]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Thumb semihosting fixes.
[qemu.git] / target-arm / helper.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8
9 static uint32_t cortexa8_cp15_c0_c1[8] =
10 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
11
12 static uint32_t cortexa8_cp15_c0_c2[8] =
13 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
14
15 static uint32_t mpcore_cp15_c0_c1[8] =
16 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
17
18 static uint32_t mpcore_cp15_c0_c2[8] =
19 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
20
21 static uint32_t arm1136_cp15_c0_c1[8] =
22 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
23
24 static uint32_t arm1136_cp15_c0_c2[8] =
25 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
26
27 static uint32_t cpu_arm_find_by_name(const char *name);
28
29 static inline void set_feature(CPUARMState *env, int feature)
30 {
31 env->features |= 1u << feature;
32 }
33
34 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
35 {
36 env->cp15.c0_cpuid = id;
37 switch (id) {
38 case ARM_CPUID_ARM926:
39 set_feature(env, ARM_FEATURE_VFP);
40 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
41 env->cp15.c0_cachetype = 0x1dd20d2;
42 env->cp15.c1_sys = 0x00090078;
43 break;
44 case ARM_CPUID_ARM946:
45 set_feature(env, ARM_FEATURE_MPU);
46 env->cp15.c0_cachetype = 0x0f004006;
47 env->cp15.c1_sys = 0x00000078;
48 break;
49 case ARM_CPUID_ARM1026:
50 set_feature(env, ARM_FEATURE_VFP);
51 set_feature(env, ARM_FEATURE_AUXCR);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM1136:
57 set_feature(env, ARM_FEATURE_V6);
58 set_feature(env, ARM_FEATURE_VFP);
59 set_feature(env, ARM_FEATURE_AUXCR);
60 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
61 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
62 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
63 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
64 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 break;
67 case ARM_CPUID_ARM11MPCORE:
68 set_feature(env, ARM_FEATURE_V6);
69 set_feature(env, ARM_FEATURE_V6K);
70 set_feature(env, ARM_FEATURE_VFP);
71 set_feature(env, ARM_FEATURE_AUXCR);
72 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
73 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
74 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
75 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
76 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
77 env->cp15.c0_cachetype = 0x1dd20d2;
78 break;
79 case ARM_CPUID_CORTEXA8:
80 set_feature(env, ARM_FEATURE_V6);
81 set_feature(env, ARM_FEATURE_V6K);
82 set_feature(env, ARM_FEATURE_V7);
83 set_feature(env, ARM_FEATURE_AUXCR);
84 set_feature(env, ARM_FEATURE_THUMB2);
85 set_feature(env, ARM_FEATURE_VFP);
86 set_feature(env, ARM_FEATURE_VFP3);
87 set_feature(env, ARM_FEATURE_NEON);
88 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
89 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
90 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
91 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
92 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
93 env->cp15.c0_cachetype = 0x1dd20d2;
94 break;
95 case ARM_CPUID_CORTEXM3:
96 set_feature(env, ARM_FEATURE_V6);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_V7);
99 set_feature(env, ARM_FEATURE_M);
100 set_feature(env, ARM_FEATURE_DIV);
101 break;
102 case ARM_CPUID_ANY: /* For userspace emulation. */
103 set_feature(env, ARM_FEATURE_V6);
104 set_feature(env, ARM_FEATURE_V6K);
105 set_feature(env, ARM_FEATURE_V7);
106 set_feature(env, ARM_FEATURE_THUMB2);
107 set_feature(env, ARM_FEATURE_VFP);
108 set_feature(env, ARM_FEATURE_VFP3);
109 set_feature(env, ARM_FEATURE_NEON);
110 set_feature(env, ARM_FEATURE_DIV);
111 break;
112 case ARM_CPUID_TI915T:
113 case ARM_CPUID_TI925T:
114 set_feature(env, ARM_FEATURE_OMAPCP);
115 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
116 env->cp15.c0_cachetype = 0x5109149;
117 env->cp15.c1_sys = 0x00000070;
118 env->cp15.c15_i_max = 0x000;
119 env->cp15.c15_i_min = 0xff0;
120 break;
121 case ARM_CPUID_PXA250:
122 case ARM_CPUID_PXA255:
123 case ARM_CPUID_PXA260:
124 case ARM_CPUID_PXA261:
125 case ARM_CPUID_PXA262:
126 set_feature(env, ARM_FEATURE_XSCALE);
127 /* JTAG_ID is ((id << 28) | 0x09265013) */
128 env->cp15.c0_cachetype = 0xd172172;
129 env->cp15.c1_sys = 0x00000078;
130 break;
131 case ARM_CPUID_PXA270_A0:
132 case ARM_CPUID_PXA270_A1:
133 case ARM_CPUID_PXA270_B0:
134 case ARM_CPUID_PXA270_B1:
135 case ARM_CPUID_PXA270_C0:
136 case ARM_CPUID_PXA270_C5:
137 set_feature(env, ARM_FEATURE_XSCALE);
138 /* JTAG_ID is ((id << 28) | 0x09265013) */
139 set_feature(env, ARM_FEATURE_IWMMXT);
140 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
141 env->cp15.c0_cachetype = 0xd172172;
142 env->cp15.c1_sys = 0x00000078;
143 break;
144 default:
145 cpu_abort(env, "Bad CPU ID: %x\n", id);
146 break;
147 }
148 }
149
150 void cpu_reset(CPUARMState *env)
151 {
152 uint32_t id;
153 id = env->cp15.c0_cpuid;
154 memset(env, 0, offsetof(CPUARMState, breakpoints));
155 if (id)
156 cpu_reset_model_id(env, id);
157 #if defined (CONFIG_USER_ONLY)
158 env->uncached_cpsr = ARM_CPU_MODE_USR;
159 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
160 #else
161 /* SVC mode with interrupts disabled. */
162 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
163 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
164 clear at reset. */
165 if (IS_M(env))
166 env->uncached_cpsr &= ~CPSR_I;
167 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
168 #endif
169 env->regs[15] = 0;
170 tlb_flush(env, 1);
171 }
172
173 CPUARMState *cpu_arm_init(const char *cpu_model)
174 {
175 CPUARMState *env;
176 uint32_t id;
177
178 id = cpu_arm_find_by_name(cpu_model);
179 if (id == 0)
180 return NULL;
181 env = qemu_mallocz(sizeof(CPUARMState));
182 if (!env)
183 return NULL;
184 cpu_exec_init(env);
185 env->cp15.c0_cpuid = id;
186 cpu_reset(env);
187 return env;
188 }
189
190 struct arm_cpu_t {
191 uint32_t id;
192 const char *name;
193 };
194
195 static const struct arm_cpu_t arm_cpu_names[] = {
196 { ARM_CPUID_ARM926, "arm926"},
197 { ARM_CPUID_ARM946, "arm946"},
