]> git.proxmox.com Git - qemu.git/blob - target-arm/cpu.h
Merge remote-tracking branch 'mdroth/qga-pull-6-21-12' into staging
[qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #define TARGET_LONG_BITS 32
23
24 #define ELF_MACHINE EM_ARM
25
26 #define CPUArchState struct CPUARMState
27
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "cpu-defs.h"
31
32 #include "softfloat.h"
33
34 #define TARGET_HAS_ICE 1
35
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
40 #define EXCP_IRQ 5
41 #define EXCP_FIQ 6
42 #define EXCP_BKPT 7
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
45 #define EXCP_STREX 10
46
47 #define ARMV7M_EXCP_RESET 1
48 #define ARMV7M_EXCP_NMI 2
49 #define ARMV7M_EXCP_HARD 3
50 #define ARMV7M_EXCP_MEM 4
51 #define ARMV7M_EXCP_BUS 5
52 #define ARMV7M_EXCP_USAGE 6
53 #define ARMV7M_EXCP_SVC 11
54 #define ARMV7M_EXCP_DEBUG 12
55 #define ARMV7M_EXCP_PENDSV 14
56 #define ARMV7M_EXCP_SYSTICK 15
57
58 /* ARM-specific interrupt pending bits. */
59 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
62 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
67 struct arm_boot_info;
68
69 #define NB_MMU_MODES 2
70
71 /* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
78
79 typedef struct CPUARMState {
80 /* Regs for current mode. */
81 uint32_t regs[16];
82 /* Frequently accessed CPSR bits are stored separately for efficiently.
83 This contains all the other bits. Use cpsr_{read,write} to access
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
92
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
96
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
102 uint32_t QF; /* 0 or 1 */
103 uint32_t GE; /* cpsr[19:16] */
104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
106
107 /* System control coprocessor (cp15) */
108 struct {
109 uint32_t c0_cpuid;
110 uint32_t c0_cssel; /* Cache size selection. */
111 uint32_t c1_sys; /* System control register. */
112 uint32_t c1_coproc; /* Coprocessor access register. */
113 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
114 uint32_t c1_scr; /* secure config register. */
115 uint32_t c2_base0; /* MMU translation table base 0. */
116 uint32_t c2_base1; /* MMU translation table base 1. */
117 uint32_t c2_control; /* MMU translation table base control. */
118 uint32_t c2_mask; /* MMU translation table base selection mask. */
119 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
120 uint32_t c2_data; /* MPU data cachable bits. */
121 uint32_t c2_insn; /* MPU instruction cachable bits. */
122 uint32_t c3; /* MMU domain access control register
123 MPU write buffer control. */
124 uint32_t c5_insn; /* Fault status registers. */
125 uint32_t c5_data;
126 uint32_t c6_region[8]; /* MPU base/size registers. */
127 uint32_t c6_insn; /* Fault address registers. */
128 uint32_t c6_data;
129 uint32_t c7_par; /* Translation result. */
130 uint32_t c9_insn; /* Cache lockdown registers. */
131 uint32_t c9_data;
132 uint32_t c9_pmcr; /* performance monitor control register */
133 uint32_t c9_pmcnten; /* perf monitor counter enables */
134 uint32_t c9_pmovsr; /* perf monitor overflow status */
135 uint32_t c9_pmxevtyper; /* perf monitor event type */
136 uint32_t c9_pmuserenr; /* perf monitor user enable */
137 uint32_t c9_pminten; /* perf monitor interrupt enables */
138 uint32_t c13_fcse; /* FCSE PID. */
139 uint32_t c13_context; /* Context ID. */
