]> git.proxmox.com Git - qemu.git/blob - target-arm/cpu.h
Merge remote-tracking branch 'mdroth/qga-pull-2013-10-10' into staging
[qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #include "config.h"
23
24 #if defined(TARGET_AARCH64)
25 /* AArch64 definitions */
26 # define TARGET_LONG_BITS 64
27 # define ELF_MACHINE EM_AARCH64
28 #else
29 # define TARGET_LONG_BITS 32
30 # define ELF_MACHINE EM_ARM
31 #endif
32
33 #define CPUArchState struct CPUARMState
34
35 #include "qemu-common.h"
36 #include "exec/cpu-defs.h"
37
38 #include "fpu/softfloat.h"
39
40 #define TARGET_HAS_ICE 1
41
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_STREX 10
52
53 #define ARMV7M_EXCP_RESET 1
54 #define ARMV7M_EXCP_NMI 2
55 #define ARMV7M_EXCP_HARD 3
56 #define ARMV7M_EXCP_MEM 4
57 #define ARMV7M_EXCP_BUS 5
58 #define ARMV7M_EXCP_USAGE 6
59 #define ARMV7M_EXCP_SVC 11
60 #define ARMV7M_EXCP_DEBUG 12
61 #define ARMV7M_EXCP_PENDSV 14
62 #define ARMV7M_EXCP_SYSTICK 15
63
64 /* ARM-specific interrupt pending bits. */
65 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
66
67 /* Meanings of the ARMCPU object's two inbound GPIO lines */
68 #define ARM_CPU_IRQ 0
69 #define ARM_CPU_FIQ 1
70
71 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
72 int srcreg, int operand, uint32_t value);
73 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
74 int dstreg, int operand);
75
76 struct arm_boot_info;
77
78 #define NB_MMU_MODES 2
79
80 /* We currently assume float and double are IEEE single and double
81 precision respectively.
82 Doing runtime conversions is tricky because VFP registers may contain
83 integer values (eg. as the result of a FTOSI instruction).
84 s<2n> maps to the least significant half of d<n>
85 s<2n+1> maps to the most significant half of d<n>
86 */
87
88 /* CPU state for each instance of a generic timer (in cp15 c14) */
89 typedef struct ARMGenericTimer {
90 uint64_t cval; /* Timer CompareValue register */
91 uint32_t ctl; /* Timer Control register */
92 } ARMGenericTimer;
93
94 #define GTIMER_PHYS 0
95 #define GTIMER_VIRT 1
96 #define NUM_GTIMERS 2
97
98 /* Scale factor for generic timers, ie number of ns per tick.
99 * This gives a 62.5MHz timer.
100 */
101 #define GTIMER_SCALE 16
102
103 typedef struct CPUARMState {
104 /* Regs for current mode. */
105 uint32_t regs[16];
106
107 /* 32/64 switch only happens when taking and returning from
108 * exceptions so the overlap semantics are taken care of then
109 * instead of having a complicated union.
110 */
111 /* Regs for A64 mode. */
112 uint64_t xregs[32];
113 uint64_t pc;
114 /* TODO: pstate doesn't correspond to an architectural register;
115 * it would be better modelled as the underlying fields.
116 */
117 uint32_t pstate;
118 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
119
120 /* Frequently accessed CPSR bits are stored separately for efficiency.