198 { ARM_CPUID_ARM1026, "arm1026"},
199 { ARM_CPUID_ARM1136, "arm1136"},
200 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
201 { ARM_CPUID_CORTEXM3, "cortex-m3"},
202 { ARM_CPUID_CORTEXA8, "cortex-a8"},
203 { ARM_CPUID_TI925T, "ti925t" },
204 { ARM_CPUID_PXA250, "pxa250" },
205 { ARM_CPUID_PXA255, "pxa255" },
206 { ARM_CPUID_PXA260, "pxa260" },
207 { ARM_CPUID_PXA261, "pxa261" },
208 { ARM_CPUID_PXA262, "pxa262" },
209 { ARM_CPUID_PXA270, "pxa270" },
210 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
211 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
212 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
213 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
214 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
215 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
216 { ARM_CPUID_ANY, "any"},
217 { 0, NULL}
218 };
219
220 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
221 {
222 int i;
223
224 (*cpu_fprintf)(f, "Available CPUs:\n");
225 for (i = 0; arm_cpu_names[i].name; i++) {
226 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
227 }
228 }
229
230 /* return 0 if not found */
231 static uint32_t cpu_arm_find_by_name(const char *name)
232 {
233 int i;
234 uint32_t id;
235
236 id = 0;
237 for (i = 0; arm_cpu_names[i].name; i++) {
238 if (strcmp(name, arm_cpu_names[i].name) == 0) {
239 id = arm_cpu_names[i].id;
240 break;
241 }
242 }
243 return id;
244 }
245
246 void cpu_arm_close(CPUARMState *env)
247 {
248 free(env);
249 }
250
251 /* Polynomial multiplication is like integer multiplcation except the
252 partial products are XORed, not added. */
253 uint32_t helper_neon_mul_p8(uint32_t op1, uint32_t op2)
254 {
255 uint32_t mask;
256 uint32_t result;
257 result = 0;
258 while (op1) {
259 mask = 0;
260 if (op1 & 1)
261 mask |= 0xff;
262 if (op1 & (1 << 8))
263 mask |= (0xff << 8);
264 if (op1 & (1 << 16))
265 mask |= (0xff << 16);
266 if (op1 & (1 << 24))
267 mask |= (0xff << 24);
268 result ^= op2 & mask;
269 op1 = (op1 >> 1) & 0x7f7f7f7f;
270 op2 = (op2 << 1) & 0xfefefefe;
271 }
272 return result;
273 }
274
275 uint32_t cpsr_read(CPUARMState *env)
276 {
277 int ZF;
278 ZF = (env->NZF == 0);
279 return env->uncached_cpsr | (env->NZF & 0x80000000) | (ZF << 30) |
280 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
281 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
282 | ((env->condexec_bits & 0xfc) << 8)
283 | (env->GE << 16);
284 }
285
286 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
287 {
288 /* NOTE: N = 1 and Z = 1 cannot be stored currently */
289 if (mask & CPSR_NZCV) {
290 env->NZF = (val & 0xc0000000) ^ 0x40000000;
291 env->CF = (val >> 29) & 1;
292 env->VF = (val << 3) & 0x80000000;
293 }
294 if (mask & CPSR_Q)
295 env->QF = ((val & CPSR_Q) != 0);
296 if (mask & CPSR_T)
297 env->thumb = ((val & CPSR_T) != 0);
298 if (mask & CPSR_IT_0_1) {
299 env->condexec_bits &= ~3;
300 env->condexec_bits |= (val >> 25) & 3;
301 }
302 if (mask & CPSR_IT_2_7) {
303 env->condexec_bits &= 3;
304 env->condexec_bits |= (val >> 8) & 0xfc;
305 }
306 if (mask & CPSR_GE) {
307 env->GE = (val >> 16) & 0xf;
308 }
309
310 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
311 switch_mode(env, val & CPSR_M);
312 }
313 mask &= ~CACHED_CPSR_BITS;
314 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
315 }
316
317 #if defined(CONFIG_USER_ONLY)
318
319 void do_interrupt (CPUState *env)
320 {
321 env->exception_index = -1;
322 }
323
324 /* Structure used to record exclusive memory locations. */
325 typedef struct mmon_state {
326 struct mmon_state *next;
327 CPUARMState *cpu_env;
328 uint32_t addr;
329 } mmon_state;
330
331 /* Chain of current locks. */
332 static mmon_state* mmon_head = NULL;
333
334 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
335 int mmu_idx, int is_softmmu)
336 {
337 if (rw == 2) {
338 env->exception_index = EXCP_PREFETCH_ABORT;
339 env->cp15.c6_insn = address;
340 } else {
341 env->exception_index = EXCP_DATA_ABORT;
342 env->cp15.c6_data = address;
343 }
344 return 1;
345 }
346
347 static void allocate_mmon_state(CPUState *env)
348 {
349 env->mmon_entry = malloc(sizeof (mmon_state));
350 if (!env->mmon_entry)
351 abort();
352 memset (env->mmon_entry, 0, sizeof (mmon_state));
353 env->mmon_entry->cpu_env = env;
354 mmon_head = env->mmon_entry;
355 }
356
357 /* Flush any monitor locks for the specified address. */
358 static void flush_mmon(uint32_t addr)
359 {
360 mmon_state *mon;
361
362 for (mon = mmon_head; mon; mon = mon->next)
363 {
364 if (mon->addr != addr)
365 continue;
366
367 mon->addr = 0;
368 break;
369 }
370 }
371
372 /* Mark an address for exclusive access. */
373 void helper_mark_exclusive(CPUState *env, uint32_t addr)
374 {
375 if (!env->mmon_entry)
376 allocate_mmon_state(env);
377 /* Clear any previous locks. */
378 flush_mmon(addr);
379 env->mmon_entry->addr = addr;
380 }
381
382 /* Test if an exclusive address is still exclusive. Returns zero
383 if the address is still exclusive. */
384 int helper_test_exclusive(CPUState *env, uint32_t addr)
385 {
386 int res;
387
388 if (!env->mmon_entry)
389 return 1;
390 if (env->mmon_entry->addr == addr)
391 res = 0;
392 else
393 res = 1;
394 flush_mmon(addr);
395 return res;
396 }
397
398 void helper_clrex(CPUState *env)
399 {
400 if (!(env->mmon_entry && env->mmon_entry->addr))
401 return;
402 flush_mmon(env->mmon_entry->addr);
403 }
404
405 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
406 {
407 return addr;
408 }
409
410 /* These should probably raise undefined insn exceptions. */
411 void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val)
412 {
413 int op1 = (insn >> 8) & 0xf;
414 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
415 return;
416 }
417
418 uint32_t helper_get_cp(CPUState *env, uint32_t insn)
419 {
420 int op1 = (insn >> 8) & 0xf;
421 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
422 return 0;
423 }
424
425 void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val)
426 {
427 cpu_abort(env, "cp15 insn %08x\n", insn);
428 }
429
430 uint32_t helper_get_cp15(CPUState *env, uint32_t insn)
431 {
432 cpu_abort(env, "cp15 insn %08x\n", insn);
433 return 0;
