]> git.proxmox.com Git - qemu.git/blob - target-arm/cpu.h
Merge remote-tracking branch 'pmaydell/tags/pull-target-arm-20130715-1' into staging
[qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #define TARGET_LONG_BITS 32
23
24 #define ELF_MACHINE EM_ARM
25
26 #define CPUArchState struct CPUARMState
27
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "exec/cpu-defs.h"
31
32 #include "fpu/softfloat.h"
33
34 #define TARGET_HAS_ICE 1
35
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
40 #define EXCP_IRQ 5
41 #define EXCP_FIQ 6
42 #define EXCP_BKPT 7
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
45 #define EXCP_STREX 10
46
47 #define ARMV7M_EXCP_RESET 1
48 #define ARMV7M_EXCP_NMI 2
49 #define ARMV7M_EXCP_HARD 3
50 #define ARMV7M_EXCP_MEM 4
51 #define ARMV7M_EXCP_BUS 5
52 #define ARMV7M_EXCP_USAGE 6
53 #define ARMV7M_EXCP_SVC 11
54 #define ARMV7M_EXCP_DEBUG 12
55 #define ARMV7M_EXCP_PENDSV 14
56 #define ARMV7M_EXCP_SYSTICK 15
57
58 /* ARM-specific interrupt pending bits. */
59 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
62 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
67 struct arm_boot_info;
68
69 #define NB_MMU_MODES 2
70
71 /* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
78
79 typedef struct CPUARMState {
80 /* Regs for current mode. */
81 uint32_t regs[16];
82 /* Frequently accessed CPSR bits are stored separately for efficiency.
83 This contains all the other bits. Use cpsr_{read,write} to access
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
92
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
96
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
102 uint32_t QF; /* 0 or 1 */
103 uint32_t GE; /* cpsr[19:16] */
104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
106
107 /* System control coprocessor (cp15) */
108 struct {
109 uint32_t c0_cpuid;
110 uint32_t c0_cssel; /* Cache size selection. */
111 uint32_t c1_sys; /* System control register. */
112 uint32_t c1_coproc; /* Coprocessor access register. */
113 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
114 uint32_t c1_scr; /* secure config register. */
115 uint32_t c2_base0; /* MMU translation table base 0. */
116 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
117 uint32_t c2_base1; /* MMU translation table base 0. */
118 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
119 uint32_t c2_control; /* MMU translation table base control. */
120 uint32_t c2_mask; /* MMU translation table base selection mask. */
121 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
122 uint32_t c2_data; /* MPU data cachable bits. */
123 uint32_t c2_insn; /* MPU instruction cachable bits. */
124 uint32_t c3; /* MMU domain access control register
125 MPU write buffer control. */
126 uint32_t c5_insn; /* Fault status registers. */
127 uint32_t c5_data;
128 uint32_t c6_region[8]; /* MPU base/size registers. */
129 uint32_t c6_insn; /* Fault address registers. */
130 uint32_t c6_data;
131 uint32_t c7_par; /* Translation result. */
132 uint32_t c7_par_hi; /* Translation result, high 32 bits */
133 uint32_t c9_insn; /* Cache lockdown registers. */
134 uint32_t c9_data;
135 uint32_t c9_pmcr; /* performance monitor control register */
136 uint32_t c9_pmcnten; /* perf monitor counter enables */
137 uint32_t c9_pmovsr; /* perf monitor overflow status */
138 uint32_t c9_pmxevtyper; /* perf monitor event type */
139 uint32_t c9_pmuserenr; /* perf monitor user enable */
140 uint32_t c9_pminten; /* perf monitor interrupt enables */
141 uint32_t c13_fcse; /* FCSE PID. */
142 uint32_t c13_context; /* Context ID. */
143 uint32_t c13_tls1; /* User RW Thread register. */
144 uint32_t c13_tls2; /* User RO Thread register. */
145 uint32_t c13_tls3; /* Privileged Thread register. */
146 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
147 uint32_t c15_ticonfig; /* TI925T configuration byte. */
148 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
149 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
150 uint32_t c15_threadid; /* TI debugger thread-ID. */
151 uint32_t c15_config_base_address; /* SCU base address. */
152 uint32_t c15_diagnostic; /* diagnostic register */
153 uint32_t c15_power_diagnostic;
154 uint32_t c15_power_control; /* power control */
155 } cp15;
156
157 struct {
158 uint32_t other_sp;
159 uint32_t vecbase;
160 uint32_t basepri;
161 uint32_t control;
162 int current_sp;
163 int exception;
164 int pending_exception;
165 } v7m;
166
167 /* Thumb-2 EE state. */
168 uint32_t teecr;
169 uint32_t teehbr;
170
171 /* VFP coprocessor state. */
172 struct {
173 float64 regs[32];
174
175 uint32_t xregs[16];
176 /* We store these fpcsr fields separately for convenience. */
177 int vec_len;
178 int vec_stride;
179
180 /* scratch space when Tn are not sufficient. */
181 uint32_t scratch[8];
182
183 /* fp_status is the "normal" fp status. standard_fp_status retains
184 * values corresponding to the ARM "Standard FPSCR Value", ie
185 * default-NaN, flush-to-zero, round-to-nearest and is used by
186 * any operations (generally Neon) which the architecture defines
187 * as controlled by the standard FPSCR value rather than the FPSCR.