121 This contains all the other bits. Use cpsr_{read,write} to access
122 the whole CPSR. */
123 uint32_t uncached_cpsr;
124 uint32_t spsr;
125
126 /* Banked registers. */
127 uint32_t banked_spsr[6];
128 uint32_t banked_r13[6];
129 uint32_t banked_r14[6];
130
131 /* These hold r8-r12. */
132 uint32_t usr_regs[5];
133 uint32_t fiq_regs[5];
134
135 /* cpsr flag cache for faster execution */
136 uint32_t CF; /* 0 or 1 */
137 uint32_t VF; /* V is the bit 31. All other bits are undefined */
138 uint32_t NF; /* N is bit 31. All other bits are undefined. */
139 uint32_t ZF; /* Z set if zero. */
140 uint32_t QF; /* 0 or 1 */
141 uint32_t GE; /* cpsr[19:16] */
142 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
143 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
144
145 /* System control coprocessor (cp15) */
146 struct {
147 uint32_t c0_cpuid;
148 uint32_t c0_cssel; /* Cache size selection. */
149 uint32_t c1_sys; /* System control register. */
150 uint32_t c1_coproc; /* Coprocessor access register. */
151 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
152 uint32_t c1_scr; /* secure config register. */
153 uint32_t c2_base0; /* MMU translation table base 0. */
154 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
155 uint32_t c2_base1; /* MMU translation table base 0. */
156 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
157 uint32_t c2_control; /* MMU translation table base control. */
158 uint32_t c2_mask; /* MMU translation table base selection mask. */
159 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
160 uint32_t c2_data; /* MPU data cachable bits. */
161 uint32_t c2_insn; /* MPU instruction cachable bits. */
162 uint32_t c3; /* MMU domain access control register
163 MPU write buffer control. */
164 uint32_t c5_insn; /* Fault status registers. */
165 uint32_t c5_data;
166 uint32_t c6_region[8]; /* MPU base/size registers. */
167 uint32_t c6_insn; /* Fault address registers. */
168 uint32_t c6_data;
169 uint32_t c7_par; /* Translation result. */
170 uint32_t c7_par_hi; /* Translation result, high 32 bits */
171 uint32_t c9_insn; /* Cache lockdown registers. */
172 uint32_t c9_data;
173 uint32_t c9_pmcr; /* performance monitor control register */
174 uint32_t c9_pmcnten; /* perf monitor counter enables */
175 uint32_t c9_pmovsr; /* perf monitor overflow status */
176 uint32_t c9_pmxevtyper; /* perf monitor event type */
177 uint32_t c9_pmuserenr; /* perf monitor user enable */
178 uint32_t c9_pminten; /* perf monitor interrupt enables */
179 uint32_t c13_fcse; /* FCSE PID. */
180 uint32_t c13_context; /* Context ID. */
181 uint32_t c13_tls1; /* User RW Thread register. */
182 uint32_t c13_tls2; /* User RO Thread register. */
183 uint32_t c13_tls3; /* Privileged Thread register. */
184 uint32_t c14_cntfrq; /* Counter Frequency register */
185 uint32_t c14_cntkctl; /* Timer Control register */
186 ARMGenericTimer c14_timer[NUM_GTIMERS];
187 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
188 uint32_t c15_ticonfig; /* TI925T configuration byte. */
189 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
190 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
191 uint32_t c15_threadid; /* TI debugger thread-ID. */
192 uint32_t c15_config_base_address; /* SCU base address. */
193 uint32_t c15_diagnostic; /* diagnostic register */
194 uint32_t c15_power_diagnostic;
195 uint32_t c15_power_control; /* power control */
196 } cp15;
197
198 /* System registers (AArch64) */
199 struct {
200 uint64_t tpidr_el0;
201 } sr;
202
203 struct {
204 uint32_t other_sp;
205 uint32_t vecbase;
206 uint32_t basepri;
207 uint32_t control;
208 int current_sp;
209 int exception;
210 int pending_exception;
211 } v7m;
212
213 /* Thumb-2 EE state. */
214 uint32_t teecr;
215 uint32_t teehbr;
216
217 /* VFP coprocessor state. */
218 struct {
219 /* VFP/Neon register state. Note that the mapping between S, D and Q
220 * views of the register bank differs between AArch64 and AArch32:
221 * In AArch32:
222 * Qn = regs[2n+1]:regs[2n]
223 * Dn = regs[n]
224 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
225 * (and regs[32] to regs[63] are inaccessible)
226 * In AArch64:
227 * Qn = regs[2n+1]:regs[2n]
228 * Dn = regs[2n]
229 * Sn = regs[2n] bits 31..0
230 * This corresponds to the architecturally defined mapping between
231 * the two execution states, and means we do not need to explicitly
232 * map these registers when changing states.
