]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
target-i386: move tcg initialization into x86_cpu_initfn()
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
6
7 #ifndef CONFIG_USER_ONLY
8 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9 int access_type, int is_user,
10 uint32_t *phys_ptr, int *prot,
11 target_ulong *page_size);
12 #endif
13
14 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
15 {
16 int nregs;
17
18 /* VFP data registers are always little-endian. */
19 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
20 if (reg < nregs) {
21 stfq_le_p(buf, env->vfp.regs[reg]);
22 return 8;
23 }
24 if (arm_feature(env, ARM_FEATURE_NEON)) {
25 /* Aliases for Q regs. */
26 nregs += 16;
27 if (reg < nregs) {
28 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
29 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
30 return 16;
31 }
32 }
33 switch (reg - nregs) {
34 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
35 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
36 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
37 }
38 return 0;
39 }
40
41 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
42 {
43 int nregs;
44
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 env->vfp.regs[reg] = ldfq_le_p(buf);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 nregs += 16;
52 if (reg < nregs) {
53 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
54 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
55 return 16;
56 }
57 }
58 switch (reg - nregs) {
59 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
60 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
61 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
62 }
63 return 0;
64 }
65
66 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
67 {
68 env->cp15.c3 = value;
69 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
70 return 0;
71 }
72
73 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
74 {
75 if (env->cp15.c13_fcse != value) {
76 /* Unlike real hardware the qemu TLB uses virtual addresses,
77 * not modified virtual addresses, so this causes a TLB flush.
78 */
79 tlb_flush(env, 1);
80 env->cp15.c13_fcse = value;
81 }
82 return 0;
83 }
84 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
85 uint64_t value)
86 {
87 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
88 /* For VMSA (when not using the LPAE long descriptor page table
89 * format) this register includes the ASID, so do a TLB flush.
90 * For PMSA it is purely a process ID and no action is needed.
91 */
92 tlb_flush(env, 1);
93 }
94 env->cp15.c13_context = value;
95 return 0;
96 }
97
98 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
99 uint64_t value)
100 {
101 /* Invalidate all (TLBIALL) */
102 tlb_flush(env, 1);
103 return 0;
104 }
105
106 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
107 uint64_t value)
108 {
109 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
110 tlb_flush_page(env, value & TARGET_PAGE_MASK);
111 return 0;
112 }
113
114 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
115 uint64_t value)
116 {
117 /* Invalidate by ASID (TLBIASID) */
118 tlb_flush(env, value == 0);
119 return 0;
120 }
121
122 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
123 uint64_t value)
124 {
125 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
126 tlb_flush_page(env, value & TARGET_PAGE_MASK);
127 return 0;
128 }
129
130 static const ARMCPRegInfo cp_reginfo[] = {
131 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
132 * version" bits will read as a reserved value, which should cause
133 * Linux to not try to use the debug hardware.
134 */
135 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
136 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
137 /* MMU Domain access control / MPU write buffer control */
138 { .name = "DACR", .cp = 15,
139 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
140 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
141 .resetvalue = 0, .writefn = dacr_write },
142 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
143 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
144 .resetvalue = 0, .writefn = fcse_write },
145 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
147 .resetvalue = 0, .writefn = contextidr_write },
148 /* ??? This covers not just the impdef TLB lockdown registers but also
149 * some v7VMSA registers relating to TEX remap, so it is overly broad.
150 */
151 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
152 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
153 /* MMU TLB control. Note that the wildcarding means we cover not just
154 * the unified TLB ops but also the dside/iside/inner-shareable variants.
155 */
156 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
157 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
158 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
159 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
160 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
161 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
162 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
163 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
164 /* Cache maintenance ops; some of this space may be overridden later. */
165 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
166 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
167 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
168 REGINFO_SENTINEL
169 };
170
171 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
172 /* Not all pre-v6 cores implemented this WFI, so this is slightly
173 * over-broad.
174 */
175 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
176 .access = PL1_W, .type = ARM_CP_WFI },
177 REGINFO_SENTINEL
178 };
179
180 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
181 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
182 * is UNPREDICTABLE; we choose to NOP as most implementations do).
183 */
184 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
185 .access = PL1_W, .type = ARM_CP_WFI },
186 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
187 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
188 * OMAPCP will override this space.
189 */
190 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
191 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
192 .resetvalue = 0 },
193 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
194 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
195 .resetvalue = 0 },
196 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
197 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
198 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
199 REGINFO_SENTINEL
200 };
201
202 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
203 {
204 if (env->cp15.c1_coproc != value) {
205 env->cp15.c1_coproc = value;
206 /* ??? Is this safe when called from within a TB? */
207 tb_flush(env);
208 }
209 return 0;
210 }
211
212 static const ARMCPRegInfo v6_cp_reginfo[] = {
213 /* prefetch by MVA in v6, NOP in v7 */
214 { .name = "MVA_prefetch",
215 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
216 .access = PL1_W, .type = ARM_CP_NOP },
217 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
218 .access = PL0_W, .type = ARM_CP_NOP },
219 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
220 .access = PL0_W, .type = ARM_CP_NOP },
221 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
222 .access = PL0_W, .type = ARM_CP_NOP },
223 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
224 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
225 .resetvalue = 0, },
226 /* Watchpoint Fault Address Register : should actually only be present
227 * for 1136, 1176, 11MPCore.
228 */
229 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
230 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
231 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
232 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
233 .resetvalue = 0, .writefn = cpacr_write },
234 REGINFO_SENTINEL
235 };
236
237 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
238 uint64_t *value)
239 {
240 /* Generic performance monitor register read function for where
241 * user access may be allowed by PMUSERENR.
242 */
243 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
244 return EXCP_UDEF;
245 }
246 *value = CPREG_FIELD32(env, ri);
247 return 0;
248 }
249
250 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
251 uint64_t value)
252 {
253 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
254 return EXCP_UDEF;
255 }
256 /* only the DP, X, D and E bits are writable */
257 env->cp15.c9_pmcr &= ~0x39;
258 env->cp15.c9_pmcr |= (value & 0x39);
259 return 0;
260 }
261
262 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
263 uint64_t value)
264 {
265 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
266 return EXCP_UDEF;
267 }
268 value &= (1 << 31);
269 env->cp15.c9_pmcnten |= value;
270 return 0;
271 }
272
273 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
274 uint64_t value)
275 {
276 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
277 return EXCP_UDEF;
278 }
279 value &= (1 << 31);
280 env->cp15.c9_pmcnten &= ~value;
281 return 0;
282 }
283
284 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
285 uint64_t value)
286 {
287 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
288 return EXCP_UDEF;
289 }
290 env->cp15.c9_pmovsr &= ~value;
291 return 0;
292 }
293
294 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
295 uint64_t value)
296 {
297 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
298 return EXCP_UDEF;
299 }
300 env->cp15.c9_pmxevtyper = value & 0xff;
301 return 0;
302 }
303
304 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
305 uint64_t value)
306 {
307 env->cp15.c9_pmuserenr = value & 1;
308 return 0;
309 }
310
311 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
312 uint64_t value)
313 {
314 /* We have no event counters so only the C bit can be changed */
315 value &= (1 << 31);
316 env->cp15.c9_pminten |= value;
317 return 0;
318 }
319
320 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
321 uint64_t value)
322 {
323 value &= (1 << 31);
324 env->cp15.c9_pminten &= ~value;
325 return 0;
326 }
327
328 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
329 uint64_t *value)
330 {
331 ARMCPU *cpu = arm_env_get_cpu(env);
332 *value = cpu->ccsidr[env->cp15.c0_cssel];
333 return 0;
334 }
335
336 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
337 uint64_t value)
338 {
339 env->cp15.c0_cssel = value & 0xf;
340 return 0;
341 }
342
343 static const ARMCPRegInfo v7_cp_reginfo[] = {
344 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
345 * debug components
346 */
347 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
348 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349 { .name = "DBGDRAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
350 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
351 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
352 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
353 .access = PL1_W, .type = ARM_CP_NOP },
354 /* Performance monitors are implementation defined in v7,
355 * but with an ARM recommended set of registers, which we
356 * follow (although we don't actually implement any counters)
357 *
358 * Performance registers fall into three categories:
359 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
360 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
361 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
362 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
363 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
364 */
365 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
366 .access = PL0_RW, .resetvalue = 0,
367 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
368 .readfn = pmreg_read, .writefn = pmcntenset_write },
369 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
370 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
371 .readfn = pmreg_read, .writefn = pmcntenclr_write },
372 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
373 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
374 .readfn = pmreg_read, .writefn = pmovsr_write },
375 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
376 * respect PMUSERENR.
377 */
378 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
379 .access = PL0_W, .type = ARM_CP_NOP },
380 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
381 * We choose to RAZ/WI. XXX should respect PMUSERENR.
382 */
383 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
384 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
385 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
386 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
387 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
388 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
389 .access = PL0_RW,
390 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
391 .readfn = pmreg_read, .writefn = pmxevtyper_write },
392 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
393 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
394 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
395 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
396 .access = PL0_R | PL1_RW,
397 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
398 .resetvalue = 0,
399 .writefn = pmuserenr_write },
400 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
401 .access = PL1_RW,
402 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
403 .resetvalue = 0,
404 .writefn = pmintenset_write },
405 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
406 .access = PL1_RW,
407 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
408 .resetvalue = 0,
409 .writefn = pmintenclr_write },
410 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
412 .resetvalue = 0, },
413 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
414 .access = PL1_R, .readfn = ccsidr_read },
415 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
417 .writefn = csselr_write, .resetvalue = 0 },
418 /* Auxiliary ID register: this actually has an IMPDEF value but for now
419 * just RAZ for all cores:
420 */
421 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
423 REGINFO_SENTINEL
424 };
425
426 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
427 {
428 value &= 1;
429 env->teecr = value;
430 return 0;
431 }
432
433 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
434 uint64_t *value)
435 {
436 /* This is a helper function because the user access rights
437 * depend on the value of the TEECR.