188 *
189 * To avoid having to transfer exception bits around, we simply
190 * say that the FPSCR cumulative exception flags are the logical
191 * OR of the flags in the two fp statuses. This relies on the
192 * only thing which needs to read the exception flags being
193 * an explicit FPSCR read.
194 */
195 float_status fp_status;
196 float_status standard_fp_status;
197 } vfp;
198 uint32_t exclusive_addr;
199 uint32_t exclusive_val;
200 uint32_t exclusive_high;
201 #if defined(CONFIG_USER_ONLY)
202 uint32_t exclusive_test;
203 uint32_t exclusive_info;
204 #endif
205
206 /* iwMMXt coprocessor state. */
207 struct {
208 uint64_t regs[16];
209 uint64_t val;
210
211 uint32_t cregs[16];
212 } iwmmxt;
213
214 /* For mixed endian mode. */
215 bool bswap_code;
216
217 #if defined(CONFIG_USER_ONLY)
218 /* For usermode syscall translation. */
219 int eabi;
220 #endif
221
222 CPU_COMMON
223
224 /* These fields after the common ones so they are preserved on reset. */
225
226 /* Internal CPU feature flags. */
227 uint64_t features;
228
229 void *nvic;
230 const struct arm_boot_info *boot_info;
231 } CPUARMState;
232
233 #include "cpu-qom.h"
234
235 ARMCPU *cpu_arm_init(const char *cpu_model);
236 void arm_translate_init(void);
237 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
238 int cpu_arm_exec(CPUARMState *s);
239 int bank_number(int mode);
240 void switch_mode(CPUARMState *, int);
241 uint32_t do_arm_semihosting(CPUARMState *env);
242
243 /* you can call this signal handler from your SIGBUS and SIGSEGV
244 signal handlers to inform the virtual CPU of exceptions. non zero
245 is returned if the signal was handled by the virtual CPU. */
246 int cpu_arm_signal_handler(int host_signum, void *pinfo,
247 void *puc);
248 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
249 int mmu_idx);
250 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
251
252 #define CPSR_M (0x1f)
253 #define CPSR_T (1 << 5)
254 #define CPSR_F (1 << 6)
255 #define CPSR_I (1 << 7)
256 #define CPSR_A (1 << 8)
257 #define CPSR_E (1 << 9)
258 #define CPSR_IT_2_7 (0xfc00)
259 #define CPSR_GE (0xf << 16)
260 #define CPSR_RESERVED (0xf << 20)
261 #define CPSR_J (1 << 24)
262 #define CPSR_IT_0_1 (3 << 25)
263 #define CPSR_Q (1 << 27)
264 #define CPSR_V (1 << 28)
265 #define CPSR_C (1 << 29)
266 #define CPSR_Z (1 << 30)
267 #define CPSR_N (1 << 31)
268 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
269
270 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
271 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
272 /* Bits writable in user mode. */
273 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
274 /* Execution state bits. MRS read as zero, MSR writes ignored. */
275 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
276
277 /* Return the current CPSR value. */
278 uint32_t cpsr_read(CPUARMState *env);
279 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
280 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
281
282 /* Return the current xPSR value. */
283 static inline uint32_t xpsr_read(CPUARMState *env)
284 {
285 int ZF;
286 ZF = (env->ZF == 0);
287 return (env->NF & 0x80000000) | (ZF << 30)
288 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
289 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
290 | ((env->condexec_bits & 0xfc) << 8)
291 | env->v7m.exception;
292 }
293
294 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
295 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
296 {
297 if (mask & CPSR_NZCV) {
298 env->ZF = (~val) & CPSR_Z;
299 env->NF = val;
300 env->CF = (val >> 29) & 1;
301 env->VF = (val << 3) & 0x80000000;
302 }
303 if (mask & CPSR_Q)
304 env->QF = ((val & CPSR_Q) != 0);
305 if (mask & (1 << 24))
306 env->thumb = ((val & (1 << 24)) != 0);
307 if (mask & CPSR_IT_0_1) {