434 }
435
436 /* These should probably raise undefined insn exceptions. */
437 void helper_v7m_msr(CPUState *env, int reg, uint32_t val)
438 {
439 cpu_abort(env, "v7m_mrs %d\n", reg);
440 }
441
442 uint32_t helper_v7m_mrs(CPUState *env, int reg)
443 {
444 cpu_abort(env, "v7m_mrs %d\n", reg);
445 return 0;
446 }
447
448 void switch_mode(CPUState *env, int mode)
449 {
450 if (mode != ARM_CPU_MODE_USR)
451 cpu_abort(env, "Tried to switch out of user mode\n");
452 }
453
454 void helper_set_r13_banked(CPUState *env, int mode, uint32_t val)
455 {
456 cpu_abort(env, "banked r13 write\n");
457 }
458
459 uint32_t helper_get_r13_banked(CPUState *env, int mode)
460 {
461 cpu_abort(env, "banked r13 read\n");
462 return 0;
463 }
464
465 #else
466
467 extern int semihosting_enabled;
468
469 /* Map CPU modes onto saved register banks. */
470 static inline int bank_number (int mode)
471 {
472 switch (mode) {
473 case ARM_CPU_MODE_USR:
474 case ARM_CPU_MODE_SYS:
475 return 0;
476 case ARM_CPU_MODE_SVC:
477 return 1;
478 case ARM_CPU_MODE_ABT:
479 return 2;
480 case ARM_CPU_MODE_UND:
481 return 3;
482 case ARM_CPU_MODE_IRQ:
483 return 4;
484 case ARM_CPU_MODE_FIQ:
485 return 5;
486 }
487 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
488 return -1;
489 }
490
491 void switch_mode(CPUState *env, int mode)
492 {
493 int old_mode;
494 int i;
495
496 old_mode = env->uncached_cpsr & CPSR_M;
497 if (mode == old_mode)
498 return;
499
500 if (old_mode == ARM_CPU_MODE_FIQ) {
501 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
502 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
503 } else if (mode == ARM_CPU_MODE_FIQ) {
504 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
505 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
506 }
507
508 i = bank_number(old_mode);
509 env->banked_r13[i] = env->regs[13];
510 env->banked_r14[i] = env->regs[14];
511 env->banked_spsr[i] = env->spsr;
512
513 i = bank_number(mode);
514 env->regs[13] = env->banked_r13[i];
515 env->regs[14] = env->banked_r14[i];
516 env->spsr = env->banked_spsr[i];
517 }
518
519 static void v7m_push(CPUARMState *env, uint32_t val)
520 {
521 env->regs[13] -= 4;
522 stl_phys(env->regs[13], val);
523 }
524
525 static uint32_t v7m_pop(CPUARMState *env)
526 {
527 uint32_t val;
528 val = ldl_phys(env->regs[13]);
529 env->regs[13] += 4;
530 return val;
531 }
532
533 /* Switch to V7M main or process stack pointer. */
534 static void switch_v7m_sp(CPUARMState *env, int process)
535 {
536 uint32_t tmp;
537 if (env->v7m.current_sp != process) {
538 tmp = env->v7m.other_sp;
539 env->v7m.other_sp = env->regs[13];
540 env->regs[13] = tmp;
541 env->v7m.current_sp = process;
542 }
543 }
544
545 static void do_v7m_exception_exit(CPUARMState *env)
546 {
547 uint32_t type;
548 uint32_t xpsr;
549
550 type = env->regs[15];
551 if (env->v7m.exception != 0)
552 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
553
554 /* Switch to the target stack. */
555 switch_v7m_sp(env, (type & 4) != 0);
556 /* Pop registers. */
557 env->regs[0] = v7m_pop(env);
558 env->regs[1] = v7m_pop(env);
559 env->regs[2] = v7m_pop(env);
560 env->regs[3] = v7m_pop(env);
561 env->regs[12] = v7m_pop(env);
562 env->regs[14] = v7m_pop(env);
563 env->regs[15] = v7m_pop(env);
564 xpsr = v7m_pop(env);
565 xpsr_write(env, xpsr, 0xfffffdff);
566 /* Undo stack alignment. */
567 if (xpsr & 0x200)
568 env->regs[13] |= 4;
569 /* ??? The exception return type specifies Thread/Handler mode. However
570 this is also implied by the xPSR value. Not sure what to do
571 if there is a mismatch. */
572 /* ??? Likewise for mismatches between the CONTROL register and the stack
573 pointer. */
574 }
575
576 void do_interrupt_v7m(CPUARMState *env)
577 {
578 uint32_t xpsr = xpsr_read(env);
579 uint32_t lr;
580 uint32_t addr;
581
582 lr = 0xfffffff1;
583 if (env->v7m.current_sp)
584 lr |= 4;
585 if (env->v7m.exception == 0)
586 lr |= 8;
587
588 /* For exceptions we just mark as pending on the NVIC, and let that
589 handle it. */
590 /* TODO: Need to escalate if the current priority is higher than the
591 one we're raising. */
592 switch (env->exception_index) {
593 case EXCP_UDEF:
594 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
595 return;
596 case EXCP_SWI:
597 env->regs[15] += 2;
598 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
599 return;
600 case EXCP_PREFETCH_ABORT:
601 case EXCP_DATA_ABORT:
602 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
603 return;
604 case EXCP_BKPT:
605 if (semihosting_enabled) {
606 int nr;
607 nr = lduw_code(env->regs[15]) & 0xff;
608 if (nr == 0xab) {
609 env->regs[15] += 2;
610 env->regs[0] = do_arm_semihosting(env);
611 return;
612 }
613 }
614 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
615 return;
616 case EXCP_IRQ:
617 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
618 break;
619 case EXCP_EXCEPTION_EXIT:
620 do_v7m_exception_exit(env);
621 return;
622 default:
623 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
624 return; /* Never happens. Keep compiler happy. */
625 }
626
627 /* Align stack pointer. */
628 /* ??? Should only do this if Configuration Control Register
629 STACKALIGN bit is set. */
630 if (env->regs[13] & 4) {
631 env->regs[13] += 4;
632 xpsr |= 0x200;
633 }
634 /* Switch to the hander mode. */
635 v7m_push(env, xpsr);
636 v7m_push(env, env->regs[15]);
637 v7m_push(env, env->regs[14]);
638 v7m_push(env, env->regs[12]);
639 v7m_push(env, env->regs[3]);
640 v7m_push(env, env->regs[2]);
641 v7m_push(env, env->regs[1]);
642 v7m_push(env, env->regs[0]);
643 switch_v7m_sp(env, 0);
644 env->uncached_cpsr &= ~CPSR_IT;
645 env->regs[14] = lr;
646 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
647 env->regs[15] = addr & 0xfffffffe;
648 env->thumb = addr & 1;
649 }
650
651 /* Handle a CPU exception. */
652 void do_interrupt(CPUARMState *env)
653 {
654 uint32_t addr;
655 uint32_t mask;
656 int new_mode;
657 uint32_t offset;
658
659 if (IS_M(env)) {
660 do_interrupt_v7m(env);
661 return;
662 }
663 /* TODO: Vectored interrupt controller. */
664 switch (env->exception_index) {
665 case EXCP_UDEF:
666 new_mode = ARM_CPU_MODE_UND;
667 addr = 0x04;
668 mask = CPSR_I;