438 */
439 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
440 return EXCP_UDEF;
441 }
442 *value = env->teehbr;
443 return 0;
444 }
445
446 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
447 uint64_t value)
448 {
449 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
450 return EXCP_UDEF;
451 }
452 env->teehbr = value;
453 return 0;
454 }
455
456 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
457 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
458 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
459 .resetvalue = 0,
460 .writefn = teecr_write },
461 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
462 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
463 .resetvalue = 0,
464 .readfn = teehbr_read, .writefn = teehbr_write },
465 REGINFO_SENTINEL
466 };
467
468 static const ARMCPRegInfo v6k_cp_reginfo[] = {
469 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
470 .access = PL0_RW,
471 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
472 .resetvalue = 0 },
473 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
474 .access = PL0_R|PL1_W,
475 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
476 .resetvalue = 0 },
477 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
478 .access = PL1_RW,
479 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
480 .resetvalue = 0 },
481 REGINFO_SENTINEL
482 };
483
484 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
485 /* Dummy implementation: RAZ/WI the whole crn=14 space */
486 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
487 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
488 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
489 REGINFO_SENTINEL
490 };
491
492 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
493 {
494 if (arm_feature(env, ARM_FEATURE_V7)) {
495 env->cp15.c7_par = value & 0xfffff6ff;
496 } else {
497 env->cp15.c7_par = value & 0xfffff1ff;
498 }
499 return 0;
500 }
501
502 #ifndef CONFIG_USER_ONLY
503 /* get_phys_addr() isn't present for user-mode-only targets */
504 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
505 {
506 uint32_t phys_addr;
507 target_ulong page_size;
508 int prot;
509 int ret, is_user = ri->opc2 & 2;
510 int access_type = ri->opc2 & 1;
511
512 if (ri->opc2 & 4) {
513 /* Other states are only available with TrustZone */
514 return EXCP_UDEF;
515 }
516 ret = get_phys_addr(env, value, access_type, is_user,
517 &phys_addr, &prot, &page_size);
518 if (ret == 0) {
519 /* We do not set any attribute bits in the PAR */
520 if (page_size == (1 << 24)
521 && arm_feature(env, ARM_FEATURE_V7)) {
522 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
523 } else {
524 env->cp15.c7_par = phys_addr & 0xfffff000;
525 }
526 } else {
527 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
528 ((ret & (12 << 1)) >> 6) |
529 ((ret & 0xf) << 1) | 1;
530 }
531 return 0;
532 }
533 #endif
534
535 static const ARMCPRegInfo vapa_cp_reginfo[] = {
536 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
537 .access = PL1_RW, .resetvalue = 0,
538 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
539 .writefn = par_write },
540 #ifndef CONFIG_USER_ONLY
541 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
542 .access = PL1_W, .writefn = ats_write },
543 #endif
544 REGINFO_SENTINEL
545 };
546
547 /* Return basic MPU access permission bits. */
548 static uint32_t simple_mpu_ap_bits(uint32_t val)
549 {
550 uint32_t ret;
551 uint32_t mask;
552 int i;
553 ret = 0;
554 mask = 3;
555 for (i = 0; i < 16; i += 2) {
556 ret |= (val >> i) & mask;
557 mask <<= 2;
558 }
559 return ret;
560 }
561
562 /* Pad basic MPU access permission bits to extended format. */
563 static uint32_t extended_mpu_ap_bits(uint32_t val)
564 {
565 uint32_t ret;
566 uint32_t mask;
567 int i;
568 ret = 0;
569 mask = 3;
570 for (i = 0; i < 16; i += 2) {
571 ret |= (val & mask) << i;
572 mask <<= 2;
573 }
574 return ret;
575 }
576
577 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
578 uint64_t value)
579 {
580 env->cp15.c5_data = extended_mpu_ap_bits(value);
581 return 0;
582 }
583
584 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t *value)
586 {
587 *value = simple_mpu_ap_bits(env->cp15.c5_data);
588 return 0;
589 }
590
591 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593 {
594 env->cp15.c5_insn = extended_mpu_ap_bits(value);
595 return 0;
596 }
597
598 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
599 uint64_t *value)
600 {
601 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
602 return 0;
603 }
604
605 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t *value)
607 {
608 if (ri->crm > 8) {
609 return EXCP_UDEF;
610 }
611 *value = env->cp15.c6_region[ri->crm];
612 return 0;
613 }
614
615 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
617 {
618 if (ri->crm > 8) {
619 return EXCP_UDEF;
620 }
621 env->cp15.c6_region[ri->crm] = value;
622 return 0;
623 }
624
625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
627 .access = PL1_RW,
628 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
631 .access = PL1_RW,
632 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
635 .access = PL1_RW,
636 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
638 .access = PL1_RW,
639 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
640 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
641 .access = PL1_RW,
642 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
643 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
644 .access = PL1_RW,
645 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
646 /* Protection region base and size registers */
647 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
648 .opc2 = CP_ANY, .access = PL1_RW,
649 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
650 REGINFO_SENTINEL
651 };
652
653 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
655 {
656 value &= 7;
657 env->cp15.c2_control = value;
658 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
659 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
660 return 0;
661 }
662
663 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
664 {
665 env->cp15.c2_base_mask = 0xffffc000u;
666 env->cp15.c2_control = 0;
667 env->cp15.c2_mask = 0;
668 }
669
670 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
671 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
672 .access = PL1_RW,
673 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
674 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
677 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
680 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
683 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
684 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
685 .resetfn = vmsa_ttbcr_reset,
686 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
687 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
688 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
689 .resetvalue = 0, },
690 REGINFO_SENTINEL
691 };
692
693 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
695 {
696 env->cp15.c15_ticonfig = value & 0xe7;
697 /* The OS_TYPE bit in this register changes the reported CPUID! */
698 env->cp15.c0_cpuid = (value & (1 << 5)) ?
699 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
700 return 0;
701 }
702
703 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
704 uint64_t value)
705 {
706 env->cp15.c15_threadid = value & 0xffff;
707 return 0;
708 }
709
710 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
712 {
713 /* Wait-for-interrupt (deprecated) */
714 cpu_interrupt(env, CPU_INTERRUPT_HALT);
715 return 0;
716 }
717
718 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
720 {
721 /* On OMAP there are registers indicating the max/min index of dcache lines
722 * containing a dirty line; cache flush operations have to reset these.
723 */
724 env->cp15.c15_i_max = 0x000;
725 env->cp15.c15_i_min = 0xff0;
726 return 0;
727 }
728
729 static const ARMCPRegInfo omap_cp_reginfo[] = {
730 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
732 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
733 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
734 .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
736 .access = PL1_RW,
737 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
738 .writefn = omap_ticonfig_write },
739 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
740 .access = PL1_RW,
741 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
742 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
743 .access = PL1_RW, .resetvalue = 0xff0,
744 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
745 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
746 .access = PL1_RW,
747 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
748 .writefn = omap_threadid_write },
749 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
750 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
751 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
752 /* TODO: Peripheral port remap register:
753 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
754 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
755 * when MMU is off.
756 */
757 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
758 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
759 .writefn = omap_cachemaint_write },
760 { .name = "C9", .cp = 15, .crn = 9,
761 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
762 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
763 REGINFO_SENTINEL
764 };
765
766 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
767 uint64_t value)
768 {
769 value &= 0x3fff;
770 if (env->cp15.c15_cpar != value) {
771 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
772 tb_flush(env);
773 env->cp15.c15_cpar = value;
774 }
775 return 0;
776 }
777
778 static const ARMCPRegInfo xscale_cp_reginfo[] = {
779 { .name = "XSCALE_CPAR",
780 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
781 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
782 .writefn = xscale_cpar_write, },
783 { .name = "XSCALE_AUXCR",
784 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
785 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
786 .resetvalue = 0, },
787 REGINFO_SENTINEL
788 };
789
790 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
791 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
792 * implementation of this implementation-defined space.
793 * Ideally this should eventually disappear in favour of actually
794 * implementing the correct behaviour for all cores.
795 */
796 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
797 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
798 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
799 REGINFO_SENTINEL
800 };
801
802 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
803 /* Cache status: RAZ because we have no cache so it's always clean */
804 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
805 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
806 REGINFO_SENTINEL
807 };
808
809 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
810 /* We never have a a block transfer operation in progress */
811 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
812 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
813 /* The cache ops themselves: these all NOP for QEMU */
814 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
815 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
816 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
817 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
818 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
819 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
820 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
821 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
822 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
823 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
824 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
825 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
826 REGINFO_SENTINEL
827 };
828
829 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
830 /* The cache test-and-clean instructions always return (1 << 30)
831 * to indicate that there are no dirty cache lines.
832 */
833 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
834 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
835 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
836 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
837 REGINFO_SENTINEL
838 };
839
840 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
841 /* Ignore ReadBuffer accesses */
842 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
843 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
844 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
845 .resetvalue = 0 },
846 REGINFO_SENTINEL
847 };
848
849 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
850 uint64_t *value)
851 {
852 uint32_t mpidr = env->cpu_index;
853 /* We don't support setting cluster ID ([8..11])
854 * so these bits always RAZ.
855 */
856 if (arm_feature(env, ARM_FEATURE_V7MP)) {
857 mpidr |= (1 << 31);
858 /* Cores which are uniprocessor (non-coherent)
859 * but still implement the MP extensions set
860 * bit 30. (For instance, A9UP.) However we do
861 * not currently model any of those cores.
862 */
863 }
864 *value = mpidr;
865 return 0;
866 }
867
868 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
869 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
870 .access = PL1_R, .readfn = mpidr_read },
871 REGINFO_SENTINEL
872 };
873
874 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
875 {
876 env->cp15.c1_sys = value;
877 /* ??? Lots of these bits are not implemented. */
878 /* This may enable/disable the MMU, so do a TLB flush. */
879 tlb_flush(env, 1);
880 return 0;
881 }
882
883 void register_cp_regs_for_features(ARMCPU *cpu)
884 {
885 /* Register all the coprocessor registers based on feature bits */
886 CPUARMState *env = &cpu->env;
887 if (arm_feature(env, ARM_FEATURE_M)) {
888 /* M profile has no coprocessor registers */
889 return;
890 }
891
892 define_arm_cp_regs(cpu, cp_reginfo);
893 if (arm_feature(env, ARM_FEATURE_V6)) {
894 /* The ID registers all have impdef reset values */
895 ARMCPRegInfo v6_idregs[] = {
896 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
897 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
898 .resetvalue = cpu->id_pfr0 },
899 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
900 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
901 .resetvalue = cpu->id_pfr1 },
902 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
903 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
904 .resetvalue = cpu->id_dfr0 },
905 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
906 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
907 .resetvalue = cpu->id_afr0 },
908 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
909 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
910 .resetvalue = cpu->id_mmfr0 },
911 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
912 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
913 .resetvalue = cpu->id_mmfr1 },
914 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
915 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
916 .resetvalue = cpu->id_mmfr2 },
917 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
918 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
919 .resetvalue = cpu->id_mmfr3 },
920 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
921 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
922 .resetvalue = cpu->id_isar0 },
923 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
924 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
925 .resetvalue = cpu->id_isar1 },
926 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
927 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
928 .resetvalue = cpu->id_isar2 },
929 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
930 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
931 .resetvalue = cpu->id_isar3 },
932 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
933 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
934 .resetvalue = cpu->id_isar4 },
935 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
936 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
937 .resetvalue = cpu->id_isar5 },
938 /* 6..7 are as yet unallocated and must RAZ */
939 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
940 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
941 .resetvalue = 0 },
942 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
943 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
944 .resetvalue = 0 },
945 REGINFO_SENTINEL
946 };
947 define_arm_cp_regs(cpu, v6_idregs);
948 define_arm_cp_regs(cpu, v6_cp_reginfo);
949 } else {
950 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
951 }
952 if (arm_feature(env, ARM_FEATURE_V6K)) {
953 define_arm_cp_regs(cpu, v6k_cp_reginfo);
954 }
955 if (arm_feature(env, ARM_FEATURE_V7)) {
956 /* v7 performance monitor control register: same implementor
957 * field as main ID register, and we implement no event counters.