233 */
234 float64 regs[64];
235
236 uint32_t xregs[16];
237 /* We store these fpcsr fields separately for convenience. */
238 int vec_len;
239 int vec_stride;
240
241 /* scratch space when Tn are not sufficient. */
242 uint32_t scratch[8];
243
244 /* fp_status is the "normal" fp status. standard_fp_status retains
245 * values corresponding to the ARM "Standard FPSCR Value", ie
246 * default-NaN, flush-to-zero, round-to-nearest and is used by
247 * any operations (generally Neon) which the architecture defines
248 * as controlled by the standard FPSCR value rather than the FPSCR.
249 *
250 * To avoid having to transfer exception bits around, we simply
251 * say that the FPSCR cumulative exception flags are the logical
252 * OR of the flags in the two fp statuses. This relies on the
253 * only thing which needs to read the exception flags being
254 * an explicit FPSCR read.
255 */
256 float_status fp_status;
257 float_status standard_fp_status;
258 } vfp;
259 uint32_t exclusive_addr;
260 uint32_t exclusive_val;
261 uint32_t exclusive_high;
262 #if defined(CONFIG_USER_ONLY)
263 uint32_t exclusive_test;
264 uint32_t exclusive_info;
265 #endif
266
267 /* iwMMXt coprocessor state. */
268 struct {
269 uint64_t regs[16];
270 uint64_t val;
271
272 uint32_t cregs[16];
273 } iwmmxt;
274
275 /* For mixed endian mode. */
276 bool bswap_code;
277
278 #if defined(CONFIG_USER_ONLY)
279 /* For usermode syscall translation. */
280 int eabi;
281 #endif
282
283 CPU_COMMON
284
285 /* These fields after the common ones so they are preserved on reset. */
286
287 /* Internal CPU feature flags. */
288 uint64_t features;
289
290 void *nvic;
291 const struct arm_boot_info *boot_info;
292 } CPUARMState;
293
294 #include "cpu-qom.h"
295
296 ARMCPU *cpu_arm_init(const char *cpu_model);
297 void arm_translate_init(void);
298 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
299 int cpu_arm_exec(CPUARMState *s);
300 int bank_number(int mode);
301 void switch_mode(CPUARMState *, int);
302 uint32_t do_arm_semihosting(CPUARMState *env);
303
304 static inline bool is_a64(CPUARMState *env)
305 {
306 return env->aarch64;
307 }
308
309 #define PSTATE_N_SHIFT 3
310 #define PSTATE_N (1 << PSTATE_N_SHIFT)
311 #define PSTATE_Z_SHIFT 2
312 #define PSTATE_Z (1 << PSTATE_Z_SHIFT)
313 #define PSTATE_C_SHIFT 1
314 #define PSTATE_C (1 << PSTATE_C_SHIFT)
315 #define PSTATE_V_SHIFT 0
316 #define PSTATE_V (1 << PSTATE_V_SHIFT)
317
318 /* you can call this signal handler from your SIGBUS and SIGSEGV
319 signal handlers to inform the virtual CPU of exceptions. non zero
320 is returned if the signal was handled by the virtual CPU. */
321 int cpu_arm_signal_handler(int host_signum, void *pinfo,
322 void *puc);
323 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
324 int mmu_idx);
325 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
326
327 #define CPSR_M (0x1fU)
328 #define CPSR_T (1U << 5)
329 #define CPSR_F (1U << 6)
330 #define CPSR_I (1U << 7)
331 #define CPSR_A (1U << 8)
332 #define CPSR_E (1U << 9)
333 #define CPSR_IT_2_7 (0xfc00U)