669 if (env->thumb)
670 offset = 2;
671 else
672 offset = 4;
673 break;
674 case EXCP_SWI:
675 if (semihosting_enabled) {
676 /* Check for semihosting interrupt. */
677 if (env->thumb) {
678 mask = lduw_code(env->regs[15] - 2) & 0xff;
679 } else {
680 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
681 }
682 /* Only intercept calls from privileged modes, to provide some
683 semblance of security. */
684 if (((mask == 0x123456 && !env->thumb)
685 || (mask == 0xab && env->thumb))
686 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
687 env->regs[0] = do_arm_semihosting(env);
688 return;
689 }
690 }
691 new_mode = ARM_CPU_MODE_SVC;
692 addr = 0x08;
693 mask = CPSR_I;
694 /* The PC already points to the next instructon. */
695 offset = 0;
696 break;
697 case EXCP_BKPT:
698 /* See if this is a semihosting syscall. */
699 if (env->thumb && semihosting_enabled) {
700 mask = lduw_code(env->regs[15]) & 0xff;
701 if (mask == 0xab
702 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
703 env->regs[15] += 2;
704 env->regs[0] = do_arm_semihosting(env);
705 return;
706 }
707 }
708 /* Fall through to prefetch abort. */
709 case EXCP_PREFETCH_ABORT:
710 new_mode = ARM_CPU_MODE_ABT;
711 addr = 0x0c;
712 mask = CPSR_A | CPSR_I;
713 offset = 4;
714 break;
715 case EXCP_DATA_ABORT:
716 new_mode = ARM_CPU_MODE_ABT;
717 addr = 0x10;
718 mask = CPSR_A | CPSR_I;
719 offset = 8;
720 break;
721 case EXCP_IRQ:
722 new_mode = ARM_CPU_MODE_IRQ;
723 addr = 0x18;
724 /* Disable IRQ and imprecise data aborts. */
725 mask = CPSR_A | CPSR_I;
726 offset = 4;
727 break;
728 case EXCP_FIQ:
729 new_mode = ARM_CPU_MODE_FIQ;
730 addr = 0x1c;
731 /* Disable FIQ, IRQ and imprecise data aborts. */
732 mask = CPSR_A | CPSR_I | CPSR_F;
733 offset = 4;
734 break;
735 default:
736 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
737 return; /* Never happens. Keep compiler happy. */
738 }
739 /* High vectors. */
740 if (env->cp15.c1_sys & (1 << 13)) {
741 addr += 0xffff0000;
742 }
743 switch_mode (env, new_mode);
744 env->spsr = cpsr_read(env);
745 /* Clear IT bits. */
746 env->condexec_bits = 0;
747 /* Switch to the new mode, and switch to Arm mode. */
748 /* ??? Thumb interrupt handlers not implemented. */
749 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
750 env->uncached_cpsr |= mask;
751 env->thumb = 0;
752 env->regs[14] = env->regs[15] + offset;
753 env->regs[15] = addr;
754 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
755 }
756
757 /* Check section/page access permissions.
758 Returns the page protection flags, or zero if the access is not
759 permitted. */
760 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
761 int is_user)
762 {
763 int prot_ro;
764
765 if (domain == 3)
766 return PAGE_READ | PAGE_WRITE;
767
768 if (access_type == 1)
769 prot_ro = 0;
770 else
771 prot_ro = PAGE_READ;
772
773 switch (ap) {
774 case 0:
775 if (access_type == 1)
776 return 0;
777 switch ((env->cp15.c1_sys >> 8) & 3) {
778 case 1:
779 return is_user ? 0 : PAGE_READ;
780 case 2:
781 return PAGE_READ;
782 default:
783 return 0;
784 }
785 case 1:
786 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
787 case 2:
788 if (is_user)
789 return prot_ro;
790 else
791 return PAGE_READ | PAGE_WRITE;
792 case 3:
793 return PAGE_READ | PAGE_WRITE;
794 case 4: case 7: /* Reserved. */
795 return 0;
796 case 5:
797 return is_user ? 0 : prot_ro;
798 case 6:
799 return prot_ro;
800 default:
801 abort();
802 }
803 }
804
805 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
806 int is_user, uint32_t *phys_ptr, int *prot)
807 {
808 int code;
809 uint32_t table;
810 uint32_t desc;
811 int type;
812 int ap;
813 int domain;
814 uint32_t phys_addr;
815
816 /* Pagetable walk. */
817 /* Lookup l1 descriptor. */
818 if (address & env->cp15.c2_mask)
819 table = env->cp15.c2_base1;
820 else
821 table = env->cp15.c2_base0;
822 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
823 desc = ldl_phys(table);
824 type = (desc & 3);
825 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
826 if (type == 0) {
827 /* Secton translation fault. */
828 code = 5;
829 goto do_fault;
830 }
831 if (domain == 0 || domain == 2) {
832 if (type == 2)
833 code = 9; /* Section domain fault. */
834 else
835 code = 11; /* Page domain fault. */
836 goto do_fault;
837 }
838 if (type == 2) {
839 /* 1Mb section. */
840 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
841 ap = (desc >> 10) & 3;
842 code = 13;
843 } else {
844 /* Lookup l2 entry. */
845 if (type == 1) {
846 /* Coarse pagetable. */
847 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
848 } else {
849 /* Fine pagetable. */
850 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
851 }
852 desc = ldl_phys(table);
853 switch (desc & 3) {
854 case 0: /* Page translation fault. */
855 code = 7;
856 goto do_fault;
857 case 1: /* 64k page. */
858 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
859 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
860 break;
861 case 2: /* 4k page. */
862 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
863 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
864 break;
865 case 3: /* 1k page. */
866 if (type == 1) {
867 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
868 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
869 } else {
870 /* Page translation fault. */
871 code = 7;
872 goto do_fault;
873 }
874 } else {
875 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
876 }
877 ap = (desc >> 4) & 3;
878 break;
879 default:
880 /* Never happens, but compiler isn't smart enough to tell. */
881 abort();
882 }
883 code = 15;
884 }
885 *prot = check_ap(env, ap, domain, access_type, is_user);
886 if (!*prot) {
887 /* Access permission fault. */
888 goto do_fault;
889 }
890 *phys_ptr = phys_addr;
891 return 0;
892 do_fault:
893 return code | (domain << 4);
894 }
895
896 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
897 int is_user, uint32_t *phys_ptr, int *prot)
898 {
899 int code;
900 uint32_t table;
901 uint32_t desc;
902 uint32_t xn;
903 int type;
904 int ap;
905 int domain;
906 uint32_t phys_addr;
907
908 /* Pagetable walk. */
909 /* Lookup l1 descriptor. */