140 uint32_t c13_tls1; /* User RW Thread register. */
141 uint32_t c13_tls2; /* User RO Thread register. */
142 uint32_t c13_tls3; /* Privileged Thread register. */
143 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
144 uint32_t c15_ticonfig; /* TI925T configuration byte. */
145 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
146 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
147 uint32_t c15_threadid; /* TI debugger thread-ID. */
148 uint32_t c15_config_base_address; /* SCU base address. */
149 uint32_t c15_diagnostic; /* diagnostic register */
150 uint32_t c15_power_diagnostic;
151 uint32_t c15_power_control; /* power control */
152 } cp15;
153
154 struct {
155 uint32_t other_sp;
156 uint32_t vecbase;
157 uint32_t basepri;
158 uint32_t control;
159 int current_sp;
160 int exception;
161 int pending_exception;
162 } v7m;
163
164 /* Thumb-2 EE state. */
165 uint32_t teecr;
166 uint32_t teehbr;
167
168 /* VFP coprocessor state. */
169 struct {
170 float64 regs[32];
171
172 uint32_t xregs[16];
173 /* We store these fpcsr fields separately for convenience. */
174 int vec_len;
175 int vec_stride;
176
177 /* scratch space when Tn are not sufficient. */
178 uint32_t scratch[8];
179
180 /* fp_status is the "normal" fp status. standard_fp_status retains
181 * values corresponding to the ARM "Standard FPSCR Value", ie
182 * default-NaN, flush-to-zero, round-to-nearest and is used by
183 * any operations (generally Neon) which the architecture defines
184 * as controlled by the standard FPSCR value rather than the FPSCR.
185 *
186 * To avoid having to transfer exception bits around, we simply
187 * say that the FPSCR cumulative exception flags are the logical
188 * OR of the flags in the two fp statuses. This relies on the
189 * only thing which needs to read the exception flags being
190 * an explicit FPSCR read.
191 */
192 float_status fp_status;
193 float_status standard_fp_status;
194 } vfp;
195 uint32_t exclusive_addr;
196 uint32_t exclusive_val;
197 uint32_t exclusive_high;
198 #if defined(CONFIG_USER_ONLY)
199 uint32_t exclusive_test;
200 uint32_t exclusive_info;
201 #endif
202
203 /* iwMMXt coprocessor state. */
204 struct {
205 uint64_t regs[16];
206 uint64_t val;
207
208 uint32_t cregs[16];
209 } iwmmxt;
210
211 /* For mixed endian mode. */
212 bool bswap_code;
213
214 #if defined(CONFIG_USER_ONLY)
215 /* For usermode syscall translation. */
216 int eabi;
217 #endif
218
219 CPU_COMMON
220
221 /* These fields after the common ones so they are preserved on reset. */
222
223 /* Internal CPU feature flags. */
224 uint32_t features;
225
226 void *nvic;
227 const struct arm_boot_info *boot_info;
228 } CPUARMState;
229
230 #include "cpu-qom.h"
231
232 ARMCPU *cpu_arm_init(const char *cpu_model);
233 void arm_translate_init(void);
234 int cpu_arm_exec(CPUARMState *s);
235 void do_interrupt(CPUARMState *);
236 void switch_mode(CPUARMState *, int);
237 uint32_t do_arm_semihosting(CPUARMState *env);
238
239 /* you can call this signal handler from your SIGBUS and SIGSEGV
240 signal handlers to inform the virtual CPU of exceptions. non zero
241 is returned if the signal was handled by the virtual CPU. */
242 int cpu_arm_signal_handler(int host_signum, void *pinfo,
243 void *puc);
244 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
245 int mmu_idx);
246 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
