]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge git://github.com/hw-claudio/qemu-aarch64-queue into tcg-next
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
7
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
14
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 {
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40 }
41
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 {
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 }
64 return 0;
65 }
66
67 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
68 uint64_t *value)
69 {
70 *value = CPREG_FIELD32(env, ri);
71 return 0;
72 }
73
74 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
75 uint64_t value)
76 {
77 CPREG_FIELD32(env, ri) = value;
78 return 0;
79 }
80
81 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
82 uint64_t *v)
83 {
84 /* Raw read of a coprocessor register (as needed for migration, etc)
85 * return true on success, false if the read is impossible for some reason.
86 */
87 if (ri->type & ARM_CP_CONST) {
88 *v = ri->resetvalue;
89 } else if (ri->raw_readfn) {
90 return (ri->raw_readfn(env, ri, v) == 0);
91 } else if (ri->readfn) {
92 return (ri->readfn(env, ri, v) == 0);
93 } else {
94 if (ri->type & ARM_CP_64BIT) {
95 *v = CPREG_FIELD64(env, ri);
96 } else {
97 *v = CPREG_FIELD32(env, ri);
98 }
99 }
100 return true;
101 }
102
103 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
104 int64_t v)
105 {
106 /* Raw write of a coprocessor register (as needed for migration, etc).
107 * Return true on success, false if the write is impossible for some reason.
108 * Note that constant registers are treated as write-ignored; the
109 * caller should check for success by whether a readback gives the
110 * value written.
111 */
112 if (ri->type & ARM_CP_CONST) {
113 return true;
114 } else if (ri->raw_writefn) {
115 return (ri->raw_writefn(env, ri, v) == 0);
116 } else if (ri->writefn) {
117 return (ri->writefn(env, ri, v) == 0);
118 } else {
119 if (ri->type & ARM_CP_64BIT) {
120 CPREG_FIELD64(env, ri) = v;
121 } else {
122 CPREG_FIELD32(env, ri) = v;
123 }
124 }
125 return true;
126 }
127
128 bool write_cpustate_to_list(ARMCPU *cpu)
129 {
130 /* Write the coprocessor state from cpu->env to the (index,value) list. */
131 int i;
132 bool ok = true;
133
134 for (i = 0; i < cpu->cpreg_array_len; i++) {
135 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
136 const ARMCPRegInfo *ri;
137 uint64_t v;
138 ri = get_arm_cp_reginfo(cpu, regidx);
139 if (!ri) {
140 ok = false;
141 continue;
142 }
143 if (ri->type & ARM_CP_NO_MIGRATE) {
144 continue;
145 }
146 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
147 ok = false;
148 continue;
149 }
150 cpu->cpreg_values[i] = v;
151 }
152 return ok;
153 }
154
155 bool write_list_to_cpustate(ARMCPU *cpu)
156 {
157 int i;
158 bool ok = true;
159
160 for (i = 0; i < cpu->cpreg_array_len; i++) {
161 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
162 uint64_t v = cpu->cpreg_values[i];
163 uint64_t readback;
164 const ARMCPRegInfo *ri;
165
166 ri = get_arm_cp_reginfo(cpu, regidx);
167 if (!ri) {
168 ok = false;
169 continue;
170 }
171 if (ri->type & ARM_CP_NO_MIGRATE) {
172 continue;
173 }
174 /* Write value and confirm it reads back as written
175 * (to catch read-only registers and partially read-only
176 * registers where the incoming migration value doesn't match)
177 */
178 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
179 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
180 readback != v) {
181 ok = false;
182 }
183 }
184 return ok;
185 }
186
187 static void add_cpreg_to_list(gpointer key, gpointer opaque)
188 {
189 ARMCPU *cpu = opaque;
190 uint64_t regidx;
191 const ARMCPRegInfo *ri;
192
193 regidx = *(uint32_t *)key;
194 ri = get_arm_cp_reginfo(cpu, regidx);
195
196 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
197 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
198 /* The value array need not be initialized at this point */
199 cpu->cpreg_array_len++;
200 }
201 }
202
203 static void count_cpreg(gpointer key, gpointer opaque)
204 {
205 ARMCPU *cpu = opaque;
206 uint64_t regidx;
207 const ARMCPRegInfo *ri;
208
209 regidx = *(uint32_t *)key;
210 ri = get_arm_cp_reginfo(cpu, regidx);
211
212 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
213 cpu->cpreg_array_len++;
214 }
215 }
216
217 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
218 {
219 uint32_t aidx = *(uint32_t *)a;
220 uint32_t bidx = *(uint32_t *)b;
221
222 return aidx - bidx;
223 }
224
225 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
226 {
227 GList **plist = udata;
228
229 *plist = g_list_prepend(*plist, key);
230 }
231
232 void init_cpreg_list(ARMCPU *cpu)
233 {
234 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
235 * Note that we require cpreg_tuples[] to be sorted by key ID.
236 */
237 GList *keys = NULL;
238 int arraylen;
239
240 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
241
242 keys = g_list_sort(keys, cpreg_key_compare);
243
244 cpu->cpreg_array_len = 0;
245
246 g_list_foreach(keys, count_cpreg, cpu);
247
248 arraylen = cpu->cpreg_array_len;
249 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
250 cpu->cpreg_values = g_new(uint64_t, arraylen);
251 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
254 cpu->cpreg_array_len = 0;
255
256 g_list_foreach(keys, add_cpreg_to_list, cpu);
257
258 assert(cpu->cpreg_array_len == arraylen);
259
260 g_list_free(keys);
261 }
262
263 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
264 {
265 env->cp15.c3 = value;
266 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
267 return 0;
268 }
269
270 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
271 {
272 if (env->cp15.c13_fcse != value) {
273 /* Unlike real hardware the qemu TLB uses virtual addresses,
274 * not modified virtual addresses, so this causes a TLB flush.
275 */
276 tlb_flush(env, 1);
277 env->cp15.c13_fcse = value;
278 }
279 return 0;
280 }
281 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
282 uint64_t value)
283 {
284 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
285 /* For VMSA (when not using the LPAE long descriptor page table
286 * format) this register includes the ASID, so do a TLB flush.
287 * For PMSA it is purely a process ID and no action is needed.
288 */
289 tlb_flush(env, 1);
290 }
291 env->cp15.c13_context = value;
292 return 0;
293 }
294
295 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297 {
298 /* Invalidate all (TLBIALL) */
299 tlb_flush(env, 1);
300 return 0;
301 }
302
303 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
304 uint64_t value)
305 {
306 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
307 tlb_flush_page(env, value & TARGET_PAGE_MASK);
308 return 0;
309 }
310
311 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
312 uint64_t value)
313 {
314 /* Invalidate by ASID (TLBIASID) */
315 tlb_flush(env, value == 0);
316 return 0;
317 }
318
319 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
320 uint64_t value)
321 {
322 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
323 tlb_flush_page(env, value & TARGET_PAGE_MASK);
324 return 0;
325 }
326
327 static const ARMCPRegInfo cp_reginfo[] = {
328 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
329 * version" bits will read as a reserved value, which should cause
330 * Linux to not try to use the debug hardware.
