_t a)
915 {
916 float64 fa = t_to_float64(a);
917 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
918 }
919
920 uint64_t helper_cvtqt (uint64_t a)
921 {
922 float64 fr = int64_to_float64(a, &FP_STATUS);
923 return float64_to_t(fr);
924 }
925
926 uint64_t helper_cvtqf (uint64_t a)
927 {
928 float32 fr = int64_to_float32(a, &FP_STATUS);
929 return float32_to_f(fr);
930 }
931
932 uint64_t helper_cvtgf (uint64_t a)
933 {
934 float64 fa;
935 float32 fr;
936
937 fa = g_to_float64(a);
938 fr = float64_to_float32(fa, &FP_STATUS);
939 return float32_to_f(fr);
940 }
941
942 uint64_t helper_cvtgq (uint64_t a)
943 {
944 float64 fa = g_to_float64(a);
945 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
946 }
947
948 uint64_t helper_cvtqg (uint64_t a)
949 {
950 float64 fr;
951 fr = int64_to_float64(a, &FP_STATUS);
952 return float64_to_g(fr);
953 }
954
955 uint64_t helper_cvtlq (uint64_t a)
956 {
957 int32_t lo = a >> 29;
958 int32_t hi = a >> 32;
959 return (lo & 0x3FFFFFFF) | (hi & 0xc0000000);
960 }
961
962 static inline uint64_t __helper_cvtql(uint64_t a, int s, int v)
963 {
964 uint64_t r;
965
966 r = ((uint64_t)(a & 0xC0000000)) << 32;
967 r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
968
969 if (v && (int64_t)((int32_t)r) != (int64_t)r) {
970 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
971 }
972 if (s) {
973 /* TODO */
974 }
975 return r;
976 }
977
978 uint64_t helper_cvtql (uint64_t a)
979 {
980 return __helper_cvtql(a, 0, 0);
981 }
982
983 uint64_t helper_cvtqlv (uint64_t a)
984 {
985 return __helper_cvtql(a, 0, 1);
986 }
987
988 uint64_t helper_cvtqlsv (uint64_t a)
989 {
990 return __helper_cvtql(a, 1, 1);
991 }
992
993 /* PALcode support special instructions */
994 #if !defined (CONFIG_USER_ONLY)
995 void helper_hw_rei (void)
996 {
997 env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
998 env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
999 /* XXX: re-enable interrupts and memory mapping */
1000 }
1001
1002 void helper_hw_ret (uint64_t a)
1003 {
1004 env->pc = a & ~3;
1005 env->ipr[IPR_EXC_ADDR] = a & 1;
1006 /* XXX: re-enable interrupts and memory mapping */
1007 }
1008
1009 uint64_t helper_mfpr (int iprn, uint64_t val)
1010 {
1011 uint64_t tmp;
1012
1013 if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
1014 val = tmp;
1015
1016 return val;
1017 }
1018
1019 void helper_mtpr (int iprn, uint64_t val)
1020 {
1021 cpu_alpha_mtpr(env, iprn, val, NULL);
1022 }
1023
1024 void helper_set_alt_mode (void)
1025 {
1026 env->saved_mode = env->ps & 0xC;
1027 env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
1028 }
1029
1030 void helper_restore_mode (void)
1031 {
1032 env->ps = (env->ps & ~0xC) | env->saved_mode;
1033 }
1034
1035 #endif
1036
1037 /*****************************************************************************/
1038 /* Softmmu support */
1039 #if !defined (CONFIG_USER_ONLY)
1040
1041 /* XXX: the two following helpers are pure hacks.
1042 * Hopefully, we emulate the PALcode, then we should never see
1043 * HW_LD / HW_ST instructions.