247
248 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
249 {
250 env->cp15.c13_tls2 = newtls;
251 }
252
253 #define CPSR_M (0x1f)
254 #define CPSR_T (1 << 5)
255 #define CPSR_F (1 << 6)
256 #define CPSR_I (1 << 7)
257 #define CPSR_A (1 << 8)
258 #define CPSR_E (1 << 9)
259 #define CPSR_IT_2_7 (0xfc00)
260 #define CPSR_GE (0xf << 16)
261 #define CPSR_RESERVED (0xf << 20)
262 #define CPSR_J (1 << 24)
263 #define CPSR_IT_0_1 (3 << 25)
264 #define CPSR_Q (1 << 27)
265 #define CPSR_V (1 << 28)
266 #define CPSR_C (1 << 29)
267 #define CPSR_Z (1 << 30)
268 #define CPSR_N (1 << 31)
269 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
270
271 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
272 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
273 /* Bits writable in user mode. */
274 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
275 /* Execution state bits. MRS read as zero, MSR writes ignored. */
276 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
277
278 /* Return the current CPSR value. */
279 uint32_t cpsr_read(CPUARMState *env);
280 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
281 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
282
283 /* Return the current xPSR value. */
284 static inline uint32_t xpsr_read(CPUARMState *env)
285 {
286 int ZF;
287 ZF = (env->ZF == 0);
288 return (env->NF & 0x80000000) | (ZF << 30)
289 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
290 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
291 | ((env->condexec_bits & 0xfc) << 8)
292 | env->v7m.exception;
293 }
294
295 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
296 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
297 {
298 if (mask & CPSR_NZCV) {
299 env->ZF = (~val) & CPSR_Z;
300 env->NF = val;
301 env->CF = (val >> 29) & 1;
302 env->VF = (val << 3) & 0x80000000;
303 }
304 if (mask & CPSR_Q)
305 env->QF = ((val & CPSR_Q) != 0);
306 if (mask & (1 << 24))
307 env->thumb = ((val & (1 << 24)) != 0);
308 if (mask & CPSR_IT_0_1) {
309 env->condexec_bits &= ~3;
310 env->condexec_bits |= (val >> 25) & 3;
311 }
312 if (mask & CPSR_IT_2_7) {
313 env->condexec_bits &= 3;
314 env->condexec_bits |= (val >> 8) & 0xfc;
315 }
316 if (mask & 0x1ff) {
317 env->v7m.exception = val & 0x1ff;
318 }
319 }
320
321 /* Return the current FPSCR value. */
322 uint32_t vfp_get_fpscr(CPUARMState *env);
323 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
324
325 enum arm_cpu_mode {
326 ARM_CPU_MODE_USR = 0x10,
327 ARM_CPU_MODE_FIQ = 0x11,
328 ARM_CPU_MODE_IRQ = 0x12,
329 ARM_CPU_MODE_SVC = 0x13,
330 ARM_CPU_MODE_ABT = 0x17,
331 ARM_CPU_MODE_UND = 0x1b,
332 ARM_CPU_MODE_SYS = 0x1f
333 };
334
335 /* VFP system registers. */
336 #define ARM_VFP_FPSID 0
337 #define ARM_VFP_FPSCR 1
338 #define ARM_VFP_MVFR1 6
339 #define ARM_VFP_MVFR0 7
340 #define ARM_VFP_FPEXC 8
341 #define ARM_VFP_FPINST 9
342 #define ARM_VFP_FPINST2 10
343
344 /* iwMMXt coprocessor control registers. */
345 #define ARM_IWMMXT_wCID 0
346 #define ARM_IWMMXT_wCon 1
347 #define ARM_IWMMXT_wCSSF 2
348 #define ARM_IWMMXT_wCASF 3
349 #define ARM_IWMMXT_wCGR0 8
350 #define ARM_IWMMXT_wCGR1 9
351 #define ARM_IWMMXT_wCGR2 10
352 #define ARM_IWMMXT_wCGR3 11
353
354 /* If adding a feature bit which corresponds to a Linux ELF
355 * HWCAP bit, remember to update the feature-bit-to-hwcap
356 * mapping in linux-user/elfload.c:get_elf_hwcap().