331 */
332 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
333 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
334 /* MMU Domain access control / MPU write buffer control */
335 { .name = "DACR", .cp = 15,
336 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
337 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
338 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
339 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
340 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
341 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
342 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
343 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
344 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
345 /* ??? This covers not just the impdef TLB lockdown registers but also
346 * some v7VMSA registers relating to TEX remap, so it is overly broad.
347 */
348 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
349 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
350 /* MMU TLB control. Note that the wildcarding means we cover not just
351 * the unified TLB ops but also the dside/iside/inner-shareable variants.
352 */
353 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
354 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
355 .type = ARM_CP_NO_MIGRATE },
356 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
357 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
358 .type = ARM_CP_NO_MIGRATE },
359 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
360 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
361 .type = ARM_CP_NO_MIGRATE },
362 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
363 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
364 .type = ARM_CP_NO_MIGRATE },
365 /* Cache maintenance ops; some of this space may be overridden later. */
366 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
367 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
368 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
369 REGINFO_SENTINEL
370 };
371
372 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
373 /* Not all pre-v6 cores implemented this WFI, so this is slightly
374 * over-broad.
375 */
376 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
377 .access = PL1_W, .type = ARM_CP_WFI },
378 REGINFO_SENTINEL
379 };
380
381 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
382 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
383 * is UNPREDICTABLE; we choose to NOP as most implementations do).
384 */
385 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
386 .access = PL1_W, .type = ARM_CP_WFI },
387 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
388 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
389 * OMAPCP will override this space.
390 */
391 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
392 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
393 .resetvalue = 0 },
394 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
395 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
396 .resetvalue = 0 },
397 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
398 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
399 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
400 .resetvalue = 0 },
401 REGINFO_SENTINEL
402 };
403
404 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
405 {
406 if (env->cp15.c1_coproc != value) {
407 env->cp15.c1_coproc = value;
408 /* ??? Is this safe when called from within a TB? */
409 tb_flush(env);
410 }
411 return 0;
412 }
413
414 static const ARMCPRegInfo v6_cp_reginfo[] = {
415 /* prefetch by MVA in v6, NOP in v7 */
416 { .name = "MVA_prefetch",
417 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
418 .access = PL1_W, .type = ARM_CP_NOP },
419 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
420 .access = PL0_W, .type = ARM_CP_NOP },
421 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
422 .access = PL0_W, .type = ARM_CP_NOP },
423 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
424 .access = PL0_W, .type = ARM_CP_NOP },
425 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
426 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
427 .resetvalue = 0, },
428 /* Watchpoint Fault Address Register : should actually only be present
429 * for 1136, 1176, 11MPCore.
430 */
431 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
432 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
433 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
434 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
435 .resetvalue = 0, .writefn = cpacr_write },
436 REGINFO_SENTINEL
437 };
438
439
440 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
441 uint64_t *value)
442 {
443 /* Generic performance monitor register read function for where
444 * user access may be allowed by PMUSERENR.
445 */
446 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
447 return EXCP_UDEF;
448 }
449 *value = CPREG_FIELD32(env, ri);
450 return 0;
451 }
452
453 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
454 uint64_t value)
455 {
456 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
457 return EXCP_UDEF;
458 }
459 /* only the DP, X, D and E bits are writable */
460 env->cp15.c9_pmcr &= ~0x39;
461 env->cp15.c9_pmcr |= (value & 0x39);
462 return 0;
463 }
464
465 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
467 {
468 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
469 return EXCP_UDEF;
470 }
471 value &= (1 << 31);
472 env->cp15.c9_pmcnten |= value;
473 return 0;
474 }
475
476 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
477 uint64_t value)
478 {
479 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
480 return EXCP_UDEF;
481 }
482 value &= (1 << 31);
483 env->cp15.c9_pmcnten &= ~value;
484 return 0;
485 }
486
487 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
489 {
490 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
491 return EXCP_UDEF;
492 }
493 env->cp15.c9_pmovsr &= ~value;
494 return 0;
495 }
496
497 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t value)
499 {
500 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
501 return EXCP_UDEF;
502 }
503 env->cp15.c9_pmxevtyper = value & 0xff;
504 return 0;
505 }
506
507 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
508 uint64_t value)
509 {
510 env->cp15.c9_pmuserenr = value & 1;
511 return 0;
512 }
513
514 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
515 uint64_t value)
516 {
517 /* We have no event counters so only the C bit can be changed */
518 value &= (1 << 31);
519 env->cp15.c9_pminten |= value;
520 return 0;
521 }
522
523 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
524 uint64_t value)
525 {
526 value &= (1 << 31);
527 env->cp15.c9_pminten &= ~value;
528 return 0;
529 }
530
531 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
532 uint64_t *value)
533 {
534 ARMCPU *cpu = arm_env_get_cpu(env);
535 *value = cpu->ccsidr[env->cp15.c0_cssel];
536 return 0;
537 }
538
539 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 env->cp15.c0_cssel = value & 0xf;
543 return 0;
544 }
545
546 static const ARMCPRegInfo v7_cp_reginfo[] = {
547 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
548 * debug components
549 */
550 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
551 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
552 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
553 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
554 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
555 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
556 .access = PL1_W, .type = ARM_CP_NOP },
557 /* Performance monitors are implementation defined in v7,
558 * but with an ARM recommended set of registers, which we
559 * follow (although we don't actually implement any counters)
560 *
561 * Performance registers fall into three categories:
562 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
563 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
564 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
565 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
566 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
567 */
568 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
569 .access = PL0_RW, .resetvalue = 0,
570 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
571 .readfn = pmreg_read, .writefn = pmcntenset_write,
572 .raw_readfn = raw_read, .raw_writefn = raw_write },
573 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
574 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
575 .readfn = pmreg_read, .writefn = pmcntenclr_write,
576 .type = ARM_CP_NO_MIGRATE },
577 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
578 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
579 .readfn = pmreg_read, .writefn = pmovsr_write,
580 .raw_readfn = raw_read, .raw_writefn = raw_write },
581 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
582 * respect PMUSERENR.
583 */
584 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
585 .access = PL0_W, .type = ARM_CP_NOP },
586 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
587 * We choose to RAZ/WI. XXX should respect PMUSERENR.