958 */
959 ARMCPRegInfo pmcr = {
960 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
961 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
963 .readfn = pmreg_read, .writefn = pmcr_write
964 };
965 ARMCPRegInfo clidr = {
966 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
967 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
968 };
969 define_one_arm_cp_reg(cpu, &pmcr);
970 define_one_arm_cp_reg(cpu, &clidr);
971 define_arm_cp_regs(cpu, v7_cp_reginfo);
972 } else {
973 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
974 }
975 if (arm_feature(env, ARM_FEATURE_MPU)) {
976 /* These are the MPU registers prior to PMSAv6. Any new
977 * PMSA core later than the ARM946 will require that we
978 * implement the PMSAv6 or PMSAv7 registers, which are
979 * completely different.
980 */
981 assert(!arm_feature(env, ARM_FEATURE_V6));
982 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
983 } else {
984 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
985 }
986 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
987 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
988 }
989 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
990 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
991 }
992 if (arm_feature(env, ARM_FEATURE_VAPA)) {
993 define_arm_cp_regs(cpu, vapa_cp_reginfo);
994 }
995 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
996 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
997 }
998 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
999 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1000 }
1001 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1002 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1003 }
1004 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1005 define_arm_cp_regs(cpu, omap_cp_reginfo);
1006 }
1007 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1008 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1009 }
1010 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1011 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1012 }
1013 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1014 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1015 }
1016 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1017 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1018 }
1019 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1020 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1021 * be read-only (ie write causes UNDEF exception).
1022 */
1023 {
1024 ARMCPRegInfo id_cp_reginfo[] = {
1025 /* Note that the MIDR isn't a simple constant register because
1026 * of the TI925 behaviour where writes to another register can
1027 * cause the MIDR value to change.
1028 */
1029 { .name = "MIDR",
1030 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1031 .access = PL1_R, .resetvalue = cpu->midr,
1032 .writefn = arm_cp_write_ignore,
1033 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1034 { .name = "CTR",
1035 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1036 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1037 { .name = "TCMTR",
1038 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1039 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1040 { .name = "TLBTR",
1041 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1042 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1043 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1044 { .name = "DUMMY",
1045 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1046 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1047 { .name = "DUMMY",
1048 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1049 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1050 { .name = "DUMMY",
1051 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1052 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1053 { .name = "DUMMY",
1054 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1055 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1056 { .name = "DUMMY",
1057 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1058 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1059 REGINFO_SENTINEL
1060 };
1061 ARMCPRegInfo crn0_wi_reginfo = {
1062 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1063 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1064 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1065 };
1066 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1067 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1068 ARMCPRegInfo *r;
1069 /* Register the blanket "writes ignored" value first to cover the
1070 * whole space. Then define the specific ID registers, but update
1071 * their access field to allow write access, so that they ignore
1072 * writes rather than causing them to UNDEF.
1073 */
1074 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1075 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1076 r->access = PL1_RW;
1077 define_one_arm_cp_reg(cpu, r);
1078 }
1079 } else {
1080 /* Just register the standard ID registers (read-only, meaning
1081 * that writes will UNDEF).
1082 */
1083 define_arm_cp_regs(cpu, id_cp_reginfo);
1084 }
1085 }
1086
1087 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1088 ARMCPRegInfo auxcr = {
1089 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1090 .access = PL1_RW, .type = ARM_CP_CONST,
1091 .resetvalue = cpu->reset_auxcr
1092 };
1093 define_one_arm_cp_reg(cpu, &auxcr);
1094 }
1095
1096 /* Generic registers whose values depend on the implementation */
1097 {
1098 ARMCPRegInfo sctlr = {
1099 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1100 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1101 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1102 };
1103 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1104 /* Normally we would always end the TB on an SCTLR write, but Linux
1105 * arch/arm/mach-pxa/sleep.S expects two instructions following
1106 * an MMU enable to execute from cache. Imitate this behaviour.
1107 */
1108 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1109 }
1110 define_one_arm_cp_reg(cpu, &sctlr);
1111 }
1112 }
1113
1114 ARMCPU *cpu_arm_init(const char *cpu_model)
1115 {
1116 ARMCPU *cpu;
1117 CPUARMState *env;
1118 static int inited = 0;
1119
1120 if (!object_class_by_name(cpu_model)) {
1121 return NULL;
1122 }
1123 cpu = ARM_CPU(object_new(cpu_model));
1124 env = &cpu->env;
1125 env->cpu_model_str = cpu_model;
1126 arm_cpu_realize(cpu);
1127
1128 if (tcg_enabled() && !inited) {
1129 inited = 1;
1130 arm_translate_init();
1131 }
1132
1133 cpu_reset(CPU(cpu));
1134 if (arm_feature(env, ARM_FEATURE_NEON)) {
1135 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1136 51, "arm-neon.xml", 0);
1137 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1138 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1139 35, "arm-vfp3.xml", 0);
1140 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1141 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1142 19, "arm-vfp.xml", 0);
1143 }
1144 qemu_init_vcpu(env);
1145 return cpu;
1146 }
1147
1148 typedef struct ARMCPUListState {
1149 fprintf_function cpu_fprintf;
1150 FILE *file;
1151 } ARMCPUListState;
1152
1153 /* Sort alphabetically by type name, except for "any". */
1154 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1155 {
1156 ObjectClass *class_a = (ObjectClass *)a;
1157 ObjectClass *class_b = (ObjectClass *)b;
1158 const char *name_a, *name_b;
1159
1160 name_a = object_class_get_name(class_a);
1161 name_b = object_class_get_name(class_b);
1162 if (strcmp(name_a, "any") == 0) {
1163 return 1;
1164 } else if (strcmp(name_b, "any") == 0) {
1165 return -1;
1166 } else {
1167 return strcmp(name_a, name_b);
1168 }
1169 }
1170
1171 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1172 {
1173 ObjectClass *oc = data;
1174 ARMCPUListState *s = user_data;
1175
1176 (*s->cpu_fprintf)(s->file, " %s\n",
1177 object_class_get_name(oc));
1178 }
1179
1180 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1181 {
1182 ARMCPUListState s = {
1183 .file = f,
1184 .cpu_fprintf = cpu_fprintf,
1185 };
1186 GSList *list;
1187
1188 list = object_class_get_list(TYPE_ARM_CPU, false);
1189 list = g_slist_sort(list, arm_cpu_list_compare);
1190 (*cpu_fprintf)(f, "Available CPUs:\n");
1191 g_slist_foreach(list, arm_cpu_list_entry, &s);
1192 g_slist_free(list);
1193 }
1194
1195 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1196 const ARMCPRegInfo *r, void *opaque)
1197 {
1198 /* Define implementations of coprocessor registers.
1199 * We store these in a hashtable because typically
1200 * there are less than 150 registers in a space which
1201 * is 16*16*16*8*8 = 262144 in size.
1202 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1203 * If a register is defined twice then the second definition is
1204 * used, so this can be used to define some generic registers and
1205 * then override them with implementation specific variations.
1206 * At least one of the original and the second definition should
1207 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1208 * against accidental use.
1209 */
1210 int crm, opc1, opc2;
1211 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1212 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1213 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1214 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1215 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1216 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1217 /* 64 bit registers have only CRm and Opc1 fields */
1218 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1219 /* Check that the register definition has enough info to handle
1220 * reads and writes if they are permitted.
1221 */
1222 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1223 if (r->access & PL3_R) {
1224 assert(r->fieldoffset || r->readfn);
1225 }
1226 if (r->access & PL3_W) {
1227 assert(r->fieldoffset || r->writefn);
1228 }
1229 }
1230 /* Bad type field probably means missing sentinel at end of reg list */
1231 assert(cptype_valid(r->type));
1232 for (crm = crmmin; crm <= crmmax; crm++) {
1233 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1234 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1235 uint32_t *key = g_new(uint32_t, 1);
1236 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1237 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1238 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1239 r2->opaque = opaque;
1240 /* Make sure reginfo passed to helpers for wildcarded regs
1241 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1242 */
1243 r2->crm = crm;
1244 r2->opc1 = opc1;
1245 r2->opc2 = opc2;
1246 /* Overriding of an existing definition must be explicitly
1247 * requested.
1248 */
1249 if (!(r->type & ARM_CP_OVERRIDE)) {
1250 ARMCPRegInfo *oldreg;
1251 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1252 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1253 fprintf(stderr, "Register redefined: cp=%d %d bit "
1254 "crn=%d crm=%d opc1=%d opc2=%d, "
1255 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1256 r2->crn, r2->crm, r2->opc1, r2->opc2,
1257 oldreg->name, r2->name);
1258 assert(0);
1259 }
1260 }
1261 g_hash_table_insert(cpu->cp_regs, key, r2);
1262 }
1263 }
1264 }
1265 }
1266
1267 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1268 const ARMCPRegInfo *regs, void *opaque)
1269 {
1270 /* Define a whole list of registers */
1271 const ARMCPRegInfo *r;
1272 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1273 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1274 }
1275 }
1276
1277 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1278 {
1279 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1280 }
1281
1282 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1283 uint64_t value)
1284 {
1285 /* Helper coprocessor write function for write-ignore registers */
1286 return 0;
1287 }
1288
1289 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1290 {
1291 /* Helper coprocessor write function for read-as-zero registers */
1292 *value = 0;
1293 return 0;
1294 }
1295
1296 static int bad_mode_switch(CPUARMState *env, int mode)
1297 {
1298 /* Return true if it is not valid for us to switch to
1299 * this CPU mode (ie all the UNPREDICTABLE cases in
1300 * the ARM ARM CPSRWriteByInstr pseudocode).