334 #define CPSR_GE (0xfU << 16)
335 #define CPSR_RESERVED (0xfU << 20)
336 #define CPSR_J (1U << 24)
337 #define CPSR_IT_0_1 (3U << 25)
338 #define CPSR_Q (1U << 27)
339 #define CPSR_V (1U << 28)
340 #define CPSR_C (1U << 29)
341 #define CPSR_Z (1U << 30)
342 #define CPSR_N (1U << 31)
343 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
344
345 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
346 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
347 /* Bits writable in user mode. */
348 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
349 /* Execution state bits. MRS read as zero, MSR writes ignored. */
350 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
351
352 /* Return the current CPSR value. */
353 uint32_t cpsr_read(CPUARMState *env);
354 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
355 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
356
357 /* Return the current xPSR value. */
358 static inline uint32_t xpsr_read(CPUARMState *env)
359 {
360 int ZF;
361 ZF = (env->ZF == 0);
362 return (env->NF & 0x80000000) | (ZF << 30)
363 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
364 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
365 | ((env->condexec_bits & 0xfc) << 8)
366 | env->v7m.exception;
367 }
368
369 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
370 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
371 {
372 if (mask & CPSR_NZCV) {
373 env->ZF = (~val) & CPSR_Z;
374 env->NF = val;
375 env->CF = (val >> 29) & 1;
376 env->VF = (val << 3) & 0x80000000;
377 }
378 if (mask & CPSR_Q)
379 env->QF = ((val & CPSR_Q) != 0);
380 if (mask & (1 << 24))
381 env->thumb = ((val & (1 << 24)) != 0);
382 if (mask & CPSR_IT_0_1) {
383 env->condexec_bits &= ~3;
384 env->condexec_bits |= (val >> 25) & 3;
385 }
386 if (mask & CPSR_IT_2_7) {
387 env->condexec_bits &= 3;
388 env->condexec_bits |= (val >> 8) & 0xfc;
389 }
390 if (mask & 0x1ff) {
391 env->v7m.exception = val & 0x1ff;
392 }
393 }
394
395 /* Return the current FPSCR value. */
396 uint32_t vfp_get_fpscr(CPUARMState *env);
397 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
398
399 enum arm_cpu_mode {
400 ARM_CPU_MODE_USR = 0x10,
401 ARM_CPU_MODE_FIQ = 0x11,
402 ARM_CPU_MODE_IRQ = 0x12,
403 ARM_CPU_MODE_SVC = 0x13,
404 ARM_CPU_MODE_ABT = 0x17,
405 ARM_CPU_MODE_UND = 0x1b,
406 ARM_CPU_MODE_SYS = 0x1f
407 };
408
409 /* VFP system registers. */
410 #define ARM_VFP_FPSID 0
411 #define ARM_VFP_FPSCR 1
412 #define ARM_VFP_MVFR1 6
413 #define ARM_VFP_MVFR0 7
414 #define ARM_VFP_FPEXC 8
415 #define ARM_VFP_FPINST 9
416 #define ARM_VFP_FPINST2 10
417
418 /* iwMMXt coprocessor control registers. */
419 #define ARM_IWMMXT_wCID 0
420 #define ARM_IWMMXT_wCon 1
421 #define ARM_IWMMXT_wCSSF 2
422 #define ARM_IWMMXT_wCASF 3
423 #define ARM_IWMMXT_wCGR0 8
424 #define ARM_IWMMXT_wCGR1 9
425 #define ARM_IWMMXT_wCGR2 10
426 #define ARM_IWMMXT_wCGR3 11
427
428 /* If adding a feature bit which corresponds to a Linux ELF
429 * HWCAP bit, remember to update the feature-bit-to-hwcap
430 * mapping in linux-user/elfload.c:get_elf_hwcap().
