]> git.proxmox.com Git - qemu.git/blob - target-arm/cpu.h
target-arm: Convert cp15 crn=0 crm={1,2} feature registers
[qemu.git] / target-arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifndef CPU_ARM_H
20 #define CPU_ARM_H
21
22 #define TARGET_LONG_BITS 32
23
24 #define ELF_MACHINE EM_ARM
25
26 #define CPUArchState struct CPUARMState
27
28 #include "config.h"
29 #include "qemu-common.h"
30 #include "cpu-defs.h"
31
32 #include "softfloat.h"
33
34 #define TARGET_HAS_ICE 1
35
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
40 #define EXCP_IRQ 5
41 #define EXCP_FIQ 6
42 #define EXCP_BKPT 7
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
45 #define EXCP_STREX 10
46
47 #define ARMV7M_EXCP_RESET 1
48 #define ARMV7M_EXCP_NMI 2
49 #define ARMV7M_EXCP_HARD 3
50 #define ARMV7M_EXCP_MEM 4
51 #define ARMV7M_EXCP_BUS 5
52 #define ARMV7M_EXCP_USAGE 6
53 #define ARMV7M_EXCP_SVC 11
54 #define ARMV7M_EXCP_DEBUG 12
55 #define ARMV7M_EXCP_PENDSV 14
56 #define ARMV7M_EXCP_SYSTICK 15
57
58 /* ARM-specific interrupt pending bits. */
59 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
62 typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64 typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
67 struct arm_boot_info;
68
69 #define NB_MMU_MODES 2
70
71 /* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
78
79 typedef struct CPUARMState {
80 /* Regs for current mode. */
81 uint32_t regs[16];
82 /* Frequently accessed CPSR bits are stored separately for efficiently.
83 This contains all the other bits. Use cpsr_{read,write} to access
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
92
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
96
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
102 uint32_t QF; /* 0 or 1 */
103 uint32_t GE; /* cpsr[19:16] */
104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
106
107 /* System control coprocessor (cp15) */
108 struct {
109 uint32_t c0_cpuid;
110 uint32_t c0_cachetype;
111 uint32_t c0_ccsid[16]; /* Cache size. */
112 uint32_t c0_clid; /* Cache level. */
113 uint32_t c0_cssel; /* Cache size selection. */
114 uint32_t c1_sys; /* System control register. */
115 uint32_t c1_coproc; /* Coprocessor access register. */
116 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
117 uint32_t c1_scr; /* secure config register. */
118 uint32_t c2_base0; /* MMU translation table base 0. */
119 uint32_t c2_base1; /* MMU translation table base 1. */
120 uint32_t c2_control; /* MMU translation table base control. */
121 uint32_t c2_mask; /* MMU translation table base selection mask. */
122 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
123 uint32_t c2_data; /* MPU data cachable bits. */
124 uint32_t c2_insn; /* MPU instruction cachable bits. */
125 uint32_t c3; /* MMU domain access control register
126 MPU write buffer control. */
127 uint32_t c5_insn; /* Fault status registers. */
128 uint32_t c5_data;
129 uint32_t c6_region[8]; /* MPU base/size registers. */
130 uint32_t c6_insn; /* Fault address registers. */
131 uint32_t c6_data;
132 uint32_t c7_par; /* Translation result. */
133 uint32_t c9_insn; /* Cache lockdown registers. */
134 uint32_t c9_data;
135 uint32_t c9_pmcr; /* performance monitor control register */
136 uint32_t c9_pmcnten; /* perf monitor counter enables */
137 uint32_t c9_pmovsr; /* perf monitor overflow status */
138 uint32_t c9_pmxevtyper; /* perf monitor event type */
139 uint32_t c9_pmuserenr; /* perf monitor user enable */
140 uint32_t c9_pminten; /* perf monitor interrupt enables */
141 uint32_t c13_fcse; /* FCSE PID. */
142 uint32_t c13_context; /* Context ID. */
143 uint32_t c13_tls1; /* User RW Thread register. */
144 uint32_t c13_tls2; /* User RO Thread register. */
145 uint32_t c13_tls3; /* Privileged Thread register. */
146 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
147 uint32_t c15_ticonfig; /* TI925T configuration byte. */
148 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
149 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
150 uint32_t c15_threadid; /* TI debugger thread-ID. */
151 uint32_t c15_config_base_address; /* SCU base address. */
152 uint32_t c15_diagnostic; /* diagnostic register */
153 uint32_t c15_power_diagnostic;
154 uint32_t c15_power_control; /* power control */
155 } cp15;
156
157 struct {
158 uint32_t other_sp;
159 uint32_t vecbase;
160 uint32_t basepri;
161 uint32_t control;
162 int current_sp;
163 int exception;
164 int pending_exception;
165 } v7m;
166
167 /* Thumb-2 EE state. */
168 uint32_t teecr;
169 uint32_t teehbr;
170
171 /* VFP coprocessor state. */
172 struct {
173 float64 regs[32];
174
175 uint32_t xregs[16];
176 /* We store these fpcsr fields separately for convenience. */
177 int vec_len;
178 int vec_stride;
179
180 /* scratch space when Tn are not sufficient. */
181 uint32_t scratch[8];
182
183 /* fp_status is the "normal" fp status. standard_fp_status retains
184 * values corresponding to the ARM "Standard FPSCR Value", ie
185 * default-NaN, flush-to-zero, round-to-nearest and is used by
186 * any operations (generally Neon) which the architecture defines
187 * as controlled by the standard FPSCR value rather than the FPSCR.