1301 */
1302 switch (mode) {
1303 case ARM_CPU_MODE_USR:
1304 case ARM_CPU_MODE_SYS:
1305 case ARM_CPU_MODE_SVC:
1306 case ARM_CPU_MODE_ABT:
1307 case ARM_CPU_MODE_UND:
1308 case ARM_CPU_MODE_IRQ:
1309 case ARM_CPU_MODE_FIQ:
1310 return 0;
1311 default:
1312 return 1;
1313 }
1314 }
1315
1316 uint32_t cpsr_read(CPUARMState *env)
1317 {
1318 int ZF;
1319 ZF = (env->ZF == 0);
1320 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1321 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1322 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1323 | ((env->condexec_bits & 0xfc) << 8)
1324 | (env->GE << 16);
1325 }
1326
1327 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1328 {
1329 if (mask & CPSR_NZCV) {
1330 env->ZF = (~val) & CPSR_Z;
1331 env->NF = val;
1332 env->CF = (val >> 29) & 1;
1333 env->VF = (val << 3) & 0x80000000;
1334 }
1335 if (mask & CPSR_Q)
1336 env->QF = ((val & CPSR_Q) != 0);
1337 if (mask & CPSR_T)
1338 env->thumb = ((val & CPSR_T) != 0);
1339 if (mask & CPSR_IT_0_1) {
1340 env->condexec_bits &= ~3;
1341 env->condexec_bits |= (val >> 25) & 3;
1342 }
1343 if (mask & CPSR_IT_2_7) {
1344 env->condexec_bits &= 3;
1345 env->condexec_bits |= (val >> 8) & 0xfc;
1346 }
1347 if (mask & CPSR_GE) {
1348 env->GE = (val >> 16) & 0xf;
1349 }
1350
1351 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1352 if (bad_mode_switch(env, val & CPSR_M)) {
1353 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1354 * We choose to ignore the attempt and leave the CPSR M field
1355 * untouched.
1356 */
1357 mask &= ~CPSR_M;
1358 } else {
1359 switch_mode(env, val & CPSR_M);
1360 }
1361 }
1362 mask &= ~CACHED_CPSR_BITS;
1363 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1364 }
1365
1366 /* Sign/zero extend */
1367 uint32_t HELPER(sxtb16)(uint32_t x)
1368 {
1369 uint32_t res;
1370 res = (uint16_t)(int8_t)x;
1371 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1372 return res;
1373 }
1374
1375 uint32_t HELPER(uxtb16)(uint32_t x)
1376 {
1377 uint32_t res;
1378 res = (uint16_t)(uint8_t)x;
1379 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1380 return res;
1381 }
1382
1383 uint32_t HELPER(clz)(uint32_t x)
1384 {
1385 return clz32(x);
1386 }
1387
1388 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1389 {
1390 if (den == 0)
1391 return 0;
1392 if (num == INT_MIN && den == -1)
1393 return INT_MIN;
1394 return num / den;
1395 }
1396
1397 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1398 {
1399 if (den == 0)
1400 return 0;
1401 return num / den;
1402 }
1403
1404 uint32_t HELPER(rbit)(uint32_t x)
1405 {
1406 x = ((x & 0xff000000) >> 24)
1407 | ((x & 0x00ff0000) >> 8)
1408 | ((x & 0x0000ff00) << 8)
1409 | ((x & 0x000000ff) << 24);
1410 x = ((x & 0xf0f0f0f0) >> 4)
1411 | ((x & 0x0f0f0f0f) << 4);
1412 x = ((x & 0x88888888) >> 3)
1413 | ((x & 0x44444444) >> 1)
1414 | ((x & 0x22222222) << 1)
1415 | ((x & 0x11111111) << 3);
1416 return x;
1417 }
1418
1419 uint32_t HELPER(abs)(uint32_t x)
1420 {
1421 return ((int32_t)x < 0) ? -x : x;
1422 }
1423
1424 #if defined(CONFIG_USER_ONLY)
1425
1426 void do_interrupt (CPUARMState *env)
1427 {
1428 env->exception_index = -1;
1429 }
1430
1431 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1432 int mmu_idx)
1433 {
1434 if (rw == 2) {
1435 env->exception_index = EXCP_PREFETCH_ABORT;
1436 env->cp15.c6_insn = address;
1437 } else {
1438 env->exception_index = EXCP_DATA_ABORT;
1439 env->cp15.c6_data = address;
1440 }
1441 return 1;
1442 }
1443
1444 /* These should probably raise undefined insn exceptions. */
1445 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1446 {
1447 cpu_abort(env, "v7m_mrs %d\n", reg);
1448 }
1449
1450 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1451 {
1452 cpu_abort(env, "v7m_mrs %d\n", reg);
1453 return 0;
1454 }
1455
1456 void switch_mode(CPUARMState *env, int mode)
1457 {
1458 if (mode != ARM_CPU_MODE_USR)
1459 cpu_abort(env, "Tried to switch out of user mode\n");
1460 }
1461
1462 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1463 {
1464 cpu_abort(env, "banked r13 write\n");
1465 }
1466
1467 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1468 {
1469 cpu_abort(env, "banked r13 read\n");
1470 return 0;
1471 }
1472
1473 #else
1474
1475 /* Map CPU modes onto saved register banks. */
1476 static inline int bank_number(CPUARMState *env, int mode)
1477 {
1478 switch (mode) {
1479 case ARM_CPU_MODE_USR:
1480 case ARM_CPU_MODE_SYS:
1481 return 0;
1482 case ARM_CPU_MODE_SVC:
1483 return 1;
1484 case ARM_CPU_MODE_ABT:
1485 return 2;
1486 case ARM_CPU_MODE_UND:
1487 return 3;
1488 case ARM_CPU_MODE_IRQ:
1489 return 4;
1490 case ARM_CPU_MODE_FIQ:
1491 return 5;
1492 }
1493 cpu_abort(env, "Bad mode %x\n", mode);
1494 return -1;
1495 }
1496
1497 void switch_mode(CPUARMState *env, int mode)
1498 {
1499 int old_mode;
1500 int i;
1501
1502 old_mode = env->uncached_cpsr & CPSR_M;
1503 if (mode == old_mode)
1504 return;
1505
1506 if (old_mode == ARM_CPU_MODE_FIQ) {
1507 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1508 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1509 } else if (mode == ARM_CPU_MODE_FIQ) {
1510 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1511 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1512 }
1513
1514 i = bank_number(env, old_mode);
1515 env->banked_r13[i] = env->regs[13];
1516 env->banked_r14[i] = env->regs[14];
1517 env->banked_spsr[i] = env->spsr;
1518
1519 i = bank_number(env, mode);
1520 env->regs[13] = env->banked_r13[i];
1521 env->regs[14] = env->banked_r14[i];
1522 env->spsr = env->banked_spsr[i];
1523 }
1524
1525 static void v7m_push(CPUARMState *env, uint32_t val)
1526 {
1527 env->regs[13] -= 4;
1528 stl_phys(env->regs[13], val);
1529 }
1530
1531 static uint32_t v7m_pop(CPUARMState *env)
1532 {
1533 uint32_t val;
1534 val = ldl_phys(env->regs[13]);
1535 env->regs[13] += 4;
1536 return val;
1537 }
1538
1539 /* Switch to V7M main or process stack pointer. */
1540 static void switch_v7m_sp(CPUARMState *env, int process)
1541 {
1542 uint32_t tmp;
1543 if (env->v7m.current_sp != process) {
1544 tmp = env->v7m.other_sp;
1545 env->v7m.other_sp = env->regs[13];
1546 env->regs[13] = tmp;
1547 env->v7m.current_sp = process;
1548 }
1549 }
1550
1551 static void do_v7m_exception_exit(CPUARMState *env)
1552 {
1553 uint32_t type;
1554 uint32_t xpsr;
1555
1556 type = env->regs[15];
1557 if (env->v7m.exception != 0)
1558 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1559
1560 /* Switch to the target stack. */
1561 switch_v7m_sp(env, (type & 4) != 0);
1562 /* Pop registers. */
1563 env->regs[0] = v7m_pop(env);
1564 env->regs[1] = v7m_pop(env);
1565 env->regs[2] = v7m_pop(env);
1566 env->regs[3] = v7m_pop(env);
1567 env->regs[12] = v7m_pop(env);
1568 env->regs[14] = v7m_pop(env);
1569 env->regs[15] = v7m_pop(env);
1570 xpsr = v7m_pop(env);
1571 xpsr_write(env, xpsr, 0xfffffdff);
1572 /* Undo stack alignment. */
1573 if (xpsr & 0x200)
1574 env->regs[13] |= 4;
1575 /* ??? The exception return type specifies Thread/Handler mode. However
1576 this is also implied by the xPSR value. Not sure what to do
1577 if there is a mismatch. */
1578 /* ??? Likewise for mismatches between the CONTROL register and the stack
1579 pointer. */
1580 }
1581
1582 static void do_interrupt_v7m(CPUARMState *env)
1583 {
1584 uint32_t xpsr = xpsr_read(env);
1585 uint32_t lr;
1586 uint32_t addr;
1587
1588 lr = 0xfffffff1;
1589 if (env->v7m.current_sp)
1590 lr |= 4;
1591 if (env->v7m.exception == 0)
1592 lr |= 8;
1593
1594 /* For exceptions we just mark as pending on the NVIC, and let that
1595 handle it. */
1596 /* TODO: Need to escalate if the current priority is higher than the
1597 one we're raising. */
1598 switch (env->exception_index) {
1599 case EXCP_UDEF:
1600 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1601 return;
1602 case EXCP_SWI:
1603 env->regs[15] += 2;
1604 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1605 return;
1606 case EXCP_PREFETCH_ABORT:
1607 case EXCP_DATA_ABORT:
1608 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1609 return;
1610 case EXCP_BKPT:
1611 if (semihosting_enabled) {
1612 int nr;
1613 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1614 if (nr == 0xab) {
1615 env->regs[15] += 2;
1616 env->regs[0] = do_arm_semihosting(env);
1617 return;
1618 }
1619 }
1620 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1621 return;
1622 case EXCP_IRQ:
1623 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1624 break;
1625 case EXCP_EXCEPTION_EXIT:
1626 do_v7m_exception_exit(env);
1627 return;
1628 default:
1629 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1630 return; /* Never happens. Keep compiler happy. */
1631 }
1632
1633 /* Align stack pointer. */
1634 /* ??? Should only do this if Configuration Control Register