431 */
432 enum arm_features {
433 ARM_FEATURE_VFP,
434 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
435 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
436 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
437 ARM_FEATURE_V6,
438 ARM_FEATURE_V6K,
439 ARM_FEATURE_V7,
440 ARM_FEATURE_THUMB2,
441 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
442 ARM_FEATURE_VFP3,
443 ARM_FEATURE_VFP_FP16,
444 ARM_FEATURE_NEON,
445 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
446 ARM_FEATURE_M, /* Microcontroller profile. */
447 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
448 ARM_FEATURE_THUMB2EE,
449 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
450 ARM_FEATURE_V4T,
451 ARM_FEATURE_V5,
452 ARM_FEATURE_STRONGARM,
453 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
454 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
455 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
456 ARM_FEATURE_GENERIC_TIMER,
457 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
458 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
459 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
460 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
461 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
462 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
463 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
464 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
465 ARM_FEATURE_V8,
466 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
467 };
468
469 static inline int arm_feature(CPUARMState *env, int feature)
470 {
471 return (env->features & (1ULL << feature)) != 0;
472 }
473
474 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
475
476 /* Interface between CPU and Interrupt controller. */
477 void armv7m_nvic_set_pending(void *opaque, int irq);
478 int armv7m_nvic_acknowledge_irq(void *opaque);
479 void armv7m_nvic_complete_irq(void *opaque, int irq);
480
481 /* Interface for defining coprocessor registers.
482 * Registers are defined in tables of arm_cp_reginfo structs
483 * which are passed to define_arm_cp_regs().
484 */
485
486 /* When looking up a coprocessor register we look for it
487 * via an integer which encodes all of:
488 * coprocessor number
489 * Crn, Crm, opc1, opc2 fields
490 * 32 or 64 bit register (ie is it accessed via MRC/MCR
491 * or via MRRC/MCRR?)
492 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
493 * (In this case crn and opc2 should be zero.)
494 */
495 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
496 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
497 ((crm) << 7) | ((opc1) << 3) | (opc2))
498
499 /* Note that these must line up with the KVM/ARM register
500 * ID field definitions (kvm.c will check this, but we
501 * can't just use the KVM defines here as the kvm headers
502 * are unavailable to non-KVM-specific files)
503 */
504 #define CP_REG_SIZE_SHIFT 52
505 #define CP_REG_SIZE_MASK 0x00f0000000000000ULL
506 #define CP_REG_SIZE_U32 0x0020000000000000ULL
507 #define CP_REG_SIZE_U64 0x0030000000000000ULL
508 #define CP_REG_ARM 0x4000000000000000ULL
509
510 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
511 * version used as a key for the coprocessor register hashtable
512 */
513 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
514 {
515 uint32_t cpregid = kvmid;
516 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
517 cpregid |= (1 << 15);
518 }
519 return cpregid;
520 }
521
522 /* Convert a truncated 32 bit hashtable key into the full
523 * 64 bit KVM register ID.
524 */
525 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
526 {
527 uint64_t kvmid = cpregid & ~(1 << 15);
528 if (cpregid & (1 << 15)) {
529 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
530 } else {
531 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
532 }
533 return kvmid;
534 }
535
536 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
537 * special-behaviour cp reg and bits [15..8] indicate what behaviour
538 * it has. Otherwise it is a simple cp reg, where CONST indicates that
539 * TCG can assume the value to be constant (ie load at translate time)
540 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
541 * indicates that the TB should not be ended after a write to this register
542 * (the default is that the TB ends after cp writes). OVERRIDE permits
543 * a register definition to override a previous definition for the
544 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
545 * old must have the OVERRIDE bit set.
546 * NO_MIGRATE indicates that this register should be ignored for migration;
547 * (eg because any state is accessed via some other coprocessor register).
548 * IO indicates that this register does I/O and therefore its accesses
549 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
550 * registers which implement clocks or timers require this.