188 *
189 * To avoid having to transfer exception bits around, we simply
190 * say that the FPSCR cumulative exception flags are the logical
191 * OR of the flags in the two fp statuses. This relies on the
192 * only thing which needs to read the exception flags being
193 * an explicit FPSCR read.
194 */
195 float_status fp_status;
196 float_status standard_fp_status;
197 } vfp;
198 uint32_t exclusive_addr;
199 uint32_t exclusive_val;
200 uint32_t exclusive_high;
201 #if defined(CONFIG_USER_ONLY)
202 uint32_t exclusive_test;
203 uint32_t exclusive_info;
204 #endif
205
206 /* iwMMXt coprocessor state. */
207 struct {
208 uint64_t regs[16];
209 uint64_t val;
210
211 uint32_t cregs[16];
212 } iwmmxt;
213
214 /* For mixed endian mode. */
215 bool bswap_code;
216
217 #if defined(CONFIG_USER_ONLY)
218 /* For usermode syscall translation. */
219 int eabi;
220 #endif
221
222 CPU_COMMON
223
224 /* These fields after the common ones so they are preserved on reset. */
225
226 /* Internal CPU feature flags. */
227 uint32_t features;
228
229 void *nvic;
230 const struct arm_boot_info *boot_info;
231 } CPUARMState;
232
233 #include "cpu-qom.h"
234
235 ARMCPU *cpu_arm_init(const char *cpu_model);
236 void arm_translate_init(void);
237 int cpu_arm_exec(CPUARMState *s);
238 void do_interrupt(CPUARMState *);
239 void switch_mode(CPUARMState *, int);
240 uint32_t do_arm_semihosting(CPUARMState *env);
241
242 /* you can call this signal handler from your SIGBUS and SIGSEGV
243 signal handlers to inform the virtual CPU of exceptions. non zero
244 is returned if the signal was handled by the virtual CPU. */
245 int cpu_arm_signal_handler(int host_signum, void *pinfo,
246 void *puc);
247 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
248 int mmu_idx);
249 #define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
250
251 static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
252 {
253 env->cp15.c13_tls2 = newtls;
254 }
255
256 #define CPSR_M (0x1f)
257 #define CPSR_T (1 << 5)
258 #define CPSR_F (1 << 6)
259 #define CPSR_I (1 << 7)
260 #define CPSR_A (1 << 8)
261 #define CPSR_E (1 << 9)
262 #define CPSR_IT_2_7 (0xfc00)
263 #define CPSR_GE (0xf << 16)
264 #define CPSR_RESERVED (0xf << 20)
265 #define CPSR_J (1 << 24)
266 #define CPSR_IT_0_1 (3 << 25)
267 #define CPSR_Q (1 << 27)
268 #define CPSR_V (1 << 28)
269 #define CPSR_C (1 << 29)
270 #define CPSR_Z (1 << 30)
271 #define CPSR_N (1 << 31)
272 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
273
274 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
275 #define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
276 /* Bits writable in user mode. */
277 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
278 /* Execution state bits. MRS read as zero, MSR writes ignored. */
279 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
280
281 /* Return the current CPSR value. */
282 uint32_t cpsr_read(CPUARMState *env);
283 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
284 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
285
286 /* Return the current xPSR value. */
287 static inline uint32_t xpsr_read(CPUARMState *env)
288 {
289 int ZF;
290 ZF = (env->ZF == 0);
291 return (env->NF & 0x80000000) | (ZF << 30)
292 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
293 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
294 | ((env->condexec_bits & 0xfc) << 8)
295 | env->v7m.exception;
296 }
297
298 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