588 */
589 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
590 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
591 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
592 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
593 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
594 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
595 .access = PL0_RW,
596 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
597 .readfn = pmreg_read, .writefn = pmxevtyper_write,
598 .raw_readfn = raw_read, .raw_writefn = raw_write },
599 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
600 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
601 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
602 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
603 .access = PL0_R | PL1_RW,
604 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
605 .resetvalue = 0,
606 .writefn = pmuserenr_write, .raw_writefn = raw_write },
607 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
608 .access = PL1_RW,
609 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
610 .resetvalue = 0,
611 .writefn = pmintenset_write, .raw_writefn = raw_write },
612 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
613 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
614 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
615 .resetvalue = 0, .writefn = pmintenclr_write, },
616 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
617 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
618 .resetvalue = 0, },
619 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
620 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
621 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
622 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
623 .writefn = csselr_write, .resetvalue = 0 },
624 /* Auxiliary ID register: this actually has an IMPDEF value but for now
625 * just RAZ for all cores:
626 */
627 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
628 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
629 REGINFO_SENTINEL
630 };
631
632 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
633 {
634 value &= 1;
635 env->teecr = value;
636 return 0;
637 }
638
639 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
640 uint64_t *value)
641 {
642 /* This is a helper function because the user access rights
643 * depend on the value of the TEECR.
644 */
645 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
646 return EXCP_UDEF;
647 }
648 *value = env->teehbr;
649 return 0;
650 }
651
652 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654 {
655 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
656 return EXCP_UDEF;
657 }
658 env->teehbr = value;
659 return 0;
660 }
661
662 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
663 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
664 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
665 .resetvalue = 0,
666 .writefn = teecr_write },
667 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
668 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
669 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
670 .readfn = teehbr_read, .writefn = teehbr_write },
671 REGINFO_SENTINEL
672 };
673
674 static const ARMCPRegInfo v6k_cp_reginfo[] = {
675 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
676 .access = PL0_RW,
677 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
678 .resetvalue = 0 },
679 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
680 .access = PL0_R|PL1_W,
681 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
682 .resetvalue = 0 },
683 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
686 .resetvalue = 0 },
687 REGINFO_SENTINEL
688 };
689
690 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
691 /* Dummy implementation: RAZ/WI the whole crn=14 space */
692 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
693 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
694 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
695 .resetvalue = 0 },
696 REGINFO_SENTINEL
697 };
698
699 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
700 {
701 if (arm_feature(env, ARM_FEATURE_LPAE)) {
702 env->cp15.c7_par = value;
703 } else if (arm_feature(env, ARM_FEATURE_V7)) {
704 env->cp15.c7_par = value & 0xfffff6ff;
705 } else {
706 env->cp15.c7_par = value & 0xfffff1ff;
707 }
708 return 0;
709 }
710
711 #ifndef CONFIG_USER_ONLY
712 /* get_phys_addr() isn't present for user-mode-only targets */
713
714 /* Return true if extended addresses are enabled, ie this is an
715 * LPAE implementation and we are using the long-descriptor translation
716 * table format because the TTBCR EAE bit is set.
717 */
718 static inline bool extended_addresses_enabled(CPUARMState *env)
719 {
720 return arm_feature(env, ARM_FEATURE_LPAE)
721 && (env->cp15.c2_control & (1 << 31));
722 }
723
724 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
725 {
726 hwaddr phys_addr;
727 target_ulong page_size;
728 int prot;
729 int ret, is_user = ri->opc2 & 2;
730 int access_type = ri->opc2 & 1;
731
732 if (ri->opc2 & 4) {
733 /* Other states are only available with TrustZone */
734 return EXCP_UDEF;
735 }
736 ret = get_phys_addr(env, value, access_type, is_user,
737 &phys_addr, &prot, &page_size);
738 if (extended_addresses_enabled(env)) {
739 /* ret is a DFSR/IFSR value for the long descriptor
740 * translation table format, but with WnR always clear.
741 * Convert it to a 64-bit PAR.
742 */
743 uint64_t par64 = (1 << 11); /* LPAE bit always set */
744 if (ret == 0) {
745 par64 |= phys_addr & ~0xfffULL;
746 /* We don't set the ATTR or SH fields in the PAR. */
747 } else {
748 par64 |= 1; /* F */
749 par64 |= (ret & 0x3f) << 1; /* FS */
750 /* Note that S2WLK and FSTAGE are always zero, because we don't
751 * implement virtualization and therefore there can't be a stage 2
752 * fault.
753 */
754 }
755 env->cp15.c7_par = par64;
756 env->cp15.c7_par_hi = par64 >> 32;
757 } else {
758 /* ret is a DFSR/IFSR value for the short descriptor
759 * translation table format (with WnR always clear).
760 * Convert it to a 32-bit PAR.
761 */
762 if (ret == 0) {
763 /* We do not set any attribute bits in the PAR */
764 if (page_size == (1 << 24)
765 && arm_feature(env, ARM_FEATURE_V7)) {
766 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
767 } else {
768 env->cp15.c7_par = phys_addr & 0xfffff000;
769 }
770 } else {
771 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
772 ((ret & (12 << 1)) >> 6) |
773 ((ret & 0xf) << 1) | 1;
774 }
775 env->cp15.c7_par_hi = 0;
776 }
777 return 0;
778 }
779 #endif
780
781 static const ARMCPRegInfo vapa_cp_reginfo[] = {
782 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
783 .access = PL1_RW, .resetvalue = 0,
784 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
785 .writefn = par_write },
786 #ifndef CONFIG_USER_ONLY
787 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
788 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
789 #endif
790 REGINFO_SENTINEL
791 };
792
793 /* Return basic MPU access permission bits. */
794 static uint32_t simple_mpu_ap_bits(uint32_t val)
795 {
796 uint32_t ret;
797 uint32_t mask;
798 int i;
799 ret = 0;
800 mask = 3;
801 for (i = 0; i < 16; i += 2) {
802 ret |= (val >> i) & mask;
803 mask <<= 2;
804 }
805 return ret;
806 }
807
808 /* Pad basic MPU access permission bits to extended format. */
809 static uint32_t extended_mpu_ap_bits(uint32_t val)
810 {
811 uint32_t ret;
812 uint32_t mask;
813 int i;
814 ret = 0;
815 mask = 3;
816 for (i = 0; i < 16; i += 2) {
817 ret |= (val & mask) << i;
818 mask <<= 2;
819 }
820 return ret;
821 }
822
823 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
824 uint64_t value)
825 {
826 env->cp15.c5_data = extended_mpu_ap_bits(value);
827 return 0;
828 }
829
830 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
831 uint64_t *value)
832 {
833 *value = simple_mpu_ap_bits(env->cp15.c5_data);
834 return 0;
835 }
836
837 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
838 uint64_t value)
839 {
840 env->cp15.c5_insn = extended_mpu_ap_bits(value);
841 return 0;
842 }
843
844 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t *value)
846 {
847 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
848 return 0;
849 }
850
851 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
852 uint64_t *value)
853 {
854 if (ri->crm >= 8) {
855 return EXCP_UDEF;
856 }
857 *value = env->cp15.c6_region[ri->crm];
858 return 0;
859 }
860
861 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
862 uint64_t value)
863 {
864 if (ri->crm >= 8) {
865 return EXCP_UDEF;
866 }
867 env->cp15.c6_region[ri->crm] = value;
868 return 0;
869 }
870
871 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
872 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
873 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
874 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
875 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
876 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
877 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
878 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
879 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
880 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
881 .access = PL1_RW,
882 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
883 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
884 .access = PL1_RW,
885 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
886 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
887 .access = PL1_RW,
888 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
889 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
890 .access = PL1_RW,
891 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
892 /* Protection region base and size registers */
893 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
894 .opc2 = CP_ANY, .access = PL1_RW,
895 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
896 REGINFO_SENTINEL
897 };
898
899 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
900 uint64_t value)
901 {
902 int maskshift = extract32(value, 0, 3);
903
904 if (arm_feature(env, ARM_FEATURE_LPAE)) {
905 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
906 } else {
907 value &= 7;
908 }
909 /* Note that we always calculate c2_mask and c2_base_mask, but
910 * they are only used for short-descriptor tables (ie if EAE is 0);
911 * for long-descriptor tables the TTBCR fields are used differently
912 * and the c2_mask and c2_base_mask values are meaningless.