551 */
552 #define ARM_CP_SPECIAL 1
553 #define ARM_CP_CONST 2
554 #define ARM_CP_64BIT 4
555 #define ARM_CP_SUPPRESS_TB_END 8
556 #define ARM_CP_OVERRIDE 16
557 #define ARM_CP_NO_MIGRATE 32
558 #define ARM_CP_IO 64
559 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
560 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
561 #define ARM_LAST_SPECIAL ARM_CP_WFI
562 /* Used only as a terminator for ARMCPRegInfo lists */
563 #define ARM_CP_SENTINEL 0xffff
564 /* Mask of only the flag bits in a type field */
565 #define ARM_CP_FLAG_MASK 0x7f
566
567 /* Return true if cptype is a valid type field. This is used to try to
568 * catch errors where the sentinel has been accidentally left off the end
569 * of a list of registers.
570 */
571 static inline bool cptype_valid(int cptype)
572 {
573 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
574 || ((cptype & ARM_CP_SPECIAL) &&
575 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
576 }
577
578 /* Access rights:
579 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
580 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
581 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
582 * (ie any of the privileged modes in Secure state, or Monitor mode).
583 * If a register is accessible in one privilege level it's always accessible
584 * in higher privilege levels too. Since "Secure PL1" also follows this rule
585 * (ie anything visible in PL2 is visible in S-PL1, some things are only
586 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
587 * terminology a little and call this PL3.
588 *
589 * If access permissions for a register are more complex than can be
590 * described with these bits, then use a laxer set of restrictions, and
591 * do the more restrictive/complex check inside a helper function.
592 */
593 #define PL3_R 0x80
594 #define PL3_W 0x40
595 #define PL2_R (0x20 | PL3_R)
596 #define PL2_W (0x10 | PL3_W)
597 #define PL1_R (0x08 | PL2_R)
598 #define PL1_W (0x04 | PL2_W)
599 #define PL0_R (0x02 | PL1_R)
600 #define PL0_W (0x01 | PL1_W)
601
602 #define PL3_RW (PL3_R | PL3_W)
603 #define PL2_RW (PL2_R | PL2_W)
604 #define PL1_RW (PL1_R | PL1_W)
605 #define PL0_RW (PL0_R | PL0_W)
606
607 static inline int arm_current_pl(CPUARMState *env)
608 {
609 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
610 return 0;
611 }
612 /* We don't currently implement the Virtualization or TrustZone
613 * extensions, so PL2 and PL3 don't exist for us.
614 */
615 return 1;
616 }
617
618 typedef struct ARMCPRegInfo ARMCPRegInfo;
619
620 /* Access functions for coprocessor registers. These should return
621 * 0 on success, or one of the EXCP_* constants if access should cause
622 * an exception (in which case *value is not written).
623 */
624 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
625 uint64_t *value);
626 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
627 uint64_t value);
628 /* Hook function for register reset */
629 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
630
631 #define CP_ANY 0xff
632
633 /* Definition of an ARM coprocessor register */
634 struct ARMCPRegInfo {
635 /* Name of register (useful mainly for debugging, need not be unique) */
636 const char *name;
637 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
638 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
639 * 'wildcard' field -- any value of that field in the MRC/MCR insn
640 * will be decoded to this register. The register read and write
641 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
642 * used by the program, so it is possible to register a wildcard and
643 * then behave differently on read/write if necessary.
644 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
645 * must both be zero.
646 */
647 uint8_t cp;
648 uint8_t crn;
649 uint8_t crm;
650 uint8_t opc1;
651 uint8_t opc2;
652 /* Register type: ARM_CP_* bits/values */
653 int type;
654 /* Access rights: PL*_[RW] */
655 int access;
656 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
657 * this register was defined: can be used to hand data through to the
658 * register read/write functions, since they are passed the ARMCPRegInfo*.
659 */
660 void *opaque;
661 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
662 * fieldoffset is non-zero, the reset value of the register.
663 */
664 uint64_t resetvalue;
665 /* Offset of the field in CPUARMState for this register. This is not
666 * needed if either:
667 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
668 * 2. both readfn and writefn are specified
669 */
670 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
671 /* Function for handling reads of this register. If NULL, then reads
672 * will be done by loading from the offset into CPUARMState specified
673 * by fieldoffset.