357 */
358 enum arm_features {
359 ARM_FEATURE_VFP,
360 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
361 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
362 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
363 ARM_FEATURE_V6,
364 ARM_FEATURE_V6K,
365 ARM_FEATURE_V7,
366 ARM_FEATURE_THUMB2,
367 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
368 ARM_FEATURE_VFP3,
369 ARM_FEATURE_VFP_FP16,
370 ARM_FEATURE_NEON,
371 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
372 ARM_FEATURE_M, /* Microcontroller profile. */
373 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
374 ARM_FEATURE_THUMB2EE,
375 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
376 ARM_FEATURE_V4T,
377 ARM_FEATURE_V5,
378 ARM_FEATURE_STRONGARM,
379 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
380 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
381 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
382 ARM_FEATURE_GENERIC_TIMER,
383 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
384 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
385 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
386 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
387 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
388 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
389 };
390
391 static inline int arm_feature(CPUARMState *env, int feature)
392 {
393 return (env->features & (1u << feature)) != 0;
394 }
395
396 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
397
398 /* Interface between CPU and Interrupt controller. */
399 void armv7m_nvic_set_pending(void *opaque, int irq);
400 int armv7m_nvic_acknowledge_irq(void *opaque);
401 void armv7m_nvic_complete_irq(void *opaque, int irq);
402
403 /* Interface for defining coprocessor registers.
404 * Registers are defined in tables of arm_cp_reginfo structs
405 * which are passed to define_arm_cp_regs().
406 */
407
408 /* When looking up a coprocessor register we look for it
409 * via an integer which encodes all of:
410 * coprocessor number
411 * Crn, Crm, opc1, opc2 fields
412 * 32 or 64 bit register (ie is it accessed via MRC/MCR
413 * or via MRRC/MCRR?)
414 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
415 * (In this case crn and opc2 should be zero.)
416 */
417 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
418 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
419 ((crm) << 7) | ((opc1) << 3) | (opc2))
420
421 #define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
422
423 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
424 * special-behaviour cp reg and bits [15..8] indicate what behaviour
425 * it has. Otherwise it is a simple cp reg, where CONST indicates that
426 * TCG can assume the value to be constant (ie load at translate time)
427 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
428 * indicates that the TB should not be ended after a write to this register
429 * (the default is that the TB ends after cp writes). OVERRIDE permits
430 * a register definition to override a previous definition for the
431 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
432 * old must have the OVERRIDE bit set.
433 */
434 #define ARM_CP_SPECIAL 1
435 #define ARM_CP_CONST 2
436 #define ARM_CP_64BIT 4
437 #define ARM_CP_SUPPRESS_TB_END 8
438 #define ARM_CP_OVERRIDE 16
439 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
440 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
441 #define ARM_LAST_SPECIAL ARM_CP_WFI
442 /* Used only as a terminator for ARMCPRegInfo lists */
443 #define ARM_CP_SENTINEL 0xffff
444 /* Mask of only the flag bits in a type field */
445 #define ARM_CP_FLAG_MASK 0x1f
446
447 /* Return true if cptype is a valid type field. This is used to try to
448 * catch errors where the sentinel has been accidentally left off the end
449 * of a list of registers.
450 */
451 static inline bool cptype_valid(int cptype)
452 {
453 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
454 || ((cptype & ARM_CP_SPECIAL) &&
455 (cptype <= ARM_LAST_SPECIAL));
456 }
457
458 /* Access rights:
459 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
460 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
461 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
462 * (ie any of the privileged modes in Secure state, or Monitor mode).
463 * If a register is accessible in one privilege level it's always accessible
464 * in higher privilege levels too. Since "Secure PL1" also follows this rule
465 * (ie anything visible in PL2 is visible in S-PL1, some things are only
466 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
467 * terminology a little and call this PL3.
468 *
469 * If access permissions for a register are more complex than can be
470 * described with these bits, then use a laxer set of restrictions, and
471 * do the more restrictive/complex check inside a helper function.