910 if (address & env->cp15.c2_mask)
911 table = env->cp15.c2_base1;
912 else
913 table = env->cp15.c2_base0;
914 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
915 desc = ldl_phys(table);
916 type = (desc & 3);
917 if (type == 0) {
918 /* Secton translation fault. */
919 code = 5;
920 domain = 0;
921 goto do_fault;
922 } else if (type == 2 && (desc & (1 << 18))) {
923 /* Supersection. */
924 domain = 0;
925 } else {
926 /* Section or page. */
927 domain = (desc >> 4) & 0x1e;
928 }
929 domain = (env->cp15.c3 >> domain) & 3;
930 if (domain == 0 || domain == 2) {
931 if (type == 2)
932 code = 9; /* Section domain fault. */
933 else
934 code = 11; /* Page domain fault. */
935 goto do_fault;
936 }
937 if (type == 2) {
938 if (desc & (1 << 18)) {
939 /* Supersection. */
940 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
941 } else {
942 /* Section. */
943 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
944 }
945 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
946 xn = desc & (1 << 4);
947 code = 13;
948 } else {
949 /* Lookup l2 entry. */
950 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
951 desc = ldl_phys(table);
952 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
953 switch (desc & 3) {
954 case 0: /* Page translation fault. */
955 code = 7;
956 goto do_fault;
957 case 1: /* 64k page. */
958 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
959 xn = desc & (1 << 15);
960 break;
961 case 2: case 3: /* 4k page. */
962 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
963 xn = desc & 1;
964 break;
965 default:
966 /* Never happens, but compiler isn't smart enough to tell. */
967 abort();
968 }
969 code = 15;
970 }
971 if (xn && access_type == 2)
972 goto do_fault;
973
974 *prot = check_ap(env, ap, domain, access_type, is_user);
975 if (!*prot) {
976 /* Access permission fault. */
977 goto do_fault;
978 }
979 *phys_ptr = phys_addr;
980 return 0;
981 do_fault:
982 return code | (domain << 4);
983 }
984
985 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
986 int is_user, uint32_t *phys_ptr, int *prot)
987 {
988 int n;
989 uint32_t mask;
990 uint32_t base;
991
992 *phys_ptr = address;
993 for (n = 7; n >= 0; n--) {
994 base = env->cp15.c6_region[n];
995 if ((base & 1) == 0)
996 continue;
997 mask = 1 << ((base >> 1) & 0x1f);
998 /* Keep this shift separate from the above to avoid an
999 (undefined) << 32. */
1000 mask = (mask << 1) - 1;
1001 if (((base ^ address) & ~mask) == 0)
1002 break;
1003 }
1004 if (n < 0)
1005 return 2;
1006
1007 if (access_type == 2) {
1008 mask = env->cp15.c5_insn;
1009 } else {
1010 mask = env->cp15.c5_data;
1011 }
1012 mask = (mask >> (n * 4)) & 0xf;
1013 switch (mask) {
1014 case 0:
1015 return 1;
1016 case 1:
1017 if (is_user)
1018 return 1;
1019 *prot = PAGE_READ | PAGE_WRITE;
1020 break;
1021 case 2:
1022 *prot = PAGE_READ;
1023 if (!is_user)
1024 *prot |= PAGE_WRITE;
1025 break;
1026 case 3:
1027 *prot = PAGE_READ | PAGE_WRITE;
1028 break;
1029 case 5:
1030 if (is_user)
1031 return 1;
1032 *prot = PAGE_READ;
1033 break;
1034 case 6:
1035 *prot = PAGE_READ;
1036 break;
1037 default:
1038 /* Bad permission. */
1039 return 1;
1040 }
1041 return 0;
1042 }
1043
1044 static inline int get_phys_addr(CPUState *env, uint32_t address,
1045 int access_type, int is_user,
1046 uint32_t *phys_ptr, int *prot)
1047 {
1048 /* Fast Context Switch Extension. */
1049 if (address < 0x02000000)
1050 address += env->cp15.c13_fcse;
1051
1052 if ((env->cp15.c1_sys & 1) == 0) {
1053 /* MMU/MPU disabled. */
1054 *phys_ptr = address;
1055 *prot = PAGE_READ | PAGE_WRITE;
1056 return 0;
1057 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1058 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1059 prot);
1060 } else if (env->cp15.c1_sys & (1 << 23)) {
1061 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1062 prot);
1063 } else {
1064 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1065 prot);
1066 }
1067 }
1068
1069 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1070 int access_type, int mmu_idx, int is_softmmu)
1071 {
1072 uint32_t phys_addr;
1073 int prot;
1074 int ret, is_user;
1075
1076 is_user = mmu_idx == MMU_USER_IDX;
1077 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1078 if (ret == 0) {
1079 /* Map a single [sub]page. */
1080 phys_addr &= ~(uint32_t)0x3ff;
1081 address &= ~(uint32_t)0x3ff;
1082 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1083 is_softmmu);
1084 }
1085
1086 if (access_type == 2) {
1087 env->cp15.c5_insn = ret;
1088 env->cp15.c6_insn = address;
1089 env->exception_index = EXCP_PREFETCH_ABORT;
1090 } else {
1091 env->cp15.c5_data = ret;
1092 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1093 env->cp15.c5_data |= (1 << 11);
1094 env->cp15.c6_data = address;
1095 env->exception_index = EXCP_DATA_ABORT;
1096 }
1097 return 1;
1098 }
1099
1100 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1101 {
1102 uint32_t phys_addr;
1103 int prot;
1104 int ret;
1105
1106 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1107
1108 if (ret != 0)
1109 return -1;
1110
1111 return phys_addr;
1112 }
1113
1114 /* Not really implemented. Need to figure out a sane way of doing this.
1115 Maybe add generic watchpoint support and use that. */
1116
1117 void helper_mark_exclusive(CPUState *env, uint32_t addr)
1118 {
1119 env->mmon_addr = addr;
1120 }
1121
1122 int helper_test_exclusive(CPUState *env, uint32_t addr)
1123 {
1124 return (env->mmon_addr != addr);
1125 }
1126
1127 void helper_clrex(CPUState *env)
1128 {
1129 env->mmon_addr = -1;
1130 }
1131
1132 void helper_set_cp(CPUState *env, uint32_t insn, uint32_t val)
1133 {
1134 int cp_num = (insn >> 8) & 0xf;
1135 int cp_info = (insn >> 5) & 7;
1136 int src = (insn >> 16) & 0xf;
1137 int operand = insn & 0xf;
1138
1139 if (env->cp[cp_num].cp_write)
1140 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1141 cp_info, src, operand, val);
1142 }
1143
1144 uint32_t helper_get_cp(CPUState *env, uint32_t insn)
1145 {
1146 int cp_num = (insn >> 8) & 0xf;
1147 int cp_info = (insn >> 5) & 7;
1148 int dest = (insn >> 16) & 0xf;
1149 int operand = insn & 0xf;
1150
1151 if (env->cp[cp_num].cp_read)