308 env->condexec_bits &= ~3;
309 env->condexec_bits |= (val >> 25) & 3;
310 }
311 if (mask & CPSR_IT_2_7) {
312 env->condexec_bits &= 3;
313 env->condexec_bits |= (val >> 8) & 0xfc;
314 }
315 if (mask & 0x1ff) {
316 env->v7m.exception = val & 0x1ff;
317 }
318 }
319
320 /* Return the current FPSCR value. */
321 uint32_t vfp_get_fpscr(CPUARMState *env);
322 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
323
324 enum arm_cpu_mode {
325 ARM_CPU_MODE_USR = 0x10,
326 ARM_CPU_MODE_FIQ = 0x11,
327 ARM_CPU_MODE_IRQ = 0x12,
328 ARM_CPU_MODE_SVC = 0x13,
329 ARM_CPU_MODE_ABT = 0x17,
330 ARM_CPU_MODE_UND = 0x1b,
331 ARM_CPU_MODE_SYS = 0x1f
332 };
333
334 /* VFP system registers. */
335 #define ARM_VFP_FPSID 0
336 #define ARM_VFP_FPSCR 1
337 #define ARM_VFP_MVFR1 6
338 #define ARM_VFP_MVFR0 7
339 #define ARM_VFP_FPEXC 8
340 #define ARM_VFP_FPINST 9
341 #define ARM_VFP_FPINST2 10
342
343 /* iwMMXt coprocessor control registers. */
344 #define ARM_IWMMXT_wCID 0
345 #define ARM_IWMMXT_wCon 1
346 #define ARM_IWMMXT_wCSSF 2
347 #define ARM_IWMMXT_wCASF 3
348 #define ARM_IWMMXT_wCGR0 8
349 #define ARM_IWMMXT_wCGR1 9
350 #define ARM_IWMMXT_wCGR2 10
351 #define ARM_IWMMXT_wCGR3 11
352
353 /* If adding a feature bit which corresponds to a Linux ELF
354 * HWCAP bit, remember to update the feature-bit-to-hwcap
355 * mapping in linux-user/elfload.c:get_elf_hwcap().
356 */
357 enum arm_features {
358 ARM_FEATURE_VFP,
359 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
360 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
361 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
362 ARM_FEATURE_V6,
363 ARM_FEATURE_V6K,
364 ARM_FEATURE_V7,
365 ARM_FEATURE_THUMB2,
366 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
367 ARM_FEATURE_VFP3,
368 ARM_FEATURE_VFP_FP16,
369 ARM_FEATURE_NEON,
370 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
371 ARM_FEATURE_M, /* Microcontroller profile. */
372 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
373 ARM_FEATURE_THUMB2EE,
374 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
375 ARM_FEATURE_V4T,
376 ARM_FEATURE_V5,
377 ARM_FEATURE_STRONGARM,
378 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
379 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
380 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
381 ARM_FEATURE_GENERIC_TIMER,
382 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
383 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
384 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
385 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
386 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
387 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
388 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
389 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
390 ARM_FEATURE_V8,
391 };
392
393 static inline int arm_feature(CPUARMState *env, int feature)
394 {
395 return (env->features & (1ULL << feature)) != 0;
396 }
397
398 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
399
400 /* Interface between CPU and Interrupt controller. */
401 void armv7m_nvic_set_pending(void *opaque, int irq);
402 int armv7m_nvic_acknowledge_irq(void *opaque);
403 void armv7m_nvic_complete_irq(void *opaque, int irq);
404
405 /* Interface for defining coprocessor registers.
406 * Registers are defined in tables of arm_cp_reginfo structs
407 * which are passed to define_arm_cp_regs().
408 */
409
410 /* When looking up a coprocessor register we look for it
411 * via an integer which encodes all of:
412 * coprocessor number
413 * Crn, Crm, opc1, opc2 fields
414 * 32 or 64 bit register (ie is it accessed via MRC/MCR
415 * or via MRRC/MCRR?)
416 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
417 * (In this case crn and opc2 should be zero.)