1635 STACKALIGN bit is set. */
1636 if (env->regs[13] & 4) {
1637 env->regs[13] -= 4;
1638 xpsr |= 0x200;
1639 }
1640 /* Switch to the handler mode. */
1641 v7m_push(env, xpsr);
1642 v7m_push(env, env->regs[15]);
1643 v7m_push(env, env->regs[14]);
1644 v7m_push(env, env->regs[12]);
1645 v7m_push(env, env->regs[3]);
1646 v7m_push(env, env->regs[2]);
1647 v7m_push(env, env->regs[1]);
1648 v7m_push(env, env->regs[0]);
1649 switch_v7m_sp(env, 0);
1650 /* Clear IT bits */
1651 env->condexec_bits = 0;
1652 env->regs[14] = lr;
1653 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1654 env->regs[15] = addr & 0xfffffffe;
1655 env->thumb = addr & 1;
1656 }
1657
1658 /* Handle a CPU exception. */
1659 void do_interrupt(CPUARMState *env)
1660 {
1661 uint32_t addr;
1662 uint32_t mask;
1663 int new_mode;
1664 uint32_t offset;
1665
1666 if (IS_M(env)) {
1667 do_interrupt_v7m(env);
1668 return;
1669 }
1670 /* TODO: Vectored interrupt controller. */
1671 switch (env->exception_index) {
1672 case EXCP_UDEF:
1673 new_mode = ARM_CPU_MODE_UND;
1674 addr = 0x04;
1675 mask = CPSR_I;
1676 if (env->thumb)
1677 offset = 2;
1678 else
1679 offset = 4;
1680 break;
1681 case EXCP_SWI:
1682 if (semihosting_enabled) {
1683 /* Check for semihosting interrupt. */
1684 if (env->thumb) {
1685 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
1686 } else {
1687 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
1688 & 0xffffff;
1689 }
1690 /* Only intercept calls from privileged modes, to provide some
1691 semblance of security. */
1692 if (((mask == 0x123456 && !env->thumb)
1693 || (mask == 0xab && env->thumb))
1694 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1695 env->regs[0] = do_arm_semihosting(env);
1696 return;
1697 }
1698 }
1699 new_mode = ARM_CPU_MODE_SVC;
1700 addr = 0x08;
1701 mask = CPSR_I;
1702 /* The PC already points to the next instruction. */
1703 offset = 0;
1704 break;
1705 case EXCP_BKPT:
1706 /* See if this is a semihosting syscall. */
1707 if (env->thumb && semihosting_enabled) {
1708 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
1709 if (mask == 0xab
1710 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1711 env->regs[15] += 2;
1712 env->regs[0] = do_arm_semihosting(env);
1713 return;
1714 }
1715 }
1716 env->cp15.c5_insn = 2;
1717 /* Fall through to prefetch abort. */
1718 case EXCP_PREFETCH_ABORT:
1719 new_mode = ARM_CPU_MODE_ABT;
1720 addr = 0x0c;
1721 mask = CPSR_A | CPSR_I;
1722 offset = 4;
1723 break;
1724 case EXCP_DATA_ABORT:
1725 new_mode = ARM_CPU_MODE_ABT;
1726 addr = 0x10;
1727 mask = CPSR_A | CPSR_I;
1728 offset = 8;
1729 break;
1730 case EXCP_IRQ:
1731 new_mode = ARM_CPU_MODE_IRQ;
1732 addr = 0x18;
1733 /* Disable IRQ and imprecise data aborts. */
1734 mask = CPSR_A | CPSR_I;
1735 offset = 4;
1736 break;
1737 case EXCP_FIQ:
1738 new_mode = ARM_CPU_MODE_FIQ;
1739 addr = 0x1c;
1740 /* Disable FIQ, IRQ and imprecise data aborts. */
1741 mask = CPSR_A | CPSR_I | CPSR_F;
1742 offset = 4;
1743 break;
1744 default:
1745 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1746 return; /* Never happens. Keep compiler happy. */
1747 }
1748 /* High vectors. */
1749 if (env->cp15.c1_sys & (1 << 13)) {
1750 addr += 0xffff0000;
1751 }
1752 switch_mode (env, new_mode);
1753 env->spsr = cpsr_read(env);
1754 /* Clear IT bits. */
1755 env->condexec_bits = 0;
1756 /* Switch to the new mode, and to the correct instruction set. */
1757 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1758 env->uncached_cpsr |= mask;
1759 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1760 * and we should just guard the thumb mode on V4 */
1761 if (arm_feature(env, ARM_FEATURE_V4T)) {
1762 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1763 }
1764 env->regs[14] = env->regs[15] + offset;
1765 env->regs[15] = addr;
1766 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1767 }
1768
1769 /* Check section/page access permissions.
1770 Returns the page protection flags, or zero if the access is not
1771 permitted. */
1772 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1773 int access_type, int is_user)
1774 {
1775 int prot_ro;
1776
1777 if (domain_prot == 3) {
1778 return PAGE_READ | PAGE_WRITE;
1779 }
1780
1781 if (access_type == 1)
1782 prot_ro = 0;
1783 else
1784 prot_ro = PAGE_READ;
1785
1786 switch (ap) {
1787 case 0:
1788 if (access_type == 1)
1789 return 0;
1790 switch ((env->cp15.c1_sys >> 8) & 3) {
1791 case 1:
1792 return is_user ? 0 : PAGE_READ;
1793 case 2:
1794 return PAGE_READ;
1795 default:
1796 return 0;
1797 }
1798 case 1:
1799 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1800 case 2:
1801 if (is_user)
1802 return prot_ro;
1803 else
1804 return PAGE_READ | PAGE_WRITE;
1805 case 3:
1806 return PAGE_READ | PAGE_WRITE;
1807 case 4: /* Reserved. */
1808 return 0;
1809 case 5:
1810 return is_user ? 0 : prot_ro;
1811 case 6:
1812 return prot_ro;
1813 case 7:
1814 if (!arm_feature (env, ARM_FEATURE_V6K))
1815 return 0;
1816 return prot_ro;
1817 default:
1818 abort();
1819 }
1820 }
1821
1822 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1823 {
1824 uint32_t table;
1825
1826 if (address & env->cp15.c2_mask)
1827 table = env->cp15.c2_base1 & 0xffffc000;
1828 else
1829 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1830
1831 table |= (address >> 18) & 0x3ffc;
1832 return table;
1833 }
1834
1835 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1836 int is_user, uint32_t *phys_ptr, int *prot,
1837 target_ulong *page_size)
1838 {
1839 int code;
1840 uint32_t table;
1841 uint32_t desc;
1842 int type;
1843 int ap;
1844 int domain;
1845 int domain_prot;
1846 uint32_t phys_addr;
1847
1848 /* Pagetable walk. */
1849 /* Lookup l1 descriptor. */
1850 table = get_level1_table_address(env, address);
1851 desc = ldl_phys(table);
1852 type = (desc & 3);
1853 domain = (desc >> 5) & 0x0f;
1854 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1855 if (type == 0) {
1856 /* Section translation fault. */
1857 code = 5;
1858 goto do_fault;
1859 }
1860 if (domain_prot == 0 || domain_prot == 2) {
1861 if (type == 2)
1862 code = 9; /* Section domain fault. */
1863 else
1864 code = 11; /* Page domain fault. */
1865 goto do_fault;
1866 }
1867 if (type == 2) {
1868 /* 1Mb section. */
1869 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1870 ap = (desc >> 10) & 3;
1871 code = 13;
1872 *page_size = 1024 * 1024;
1873 } else {
1874 /* Lookup l2 entry. */
1875 if (type == 1) {
1876 /* Coarse pagetable. */
1877 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1878 } else {
1879 /* Fine pagetable. */
1880 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1881 }
1882 desc = ldl_phys(table);
1883 switch (desc & 3) {
1884 case 0: /* Page translation fault. */
1885 code = 7;
1886 goto do_fault;
1887 case 1: /* 64k page. */
1888 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1889 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1890 *page_size = 0x10000;
1891 break;
1892 case 2: /* 4k page. */
1893 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1894 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1895 *page_size = 0x1000;
1896 break;
1897 case 3: /* 1k page. */
1898 if (type == 1) {
1899 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1900 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1901 } else {
1902 /* Page translation fault. */
1903 code = 7;
1904 goto do_fault;
1905 }
1906 } else {
1907 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1908 }
1909 ap = (desc >> 4) & 3;
1910 *page_size = 0x400;
1911 break;
1912 default:
1913 /* Never happens, but compiler isn't smart enough to tell. */
1914 abort();
1915 }
1916 code = 15;
1917 }
1918 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1919 if (!*prot) {
1920 /* Access permission fault. */
1921 goto do_fault;
1922 }
1923 *prot |= PAGE_EXEC;
1924 *phys_ptr = phys_addr;
1925 return 0;
1926 do_fault:
1927 return code | (domain << 4);
1928 }
1929
1930 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1931 int is_user, uint32_t *phys_ptr, int *prot,
1932 target_ulong *page_size)
1933 {
1934 int code;
1935 uint32_t table;
1936 uint32_t desc;
1937 uint32_t xn;
1938 int type;
1939 int ap;
1940 int domain;
1941 int domain_prot;
1942 uint32_t phys_addr;
1943
1944 /* Pagetable walk. */
1945 /* Lookup l1 descriptor. */
1946 table = get_level1_table_address(env, address);
1947 desc = ldl_phys(table);
1948 type = (desc & 3);
1949 if (type == 0) {
1950 /* Section translation fault. */
1951 code = 5;
1952 domain = 0;
1953 goto do_fault;
1954 } else if (type == 2 && (desc & (1 << 18))) {
1955 /* Supersection. */
1956 domain = 0;
1957 } else {
1958 /* Section or page. */
1959 domain = (desc >> 5) & 0x0f;
1960 }