472 */
473 #define PL3_R 0x80
474 #define PL3_W 0x40
475 #define PL2_R (0x20 | PL3_R)
476 #define PL2_W (0x10 | PL3_W)
477 #define PL1_R (0x08 | PL2_R)
478 #define PL1_W (0x04 | PL2_W)
479 #define PL0_R (0x02 | PL1_R)
480 #define PL0_W (0x01 | PL1_W)
481
482 #define PL3_RW (PL3_R | PL3_W)
483 #define PL2_RW (PL2_R | PL2_W)
484 #define PL1_RW (PL1_R | PL1_W)
485 #define PL0_RW (PL0_R | PL0_W)
486
487 static inline int arm_current_pl(CPUARMState *env)
488 {
489 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
490 return 0;
491 }
492 /* We don't currently implement the Virtualization or TrustZone
493 * extensions, so PL2 and PL3 don't exist for us.
494 */
495 return 1;
496 }
497
498 typedef struct ARMCPRegInfo ARMCPRegInfo;
499
500 /* Access functions for coprocessor registers. These should return
501 * 0 on success, or one of the EXCP_* constants if access should cause
502 * an exception (in which case *value is not written).
503 */
504 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
505 uint64_t *value);
506 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
507 uint64_t value);
508 /* Hook function for register reset */
509 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
510
511 #define CP_ANY 0xff
512
513 /* Definition of an ARM coprocessor register */
514 struct ARMCPRegInfo {
515 /* Name of register (useful mainly for debugging, need not be unique) */
516 const char *name;
517 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
518 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
519 * 'wildcard' field -- any value of that field in the MRC/MCR insn
520 * will be decoded to this register. The register read and write
521 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
522 * used by the program, so it is possible to register a wildcard and
523 * then behave differently on read/write if necessary.
524 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
525 * must both be zero.
526 */
527 uint8_t cp;
528 uint8_t crn;
529 uint8_t crm;
530 uint8_t opc1;
531 uint8_t opc2;
532 /* Register type: ARM_CP_* bits/values */
533 int type;
534 /* Access rights: PL*_[RW] */
535 int access;
536 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
537 * this register was defined: can be used to hand data through to the
538 * register read/write functions, since they are passed the ARMCPRegInfo*.
539 */
540 void *opaque;
541 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
542 * fieldoffset is non-zero, the reset value of the register.
543 */
544 uint64_t resetvalue;
545 /* Offset of the field in CPUARMState for this register. This is not
546 * needed if either:
547 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
548 * 2. both readfn and writefn are specified
549 */
550 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
551 /* Function for handling reads of this register. If NULL, then reads
552 * will be done by loading from the offset into CPUARMState specified
553 * by fieldoffset.
554 */
555 CPReadFn *readfn;
556 /* Function for handling writes of this register. If NULL, then writes
557 * will be done by writing to the offset into CPUARMState specified
558 * by fieldoffset.
559 */
560 CPWriteFn *writefn;
561 /* Function for resetting the register. If NULL, then reset will be done
562 * by writing resetvalue to the field specified in fieldoffset. If
563 * fieldoffset is 0 then no reset will be done.
564 */
565 CPResetFn *resetfn;
566 };
567
568 /* Macros which are lvalues for the field in CPUARMState for the
569 * ARMCPRegInfo *ri.