418 */
419 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
420 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
421 ((crm) << 7) | ((opc1) << 3) | (opc2))
422
423 /* Note that these must line up with the KVM/ARM register
424 * ID field definitions (kvm.c will check this, but we
425 * can't just use the KVM defines here as the kvm headers
426 * are unavailable to non-KVM-specific files)
427 */
428 #define CP_REG_SIZE_SHIFT 52
429 #define CP_REG_SIZE_MASK 0x00f0000000000000ULL
430 #define CP_REG_SIZE_U32 0x0020000000000000ULL
431 #define CP_REG_SIZE_U64 0x0030000000000000ULL
432 #define CP_REG_ARM 0x4000000000000000ULL
433
434 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
435 * version used as a key for the coprocessor register hashtable
436 */
437 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
438 {
439 uint32_t cpregid = kvmid;
440 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
441 cpregid |= (1 << 15);
442 }
443 return cpregid;
444 }
445
446 /* Convert a truncated 32 bit hashtable key into the full
447 * 64 bit KVM register ID.
448 */
449 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
450 {
451 uint64_t kvmid = cpregid & ~(1 << 15);
452 if (cpregid & (1 << 15)) {
453 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
454 } else {
455 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
456 }
457 return kvmid;
458 }
459
460 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
461 * special-behaviour cp reg and bits [15..8] indicate what behaviour
462 * it has. Otherwise it is a simple cp reg, where CONST indicates that
463 * TCG can assume the value to be constant (ie load at translate time)
464 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
465 * indicates that the TB should not be ended after a write to this register
466 * (the default is that the TB ends after cp writes). OVERRIDE permits
467 * a register definition to override a previous definition for the
468 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
469 * old must have the OVERRIDE bit set.
470 * NO_MIGRATE indicates that this register should be ignored for migration;
471 * (eg because any state is accessed via some other coprocessor register).
472 */
473 #define ARM_CP_SPECIAL 1
474 #define ARM_CP_CONST 2
475 #define ARM_CP_64BIT 4
476 #define ARM_CP_SUPPRESS_TB_END 8
477 #define ARM_CP_OVERRIDE 16
478 #define ARM_CP_NO_MIGRATE 32
479 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
480 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
481 #define ARM_LAST_SPECIAL ARM_CP_WFI
482 /* Used only as a terminator for ARMCPRegInfo lists */
483 #define ARM_CP_SENTINEL 0xffff
484 /* Mask of only the flag bits in a type field */
485 #define ARM_CP_FLAG_MASK 0x3f
486
487 /* Return true if cptype is a valid type field. This is used to try to
488 * catch errors where the sentinel has been accidentally left off the end
489 * of a list of registers.
490 */
491 static inline bool cptype_valid(int cptype)
492 {
493 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
494 || ((cptype & ARM_CP_SPECIAL) &&
495 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
496 }
497
498 /* Access rights:
499 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
500 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
501 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
502 * (ie any of the privileged modes in Secure state, or Monitor mode).
503 * If a register is accessible in one privilege level it's always accessible
504 * in higher privilege levels too. Since "Secure PL1" also follows this rule
505 * (ie anything visible in PL2 is visible in S-PL1, some things are only
506 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
507 * terminology a little and call this PL3.
508 *
509 * If access permissions for a register are more complex than can be
510 * described with these bits, then use a laxer set of restrictions, and
511 * do the more restrictive/complex check inside a helper function.
512 */
513 #define PL3_R 0x80
514 #define PL3_W 0x40
515 #define PL2_R (0x20 | PL3_R)
516 #define PL2_W (0x10 | PL3_W)
517 #define PL1_R (0x08 | PL2_R)
518 #define PL1_W (0x04 | PL2_W)
519 #define PL0_R (0x02 | PL1_R)
520 #define PL0_W (0x01 | PL1_W)
521
522 #define PL3_RW (PL3_R | PL3_W)
523 #define PL2_RW (PL2_R | PL2_W)
524 #define PL1_RW (PL1_R | PL1_W)
525 #define PL0_RW (PL0_R | PL0_W)
526
527 static inline int arm_current_pl(CPUARMState *env)
528 {
529 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
530 return 0;
531 }
532 /* We don't currently implement the Virtualization or TrustZone
533 * extensions, so PL2 and PL3 don't exist for us.