1961 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1962 if (domain_prot == 0 || domain_prot == 2) {
1963 if (type == 2)
1964 code = 9; /* Section domain fault. */
1965 else
1966 code = 11; /* Page domain fault. */
1967 goto do_fault;
1968 }
1969 if (type == 2) {
1970 if (desc & (1 << 18)) {
1971 /* Supersection. */
1972 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1973 *page_size = 0x1000000;
1974 } else {
1975 /* Section. */
1976 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1977 *page_size = 0x100000;
1978 }
1979 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1980 xn = desc & (1 << 4);
1981 code = 13;
1982 } else {
1983 /* Lookup l2 entry. */
1984 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1985 desc = ldl_phys(table);
1986 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1987 switch (desc & 3) {
1988 case 0: /* Page translation fault. */
1989 code = 7;
1990 goto do_fault;
1991 case 1: /* 64k page. */
1992 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1993 xn = desc & (1 << 15);
1994 *page_size = 0x10000;
1995 break;
1996 case 2: case 3: /* 4k page. */
1997 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1998 xn = desc & 1;
1999 *page_size = 0x1000;
2000 break;
2001 default:
2002 /* Never happens, but compiler isn't smart enough to tell. */
2003 abort();
2004 }
2005 code = 15;
2006 }
2007 if (domain_prot == 3) {
2008 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2009 } else {
2010 if (xn && access_type == 2)
2011 goto do_fault;
2012
2013 /* The simplified model uses AP[0] as an access control bit. */
2014 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2015 /* Access flag fault. */
2016 code = (code == 15) ? 6 : 3;
2017 goto do_fault;
2018 }
2019 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2020 if (!*prot) {
2021 /* Access permission fault. */
2022 goto do_fault;
2023 }
2024 if (!xn) {
2025 *prot |= PAGE_EXEC;
2026 }
2027 }
2028 *phys_ptr = phys_addr;
2029 return 0;
2030 do_fault:
2031 return code | (domain << 4);
2032 }
2033
2034 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
2035 int is_user, uint32_t *phys_ptr, int *prot)
2036 {
2037 int n;
2038 uint32_t mask;
2039 uint32_t base;
2040
2041 *phys_ptr = address;
2042 for (n = 7; n >= 0; n--) {
2043 base = env->cp15.c6_region[n];
2044 if ((base & 1) == 0)
2045 continue;
2046 mask = 1 << ((base >> 1) & 0x1f);
2047 /* Keep this shift separate from the above to avoid an
2048 (undefined) << 32. */
2049 mask = (mask << 1) - 1;
2050 if (((base ^ address) & ~mask) == 0)
2051 break;
2052 }
2053 if (n < 0)
2054 return 2;
2055
2056 if (access_type == 2) {
2057 mask = env->cp15.c5_insn;
2058 } else {
2059 mask = env->cp15.c5_data;
2060 }
2061 mask = (mask >> (n * 4)) & 0xf;
2062 switch (mask) {
2063 case 0:
2064 return 1;
2065 case 1:
2066 if (is_user)
2067 return 1;
2068 *prot = PAGE_READ | PAGE_WRITE;
2069 break;
2070 case 2:
2071 *prot = PAGE_READ;
2072 if (!is_user)
2073 *prot |= PAGE_WRITE;
2074 break;
2075 case 3:
2076 *prot = PAGE_READ | PAGE_WRITE;
2077 break;
2078 case 5:
2079 if (is_user)
2080 return 1;
2081 *prot = PAGE_READ;
2082 break;
2083 case 6:
2084 *prot = PAGE_READ;
2085 break;
2086 default:
2087 /* Bad permission. */
2088 return 1;
2089 }
2090 *prot |= PAGE_EXEC;
2091 return 0;
2092 }
2093
2094 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2095 int access_type, int is_user,
2096 uint32_t *phys_ptr, int *prot,
2097 target_ulong *page_size)
2098 {
2099 /* Fast Context Switch Extension. */
2100 if (address < 0x02000000)
2101 address += env->cp15.c13_fcse;
2102
2103 if ((env->cp15.c1_sys & 1) == 0) {
2104 /* MMU/MPU disabled. */
2105 *phys_ptr = address;
2106 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2107 *page_size = TARGET_PAGE_SIZE;
2108 return 0;
2109 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2110 *page_size = TARGET_PAGE_SIZE;
2111 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2112 prot);
2113 } else if (env->cp15.c1_sys & (1 << 23)) {
2114 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2115 prot, page_size);
2116 } else {
2117 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2118 prot, page_size);
2119 }
2120 }
2121
2122 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2123 int access_type, int mmu_idx)
2124 {
2125 uint32_t phys_addr;
2126 target_ulong page_size;
2127 int prot;
2128 int ret, is_user;
2129
2130 is_user = mmu_idx == MMU_USER_IDX;
2131 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2132 &page_size);
2133 if (ret == 0) {
2134 /* Map a single [sub]page. */
2135 phys_addr &= ~(uint32_t)0x3ff;
2136 address &= ~(uint32_t)0x3ff;
2137 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2138 return 0;
2139 }
2140
2141 if (access_type == 2) {
2142 env->cp15.c5_insn = ret;
2143 env->cp15.c6_insn = address;
2144 env->exception_index = EXCP_PREFETCH_ABORT;
2145 } else {
2146 env->cp15.c5_data = ret;
2147 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2148 env->cp15.c5_data |= (1 << 11);
2149 env->cp15.c6_data = address;
2150 env->exception_index = EXCP_DATA_ABORT;
2151 }
2152 return 1;
2153 }
2154
2155 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2156 {
2157 uint32_t phys_addr;
2158 target_ulong page_size;
2159 int prot;
2160 int ret;
2161
2162 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2163
2164 if (ret != 0)
2165 return -1;
2166
2167 return phys_addr;
2168 }
2169
2170 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2171 {
2172 if ((env->uncached_cpsr & CPSR_M) == mode) {
2173 env->regs[13] = val;
2174 } else {
2175 env->banked_r13[bank_number(env, mode)] = val;
2176 }
2177 }
2178
2179 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2180 {
2181 if ((env->uncached_cpsr & CPSR_M) == mode) {
2182 return env->regs[13];
2183 } else {
2184 return env->banked_r13[bank_number(env, mode)];
2185 }
2186 }
2187
2188 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2189 {
2190 switch (reg) {
2191 case 0: /* APSR */
2192 return xpsr_read(env) & 0xf8000000;
2193 case 1: /* IAPSR */
2194 return xpsr_read(env) & 0xf80001ff;
2195 case 2: /* EAPSR */
2196 return xpsr_read(env) & 0xff00fc00;
2197 case 3: /* xPSR */
2198 return xpsr_read(env) & 0xff00fdff;
2199 case 5: /* IPSR */
2200 return xpsr_read(env) & 0x000001ff;
2201 case 6: /* EPSR */
2202 return xpsr_read(env) & 0x0700fc00;
2203 case 7: /* IEPSR */
2204 return xpsr_read(env) & 0x0700edff;
2205 case 8: /* MSP */
2206 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2207 case 9: /* PSP */
2208 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2209 case 16: /* PRIMASK */
2210 return (env->uncached_cpsr & CPSR_I) != 0;
2211 case 17: /* BASEPRI */
2212 case 18: /* BASEPRI_MAX */
2213 return env->v7m.basepri;
2214 case 19: /* FAULTMASK */
2215 return (env->uncached_cpsr & CPSR_F) != 0;
2216 case 20: /* CONTROL */
2217 return env->v7m.control;
2218 default:
2219 /* ??? For debugging only. */
2220 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2221 return 0;
2222 }
2223 }
2224
2225 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2226 {
2227 switch (reg) {
2228 case 0: /* APSR */
2229 xpsr_write(env, val, 0xf8000000);
2230 break;
2231 case 1: /* IAPSR */
2232 xpsr_write(env, val, 0xf8000000);
2233 break;
2234 case 2: /* EAPSR */
2235 xpsr_write(env, val, 0xfe00fc00);
2236 break;
2237 case 3: /* xPSR */
2238 xpsr_write(env, val, 0xfe00fc00);
2239 break;
2240 case 5: /* IPSR */
2241 /* IPSR bits are readonly. */
2242 break;
2243 case 6: /* EPSR */
2244 xpsr_write(env, val, 0x0600fc00);
2245 break;
2246 case 7: /* IEPSR */
2247 xpsr_write(env, val, 0x0600fc00);
2248 break;
2249 case 8: /* MSP */
2250 if (env->v7m.current_sp)
2251 env->v7m.other_sp = val;
2252 else
2253 env->regs[13] = val;
2254 break;
2255 case 9: /* PSP */
2256 if (env->v7m.current_sp)
2257 env->regs[13] = val;
2258 else
2259 env->v7m.other_sp = val;
2260 break;
2261 case 16: /* PRIMASK */
2262 if (val & 1)
2263 env->uncached_cpsr |= CPSR_I;
2264 else
2265 env->uncached_cpsr &= ~CPSR_I;
2266 break;
2267 case 17: /* BASEPRI */
2268 env->v7m.basepri = val & 0xff;
2269 break;
2270 case 18: /* BASEPRI_MAX */
2271 val &= 0xff;
2272 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2273 env->v7m.basepri = val;
2274 break;
2275 case 19: /* FAULTMASK */
2276 if (val & 1)
2277 env->uncached_cpsr |= CPSR_F;
2278 else
2279 env->uncached_cpsr &= ~CPSR_F;
2280 break;
2281 case 20: /* CONTROL */
2282 env->v7m.control = val & 3;
2283 switch_v7m_sp(env, (val & 2) != 0);
2284 break;
2285 default:
2286 /* ??? For debugging only. */
2287 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2288 return;
2289 }
2290 }
2291
2292 #endif
2293
2294 /* Note that signed overflow is undefined in C. The following routines are
2295 careful to use unsigned types where modulo arithmetic is required.