299 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
300 {
301 if (mask & CPSR_NZCV) {
302 env->ZF = (~val) & CPSR_Z;
303 env->NF = val;
304 env->CF = (val >> 29) & 1;
305 env->VF = (val << 3) & 0x80000000;
306 }
307 if (mask & CPSR_Q)
308 env->QF = ((val & CPSR_Q) != 0);
309 if (mask & (1 << 24))
310 env->thumb = ((val & (1 << 24)) != 0);
311 if (mask & CPSR_IT_0_1) {
312 env->condexec_bits &= ~3;
313 env->condexec_bits |= (val >> 25) & 3;
314 }
315 if (mask & CPSR_IT_2_7) {
316 env->condexec_bits &= 3;
317 env->condexec_bits |= (val >> 8) & 0xfc;
318 }
319 if (mask & 0x1ff) {
320 env->v7m.exception = val & 0x1ff;
321 }
322 }
323
324 /* Return the current FPSCR value. */
325 uint32_t vfp_get_fpscr(CPUARMState *env);
326 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
327
328 enum arm_cpu_mode {
329 ARM_CPU_MODE_USR = 0x10,
330 ARM_CPU_MODE_FIQ = 0x11,
331 ARM_CPU_MODE_IRQ = 0x12,
332 ARM_CPU_MODE_SVC = 0x13,
333 ARM_CPU_MODE_ABT = 0x17,
334 ARM_CPU_MODE_UND = 0x1b,
335 ARM_CPU_MODE_SYS = 0x1f
336 };
337
338 /* VFP system registers. */
339 #define ARM_VFP_FPSID 0
340 #define ARM_VFP_FPSCR 1
341 #define ARM_VFP_MVFR1 6
342 #define ARM_VFP_MVFR0 7
343 #define ARM_VFP_FPEXC 8
344 #define ARM_VFP_FPINST 9
345 #define ARM_VFP_FPINST2 10
346
347 /* iwMMXt coprocessor control registers. */
348 #define ARM_IWMMXT_wCID 0
349 #define ARM_IWMMXT_wCon 1
350 #define ARM_IWMMXT_wCSSF 2
351 #define ARM_IWMMXT_wCASF 3
352 #define ARM_IWMMXT_wCGR0 8
353 #define ARM_IWMMXT_wCGR1 9
354 #define ARM_IWMMXT_wCGR2 10
355 #define ARM_IWMMXT_wCGR3 11
356
357 /* If adding a feature bit which corresponds to a Linux ELF
358 * HWCAP bit, remember to update the feature-bit-to-hwcap
359 * mapping in linux-user/elfload.c:get_elf_hwcap().
360 */
361 enum arm_features {
362 ARM_FEATURE_VFP,
363 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
364 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
365 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
366 ARM_FEATURE_V6,
367 ARM_FEATURE_V6K,
368 ARM_FEATURE_V7,
369 ARM_FEATURE_THUMB2,
370 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
371 ARM_FEATURE_VFP3,
372 ARM_FEATURE_VFP_FP16,
373 ARM_FEATURE_NEON,
374 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
375 ARM_FEATURE_M, /* Microcontroller profile. */
376 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
377 ARM_FEATURE_THUMB2EE,
378 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
379 ARM_FEATURE_V4T,
380 ARM_FEATURE_V5,
381 ARM_FEATURE_STRONGARM,
382 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
383 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
384 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
385 ARM_FEATURE_GENERIC_TIMER,
386 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
387 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
388 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
389 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
390 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
391 };
392
393 static inline int arm_feature(CPUARMState *env, int feature)
394 {
395 return (env->features & (1u << feature)) != 0;
396 }
397
398 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
399
400 /* Interface between CPU and Interrupt controller. */
401 void armv7m_nvic_set_pending(void *opaque, int irq);
402 int armv7m_nvic_acknowledge_irq(void *opaque);
403 void armv7m_nvic_complete_irq(void *opaque, int irq);
404
405 /* Interface for defining coprocessor registers.