534 */
535 return 1;
536 }
537
538 typedef struct ARMCPRegInfo ARMCPRegInfo;
539
540 /* Access functions for coprocessor registers. These should return
541 * 0 on success, or one of the EXCP_* constants if access should cause
542 * an exception (in which case *value is not written).
543 */
544 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
545 uint64_t *value);
546 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
547 uint64_t value);
548 /* Hook function for register reset */
549 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
550
551 #define CP_ANY 0xff
552
553 /* Definition of an ARM coprocessor register */
554 struct ARMCPRegInfo {
555 /* Name of register (useful mainly for debugging, need not be unique) */
556 const char *name;
557 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
558 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
559 * 'wildcard' field -- any value of that field in the MRC/MCR insn
560 * will be decoded to this register. The register read and write
561 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
562 * used by the program, so it is possible to register a wildcard and
563 * then behave differently on read/write if necessary.
564 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
565 * must both be zero.
566 */
567 uint8_t cp;
568 uint8_t crn;
569 uint8_t crm;
570 uint8_t opc1;
571 uint8_t opc2;
572 /* Register type: ARM_CP_* bits/values */
573 int type;
574 /* Access rights: PL*_[RW] */
575 int access;
576 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
577 * this register was defined: can be used to hand data through to the
578 * register read/write functions, since they are passed the ARMCPRegInfo*.
579 */
580 void *opaque;
581 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
582 * fieldoffset is non-zero, the reset value of the register.
583 */
584 uint64_t resetvalue;
585 /* Offset of the field in CPUARMState for this register. This is not
586 * needed if either:
587 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
588 * 2. both readfn and writefn are specified
589 */
590 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
591 /* Function for handling reads of this register. If NULL, then reads
592 * will be done by loading from the offset into CPUARMState specified
593 * by fieldoffset.
594 */
595 CPReadFn *readfn;
596 /* Function for handling writes of this register. If NULL, then writes
597 * will be done by writing to the offset into CPUARMState specified
598 * by fieldoffset.
599 */
600 CPWriteFn *writefn;
601 /* Function for doing a "raw" read; used when we need to copy
602 * coprocessor state to the kernel for KVM or out for
603 * migration. This only needs to be provided if there is also a
604 * readfn and it makes an access permission check.
605 */
606 CPReadFn *raw_readfn;
607 /* Function for doing a "raw" write; used when we need to copy KVM
608 * kernel coprocessor state into userspace, or for inbound
609 * migration. This only needs to be provided if there is also a
610 * writefn and it makes an access permission check or masks out
611 * "unwritable" bits or has write-one-to-clear or similar behaviour.
612 */
613 CPWriteFn *raw_writefn;
614 /* Function for resetting the register. If NULL, then reset will be done
615 * by writing resetvalue to the field specified in fieldoffset. If
616 * fieldoffset is 0 then no reset will be done.
617 */
618 CPResetFn *resetfn;
619 };
620
621 /* Macros which are lvalues for the field in CPUARMState for the
622 * ARMCPRegInfo *ri.
623 */
624 #define CPREG_FIELD32(env, ri) \
625 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
626 #define CPREG_FIELD64(env, ri) \
627 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
628
629 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
630
631 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
632 const ARMCPRegInfo *regs, void *opaque);
633 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
634 const ARMCPRegInfo *regs, void *opaque);
635 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
636 {
637 define_arm_cp_regs_with_opaque(cpu, regs, 0);
638 }
639 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
640 {
641 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
642 }
643 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
644
645 /* CPWriteFn that can be used to implement writes-ignored behaviour */
646 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
647 uint64_t value);
648 /* CPReadFn that can be used for read-as-zero behaviour */
649 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
650
651 static inline bool cp_access_ok(CPUARMState *env,
652 const ARMCPRegInfo *ri, int isread)
653 {
654 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
655 }
656
657 /**
658 * write_list_to_cpustate
659 * @cpu: ARMCPU
660 *
661 * For each register listed in the ARMCPU cpreg_indexes list, write
662 * its value from the cpreg_values list into the ARMCPUState structure.
663 * This updates TCG's working data structures from KVM data or
664 * from incoming migration state.
665 *
666 * Returns: true if all register values were updated correctly,
667 * false if some register was unknown or could not be written.
668 * Note that we do not stop early on failure -- we will attempt
669 * writing all registers in the list.
670 */
671 bool write_list_to_cpustate(ARMCPU *cpu);
672
673 /**
674 * write_cpustate_to_list:
675 * @cpu: ARMCPU
676 *
677 * For each register listed in the ARMCPU cpreg_indexes list, write
678 * its value from the ARMCPUState structure into the cpreg_values list.