1152 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1153 cp_info, dest, operand);
1154 return 0;
1155 }
1156
1157 /* Return basic MPU access permission bits. */
1158 static uint32_t simple_mpu_ap_bits(uint32_t val)
1159 {
1160 uint32_t ret;
1161 uint32_t mask;
1162 int i;
1163 ret = 0;
1164 mask = 3;
1165 for (i = 0; i < 16; i += 2) {
1166 ret |= (val >> i) & mask;
1167 mask <<= 2;
1168 }
1169 return ret;
1170 }
1171
1172 /* Pad basic MPU access permission bits to extended format. */
1173 static uint32_t extended_mpu_ap_bits(uint32_t val)
1174 {
1175 uint32_t ret;
1176 uint32_t mask;
1177 int i;
1178 ret = 0;
1179 mask = 3;
1180 for (i = 0; i < 16; i += 2) {
1181 ret |= (val & mask) << i;
1182 mask <<= 2;
1183 }
1184 return ret;
1185 }
1186
1187 void helper_set_cp15(CPUState *env, uint32_t insn, uint32_t val)
1188 {
1189 int op1;
1190 int op2;
1191 int crm;
1192
1193 op1 = (insn >> 21) & 7;
1194 op2 = (insn >> 5) & 7;
1195 crm = insn & 0xf;
1196 switch ((insn >> 16) & 0xf) {
1197 case 0:
1198 if (((insn >> 21) & 7) == 2) {
1199 /* ??? Select cache level. Ignore. */
1200 return;
1201 }
1202 /* ID codes. */
1203 if (arm_feature(env, ARM_FEATURE_XSCALE))
1204 break;
1205 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1206 break;
1207 goto bad_reg;
1208 case 1: /* System configuration. */
1209 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1210 op2 = 0;
1211 switch (op2) {
1212 case 0:
1213 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1214 env->cp15.c1_sys = val;
1215 /* ??? Lots of these bits are not implemented. */
1216 /* This may enable/disable the MMU, so do a TLB flush. */
1217 tlb_flush(env, 1);
1218 break;
1219 case 1: /* Auxiliary cotrol register. */
1220 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1221 env->cp15.c1_xscaleauxcr = val;
1222 break;
1223 }
1224 /* Not implemented. */
1225 break;
1226 case 2:
1227 if (arm_feature(env, ARM_FEATURE_XSCALE))
1228 goto bad_reg;
1229 env->cp15.c1_coproc = val;
1230 /* ??? Is this safe when called from within a TB? */
1231 tb_flush(env);
1232 break;
1233 default:
1234 goto bad_reg;
1235 }
1236 break;
1237 case 2: /* MMU Page table control / MPU cache control. */
1238 if (arm_feature(env, ARM_FEATURE_MPU)) {
1239 switch (op2) {
1240 case 0:
1241 env->cp15.c2_data = val;
1242 break;
1243 case 1:
1244 env->cp15.c2_insn = val;
1245 break;
1246 default:
1247 goto bad_reg;
1248 }
1249 } else {
1250 switch (op2) {
1251 case 0:
1252 env->cp15.c2_base0 = val;
1253 break;
1254 case 1:
1255 env->cp15.c2_base1 = val;
1256 break;
1257 case 2:
1258 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1259 break;
1260 default:
1261 goto bad_reg;
1262 }
1263 }
1264 break;
1265 case 3: /* MMU Domain access control / MPU write buffer control. */
1266 env->cp15.c3 = val;
1267 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1268 break;
1269 case 4: /* Reserved. */
1270 goto bad_reg;
1271 case 5: /* MMU Fault status / MPU access permission. */
1272 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1273 op2 = 0;
1274 switch (op2) {
1275 case 0:
1276 if (arm_feature(env, ARM_FEATURE_MPU))
1277 val = extended_mpu_ap_bits(val);
1278 env->cp15.c5_data = val;
1279 break;
1280 case 1:
1281 if (arm_feature(env, ARM_FEATURE_MPU))
1282 val = extended_mpu_ap_bits(val);
1283 env->cp15.c5_insn = val;
1284 break;
1285 case 2:
1286 if (!arm_feature(env, ARM_FEATURE_MPU))
1287 goto bad_reg;
1288 env->cp15.c5_data = val;
1289 break;
1290 case 3:
1291 if (!arm_feature(env, ARM_FEATURE_MPU))
1292 goto bad_reg;
1293 env->cp15.c5_insn = val;
1294 break;
1295 default:
1296 goto bad_reg;
1297 }
1298 break;
1299 case 6: /* MMU Fault address / MPU base/size. */
1300 if (arm_feature(env, ARM_FEATURE_MPU)) {
1301 if (crm >= 8)
1302 goto bad_reg;
1303 env->cp15.c6_region[crm] = val;
1304 } else {
1305 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1306 op2 = 0;
1307 switch (op2) {
1308 case 0:
1309 env->cp15.c6_data = val;
1310 break;
1311 case 1: /* ??? This is WFAR on armv6 */
1312 case 2:
1313 env->cp15.c6_insn = val;
1314 break;
1315 default:
1316 goto bad_reg;
1317 }
1318 }
1319 break;
1320 case 7: /* Cache control. */
1321 env->cp15.c15_i_max = 0x000;
1322 env->cp15.c15_i_min = 0xff0;
1323 /* No cache, so nothing to do. */
1324 /* ??? MPCore has VA to PA translation functions. */
1325 break;
1326 case 8: /* MMU TLB control. */
1327 switch (op2) {
1328 case 0: /* Invalidate all. */
1329 tlb_flush(env, 0);
1330 break;
1331 case 1: /* Invalidate single TLB entry. */
1332 #if 0
1333 /* ??? This is wrong for large pages and sections. */
1334 /* As an ugly hack to make linux work we always flush a 4K
1335 pages. */
1336 val &= 0xfffff000;
1337 tlb_flush_page(env, val);
1338 tlb_flush_page(env, val + 0x400);
1339 tlb_flush_page(env, val + 0x800);
1340 tlb_flush_page(env, val + 0xc00);
1341 #else
1342 tlb_flush(env, 1);
1343 #endif
1344 break;
1345 case 2: /* Invalidate on ASID. */
1346 tlb_flush(env, val == 0);
1347 break;
1348 case 3: /* Invalidate single entry on MVA. */
1349 /* ??? This is like case 1, but ignores ASID. */
1350 tlb_flush(env, 1);
1351 break;
1352 default:
1353 goto bad_reg;
1354 }
1355 break;
1356 case 9:
1357 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1358 break;
1359 switch (crm) {
1360 case 0: /* Cache lockdown. */
1361 switch (op1) {
1362 case 0: /* L1 cache. */
1363 switch (op2) {
1364 case 0:
1365 env->cp15.c9_data = val;
1366 break;
1367 case 1:
1368 env->cp15.c9_insn = val;
1369 break;
1370 default:
1371 goto bad_reg;
1372 }
1373 break;
1374 case 1: /* L2 cache. */
1375 /* Ignore writes to L2 lockdown/auxiliary registers. */
1376 break;
1377 default:
1378 goto bad_reg;
1379 }
1380 break;
1381 case 1: /* TCM memory region registers. */
1382 /* Not implemented. */
1383 goto bad_reg;
1384 default:
1385 goto bad_reg;
1386 }
1387 break;
1388 case 10: /* MMU TLB lockdown. */
1389 /* ??? TLB lockdown not implemented. */
1390 break;
1391 case 12: /* Reserved. */
1392 goto bad_reg;
1393 case 13: /* Process ID. */
1394 switch (op2) {
1395 case 0:
1396 /* Unlike real hardware the qemu TLB uses virtual addresses,
1397 not modified virtual addresses, so this causes a TLB flush.