2296 Failure to do so _will_ break on newer gcc. */
2297
2298 /* Signed saturating arithmetic. */
2299
2300 /* Perform 16-bit signed saturating addition. */
2301 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2302 {
2303 uint16_t res;
2304
2305 res = a + b;
2306 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2307 if (a & 0x8000)
2308 res = 0x8000;
2309 else
2310 res = 0x7fff;
2311 }
2312 return res;
2313 }
2314
2315 /* Perform 8-bit signed saturating addition. */
2316 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2317 {
2318 uint8_t res;
2319
2320 res = a + b;
2321 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2322 if (a & 0x80)
2323 res = 0x80;
2324 else
2325 res = 0x7f;
2326 }
2327 return res;
2328 }
2329
2330 /* Perform 16-bit signed saturating subtraction. */
2331 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2332 {
2333 uint16_t res;
2334
2335 res = a - b;
2336 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2337 if (a & 0x8000)
2338 res = 0x8000;
2339 else
2340 res = 0x7fff;
2341 }
2342 return res;
2343 }
2344
2345 /* Perform 8-bit signed saturating subtraction. */
2346 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2347 {
2348 uint8_t res;
2349
2350 res = a - b;
2351 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2352 if (a & 0x80)
2353 res = 0x80;
2354 else
2355 res = 0x7f;
2356 }
2357 return res;
2358 }
2359
2360 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2361 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2362 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2363 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2364 #define PFX q
2365
2366 #include "op_addsub.h"
2367
2368 /* Unsigned saturating arithmetic. */
2369 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2370 {
2371 uint16_t res;
2372 res = a + b;
2373 if (res < a)
2374 res = 0xffff;
2375 return res;
2376 }
2377
2378 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2379 {
2380 if (a > b)
2381 return a - b;
2382 else
2383 return 0;
2384 }
2385
2386 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2387 {
2388 uint8_t res;
2389 res = a + b;
2390 if (res < a)
2391 res = 0xff;
2392 return res;
2393 }
2394
2395 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2396 {
2397 if (a > b)
2398 return a - b;
2399 else
2400 return 0;
2401 }
2402
2403 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2404 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2405 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2406 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2407 #define PFX uq
2408
2409 #include "op_addsub.h"
2410
2411 /* Signed modulo arithmetic. */
2412 #define SARITH16(a, b, n, op) do { \
2413 int32_t sum; \
2414 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2415 RESULT(sum, n, 16); \
2416 if (sum >= 0) \
2417 ge |= 3 << (n * 2); \
2418 } while(0)
2419
2420 #define SARITH8(a, b, n, op) do { \
2421 int32_t sum; \
2422 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2423 RESULT(sum, n, 8); \
2424 if (sum >= 0) \
2425 ge |= 1 << n; \
2426 } while(0)
2427
2428
2429 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2430 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2431 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2432 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2433 #define PFX s
2434 #define ARITH_GE
2435
2436 #include "op_addsub.h"
2437
2438 /* Unsigned modulo arithmetic. */
2439 #define ADD16(a, b, n) do { \
2440 uint32_t sum; \
2441 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2442 RESULT(sum, n, 16); \
2443 if ((sum >> 16) == 1) \
2444 ge |= 3 << (n * 2); \
2445 } while(0)
2446
2447 #define ADD8(a, b, n) do { \
2448 uint32_t sum; \
2449 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2450 RESULT(sum, n, 8); \
2451 if ((sum >> 8) == 1) \
2452 ge |= 1 << n; \
2453 } while(0)
2454
2455 #define SUB16(a, b, n) do { \
2456 uint32_t sum; \
2457 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2458 RESULT(sum, n, 16); \
2459 if ((sum >> 16) == 0) \
2460 ge |= 3 << (n * 2); \
2461 } while(0)
2462
2463 #define SUB8(a, b, n) do { \
2464 uint32_t sum; \
2465 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2466 RESULT(sum, n, 8); \
2467 if ((sum >> 8) == 0) \
2468 ge |= 1 << n; \
2469 } while(0)
2470
2471 #define PFX u
2472 #define ARITH_GE
2473
2474 #include "op_addsub.h"
2475
2476 /* Halved signed arithmetic. */
2477 #define ADD16(a, b, n) \
2478 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2479 #define SUB16(a, b, n) \
2480 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2481 #define ADD8(a, b, n) \
2482 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2483 #define SUB8(a, b, n) \
2484 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2485 #define PFX sh
2486
2487 #include "op_addsub.h"
2488
2489 /* Halved unsigned arithmetic. */
2490 #define ADD16(a, b, n) \
2491 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2492 #define SUB16(a, b, n) \
2493 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2494 #define ADD8(a, b, n) \
2495 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2496 #define SUB8(a, b, n) \
2497 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2498 #define PFX uh
2499
2500 #include "op_addsub.h"
2501
2502 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2503 {
2504 if (a > b)
2505 return a - b;
2506 else
2507 return b - a;
2508 }
2509
2510 /* Unsigned sum of absolute byte differences. */
2511 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2512 {
2513 uint32_t sum;
2514 sum = do_usad(a, b);
2515 sum += do_usad(a >> 8, b >> 8);
2516 sum += do_usad(a >> 16, b >>16);
2517 sum += do_usad(a >> 24, b >> 24);
2518 return sum;
2519 }
2520
2521 /* For ARMv6 SEL instruction. */
2522 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2523 {
2524 uint32_t mask;
2525
2526 mask = 0;
2527 if (flags & 1)
2528 mask |= 0xff;
2529 if (flags & 2)
2530 mask |= 0xff00;
2531 if (flags & 4)
2532 mask |= 0xff0000;
2533 if (flags & 8)
2534 mask |= 0xff000000;
2535 return (a & mask) | (b & ~mask);
2536 }
2537
2538 uint32_t HELPER(logicq_cc)(uint64_t val)
2539 {
2540 return (val >> 32) | (val != 0);
2541 }
2542
2543 /* VFP support. We follow the convention used for VFP instrunctions:
2544 Single precition routines have a "s" suffix, double precision a
2545 "d" suffix. */
2546
2547 /* Convert host exception flags to vfp form. */
2548 static inline int vfp_exceptbits_from_host(int host_bits)
2549 {
2550 int target_bits = 0;
2551
2552 if (host_bits & float_flag_invalid)
2553 target_bits |= 1;
2554 if (host_bits & float_flag_divbyzero)
2555 target_bits |= 2;
2556 if (host_bits & float_flag_overflow)
2557 target_bits |= 4;
2558 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2559 target_bits |= 8;
2560 if (host_bits & float_flag_inexact)
2561 target_bits |= 0x10;
2562 if (host_bits & float_flag_input_denormal)
2563 target_bits |= 0x80;
2564 return target_bits;
2565 }
2566
2567 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2568 {
2569 int i;
2570 uint32_t fpscr;
2571
2572 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2573 | (env->vfp.vec_len << 16)
2574 | (env->vfp.vec_stride << 20);
2575 i = get_float_exception_flags(&env->vfp.fp_status);
2576 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2577 fpscr |= vfp_exceptbits_from_host(i);
2578 return fpscr;
2579 }
2580
2581 uint32_t vfp_get_fpscr(CPUARMState *env)
2582 {
2583 return HELPER(vfp_get_fpscr)(env);
2584 }
2585
2586 /* Convert vfp exception flags to target form. */
2587 static inline int vfp_exceptbits_to_host(int target_bits)
2588 {
2589 int host_bits = 0;
2590
2591 if (target_bits & 1)
2592 host_bits |= float_flag_invalid;
2593 if (target_bits & 2)
2594 host_bits |= float_flag_divbyzero;
2595 if (target_bits & 4)
2596 host_bits |= float_flag_overflow;
2597 if (target_bits & 8)
2598 host_bits |= float_flag_underflow;
2599 if (target_bits & 0x10)
2600 host_bits |= float_flag_inexact;
2601 if (target_bits & 0x80)
2602 host_bits |= float_flag_input_denormal;
2603 return host_bits;
2604 }
2605
2606 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2607 {
2608 int i;
2609 uint32_t changed;
2610
2611 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2612 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2613 env->vfp.vec_len = (val >> 16) & 7;
2614 env->vfp.vec_stride = (val >> 20) & 3;
2615
2616 changed ^= val;
2617 if (changed & (3 << 22)) {
2618 i = (val >> 22) & 3;
2619 switch (i) {
2620 case 0:
2621 i = float_round_nearest_even;
2622 break;
2623 case 1:
2624 i = float_round_up;
2625 break;
2626 case 2:
2627 i = float_round_down;
2628 break;
2629 case 3:
2630 i = float_round_to_zero;
2631 break;
2632 }
2633 set_float_rounding_mode(i, &env->vfp.fp_status);
2634 }
2635 if (changed & (1 << 24)) {
2636 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2637 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2638 }
2639 if (changed & (1 << 25))
2640 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2641
2642 i = vfp_exceptbits_to_host(val);
2643 set_float_exception_flags(i, &env->vfp.fp_status);
2644 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2645 }
2646
2647 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2648 {
2649 HELPER(vfp_set_fpscr)(env, val);
2650 }
2651
2652 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2653
2654 #define VFP_BINOP(name) \
2655 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2656 { \
2657 float_status *fpst = fpstp; \
2658 return float32_ ## name(a, b, fpst); \
2659 } \
2660 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2661 { \
2662 float_status *fpst = fpstp; \
2663 return float64_ ## name(a, b, fpst); \
2664 }
2665 VFP_BINOP(add)
2666 VFP_BINOP(sub)
2667 VFP_BINOP(mul)
2668 VFP_BINOP(div)
2669 #undef VFP_BINOP
2670
2671 float32 VFP_HELPER(neg, s)(float32 a)
2672 {
2673 return float32_chs(a);
2674 }
2675
2676 float64 VFP_HELPER(neg, d)(float64 a)
2677 {
2678 return float64_chs(a);
2679 }
2680
2681 float32 VFP_HELPER(abs, s)(float32 a)
2682 {
2683 return float32_abs(a);
2684 }
2685
2686 float64 VFP_HELPER(abs, d)(float64 a)
2687 {
2688 return float64_abs(a);
2689 }
2690
2691 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2692 {
2693 return float32_sqrt(a, &env->vfp.fp_status);
2694 }
2695
2696 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2697 {
2698 return float64_sqrt(a, &env->vfp.fp_status);
2699 }
2700
2701 /* XXX: check quiet/signaling case */
2702 #define DO_VFP_cmp(p, type) \
2703 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2704 { \
2705 uint32_t flags; \
2706 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2707 case 0: flags = 0x6; break; \
2708 case -1: flags = 0x8; break; \
2709 case 1: flags = 0x2; break; \
2710 default: case 2: flags = 0x3; break; \
2711 } \
2712 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2713 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2714 } \
2715 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2716 { \
2717 uint32_t flags; \
2718 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2719 case 0: flags = 0x6; break; \
2720 case -1: flags = 0x8; break; \
2721 case 1: flags = 0x2; break; \
2722 default: case 2: flags = 0x3; break; \
2723 } \
2724 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2725 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2726 }
2727 DO_VFP_cmp(s, float32)
2728 DO_VFP_cmp(d, float64)
2729 #undef DO_VFP_cmp
2730
2731 /* Integer to float and float to integer conversions */
2732
2733 #define CONV_ITOF(name, fsz, sign) \
2734 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2735 { \
2736 float_status *fpst = fpstp; \
2737 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2738 }
2739
2740 #define CONV_FTOI(name, fsz, sign, round) \
2741 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2742 { \
2743 float_status *fpst = fpstp; \
2744 if (float##fsz##_is_any_nan(x)) { \
2745 float_raise(float_flag_invalid, fpst); \
2746 return 0; \
2747 } \
2748 return float##fsz##_to_##sign##int32##round(x, fpst); \
2749 }
2750
2751 #define FLOAT_CONVS(name, p, fsz, sign) \
2752 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2753 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2754 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2755
2756 FLOAT_CONVS(si, s, 32, )
2757 FLOAT_CONVS(si, d, 64, )
2758 FLOAT_CONVS(ui, s, 32, u)
2759 FLOAT_CONVS(ui, d, 64, u)
2760
2761 #undef CONV_ITOF
2762 #undef CONV_FTOI
2763 #undef FLOAT_CONVS
2764
2765 /* floating point conversion */
2766 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2767 {
2768 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2769 /* ARM requires that S<->D conversion of any kind of NaN generates
2770 * a quiet NaN by forcing the most significant frac bit to 1.
2771 */
2772 return float64_maybe_silence_nan(r);
2773 }
2774
2775 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2776 {
2777 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2778 /* ARM requires that S<->D conversion of any kind of NaN generates
2779 * a quiet NaN by forcing the most significant frac bit to 1.