406 * Registers are defined in tables of arm_cp_reginfo structs
407 * which are passed to define_arm_cp_regs().
408 */
409
410 /* When looking up a coprocessor register we look for it
411 * via an integer which encodes all of:
412 * coprocessor number
413 * Crn, Crm, opc1, opc2 fields
414 * 32 or 64 bit register (ie is it accessed via MRC/MCR
415 * or via MRRC/MCRR?)
416 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
417 * (In this case crn and opc2 should be zero.)
418 */
419 #define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
420 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
421 ((crm) << 7) | ((opc1) << 3) | (opc2))
422
423 #define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
424
425 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
426 * special-behaviour cp reg and bits [15..8] indicate what behaviour
427 * it has. Otherwise it is a simple cp reg, where CONST indicates that
428 * TCG can assume the value to be constant (ie load at translate time)
429 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
430 * indicates that the TB should not be ended after a write to this register
431 * (the default is that the TB ends after cp writes). OVERRIDE permits
432 * a register definition to override a previous definition for the
433 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
434 * old must have the OVERRIDE bit set.
435 */
436 #define ARM_CP_SPECIAL 1
437 #define ARM_CP_CONST 2
438 #define ARM_CP_64BIT 4
439 #define ARM_CP_SUPPRESS_TB_END 8
440 #define ARM_CP_OVERRIDE 16
441 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
442 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
443 #define ARM_LAST_SPECIAL ARM_CP_WFI
444 /* Used only as a terminator for ARMCPRegInfo lists */
445 #define ARM_CP_SENTINEL 0xffff
446 /* Mask of only the flag bits in a type field */
447 #define ARM_CP_FLAG_MASK 0x1f
448
449 /* Return true if cptype is a valid type field. This is used to try to
450 * catch errors where the sentinel has been accidentally left off the end
451 * of a list of registers.
452 */
453 static inline bool cptype_valid(int cptype)
454 {
455 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
456 || ((cptype & ARM_CP_SPECIAL) &&
457 (cptype <= ARM_LAST_SPECIAL));
458 }
459
460 /* Access rights:
461 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
462 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
463 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
464 * (ie any of the privileged modes in Secure state, or Monitor mode).
465 * If a register is accessible in one privilege level it's always accessible
466 * in higher privilege levels too. Since "Secure PL1" also follows this rule
467 * (ie anything visible in PL2 is visible in S-PL1, some things are only
468 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
469 * terminology a little and call this PL3.
470 *
471 * If access permissions for a register are more complex than can be
472 * described with these bits, then use a laxer set of restrictions, and
473 * do the more restrictive/complex check inside a helper function.
474 */
475 #define PL3_R 0x80
476 #define PL3_W 0x40
477 #define PL2_R (0x20 | PL3_R)
478 #define PL2_W (0x10 | PL3_W)
479 #define PL1_R (0x08 | PL2_R)
480 #define PL1_W (0x04 | PL2_W)
481 #define PL0_R (0x02 | PL1_R)
482 #define PL0_W (0x01 | PL1_W)
483
484 #define PL3_RW (PL3_R | PL3_W)
485 #define PL2_RW (PL2_R | PL2_W)
486 #define PL1_RW (PL1_R | PL1_W)
487 #define PL0_RW (PL0_R | PL0_W)
488
489 static inline int arm_current_pl(CPUARMState *env)
490 {
491 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
492 return 0;
493 }
494 /* We don't currently implement the Virtualization or TrustZone
495 * extensions, so PL2 and PL3 don't exist for us.
496 */
497 return 1;
498 }
499
500 typedef struct ARMCPRegInfo ARMCPRegInfo;
501
502 /* Access functions for coprocessor registers. These should return
503 * 0 on success, or one of the EXCP_* constants if access should cause
504 * an exception (in which case *value is not written).