1398 */
1399 if (env->cp15.c13_fcse != val)
1400 tlb_flush(env, 1);
1401 env->cp15.c13_fcse = val;
1402 break;
1403 case 1:
1404 /* This changes the ASID, so do a TLB flush. */
1405 if (env->cp15.c13_context != val
1406 && !arm_feature(env, ARM_FEATURE_MPU))
1407 tlb_flush(env, 0);
1408 env->cp15.c13_context = val;
1409 break;
1410 case 2:
1411 env->cp15.c13_tls1 = val;
1412 break;
1413 case 3:
1414 env->cp15.c13_tls2 = val;
1415 break;
1416 case 4:
1417 env->cp15.c13_tls3 = val;
1418 break;
1419 default:
1420 goto bad_reg;
1421 }
1422 break;
1423 case 14: /* Reserved. */
1424 goto bad_reg;
1425 case 15: /* Implementation specific. */
1426 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1427 if (op2 == 0 && crm == 1) {
1428 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1429 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1430 tb_flush(env);
1431 env->cp15.c15_cpar = val & 0x3fff;
1432 }
1433 break;
1434 }
1435 goto bad_reg;
1436 }
1437 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1438 switch (crm) {
1439 case 0:
1440 break;
1441 case 1: /* Set TI925T configuration. */
1442 env->cp15.c15_ticonfig = val & 0xe7;
1443 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1444 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1445 break;
1446 case 2: /* Set I_max. */
1447 env->cp15.c15_i_max = val;
1448 break;
1449 case 3: /* Set I_min. */
1450 env->cp15.c15_i_min = val;
1451 break;
1452 case 4: /* Set thread-ID. */
1453 env->cp15.c15_threadid = val & 0xffff;
1454 break;
1455 case 8: /* Wait-for-interrupt (deprecated). */
1456 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1457 break;
1458 default:
1459 goto bad_reg;
1460 }
1461 }
1462 break;
1463 }
1464 return;
1465 bad_reg:
1466 /* ??? For debugging only. Should raise illegal instruction exception. */
1467 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1468 (insn >> 16) & 0xf, crm, op1, op2);
1469 }
1470
1471 uint32_t helper_get_cp15(CPUState *env, uint32_t insn)
1472 {
1473 int op1;
1474 int op2;
1475 int crm;
1476
1477 op1 = (insn >> 21) & 7;
1478 op2 = (insn >> 5) & 7;
1479 crm = insn & 0xf;
1480 switch ((insn >> 16) & 0xf) {
1481 case 0: /* ID codes. */
1482 switch (op1) {
1483 case 0:
1484 switch (crm) {
1485 case 0:
1486 switch (op2) {
1487 case 0: /* Device ID. */
1488 return env->cp15.c0_cpuid;
1489 case 1: /* Cache Type. */
1490 return env->cp15.c0_cachetype;
1491 case 2: /* TCM status. */
1492 return 0;
1493 case 3: /* TLB type register. */
1494 return 0; /* No lockable TLB entries. */
1495 case 5: /* CPU ID */
1496 return env->cpu_index;
1497 default:
1498 goto bad_reg;
1499 }
1500 case 1:
1501 if (!arm_feature(env, ARM_FEATURE_V6))
1502 goto bad_reg;
1503 return env->cp15.c0_c1[op2];
1504 case 2:
1505 if (!arm_feature(env, ARM_FEATURE_V6))
1506 goto bad_reg;
1507 return env->cp15.c0_c2[op2];
1508 case 3: case 4: case 5: case 6: case 7:
1509 return 0;
1510 default:
1511 goto bad_reg;
1512 }
1513 case 1:
1514 /* These registers aren't documented on arm11 cores. However
1515 Linux looks at them anyway. */
1516 if (!arm_feature(env, ARM_FEATURE_V6))
1517 goto bad_reg;
1518 if (crm != 0)
1519 goto bad_reg;
1520 if (arm_feature(env, ARM_FEATURE_XSCALE))
1521 goto bad_reg;
1522 return 0;
1523 default:
1524 goto bad_reg;
1525 }
1526 case 1: /* System configuration. */
1527 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1528 op2 = 0;
1529 switch (op2) {
1530 case 0: /* Control register. */
1531 return env->cp15.c1_sys;
1532 case 1: /* Auxiliary control register. */
1533 if (arm_feature(env, ARM_FEATURE_XSCALE))
1534 return env->cp15.c1_xscaleauxcr;
1535 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1536 goto bad_reg;
1537 switch (ARM_CPUID(env)) {
1538 case ARM_CPUID_ARM1026:
1539 return 1;
1540 case ARM_CPUID_ARM1136:
1541 return 7;
1542 case ARM_CPUID_ARM11MPCORE:
1543 return 1;
1544 case ARM_CPUID_CORTEXA8:
1545 return 0;
1546 default:
1547 goto bad_reg;
1548 }
1549 case 2: /* Coprocessor access register. */
1550 if (arm_feature(env, ARM_FEATURE_XSCALE))
1551 goto bad_reg;
1552 return env->cp15.c1_coproc;
1553 default:
1554 goto bad_reg;
1555 }
1556 case 2: /* MMU Page table control / MPU cache control. */
1557 if (arm_feature(env, ARM_FEATURE_MPU)) {
1558 switch (op2) {
1559 case 0:
1560 return env->cp15.c2_data;
1561 break;
1562 case 1:
1563 return env->cp15.c2_insn;
1564 break;
1565 default:
1566 goto bad_reg;
1567 }
1568 } else {
1569 switch (op2) {
1570 case 0:
1571 return env->cp15.c2_base0;
1572 case 1:
1573 return env->cp15.c2_base1;
1574 case 2:
1575 {
1576 int n;
1577 uint32_t mask;
1578 n = 0;
1579 mask = env->cp15.c2_mask;
1580 while (mask) {
1581 n++;
1582 mask <<= 1;
1583 }
1584 return n;
1585 }
1586 default:
1587 goto bad_reg;
1588 }
1589 }
1590 case 3: /* MMU Domain access control / MPU write buffer control. */
1591 return env->cp15.c3;
1592 case 4: /* Reserved. */
1593 goto bad_reg;
1594 case 5: /* MMU Fault status / MPU access permission. */
1595 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1596 op2 = 0;
1597 switch (op2) {
1598 case 0:
1599 if (arm_feature(env, ARM_FEATURE_MPU))
1600 return simple_mpu_ap_bits(env->cp15.c5_data);
1601 return env->cp15.c5_data;
1602 case 1:
1603 if (arm_feature(env, ARM_FEATURE_MPU))
1604 return simple_mpu_ap_bits(env->cp15.c5_data);
1605 return env->cp15.c5_insn;
1606 case 2:
1607 if (!arm_feature(env, ARM_FEATURE_MPU))
1608 goto bad_reg;
1609 return env->cp15.c5_data;
1610 case 3:
1611 if (!arm_feature(env, ARM_FEATURE_MPU))
1612 goto bad_reg;
1613 return env->cp15.c5_insn;
1614 default:
1615 goto bad_reg;
1616 }
1617 case 6: /* MMU Fault address. */
1618 if (arm_feature(env, ARM_FEATURE_MPU)) {
1619 if (crm >= 8)
1620 goto bad_reg;
1621 return env->cp15.c6_region[crm];
1622 } else {
1623 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1624 op2 = 0;
1625 switch (op2) {
1626 case 0:
1627 return env->cp15.c6_data;
1628 case 1:
1629 if (arm_feature(env, ARM_FEATURE_V6)) {
1630 /* Watchpoint Fault Adrress. */
1631 return 0; /* Not implemented. */
1632 } else {