913 */
914 env->cp15.c2_control = value;
915 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
916 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
917 return 0;
918 }
919
920 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
921 uint64_t value)
922 {
923 if (arm_feature(env, ARM_FEATURE_LPAE)) {
924 /* With LPAE the TTBCR could result in a change of ASID
925 * via the TTBCR.A1 bit, so do a TLB flush.
926 */
927 tlb_flush(env, 1);
928 }
929 return vmsa_ttbcr_raw_write(env, ri, value);
930 }
931
932 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
933 {
934 env->cp15.c2_base_mask = 0xffffc000u;
935 env->cp15.c2_control = 0;
936 env->cp15.c2_mask = 0;
937 }
938
939 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
940 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
941 .access = PL1_RW,
942 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
943 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
944 .access = PL1_RW,
945 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
946 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
947 .access = PL1_RW,
948 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
949 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
950 .access = PL1_RW,
951 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
952 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
953 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
954 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
955 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
956 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
957 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
958 .resetvalue = 0, },
959 REGINFO_SENTINEL
960 };
961
962 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
963 uint64_t value)
964 {
965 env->cp15.c15_ticonfig = value & 0xe7;
966 /* The OS_TYPE bit in this register changes the reported CPUID! */
967 env->cp15.c0_cpuid = (value & (1 << 5)) ?
968 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
969 return 0;
970 }
971
972 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
973 uint64_t value)
974 {
975 env->cp15.c15_threadid = value & 0xffff;
976 return 0;
977 }
978
979 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
980 uint64_t value)
981 {
982 /* Wait-for-interrupt (deprecated) */
983 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
984 return 0;
985 }
986
987 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
988 uint64_t value)
989 {
990 /* On OMAP there are registers indicating the max/min index of dcache lines
991 * containing a dirty line; cache flush operations have to reset these.
992 */
993 env->cp15.c15_i_max = 0x000;
994 env->cp15.c15_i_min = 0xff0;
995 return 0;
996 }
997
998 static const ARMCPRegInfo omap_cp_reginfo[] = {
999 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1000 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1001 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1002 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1003 .access = PL1_RW, .type = ARM_CP_NOP },
1004 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1005 .access = PL1_RW,
1006 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1007 .writefn = omap_ticonfig_write },
1008 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1009 .access = PL1_RW,
1010 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1011 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1012 .access = PL1_RW, .resetvalue = 0xff0,
1013 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1014 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1015 .access = PL1_RW,
1016 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1017 .writefn = omap_threadid_write },
1018 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1019 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1020 .type = ARM_CP_NO_MIGRATE,
1021 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1022 /* TODO: Peripheral port remap register:
1023 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1024 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1025 * when MMU is off.
1026 */
1027 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1028 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1029 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1030 .writefn = omap_cachemaint_write },
1031 { .name = "C9", .cp = 15, .crn = 9,
1032 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1033 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1034 REGINFO_SENTINEL
1035 };
1036
1037 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038 uint64_t value)
1039 {
1040 value &= 0x3fff;
1041 if (env->cp15.c15_cpar != value) {
1042 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1043 tb_flush(env);
1044 env->cp15.c15_cpar = value;
1045 }
1046 return 0;
1047 }
1048
1049 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1050 { .name = "XSCALE_CPAR",
1051 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1052 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1053 .writefn = xscale_cpar_write, },
1054 { .name = "XSCALE_AUXCR",
1055 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1056 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1057 .resetvalue = 0, },
1058 REGINFO_SENTINEL
1059 };
1060
1061 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1062 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1063 * implementation of this implementation-defined space.
1064 * Ideally this should eventually disappear in favour of actually
1065 * implementing the correct behaviour for all cores.
1066 */
1067 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1068 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1069 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1070 .resetvalue = 0 },
1071 REGINFO_SENTINEL
1072 };
1073
1074 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1075 /* Cache status: RAZ because we have no cache so it's always clean */
1076 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1077 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1078 .resetvalue = 0 },
1079 REGINFO_SENTINEL
1080 };
1081
1082 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1083 /* We never have a a block transfer operation in progress */
1084 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1085 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1086 .resetvalue = 0 },
1087 /* The cache ops themselves: these all NOP for QEMU */
1088 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1089 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1090 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1091 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1092 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1093 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1094 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1095 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1096 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1097 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1098 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1099 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1100 REGINFO_SENTINEL
1101 };
1102
1103 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1104 /* The cache test-and-clean instructions always return (1 << 30)
1105 * to indicate that there are no dirty cache lines.
1106 */
1107 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1108 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1109 .resetvalue = (1 << 30) },
1110 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1111 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1112 .resetvalue = (1 << 30) },
1113 REGINFO_SENTINEL
1114 };
1115
1116 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1117 /* Ignore ReadBuffer accesses */
1118 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1119 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1120 .access = PL1_RW, .resetvalue = 0,
1121 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1122 REGINFO_SENTINEL
1123 };
1124
1125 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1126 uint64_t *value)
1127 {
1128 CPUState *cs = CPU(arm_env_get_cpu(env));
1129 uint32_t mpidr = cs->cpu_index;
1130 /* We don't support setting cluster ID ([8..11])
1131 * so these bits always RAZ.
1132 */
1133 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1134 mpidr |= (1 << 31);
1135 /* Cores which are uniprocessor (non-coherent)
1136 * but still implement the MP extensions set
1137 * bit 30. (For instance, A9UP.) However we do
1138 * not currently model any of those cores.