505 */
506 typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
507 uint64_t *value);
508 typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
509 uint64_t value);
510 /* Hook function for register reset */
511 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
512
513 #define CP_ANY 0xff
514
515 /* Definition of an ARM coprocessor register */
516 struct ARMCPRegInfo {
517 /* Name of register (useful mainly for debugging, need not be unique) */
518 const char *name;
519 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
520 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
521 * 'wildcard' field -- any value of that field in the MRC/MCR insn
522 * will be decoded to this register. The register read and write
523 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
524 * used by the program, so it is possible to register a wildcard and
525 * then behave differently on read/write if necessary.
526 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
527 * must both be zero.
528 */
529 uint8_t cp;
530 uint8_t crn;
531 uint8_t crm;
532 uint8_t opc1;
533 uint8_t opc2;
534 /* Register type: ARM_CP_* bits/values */
535 int type;
536 /* Access rights: PL*_[RW] */
537 int access;
538 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
539 * this register was defined: can be used to hand data through to the
540 * register read/write functions, since they are passed the ARMCPRegInfo*.
541 */
542 void *opaque;
543 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
544 * fieldoffset is non-zero, the reset value of the register.
545 */
546 uint64_t resetvalue;
547 /* Offset of the field in CPUARMState for this register. This is not
548 * needed if either:
549 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
550 * 2. both readfn and writefn are specified
551 */
552 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
553 /* Function for handling reads of this register. If NULL, then reads
554 * will be done by loading from the offset into CPUARMState specified
555 * by fieldoffset.
556 */
557 CPReadFn *readfn;
558 /* Function for handling writes of this register. If NULL, then writes
559 * will be done by writing to the offset into CPUARMState specified
560 * by fieldoffset.
561 */
562 CPWriteFn *writefn;
563 /* Function for resetting the register. If NULL, then reset will be done
564 * by writing resetvalue to the field specified in fieldoffset. If
565 * fieldoffset is 0 then no reset will be done.
566 */
567 CPResetFn *resetfn;
568 };
569
570 /* Macros which are lvalues for the field in CPUARMState for the
571 * ARMCPRegInfo *ri.
572 */
573 #define CPREG_FIELD32(env, ri) \
574 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
575 #define CPREG_FIELD64(env, ri) \
576 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
577
578 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
579
580 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
581 const ARMCPRegInfo *regs, void *opaque);
582 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
583 const ARMCPRegInfo *regs, void *opaque);
584 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
585 {
586 define_arm_cp_regs_with_opaque(cpu, regs, 0);
587 }
588 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
589 {
590 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
591 }
592 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
593
594 /* CPWriteFn that can be used to implement writes-ignored behaviour */
595 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value);
597 /* CPReadFn that can be used for read-as-zero behaviour */
598 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
599
600 static inline bool cp_access_ok(CPUARMState *env,
601 const ARMCPRegInfo *ri, int isread)
602 {
603 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
604 }
605
606 /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
607 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
608 conventional cores (ie. Application or Realtime profile). */
609
610 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
611 #define ARM_CPUID(env) (env->cp15.c0_cpuid)
612
613 #define ARM_CPUID_ARM1026 0x4106a262
614 #define ARM_CPUID_ARM926 0x41069265
615 #define ARM_CPUID_ARM946 0x41059461
616 #define ARM_CPUID_TI915T 0x54029152
617 #define ARM_CPUID_TI925T 0x54029252
618 #define ARM_CPUID_SA1100 0x4401A11B
619 #define ARM_CPUID_SA1110 0x6901B119
620 #define ARM_CPUID_PXA250 0x69052100
621 #define ARM_CPUID_PXA255 0x69052d00
622 #define ARM_CPUID_PXA260 0x69052903
623 #define ARM_CPUID_PXA261 0x69052d05
624 #define ARM_CPUID_PXA262 0x69052d06
625 #define ARM_CPUID_PXA270 0x69054110
626 #define ARM_CPUID_PXA270_A0 0x69054110
627 #define ARM_CPUID_PXA270_A1 0x69054111
628 #define ARM_CPUID_PXA270_B0 0x69054112
629 #define ARM_CPUID_PXA270_B1 0x69054113
630 #define ARM_CPUID_PXA270_C0 0x69054114