570 */
571 #define CPREG_FIELD32(env, ri) \
572 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
573 #define CPREG_FIELD64(env, ri) \
574 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
575
576 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
577
578 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
579 const ARMCPRegInfo *regs, void *opaque);
580 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
581 const ARMCPRegInfo *regs, void *opaque);
582 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
583 {
584 define_arm_cp_regs_with_opaque(cpu, regs, 0);
585 }
586 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
587 {
588 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
589 }
590 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
591
592 /* CPWriteFn that can be used to implement writes-ignored behaviour */
593 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
594 uint64_t value);
595 /* CPReadFn that can be used for read-as-zero behaviour */
596 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
597
598 static inline bool cp_access_ok(CPUARMState *env,
599 const ARMCPRegInfo *ri, int isread)
600 {
601 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
602 }
603
604 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
605 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
606 conventional cores (ie. Application or Realtime profile). */
607
608 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
609
610 #define ARM_CPUID_TI915T 0x54029152
611 #define ARM_CPUID_TI925T 0x54029252
612
613 #if defined(CONFIG_USER_ONLY)
614 #define TARGET_PAGE_BITS 12
615 #else
616 /* The ARM MMU allows 1k pages. */
617 /* ??? Linux doesn't actually use these, and they're deprecated in recent
618 architecture revisions. Maybe a configure option to disable them. */
619 #define TARGET_PAGE_BITS 10
620 #endif
621
622 #define TARGET_PHYS_ADDR_SPACE_BITS 32
623 #define TARGET_VIRT_ADDR_SPACE_BITS 32
624
625 static inline CPUARMState *cpu_init(const char *cpu_model)
626 {
627 ARMCPU *cpu = cpu_arm_init(cpu_model);
628 if (cpu) {
629 return &cpu->env;
630 }
631 return NULL;
632 }
633
634 #define cpu_exec cpu_arm_exec
635 #define cpu_gen_code cpu_arm_gen_code
636 #define cpu_signal_handler cpu_arm_signal_handler
637 #define cpu_list arm_cpu_list
638
639 #define CPU_SAVE_VERSION 7
640
641 /* MMU modes definitions */
642 #define MMU_MODE0_SUFFIX _kernel
643 #define MMU_MODE1_SUFFIX _user
644 #define MMU_USER_IDX 1
645 static inline int cpu_mmu_index (CPUARMState *env)
646 {
647 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
648 }
649
650 #if defined(CONFIG_USER_ONLY)
651 static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
652 {
653 if (newsp)
654 env->regs[13] = newsp;
655 env->regs[0] = 0;
656 }
657 #endif
658
659 #include "cpu-all.h"
660
661 /* Bit usage in the TB flags field: */
662 #define ARM_TBFLAG_THUMB_SHIFT 0
663 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
664 #define ARM_TBFLAG_VECLEN_SHIFT 1
665 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
666 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
667 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
668 #define ARM_TBFLAG_PRIV_SHIFT 6
669 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
670 #define ARM_TBFLAG_VFPEN_SHIFT 7
671 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
672 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
673 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
674 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
675 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
676 /* Bits 31..17 are currently unused. */
677
678 /* some convenience accessor macros */
679 #define ARM_TBFLAG_THUMB(F) \
680 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
681 #define ARM_TBFLAG_VECLEN(F) \
682 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
683 #define ARM_TBFLAG_VECSTRIDE(F) \
684 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
685 #define ARM_TBFLAG_PRIV(F) \
686 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
687 #define ARM_TBFLAG_VFPEN(F) \
688 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
689 #define ARM_TBFLAG_CONDEXEC(F) \
690 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
691 #define ARM_TBFLAG_BSWAP_CODE(F) \
692 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
693
694 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
695 target_ulong *cs_base, int *flags)
696 {
697 int privmode;
698 *pc = env->regs[15];
699 *cs_base = 0;
700 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
701 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
702 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
703 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
704 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
705 if (arm_feature(env, ARM_FEATURE_M)) {
706 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
707 } else {
708 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
709 }
710 if (privmode) {
711 *flags |= ARM_TBFLAG_PRIV_MASK;
712 }
713 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
714 *flags |= ARM_TBFLAG_VFPEN_MASK;
715 }
716 }
717
718 static inline bool cpu_has_work(CPUARMState *env)
719 {
720 return env->interrupt_request &
721 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
722 }
723
724 #include "exec-all.h"
725
726 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
727 {
728 env->regs[15] = tb->pc;
729 }
730
731 /* Load an instruction and return it in the standard little-endian order */
732 static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
733 {
734 uint32_t insn = ldl_code(addr);
735 if (do_swap) {
736 return bswap32(insn);
737 }
738 return insn;
739 }
740
741 /* Ditto, for a halfword (Thumb) instruction */
742 static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
743 {
744 uint16_t insn = lduw_code(addr);
745 if (do_swap) {
746 return bswap16(insn);
747 }
748 return insn;
749 }
750
751 #endif