1139 */
1140 }
1141 *value = mpidr;
1142 return 0;
1143 }
1144
1145 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1146 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1147 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1148 REGINFO_SENTINEL
1149 };
1150
1151 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1152 {
1153 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1154 return 0;
1155 }
1156
1157 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1158 {
1159 env->cp15.c7_par_hi = value >> 32;
1160 env->cp15.c7_par = value;
1161 return 0;
1162 }
1163
1164 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1165 {
1166 env->cp15.c7_par_hi = 0;
1167 env->cp15.c7_par = 0;
1168 }
1169
1170 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1171 uint64_t *value)
1172 {
1173 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1174 return 0;
1175 }
1176
1177 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178 uint64_t value)
1179 {
1180 env->cp15.c2_base0_hi = value >> 32;
1181 env->cp15.c2_base0 = value;
1182 return 0;
1183 }
1184
1185 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186 uint64_t value)
1187 {
1188 /* Writes to the 64 bit format TTBRs may change the ASID */
1189 tlb_flush(env, 1);
1190 return ttbr064_raw_write(env, ri, value);
1191 }
1192
1193 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1194 {
1195 env->cp15.c2_base0_hi = 0;
1196 env->cp15.c2_base0 = 0;
1197 }
1198
1199 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1200 uint64_t *value)
1201 {
1202 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1203 return 0;
1204 }
1205
1206 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1207 uint64_t value)
1208 {
1209 env->cp15.c2_base1_hi = value >> 32;
1210 env->cp15.c2_base1 = value;
1211 return 0;
1212 }
1213
1214 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1215 {
1216 env->cp15.c2_base1_hi = 0;
1217 env->cp15.c2_base1 = 0;
1218 }
1219
1220 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1221 /* NOP AMAIR0/1: the override is because these clash with the rather
1222 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1223 */
1224 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1225 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1226 .resetvalue = 0 },
1227 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1228 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1229 .resetvalue = 0 },
1230 /* 64 bit access versions of the (dummy) debug registers */
1231 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1232 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1233 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1234 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1235 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1236 .access = PL1_RW, .type = ARM_CP_64BIT,
1237 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1238 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1239 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1240 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1241 .resetfn = ttbr064_reset },
1242 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1243 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1244 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1245 REGINFO_SENTINEL
1246 };
1247
1248 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1249 {
1250 env->cp15.c1_sys = value;
1251 /* ??? Lots of these bits are not implemented. */
1252 /* This may enable/disable the MMU, so do a TLB flush. */
1253 tlb_flush(env, 1);
1254 return 0;
1255 }
1256
1257 void register_cp_regs_for_features(ARMCPU *cpu)
1258 {
1259 /* Register all the coprocessor registers based on feature bits */
1260 CPUARMState *env = &cpu->env;
1261 if (arm_feature(env, ARM_FEATURE_M)) {
1262 /* M profile has no coprocessor registers */
1263 return;
1264 }
1265
1266 define_arm_cp_regs(cpu, cp_reginfo);
1267 if (arm_feature(env, ARM_FEATURE_V6)) {
1268 /* The ID registers all have impdef reset values */
1269 ARMCPRegInfo v6_idregs[] = {
1270 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1271 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1272 .resetvalue = cpu->id_pfr0 },
1273 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1274 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1275 .resetvalue = cpu->id_pfr1 },
1276 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1277 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1278 .resetvalue = cpu->id_dfr0 },
1279 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1280 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1281 .resetvalue = cpu->id_afr0 },
1282 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1283 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1284 .resetvalue = cpu->id_mmfr0 },
1285 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1286 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1287 .resetvalue = cpu->id_mmfr1 },
1288 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1289 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1290 .resetvalue = cpu->id_mmfr2 },
1291 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1292 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1293 .resetvalue = cpu->id_mmfr3 },
1294 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1295 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1296 .resetvalue = cpu->id_isar0 },
1297 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1298 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1299 .resetvalue = cpu->id_isar1 },
1300 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1301 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1302 .resetvalue = cpu->id_isar2 },
1303 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1304 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1305 .resetvalue = cpu->id_isar3 },
1306 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1307 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1308 .resetvalue = cpu->id_isar4 },
1309 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1310 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1311 .resetvalue = cpu->id_isar5 },
1312 /* 6..7 are as yet unallocated and must RAZ */
1313 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1314 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1315 .resetvalue = 0 },
1316 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1317 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1318 .resetvalue = 0 },
1319 REGINFO_SENTINEL
1320 };
1321 define_arm_cp_regs(cpu, v6_idregs);
1322 define_arm_cp_regs(cpu, v6_cp_reginfo);
1323 } else {
1324 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1325 }
1326 if (arm_feature(env, ARM_FEATURE_V6K)) {
1327 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1328 }
1329 if (arm_feature(env, ARM_FEATURE_V7)) {
1330 /* v7 performance monitor control register: same implementor
1331 * field as main ID register, and we implement no event counters.
1332 */
1333 ARMCPRegInfo pmcr = {
1334 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1335 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1336 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1337 .readfn = pmreg_read, .writefn = pmcr_write,
1338 .raw_readfn = raw_read, .raw_writefn = raw_write,
1339 };
1340 ARMCPRegInfo clidr = {
1341 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1342 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1343 };
1344 define_one_arm_cp_reg(cpu, &pmcr);
1345 define_one_arm_cp_reg(cpu, &clidr);
1346 define_arm_cp_regs(cpu, v7_cp_reginfo);
1347 } else {
1348 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1349 }
1350 if (arm_feature(env, ARM_FEATURE_MPU)) {
1351 /* These are the MPU registers prior to PMSAv6. Any new
1352 * PMSA core later than the ARM946 will require that we
1353 * implement the PMSAv6 or PMSAv7 registers, which are
1354 * completely different.
1355 */
1356 assert(!arm_feature(env, ARM_FEATURE_V6));
1357 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1358 } else {
1359 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1360 }
1361 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1362 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1363 }
1364 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1365 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1366 }
1367 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1368 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1369 }
1370 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1371 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1372 }
1373 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1374 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1375 }
1376 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1377 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1378 }
1379 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1380 define_arm_cp_regs(cpu, omap_cp_reginfo);
1381 }
1382 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1383 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1384 }
1385 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1386 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1387 }
1388 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1389 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1390 }
1391 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1392 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1393 }
1394 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1395 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1396 * be read-only (ie write causes UNDEF exception).
1397 */
1398 {
1399 ARMCPRegInfo id_cp_reginfo[] = {
1400 /* Note that the MIDR isn't a simple constant register because
1401 * of the TI925 behaviour where writes to another register can
1402 * cause the MIDR value to change.
1403 *
1404 * Unimplemented registers in the c15 0 0 0 space default to
1405 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1406 * and friends override accordingly.