2780 */
2781 return float32_maybe_silence_nan(r);
2782 }
2783
2784 /* VFP3 fixed point conversion. */
2785 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2786 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2787 void *fpstp) \
2788 { \
2789 float_status *fpst = fpstp; \
2790 float##fsz tmp; \
2791 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2792 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2793 } \
2794 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2795 void *fpstp) \
2796 { \
2797 float_status *fpst = fpstp; \
2798 float##fsz tmp; \
2799 if (float##fsz##_is_any_nan(x)) { \
2800 float_raise(float_flag_invalid, fpst); \
2801 return 0; \
2802 } \
2803 tmp = float##fsz##_scalbn(x, shift, fpst); \
2804 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2805 }
2806
2807 VFP_CONV_FIX(sh, d, 64, int16, )
2808 VFP_CONV_FIX(sl, d, 64, int32, )
2809 VFP_CONV_FIX(uh, d, 64, uint16, u)
2810 VFP_CONV_FIX(ul, d, 64, uint32, u)
2811 VFP_CONV_FIX(sh, s, 32, int16, )
2812 VFP_CONV_FIX(sl, s, 32, int32, )
2813 VFP_CONV_FIX(uh, s, 32, uint16, u)
2814 VFP_CONV_FIX(ul, s, 32, uint32, u)
2815 #undef VFP_CONV_FIX
2816
2817 /* Half precision conversions. */
2818 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2819 {
2820 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2821 float32 r = float16_to_float32(make_float16(a), ieee, s);
2822 if (ieee) {
2823 return float32_maybe_silence_nan(r);
2824 }
2825 return r;
2826 }
2827
2828 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2829 {
2830 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2831 float16 r = float32_to_float16(a, ieee, s);
2832 if (ieee) {
2833 r = float16_maybe_silence_nan(r);
2834 }
2835 return float16_val(r);
2836 }
2837
2838 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2839 {
2840 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2841 }
2842
2843 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2844 {
2845 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2846 }
2847
2848 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2849 {
2850 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2851 }
2852
2853 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2854 {
2855 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2856 }
2857
2858 #define float32_two make_float32(0x40000000)
2859 #define float32_three make_float32(0x40400000)
2860 #define float32_one_point_five make_float32(0x3fc00000)
2861
2862 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2863 {
2864 float_status *s = &env->vfp.standard_fp_status;
2865 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2866 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2867 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2868 float_raise(float_flag_input_denormal, s);
2869 }
2870 return float32_two;
2871 }
2872 return float32_sub(float32_two, float32_mul(a, b, s), s);
2873 }
2874
2875 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2876 {
2877 float_status *s = &env->vfp.standard_fp_status;
2878 float32 product;
2879 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2880 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2881 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2882 float_raise(float_flag_input_denormal, s);
2883 }
2884 return float32_one_point_five;
2885 }
2886 product = float32_mul(a, b, s);
2887 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2888 }
2889
2890 /* NEON helpers. */
2891
2892 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2893 * int->float conversions at run-time. */
2894 #define float64_256 make_float64(0x4070000000000000LL)
2895 #define float64_512 make_float64(0x4080000000000000LL)
2896
2897 /* The algorithm that must be used to calculate the estimate
2898 * is specified by the ARM ARM.
2899 */
2900 static float64 recip_estimate(float64 a, CPUARMState *env)
2901 {
2902 /* These calculations mustn't set any fp exception flags,
2903 * so we use a local copy of the fp_status.
2904 */
2905 float_status dummy_status = env->vfp.standard_fp_status;
2906 float_status *s = &dummy_status;
2907 /* q = (int)(a * 512.0) */
2908 float64 q = float64_mul(float64_512, a, s);
2909 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2910
2911 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2912 q = int64_to_float64(q_int, s);
2913 q = float64_add(q, float64_half, s);
2914 q = float64_div(q, float64_512, s);
2915 q = float64_div(float64_one, q, s);
2916
2917 /* s = (int)(256.0 * r + 0.5) */
2918 q = float64_mul(q, float64_256, s);
2919 q = float64_add(q, float64_half, s);
2920 q_int = float64_to_int64_round_to_zero(q, s);
2921
2922 /* return (double)s / 256.0 */
2923 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2924 }
2925
2926 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2927 {
2928 float_status *s = &env->vfp.standard_fp_status;
2929 float64 f64;
2930 uint32_t val32 = float32_val(a);
2931
2932 int result_exp;
2933 int a_exp = (val32 & 0x7f800000) >> 23;
2934 int sign = val32 & 0x80000000;
2935
2936 if (float32_is_any_nan(a)) {
2937 if (float32_is_signaling_nan(a)) {
2938 float_raise(float_flag_invalid, s);
2939 }
2940 return float32_default_nan;
2941 } else if (float32_is_infinity(a)) {
2942 return float32_set_sign(float32_zero, float32_is_neg(a));
2943 } else if (float32_is_zero_or_denormal(a)) {
2944 if (!float32_is_zero(a)) {
2945 float_raise(float_flag_input_denormal, s);
2946 }
2947 float_raise(float_flag_divbyzero, s);
2948 return float32_set_sign(float32_infinity, float32_is_neg(a));
2949 } else if (a_exp >= 253) {
2950 float_raise(float_flag_underflow, s);
2951 return float32_set_sign(float32_zero, float32_is_neg(a));
2952 }
2953
2954 f64 = make_float64((0x3feULL << 52)
2955 | ((int64_t)(val32 & 0x7fffff) << 29));
2956
2957 result_exp = 253 - a_exp;
2958
2959 f64 = recip_estimate(f64, env);
2960
2961 val32 = sign
2962 | ((result_exp & 0xff) << 23)
2963 | ((float64_val(f64) >> 29) & 0x7fffff);
2964 return make_float32(val32);
2965 }
2966
2967 /* The algorithm that must be used to calculate the estimate
2968 * is specified by the ARM ARM.
2969 */
2970 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2971 {
2972 /* These calculations mustn't set any fp exception flags,
2973 * so we use a local copy of the fp_status.
2974 */
2975 float_status dummy_status = env->vfp.standard_fp_status;
2976 float_status *s = &dummy_status;
2977 float64 q;
2978 int64_t q_int;
2979
2980 if (float64_lt(a, float64_half, s)) {
2981 /* range 0.25 <= a < 0.5 */
2982
2983 /* a in units of 1/512 rounded down */
2984 /* q0 = (int)(a * 512.0); */
2985 q = float64_mul(float64_512, a, s);
2986 q_int = float64_to_int64_round_to_zero(q, s);
2987
2988 /* reciprocal root r */
2989 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2990 q = int64_to_float64(q_int, s);
2991 q = float64_add(q, float64_half, s);
2992 q = float64_div(q, float64_512, s);
2993 q = float64_sqrt(q, s);
2994 q = float64_div(float64_one, q, s);
2995 } else {
2996 /* range 0.5 <= a < 1.0 */
2997
2998 /* a in units of 1/256 rounded down */
2999 /* q1 = (int)(a * 256.0); */
3000 q = float64_mul(float64_256, a, s);
3001 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3002
3003 /* reciprocal root r */
3004 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3005 q = int64_to_float64(q_int, s);
3006 q = float64_add(q, float64_half, s);
3007 q = float64_div(q, float64_256, s);
3008 q = float64_sqrt(q, s);
3009 q = float64_div(float64_one, q, s);
3010 }
3011 /* r in units of 1/256 rounded to nearest */
3012 /* s = (int)(256.0 * r + 0.5); */
3013
3014 q = float64_mul(q, float64_256,s );
3015 q = float64_add(q, float64_half, s);
3016 q_int = float64_to_int64_round_to_zero(q, s);
3017
3018 /* return (double)s / 256.0;*/
3019 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3020 }
3021
3022 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3023 {
3024 float_status *s = &env->vfp.standard_fp_status;
3025 int result_exp;
3026 float64 f64;
3027 uint32_t val;
3028 uint64_t val64;
3029
3030 val = float32_val(a);
3031
3032 if (float32_is_any_nan(a)) {
3033 if (float32_is_signaling_nan(a)) {
3034 float_raise(float_flag_invalid, s);
3035 }
3036 return float32_default_nan;
3037 } else if (float32_is_zero_or_denormal(a)) {
3038 if (!float32_is_zero(a)) {
3039 float_raise(float_flag_input_denormal, s);
3040 }
3041 float_raise(float_flag_divbyzero, s);
3042 return float32_set_sign(float32_infinity, float32_is_neg(a));
3043 } else if (float32_is_neg(a)) {
3044 float_raise(float_flag_invalid, s);
3045 return float32_default_nan;
3046 } else if (float32_is_infinity(a)) {
3047 return float32_zero;
3048 }
3049
3050 /* Normalize to a double-precision value between 0.25 and 1.0,
3051 * preserving the parity of the exponent. */
3052 if ((val & 0x800000) == 0) {
3053 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3054 | (0x3feULL << 52)
3055 | ((uint64_t)(val & 0x7fffff) << 29));
3056 } else {
3057 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3058 | (0x3fdULL << 52)
3059 | ((uint64_t)(val & 0x7fffff) << 29));
3060 }
3061
3062 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3063
3064 f64 = recip_sqrt_estimate(f64, env);
3065
3066 val64 = float64_val(f64);
3067
3068 val = ((result_exp & 0xff) << 23)
3069 | ((val64 >> 29) & 0x7fffff);
3070 return make_float32(val);
3071 }
3072
3073 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3074 {
3075 float64 f64;
3076
3077 if ((a & 0x80000000) == 0) {
3078 return 0xffffffff;
3079 }
3080
3081 f64 = make_float64((0x3feULL << 52)
3082 | ((int64_t)(a & 0x7fffffff) << 21));
3083
3084 f64 = recip_estimate (f64, env);
3085
3086 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3087 }
3088
3089 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3090 {
3091 float64 f64;
3092
3093 if ((a & 0xc0000000) == 0) {
3094 return 0xffffffff;
3095 }
3096
3097 if (a & 0x80000000) {
3098 f64 = make_float64((0x3feULL << 52)
3099 | ((uint64_t)(a & 0x7fffffff) << 21));
3100 } else { /* bits 31-30 == '01' */
3101 f64 = make_float64((0x3fdULL << 52)
3102 | ((uint64_t)(a & 0x3fffffff) << 22));
3103 }
3104
3105 f64 = recip_sqrt_estimate(f64, env);
3106
3107 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3108 }
3109
3110 /* VFPv4 fused multiply-accumulate */
3111 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3112 {
3113 float_status *fpst = fpstp;
3114 return float32_muladd(a, b, c, 0, fpst);
3115 }
3116
3117 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3118 {
3119 float_status *fpst = fpstp;
3120 return float64_muladd(a, b, c, 0, fpst);
3121 }