679 * This is used to copy info from TCG's working data structures into
680 * KVM or for outbound migration.
681 *
682 * Returns: true if all register values were read correctly,
683 * false if some register was unknown or could not be read.
684 * Note that we do not stop early on failure -- we will attempt
685 * reading all registers in the list.
686 */
687 bool write_cpustate_to_list(ARMCPU *cpu);
688
689 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
690 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
691 conventional cores (ie. Application or Realtime profile). */
692
693 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
694
695 #define ARM_CPUID_TI915T 0x54029152
696 #define ARM_CPUID_TI925T 0x54029252
697
698 #if defined(CONFIG_USER_ONLY)
699 #define TARGET_PAGE_BITS 12
700 #else
701 /* The ARM MMU allows 1k pages. */
702 /* ??? Linux doesn't actually use these, and they're deprecated in recent
703 architecture revisions. Maybe a configure option to disable them. */
704 #define TARGET_PAGE_BITS 10
705 #endif
706
707 #define TARGET_PHYS_ADDR_SPACE_BITS 40
708 #define TARGET_VIRT_ADDR_SPACE_BITS 32
709
710 static inline CPUARMState *cpu_init(const char *cpu_model)
711 {
712 ARMCPU *cpu = cpu_arm_init(cpu_model);
713 if (cpu) {
714 return &cpu->env;
715 }
716 return NULL;
717 }
718
719 #define cpu_exec cpu_arm_exec
720 #define cpu_gen_code cpu_arm_gen_code
721 #define cpu_signal_handler cpu_arm_signal_handler
722 #define cpu_list arm_cpu_list
723
724 /* MMU modes definitions */
725 #define MMU_MODE0_SUFFIX _kernel
726 #define MMU_MODE1_SUFFIX _user
727 #define MMU_USER_IDX 1
728 static inline int cpu_mmu_index (CPUARMState *env)
729 {
730 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
731 }
732
733 #include "exec/cpu-all.h"
734
735 /* Bit usage in the TB flags field: */
736 #define ARM_TBFLAG_THUMB_SHIFT 0
737 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
738 #define ARM_TBFLAG_VECLEN_SHIFT 1
739 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
740 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
741 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
742 #define ARM_TBFLAG_PRIV_SHIFT 6
743 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
744 #define ARM_TBFLAG_VFPEN_SHIFT 7
745 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
746 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
747 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
748 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
749 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
750 /* Bits 31..17 are currently unused. */
751
752 /* some convenience accessor macros */
753 #define ARM_TBFLAG_THUMB(F) \
754 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
755 #define ARM_TBFLAG_VECLEN(F) \
756 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
757 #define ARM_TBFLAG_VECSTRIDE(F) \
758 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
759 #define ARM_TBFLAG_PRIV(F) \
760 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
761 #define ARM_TBFLAG_VFPEN(F) \
762 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
763 #define ARM_TBFLAG_CONDEXEC(F) \
764 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
765 #define ARM_TBFLAG_BSWAP_CODE(F) \
766 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
767
768 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
769 target_ulong *cs_base, int *flags)
770 {
771 int privmode;
772 *pc = env->regs[15];
773 *cs_base = 0;
774 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
775 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
776 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
777 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
778 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
779 if (arm_feature(env, ARM_FEATURE_M)) {
780 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
781 } else {
782 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
783 }
784 if (privmode) {
785 *flags |= ARM_TBFLAG_PRIV_MASK;
786 }
787 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
788 *flags |= ARM_TBFLAG_VFPEN_MASK;
789 }
790 }
791
792 static inline bool cpu_has_work(CPUState *cpu)
793 {
794 return cpu->interrupt_request &
795 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
796 }
797
798 #include "exec/exec-all.h"
799
800 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
801 {
802 env->regs[15] = tb->pc;
803 }
804
805 /* Load an instruction and return it in the standard little-endian order */
806 static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
807 bool do_swap)
808 {
809 uint32_t insn = cpu_ldl_code(env, addr);
810 if (do_swap) {
811 return bswap32(insn);
812 }
813 return insn;
814 }
815
816 /* Ditto, for a halfword (Thumb) instruction */
817 static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
818 bool do_swap)
819 {
820 uint16_t insn = cpu_lduw_code(env, addr);
821 if (do_swap) {
822 return bswap16(insn);
823 }
824 return insn;
825 }
826
827 #endif