1407 */
1408 { .name = "MIDR",
1409 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1410 .access = PL1_R, .resetvalue = cpu->midr,
1411 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1412 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1413 .type = ARM_CP_OVERRIDE },
1414 { .name = "CTR",
1415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1417 { .name = "TCMTR",
1418 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1419 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1420 { .name = "TLBTR",
1421 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1423 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1424 { .name = "DUMMY",
1425 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1426 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1427 { .name = "DUMMY",
1428 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1429 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1430 { .name = "DUMMY",
1431 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1432 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1433 { .name = "DUMMY",
1434 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1435 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1436 { .name = "DUMMY",
1437 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1438 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1439 REGINFO_SENTINEL
1440 };
1441 ARMCPRegInfo crn0_wi_reginfo = {
1442 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1443 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1444 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1445 };
1446 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1447 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1448 ARMCPRegInfo *r;
1449 /* Register the blanket "writes ignored" value first to cover the
1450 * whole space. Then update the specific ID registers to allow write
1451 * access, so that they ignore writes rather than causing them to
1452 * UNDEF.
1453 */
1454 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1455 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1456 r->access = PL1_RW;
1457 }
1458 }
1459 define_arm_cp_regs(cpu, id_cp_reginfo);
1460 }
1461
1462 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1463 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1464 }
1465
1466 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1467 ARMCPRegInfo auxcr = {
1468 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1469 .access = PL1_RW, .type = ARM_CP_CONST,
1470 .resetvalue = cpu->reset_auxcr
1471 };
1472 define_one_arm_cp_reg(cpu, &auxcr);
1473 }
1474
1475 /* Generic registers whose values depend on the implementation */
1476 {
1477 ARMCPRegInfo sctlr = {
1478 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1479 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1480 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1481 .raw_writefn = raw_write,
1482 };
1483 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1484 /* Normally we would always end the TB on an SCTLR write, but Linux
1485 * arch/arm/mach-pxa/sleep.S expects two instructions following
1486 * an MMU enable to execute from cache. Imitate this behaviour.
1487 */
1488 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1489 }
1490 define_one_arm_cp_reg(cpu, &sctlr);
1491 }
1492 }
1493
1494 ARMCPU *cpu_arm_init(const char *cpu_model)
1495 {
1496 ARMCPU *cpu;
1497 CPUARMState *env;
1498 ObjectClass *oc;
1499
1500 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1501 if (!oc) {
1502 return NULL;
1503 }
1504 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1505 env = &cpu->env;
1506 env->cpu_model_str = cpu_model;
1507
1508 /* TODO this should be set centrally, once possible */
1509 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1510
1511 return cpu;
1512 }
1513
1514 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1515 {
1516 CPUARMState *env = &cpu->env;
1517
1518 if (arm_feature(env, ARM_FEATURE_NEON)) {
1519 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1520 51, "arm-neon.xml", 0);
1521 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1522 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1523 35, "arm-vfp3.xml", 0);
1524 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1525 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1526 19, "arm-vfp.xml", 0);
1527 }
1528 }
1529
1530 /* Sort alphabetically by type name, except for "any". */
1531 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1532 {
1533 ObjectClass *class_a = (ObjectClass *)a;
1534 ObjectClass *class_b = (ObjectClass *)b;
1535 const char *name_a, *name_b;
1536
1537 name_a = object_class_get_name(class_a);
1538 name_b = object_class_get_name(class_b);
1539 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1540 return 1;
1541 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1542 return -1;
1543 } else {
1544 return strcmp(name_a, name_b);
1545 }
1546 }
1547
1548 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1549 {
1550 ObjectClass *oc = data;
1551 CPUListState *s = user_data;
1552 const char *typename;
1553 char *name;
1554
1555 typename = object_class_get_name(oc);
1556 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1557 (*s->cpu_fprintf)(s->file, " %s\n",
1558 name);
1559 g_free(name);
1560 }
1561
1562 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1563 {
1564 CPUListState s = {
1565 .file = f,
1566 .cpu_fprintf = cpu_fprintf,
1567 };
1568 GSList *list;
1569
1570 list = object_class_get_list(TYPE_ARM_CPU, false);
1571 list = g_slist_sort(list, arm_cpu_list_compare);
1572 (*cpu_fprintf)(f, "Available CPUs:\n");
1573 g_slist_foreach(list, arm_cpu_list_entry, &s);
1574 g_slist_free(list);
1575 }
1576
1577 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1578 const ARMCPRegInfo *r, void *opaque)
1579 {
1580 /* Define implementations of coprocessor registers.
1581 * We store these in a hashtable because typically
1582 * there are less than 150 registers in a space which
1583 * is 16*16*16*8*8 = 262144 in size.
1584 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1585 * If a register is defined twice then the second definition is
1586 * used, so this can be used to define some generic registers and
1587 * then override them with implementation specific variations.
1588 * At least one of the original and the second definition should
1589 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1590 * against accidental use.
1591 */
1592 int crm, opc1, opc2;
1593 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1594 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1595 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1596 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1597 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1598 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1599 /* 64 bit registers have only CRm and Opc1 fields */
1600 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1601 /* Check that the register definition has enough info to handle
1602 * reads and writes if they are permitted.
1603 */
1604 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1605 if (r->access & PL3_R) {
1606 assert(r->fieldoffset || r->readfn);
1607 }
1608 if (r->access & PL3_W) {
1609 assert(r->fieldoffset || r->writefn);
1610 }
1611 }
1612 /* Bad type field probably means missing sentinel at end of reg list */
1613 assert(cptype_valid(r->type));
1614 for (crm = crmmin; crm <= crmmax; crm++) {
1615 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1616 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1617 uint32_t *key = g_new(uint32_t, 1);
1618 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1619 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1620 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1621 if (opaque) {
1622 r2->opaque = opaque;
1623 }
1624 /* Make sure reginfo passed to helpers for wildcarded regs
1625 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1626 */
1627 r2->crm = crm;
1628 r2->opc1 = opc1;
1629 r2->opc2 = opc2;
1630 /* By convention, for wildcarded registers only the first
1631 * entry is used for migration; the others are marked as
1632 * NO_MIGRATE so we don't try to transfer the register
1633 * multiple times. Special registers (ie NOP/WFI) are
1634 * never migratable.
1635 */
1636 if ((r->type & ARM_CP_SPECIAL) ||
1637 ((r->crm == CP_ANY) && crm != 0) ||
1638 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1639 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1640 r2->type |= ARM_CP_NO_MIGRATE;
1641 }
1642
1643 /* Overriding of an existing definition must be explicitly
1644 * requested.