674 */
675 CPReadFn *readfn;
676 /* Function for handling writes of this register. If NULL, then writes
677 * will be done by writing to the offset into CPUARMState specified
678 * by fieldoffset.
679 */
680 CPWriteFn *writefn;
681 /* Function for doing a "raw" read; used when we need to copy
682 * coprocessor state to the kernel for KVM or out for
683 * migration. This only needs to be provided if there is also a
684 * readfn and it makes an access permission check.
685 */
686 CPReadFn *raw_readfn;
687 /* Function for doing a "raw" write; used when we need to copy KVM
688 * kernel coprocessor state into userspace, or for inbound
689 * migration. This only needs to be provided if there is also a
690 * writefn and it makes an access permission check or masks out
691 * "unwritable" bits or has write-one-to-clear or similar behaviour.
692 */
693 CPWriteFn *raw_writefn;
694 /* Function for resetting the register. If NULL, then reset will be done
695 * by writing resetvalue to the field specified in fieldoffset. If
696 * fieldoffset is 0 then no reset will be done.
697 */
698 CPResetFn *resetfn;
699 };
700
701 /* Macros which are lvalues for the field in CPUARMState for the
702 * ARMCPRegInfo *ri.
703 */
704 #define CPREG_FIELD32(env, ri) \
705 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
706 #define CPREG_FIELD64(env, ri) \
707 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
708
709 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
710
711 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
712 const ARMCPRegInfo *regs, void *opaque);
713 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
714 const ARMCPRegInfo *regs, void *opaque);
715 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
716 {
717 define_arm_cp_regs_with_opaque(cpu, regs, 0);
718 }
719 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
720 {
721 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
722 }
723 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
724
725 /* CPWriteFn that can be used to implement writes-ignored behaviour */
726 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value);
728 /* CPReadFn that can be used for read-as-zero behaviour */
729 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
730
731 static inline bool cp_access_ok(CPUARMState *env,
732 const ARMCPRegInfo *ri, int isread)
733 {
734 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
735 }
736
737 /**
738 * write_list_to_cpustate
739 * @cpu: ARMCPU
740 *
741 * For each register listed in the ARMCPU cpreg_indexes list, write
742 * its value from the cpreg_values list into the ARMCPUState structure.
743 * This updates TCG's working data structures from KVM data or
744 * from incoming migration state.
745 *
746 * Returns: true if all register values were updated correctly,
747 * false if some register was unknown or could not be written.
748 * Note that we do not stop early on failure -- we will attempt
749 * writing all registers in the list.
750 */
751 bool write_list_to_cpustate(ARMCPU *cpu);
752
753 /**
754 * write_cpustate_to_list:
755 * @cpu: ARMCPU
756 *
757 * For each register listed in the ARMCPU cpreg_indexes list, write
758 * its value from the ARMCPUState structure into the cpreg_values list.
759 * This is used to copy info from TCG's working data structures into
760 * KVM or for outbound migration.
761 *
762 * Returns: true if all register values were read correctly,
763 * false if some register was unknown or could not be read.
764 * Note that we do not stop early on failure -- we will attempt
765 * reading all registers in the list.