1633 /* Instruction Fault Adrress. */
1634 /* Arm9 doesn't have an IFAR, but implementing it anyway
1635 shouldn't do any harm. */
1636 return env->cp15.c6_insn;
1637 }
1638 case 2:
1639 if (arm_feature(env, ARM_FEATURE_V6)) {
1640 /* Instruction Fault Adrress. */
1641 return env->cp15.c6_insn;
1642 } else {
1643 goto bad_reg;
1644 }
1645 default:
1646 goto bad_reg;
1647 }
1648 }
1649 case 7: /* Cache control. */
1650 /* ??? This is for test, clean and invaidate operations that set the
1651 Z flag. We can't represent N = Z = 1, so it also clears
1652 the N flag. Oh well. */
1653 env->NZF = 0;
1654 return 0;
1655 case 8: /* MMU TLB control. */
1656 goto bad_reg;
1657 case 9: /* Cache lockdown. */
1658 switch (op1) {
1659 case 0: /* L1 cache. */
1660 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1661 return 0;
1662 switch (op2) {
1663 case 0:
1664 return env->cp15.c9_data;
1665 case 1:
1666 return env->cp15.c9_insn;
1667 default:
1668 goto bad_reg;
1669 }
1670 case 1: /* L2 cache */
1671 if (crm != 0)
1672 goto bad_reg;
1673 /* L2 Lockdown and Auxiliary control. */
1674 return 0;
1675 default:
1676 goto bad_reg;
1677 }
1678 case 10: /* MMU TLB lockdown. */
1679 /* ??? TLB lockdown not implemented. */
1680 return 0;
1681 case 11: /* TCM DMA control. */
1682 case 12: /* Reserved. */
1683 goto bad_reg;
1684 case 13: /* Process ID. */
1685 switch (op2) {
1686 case 0:
1687 return env->cp15.c13_fcse;
1688 case 1:
1689 return env->cp15.c13_context;
1690 case 2:
1691 return env->cp15.c13_tls1;
1692 case 3:
1693 return env->cp15.c13_tls2;
1694 case 4:
1695 return env->cp15.c13_tls3;
1696 default:
1697 goto bad_reg;
1698 }
1699 case 14: /* Reserved. */
1700 goto bad_reg;
1701 case 15: /* Implementation specific. */
1702 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1703 if (op2 == 0 && crm == 1)
1704 return env->cp15.c15_cpar;
1705
1706 goto bad_reg;
1707 }
1708 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1709 switch (crm) {
1710 case 0:
1711 return 0;
1712 case 1: /* Read TI925T configuration. */
1713 return env->cp15.c15_ticonfig;
1714 case 2: /* Read I_max. */
1715 return env->cp15.c15_i_max;
1716 case 3: /* Read I_min. */
1717 return env->cp15.c15_i_min;
1718 case 4: /* Read thread-ID. */
1719 return env->cp15.c15_threadid;
1720 case 8: /* TI925T_status */
1721 return 0;
1722 }
1723 goto bad_reg;
1724 }
1725 return 0;
1726 }
1727 bad_reg:
1728 /* ??? For debugging only. Should raise illegal instruction exception. */
1729 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1730 (insn >> 16) & 0xf, crm, op1, op2);
1731 return 0;
1732 }
1733
1734 void helper_set_r13_banked(CPUState *env, int mode, uint32_t val)
1735 {
1736 env->banked_r13[bank_number(mode)] = val;
1737 }
1738
1739 uint32_t helper_get_r13_banked(CPUState *env, int mode)
1740 {
1741 return env->banked_r13[bank_number(mode)];
1742 }
1743
1744 uint32_t helper_v7m_mrs(CPUState *env, int reg)
1745 {
1746 switch (reg) {
1747 case 0: /* APSR */
1748 return xpsr_read(env) & 0xf8000000;
1749 case 1: /* IAPSR */
1750 return xpsr_read(env) & 0xf80001ff;
1751 case 2: /* EAPSR */
1752 return xpsr_read(env) & 0xff00fc00;
1753 case 3: /* xPSR */
1754 return xpsr_read(env) & 0xff00fdff;
1755 case 5: /* IPSR */
1756 return xpsr_read(env) & 0x000001ff;
1757 case 6: /* EPSR */
1758 return xpsr_read(env) & 0x0700fc00;
1759 case 7: /* IEPSR */
1760 return xpsr_read(env) & 0x0700edff;
1761 case 8: /* MSP */
1762 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1763 case 9: /* PSP */
1764 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1765 case 16: /* PRIMASK */
1766 return (env->uncached_cpsr & CPSR_I) != 0;
1767 case 17: /* FAULTMASK */
1768 return (env->uncached_cpsr & CPSR_F) != 0;
1769 case 18: /* BASEPRI */
1770 case 19: /* BASEPRI_MAX */
1771 return env->v7m.basepri;
1772 case 20: /* CONTROL */
1773 return env->v7m.control;
1774 default:
1775 /* ??? For debugging only. */
1776 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1777 return 0;
1778 }
1779 }
1780
1781 void helper_v7m_msr(CPUState *env, int reg, uint32_t val)
1782 {
1783 switch (reg) {
1784 case 0: /* APSR */
1785 xpsr_write(env, val, 0xf8000000);
1786 break;
1787 case 1: /* IAPSR */
1788 xpsr_write(env, val, 0xf8000000);
1789 break;
1790 case 2: /* EAPSR */
1791 xpsr_write(env, val, 0xfe00fc00);
1792 break;
1793 case 3: /* xPSR */
1794 xpsr_write(env, val, 0xfe00fc00);
1795 break;
1796 case 5: /* IPSR */
1797 /* IPSR bits are readonly. */
1798 break;
1799 case 6: /* EPSR */
1800 xpsr_write(env, val, 0x0600fc00);
1801 break;
1802 case 7: /* IEPSR */
1803 xpsr_write(env, val, 0x0600fc00);
1804 break;
1805 case 8: /* MSP */
1806 if (env->v7m.current_sp)
1807 env->v7m.other_sp = val;
1808 else
1809 env->regs[13] = val;
1810 break;
1811 case 9: /* PSP */
1812 if (env->v7m.current_sp)
1813 env->regs[13] = val;
1814 else
1815 env->v7m.other_sp = val;
1816 break;
1817 case 16: /* PRIMASK */
1818 if (val & 1)
1819 env->uncached_cpsr |= CPSR_I;
1820 else
1821 env->uncached_cpsr &= ~CPSR_I;
1822 break;
1823 case 17: /* FAULTMASK */
1824 if (val & 1)
1825 env->uncached_cpsr |= CPSR_F;
1826 else
1827 env->uncached_cpsr &= ~CPSR_F;
1828 break;
1829 case 18: /* BASEPRI */
1830 env->v7m.basepri = val & 0xff;
1831 break;
1832 case 19: /* BASEPRI_MAX */
1833 val &= 0xff;
1834 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1835 env->v7m.basepri = val;
1836 break;
1837 case 20: /* CONTROL */
1838 env->v7m.control = val & 3;
1839 switch_v7m_sp(env, (val & 2) != 0);
1840 break;
1841 default:
1842 /* ??? For debugging only. */
1843 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1844 return;
1845 }
1846 }
1847
1848 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1849 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1850 void *opaque)
1851 {
1852 if (cpnum < 0 || cpnum > 14) {
1853 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1854 return;
1855 }
1856
1857 env->cp[cpnum].cp_read = cp_read;
1858 env->cp[cpnum].cp_write = cp_write;
1859 env->cp[cpnum].opaque = opaque;
1860 }
1861
1862 #endif