1645 */
1646 if (!(r->type & ARM_CP_OVERRIDE)) {
1647 ARMCPRegInfo *oldreg;
1648 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1649 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1650 fprintf(stderr, "Register redefined: cp=%d %d bit "
1651 "crn=%d crm=%d opc1=%d opc2=%d, "
1652 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1653 r2->crn, r2->crm, r2->opc1, r2->opc2,
1654 oldreg->name, r2->name);
1655 assert(0);
1656 }
1657 }
1658 g_hash_table_insert(cpu->cp_regs, key, r2);
1659 }
1660 }
1661 }
1662 }
1663
1664 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1665 const ARMCPRegInfo *regs, void *opaque)
1666 {
1667 /* Define a whole list of registers */
1668 const ARMCPRegInfo *r;
1669 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1670 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1671 }
1672 }
1673
1674 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1675 {
1676 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1677 }
1678
1679 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1680 uint64_t value)
1681 {
1682 /* Helper coprocessor write function for write-ignore registers */
1683 return 0;
1684 }
1685
1686 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1687 {
1688 /* Helper coprocessor write function for read-as-zero registers */
1689 *value = 0;
1690 return 0;
1691 }
1692
1693 static int bad_mode_switch(CPUARMState *env, int mode)
1694 {
1695 /* Return true if it is not valid for us to switch to
1696 * this CPU mode (ie all the UNPREDICTABLE cases in
1697 * the ARM ARM CPSRWriteByInstr pseudocode).
1698 */
1699 switch (mode) {
1700 case ARM_CPU_MODE_USR:
1701 case ARM_CPU_MODE_SYS:
1702 case ARM_CPU_MODE_SVC:
1703 case ARM_CPU_MODE_ABT:
1704 case ARM_CPU_MODE_UND:
1705 case ARM_CPU_MODE_IRQ:
1706 case ARM_CPU_MODE_FIQ:
1707 return 0;
1708 default:
1709 return 1;
1710 }
1711 }
1712
1713 uint32_t cpsr_read(CPUARMState *env)
1714 {
1715 int ZF;
1716 ZF = (env->ZF == 0);
1717 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1718 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1719 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1720 | ((env->condexec_bits & 0xfc) << 8)
1721 | (env->GE << 16);
1722 }
1723
1724 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1725 {
1726 if (mask & CPSR_NZCV) {
1727 env->ZF = (~val) & CPSR_Z;
1728 env->NF = val;
1729 env->CF = (val >> 29) & 1;
1730 env->VF = (val << 3) & 0x80000000;
1731 }
1732 if (mask & CPSR_Q)
1733 env->QF = ((val & CPSR_Q) != 0);
1734 if (mask & CPSR_T)
1735 env->thumb = ((val & CPSR_T) != 0);
1736 if (mask & CPSR_IT_0_1) {
1737 env->condexec_bits &= ~3;
1738 env->condexec_bits |= (val >> 25) & 3;
1739 }
1740 if (mask & CPSR_IT_2_7) {
1741 env->condexec_bits &= 3;
1742 env->condexec_bits |= (val >> 8) & 0xfc;
1743 }
1744 if (mask & CPSR_GE) {
1745 env->GE = (val >> 16) & 0xf;
1746 }
1747
1748 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1749 if (bad_mode_switch(env, val & CPSR_M)) {
1750 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1751 * We choose to ignore the attempt and leave the CPSR M field
1752 * untouched.
1753 */
1754 mask &= ~CPSR_M;
1755 } else {
1756 switch_mode(env, val & CPSR_M);
1757 }
1758 }
1759 mask &= ~CACHED_CPSR_BITS;
1760 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1761 }
1762
1763 /* Sign/zero extend */
1764 uint32_t HELPER(sxtb16)(uint32_t x)
1765 {
1766 uint32_t res;
1767 res = (uint16_t)(int8_t)x;
1768 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1769 return res;
1770 }
1771
1772 uint32_t HELPER(uxtb16)(uint32_t x)
1773 {
1774 uint32_t res;
1775 res = (uint16_t)(uint8_t)x;
1776 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1777 return res;
1778 }
1779
1780 uint32_t HELPER(clz)(uint32_t x)
1781 {
1782 return clz32(x);
1783 }
1784
1785 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1786 {
1787 if (den == 0)
1788 return 0;
1789 if (num == INT_MIN && den == -1)
1790 return INT_MIN;
1791 return num / den;
1792 }
1793
1794 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1795 {
1796 if (den == 0)
1797 return 0;
1798 return num / den;
1799 }
1800
1801 uint32_t HELPER(rbit)(uint32_t x)
1802 {
1803 x = ((x & 0xff000000) >> 24)
1804 | ((x & 0x00ff0000) >> 8)
1805 | ((x & 0x0000ff00) << 8)
1806 | ((x & 0x000000ff) << 24);
1807 x = ((x & 0xf0f0f0f0) >> 4)
1808 | ((x & 0x0f0f0f0f) << 4);
1809 x = ((x & 0x88888888) >> 3)
1810 | ((x & 0x44444444) >> 1)
1811 | ((x & 0x22222222) << 1)
1812 | ((x & 0x11111111) << 3);
1813 return x;
1814 }
1815
1816 #if defined(CONFIG_USER_ONLY)
1817
1818 void arm_cpu_do_interrupt(CPUState *cs)
1819 {
1820 ARMCPU *cpu = ARM_CPU(cs);
1821 CPUARMState *env = &cpu->env;
1822
1823 env->exception_index = -1;
1824 }
1825
1826 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1827 int mmu_idx)
1828 {
1829 if (rw == 2) {
1830 env->exception_index = EXCP_PREFETCH_ABORT;
1831 env->cp15.c6_insn = address;
1832 } else {
1833 env->exception_index = EXCP_DATA_ABORT;
1834 env->cp15.c6_data = address;
1835 }
1836 return 1;
1837 }
1838
1839 /* These should probably raise undefined insn exceptions. */
1840 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1841 {
1842 cpu_abort(env, "v7m_mrs %d\n", reg);
1843 }
1844
1845 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1846 {
1847 cpu_abort(env, "v7m_mrs %d\n", reg);
1848 return 0;
1849 }
1850
1851 void switch_mode(CPUARMState *env, int mode)
1852 {
1853 if (mode != ARM_CPU_MODE_USR)
1854 cpu_abort(env, "Tried to switch out of user mode\n");
1855 }
1856
1857 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1858 {
1859 cpu_abort(env, "banked r13 write\n");
1860 }
1861
1862 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1863 {
1864 cpu_abort(env, "banked r13 read\n");
1865 return 0;
1866 }
1867
1868 #else
1869
1870 /* Map CPU modes onto saved register banks. */
1871 int bank_number(int mode)
1872 {