631 #define ARM_CPUID_PXA270_C5 0x69054117
632 #define ARM_CPUID_ARM1136 0x4117b363
633 #define ARM_CPUID_ARM1136_R2 0x4107b362
634 #define ARM_CPUID_ARM1176 0x410fb767
635 #define ARM_CPUID_ARM11MPCORE 0x410fb022
636 #define ARM_CPUID_CORTEXA8 0x410fc080
637 #define ARM_CPUID_CORTEXA9 0x410fc090
638 #define ARM_CPUID_CORTEXA15 0x412fc0f1
639 #define ARM_CPUID_CORTEXM3 0x410fc231
640 #define ARM_CPUID_ANY 0xffffffff
641
642 #if defined(CONFIG_USER_ONLY)
643 #define TARGET_PAGE_BITS 12
644 #else
645 /* The ARM MMU allows 1k pages. */
646 /* ??? Linux doesn't actually use these, and they're deprecated in recent
647 architecture revisions. Maybe a configure option to disable them. */
648 #define TARGET_PAGE_BITS 10
649 #endif
650
651 #define TARGET_PHYS_ADDR_SPACE_BITS 32
652 #define TARGET_VIRT_ADDR_SPACE_BITS 32
653
654 static inline CPUARMState *cpu_init(const char *cpu_model)
655 {
656 ARMCPU *cpu = cpu_arm_init(cpu_model);
657 if (cpu) {
658 return &cpu->env;
659 }
660 return NULL;
661 }
662
663 #define cpu_exec cpu_arm_exec
664 #define cpu_gen_code cpu_arm_gen_code
665 #define cpu_signal_handler cpu_arm_signal_handler
666 #define cpu_list arm_cpu_list
667
668 #define CPU_SAVE_VERSION 6
669
670 /* MMU modes definitions */
671 #define MMU_MODE0_SUFFIX _kernel
672 #define MMU_MODE1_SUFFIX _user
673 #define MMU_USER_IDX 1
674 static inline int cpu_mmu_index (CPUARMState *env)
675 {
676 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
677 }
678
679 #if defined(CONFIG_USER_ONLY)
680 static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
681 {
682 if (newsp)
683 env->regs[13] = newsp;
684 env->regs[0] = 0;
685 }
686 #endif
687
688 #include "cpu-all.h"
689
690 /* Bit usage in the TB flags field: */
691 #define ARM_TBFLAG_THUMB_SHIFT 0
692 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
693 #define ARM_TBFLAG_VECLEN_SHIFT 1
694 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
695 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
696 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
697 #define ARM_TBFLAG_PRIV_SHIFT 6
698 #define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
699 #define ARM_TBFLAG_VFPEN_SHIFT 7
700 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
701 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
702 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
703 #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
704 #define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
705 /* Bits 31..17 are currently unused. */
706
707 /* some convenience accessor macros */
708 #define ARM_TBFLAG_THUMB(F) \
709 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
710 #define ARM_TBFLAG_VECLEN(F) \
711 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
712 #define ARM_TBFLAG_VECSTRIDE(F) \
713 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
714 #define ARM_TBFLAG_PRIV(F) \
715 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
716 #define ARM_TBFLAG_VFPEN(F) \
717 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
718 #define ARM_TBFLAG_CONDEXEC(F) \
719 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
720 #define ARM_TBFLAG_BSWAP_CODE(F) \
721 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
722
723 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
724 target_ulong *cs_base, int *flags)
725 {
726 int privmode;
727 *pc = env->regs[15];
728 *cs_base = 0;
729 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
730 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
731 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
732 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
733 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
734 if (arm_feature(env, ARM_FEATURE_M)) {
735 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
736 } else {
737 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
738 }
739 if (privmode) {
740 *flags |= ARM_TBFLAG_PRIV_MASK;
741 }
742 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
743 *flags |= ARM_TBFLAG_VFPEN_MASK;
744 }
745 }
746
747 static inline bool cpu_has_work(CPUARMState *env)
748 {
749 return env->interrupt_request &
750 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
751 }
752
753 #include "exec-all.h"
754
755 static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
756 {
757 env->regs[15] = tb->pc;
758 }
759
760 /* Load an instruction and return it in the standard little-endian order */
761 static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
762 {
763 uint32_t insn = ldl_code(addr);
764 if (do_swap) {
765 return bswap32(insn);
766 }
767 return insn;
768 }
769
770 /* Ditto, for a halfword (Thumb) instruction */
771 static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
772 {
773 uint16_t insn = lduw_code(addr);
774 if (do_swap) {
775 return bswap16(insn);
776 }
777 return insn;
778 }
779
780 #endif