1044 */
1045 uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
1046 {
1047 uint64_t tlb_addr, physaddr;
1048 int index, mmu_idx;
1049 void *retaddr;
1050
1051 mmu_idx = cpu_mmu_index(env);
1052 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1053 redo:
1054 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
1055 if ((virtaddr & TARGET_PAGE_MASK) ==
1056 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1057 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1058 } else {
1059 /* the page is not in the TLB : fill it */
1060 retaddr = GETPC();
1061 tlb_fill(virtaddr, 0, mmu_idx, retaddr);
1062 goto redo;
1063 }
1064 return physaddr;
1065 }
1066
1067 uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
1068 {
1069 uint64_t tlb_addr, physaddr;
1070 int index, mmu_idx;
1071 void *retaddr;
1072
1073 mmu_idx = cpu_mmu_index(env);
1074 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1075 redo:
1076 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
1077 if ((virtaddr & TARGET_PAGE_MASK) ==
1078 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1079 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
1080 } else {
1081 /* the page is not in the TLB : fill it */
1082 retaddr = GETPC();
1083 tlb_fill(virtaddr, 1, mmu_idx, retaddr);
1084 goto redo;
1085 }
1086 return physaddr;
1087 }
1088
1089 void helper_ldl_raw(uint64_t t0, uint64_t t1)
1090 {
1091 ldl_raw(t1, t0);
1092 }
1093
1094 void helper_ldq_raw(uint64_t t0, uint64_t t1)
1095 {
1096 ldq_raw(t1, t0);
1097 }
1098
1099 void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1100 {
1101 env->lock = t1;
1102 ldl_raw(t1, t0);
1103 }
1104
1105 void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1106 {
1107 env->lock = t1;
1108 ldl_raw(t1, t0);
1109 }
1110
1111 void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1112 {
1113 ldl_kernel(t1, t0);
1114 }
1115
1116 void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1117 {
1118 ldq_kernel(t1, t0);
1119 }
1120
1121 void helper_ldl_data(uint64_t t0, uint64_t t1)
1122 {
1123 ldl_data(t1, t0);
1124 }
1125
1126 void helper_ldq_data(uint64_t t0, uint64_t t1)
1127 {
1128 ldq_data(t1, t0);
1129 }
1130
1131 void helper_stl_raw(uint64_t t0, uint64_t t1)
1132 {
1133 stl_raw(t1, t0);
1134 }
1135
1136 void helper_stq_raw(uint64_t t0, uint64_t t1)
1137 {
1138 stq_raw(t1, t0);
1139 }
1140
1141 uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1142 {
1143 uint64_t ret;
1144
1145 if (t1 == env->lock) {
1146 stl_raw(t1, t0);
1147 ret = 0;
1148 } else
1149 ret = 1;
1150
1151 env->lock = 1;
1152
1153 return ret;
1154 }
1155
1156 uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1157 {
1158 uint64_t ret;
1159
1160 if (t1 == env->lock) {
1161 stq_raw(t1, t0);
1162 ret = 0;
1163 } else
1164 ret = 1;
1165
1166 env->lock = 1;
1167
1168 return ret;
1169 }
1170
1171 #define MMUSUFFIX _mmu
1172
1173 #define SHIFT 0
1174 #include "softmmu_template.h"
1175
1176 #define SHIFT 1
1177 #include "softmmu_template.h"
1178
1179 #define SHIFT 2
1180 #include "softmmu_template.h"
1181
1182 #define SHIFT 3
1183 #include "softmmu_template.h"
1184
1185 /* try to fill the TLB and return an exception if error. If retaddr is
1186 NULL, it means that the function was called in C code (i.e. not
1187 from generated code or from helper.c) */
1188 /* XXX: fix it to restore all registers */
1189 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1190 {
1191 TranslationBlock *tb;
1192 CPUState *saved_env;
1193 unsigned long pc;
1194 int ret;
1195
1196 /* XXX: hack to restore env in all cases, even if not called from
1197 generated code */
1198 saved_env = env;
1199 env = cpu_single_env;
1200 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1201 if (!likely(ret == 0)) {
1202 if (likely(retaddr)) {
1203 /* now we have a real cpu fault */
1204 pc = (unsigned long)retaddr;
1205 tb = tb_find_pc(pc);
1206 if (likely(tb)) {
1207 /* the PC is inside the translated code. It means that we have
1208 a virtual CPU fault */
1209 cpu_restore_state(tb, env, pc, NULL);
1210 }
1211 }
1212 /* Exception index and error code are already set */
1213 cpu_loop_exit();
1214 }
1215 env = saved_env;
1216 }
1217
1218 #endif