766 */
767 bool write_cpustate_to_list(ARMCPU *cpu);
768
769 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
770 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
771 conventional cores (ie. Application or Realtime profile). */
772
773 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
774
775 #define ARM_CPUID_TI915T 0x54029152
776 #define ARM_CPUID_TI925T 0x54029252
777
778 #if defined(CONFIG_USER_ONLY)
779 #define TARGET_PAGE_BITS 12
780 #else
781 /* The ARM MMU allows 1k pages. */
782 /* ??? Linux doesn't actually use these, and they're deprecated in recent
783 architecture revisions. Maybe a configure option to disable them. */
784 #define TARGET_PAGE_BITS 10
785 #endif
786
787 #if defined(TARGET_AARCH64)
788 # define TARGET_PHYS_ADDR_SPACE_BITS 48
789 # define TARGET_VIRT_ADDR_SPACE_BITS 64
790 #else
791 # define TARGET_PHYS_ADDR_SPACE_BITS 40
792 # define TARGET_VIRT_ADDR_SPACE_BITS 32
793 #endif
794
795 static inline CPUARMState *cpu_init(const char *cpu_model)
796 {
797 ARMCPU *cpu = cpu_arm_init(cpu_model);
798 if (cpu) {
799 return &cpu->env;
800 }
801 return NULL;
802 }
803
804 #define cpu_exec cpu_arm_exec
805 #define cpu_gen_code cpu_arm_gen_code
806 #define cpu_signal_handler cpu_arm_signal_handler
807 #define cpu_list arm_cpu_list
808
809 /* MMU modes definitions */
810 #define MMU_MODE0_SUFFIX _kernel
811 #define MMU_MODE1_SUFFIX _user
812 #define MMU_USER_IDX 1
813 static inline int cpu_mmu_index (CPUARMState *env)
814 {
815 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
816 }
817
818 #include "exec/cpu-all.h"
819
820 /* Bit usage in the TB flags field: bit 31 indicates whether we are
821 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
822 */
823 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
824 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
825
826 /* Bit usage when in AArch32 state: */
827 #define ARM_TBFLAG_THUMB_SHIFT 0
828 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
829 #define ARM_TBFLAG_VECLEN_SHIFT 1
830 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
831 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
832 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
833 #define ARM_TBFLAG_PRIV_SHIFT 6
834 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
835 #define ARM_TBFLAG_VFPEN_SHIFT 7
836 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
837 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
838 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
839 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
840 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
841
842 /* Bit usage when in AArch64 state: currently no bits defined */
843
844 /* some convenience accessor macros */
845 #define ARM_TBFLAG_AARCH64_STATE(F) \
846 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
847 #define ARM_TBFLAG_THUMB(F) \
848 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
849 #define ARM_TBFLAG_VECLEN(F) \
850 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
851 #define ARM_TBFLAG_VECSTRIDE(F) \
852 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
853 #define ARM_TBFLAG_PRIV(F) \
854 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
855 #define ARM_TBFLAG_VFPEN(F) \
856 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
857 #define ARM_TBFLAG_CONDEXEC(F) \
858 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
859 #define ARM_TBFLAG_BSWAP_CODE(F) \
860 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
861
862 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
863 target_ulong *cs_base, int *flags)
864 {
865 if (is_a64(env)) {
866 *pc = env->pc;
867 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
868 } else {
869 int privmode;
870 *pc = env->regs[15];
871 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
872 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
873 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
874 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
875 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
876 if (arm_feature(env, ARM_FEATURE_M)) {
877 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
878 } else {
879 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
880 }
881 if (privmode) {
882 *flags |= ARM_TBFLAG_PRIV_MASK;
883 }
884 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
885 *flags |= ARM_TBFLAG_VFPEN_MASK;
886 }
887 }
888
889 *cs_base = 0;
890 }
891
892 static inline bool cpu_has_work(CPUState *cpu)
893 {
894 return cpu->interrupt_request &
895 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
896 }
897
898 #include "exec/exec-all.h"
899
900 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
901 {
902 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
903 env->pc = tb->pc;
904 } else {
905 env->regs[15] = tb->pc;
906 }
907 }
908
909 /* Load an instruction and return it in the standard little-endian order */
910 static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
911 bool do_swap)
912 {
913 uint32_t insn = cpu_ldl_code(env, addr);
914 if (do_swap) {
915 return bswap32(insn);
916 }
917 return insn;
918 }
919
920 /* Ditto, for a halfword (Thumb) instruction */
921 static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
922 bool do_swap)
923 {
924 uint16_t insn = cpu_lduw_code(env, addr);
925 if (do_swap) {
926 return bswap16(insn);
927 }
928 return insn;
929 }
930
931 #endif