1873 switch (mode) {
1874 case ARM_CPU_MODE_USR:
1875 case ARM_CPU_MODE_SYS:
1876 return 0;
1877 case ARM_CPU_MODE_SVC:
1878 return 1;
1879 case ARM_CPU_MODE_ABT:
1880 return 2;
1881 case ARM_CPU_MODE_UND:
1882 return 3;
1883 case ARM_CPU_MODE_IRQ:
1884 return 4;
1885 case ARM_CPU_MODE_FIQ:
1886 return 5;
1887 }
1888 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1889 }
1890
1891 void switch_mode(CPUARMState *env, int mode)
1892 {
1893 int old_mode;
1894 int i;
1895
1896 old_mode = env->uncached_cpsr & CPSR_M;
1897 if (mode == old_mode)
1898 return;
1899
1900 if (old_mode == ARM_CPU_MODE_FIQ) {
1901 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1902 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1903 } else if (mode == ARM_CPU_MODE_FIQ) {
1904 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1905 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1906 }
1907
1908 i = bank_number(old_mode);
1909 env->banked_r13[i] = env->regs[13];
1910 env->banked_r14[i] = env->regs[14];
1911 env->banked_spsr[i] = env->spsr;
1912
1913 i = bank_number(mode);
1914 env->regs[13] = env->banked_r13[i];
1915 env->regs[14] = env->banked_r14[i];
1916 env->spsr = env->banked_spsr[i];
1917 }
1918
1919 static void v7m_push(CPUARMState *env, uint32_t val)
1920 {
1921 env->regs[13] -= 4;
1922 stl_phys(env->regs[13], val);
1923 }
1924
1925 static uint32_t v7m_pop(CPUARMState *env)
1926 {
1927 uint32_t val;
1928 val = ldl_phys(env->regs[13]);
1929 env->regs[13] += 4;
1930 return val;
1931 }
1932
1933 /* Switch to V7M main or process stack pointer. */
1934 static void switch_v7m_sp(CPUARMState *env, int process)
1935 {
1936 uint32_t tmp;
1937 if (env->v7m.current_sp != process) {
1938 tmp = env->v7m.other_sp;
1939 env->v7m.other_sp = env->regs[13];
1940 env->regs[13] = tmp;
1941 env->v7m.current_sp = process;
1942 }
1943 }
1944
1945 static void do_v7m_exception_exit(CPUARMState *env)
1946 {
1947 uint32_t type;
1948 uint32_t xpsr;
1949
1950 type = env->regs[15];
1951 if (env->v7m.exception != 0)
1952 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1953
1954 /* Switch to the target stack. */
1955 switch_v7m_sp(env, (type & 4) != 0);
1956 /* Pop registers. */
1957 env->regs[0] = v7m_pop(env);
1958 env->regs[1] = v7m_pop(env);
1959 env->regs[2] = v7m_pop(env);
1960 env->regs[3] = v7m_pop(env);
1961 env->regs[12] = v7m_pop(env);
1962 env->regs[14] = v7m_pop(env);
1963 env->regs[15] = v7m_pop(env);
1964 xpsr = v7m_pop(env);
1965 xpsr_write(env, xpsr, 0xfffffdff);
1966 /* Undo stack alignment. */
1967 if (xpsr & 0x200)
1968 env->regs[13] |= 4;
1969 /* ??? The exception return type specifies Thread/Handler mode. However
1970 this is also implied by the xPSR value. Not sure what to do
1971 if there is a mismatch. */
1972 /* ??? Likewise for mismatches between the CONTROL register and the stack
1973 pointer. */
1974 }
1975
1976 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1977 {
1978 ARMCPU *cpu = ARM_CPU(cs);
1979 CPUARMState *env = &cpu->env;
1980 uint32_t xpsr = xpsr_read(env);
1981 uint32_t lr;
1982 uint32_t addr;
1983
1984 lr = 0xfffffff1;
1985 if (env->v7m.current_sp)
1986 lr |= 4;
1987 if (env->v7m.exception == 0)
1988 lr |= 8;
1989
1990 /* For exceptions we just mark as pending on the NVIC, and let that
1991 handle it. */
1992 /* TODO: Need to escalate if the current priority is higher than the
1993 one we're raising. */
1994 switch (env->exception_index) {
1995 case EXCP_UDEF:
1996 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1997 return;
1998 case EXCP_SWI:
1999 /* The PC already points to the next instruction. */
2000 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2001 return;
2002 case EXCP_PREFETCH_ABORT:
2003 case EXCP_DATA_ABORT:
2004 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2005 return;
2006 case EXCP_BKPT:
2007 if (semihosting_enabled) {
2008 int nr;
2009 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2010 if (nr == 0xab) {
2011 env->regs[15] += 2;
2012 env->regs[0] = do_arm_semihosting(env);
2013 return;
2014 }
2015 }
2016 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2017 return;
2018 case EXCP_IRQ:
2019 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2020 break;
2021 case EXCP_EXCEPTION_EXIT:
2022 do_v7m_exception_exit(env);
2023 return;
2024 default:
2025 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2026 return; /* Never happens. Keep compiler happy. */
2027 }
2028
2029 /* Align stack pointer. */
2030 /* ??? Should only do this if Configuration Control Register
2031 STACKALIGN bit is set. */
2032 if (env->regs[13] & 4) {
2033 env->regs[13] -= 4;
2034 xpsr |= 0x200;
2035 }
2036 /* Switch to the handler mode. */
2037 v7m_push(env, xpsr);
2038 v7m_push(env, env->regs[15]);
2039 v7m_push(env, env->regs[14]);
2040 v7m_push(env, env->regs[12]);
2041 v7m_push(env, env->regs[3]);
2042 v7m_push(env, env->regs[2]);
2043 v7m_push(env, env->regs[1]);
2044 v7m_push(env, env->regs[0]);
2045 switch_v7m_sp(env, 0);
2046 /* Clear IT bits */
2047 env->condexec_bits = 0;
2048 env->regs[14] = lr;
2049 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2050 env->regs[15] = addr & 0xfffffffe;
2051 env->thumb = addr & 1;
2052 }
2053
2054 /* Handle a CPU exception. */
2055 void arm_cpu_do_interrupt(CPUState *cs)
2056 {
2057 ARMCPU *cpu = ARM_CPU(cs);
2058 CPUARMState *env = &cpu->env;
2059 uint32_t addr;
2060 uint32_t mask;
2061 int new_mode;
2062 uint32_t offset;
2063
2064 assert(!IS_M(env));
2065
2066 /* TODO: Vectored interrupt controller. */
2067 switch (env->exception_index) {
2068 case EXCP_UDEF:
2069 new_mode = ARM_CPU_MODE_UND;
2070 addr = 0x04;
2071 mask = CPSR_I;
2072 if (env->thumb)
2073 offset = 2;
2074 else
2075 offset = 4;
2076 break;
2077 case EXCP_SWI:
2078 if (semihosting_enabled) {
2079 /* Check for semihosting interrupt. */
2080 if (env->thumb) {
2081 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2082 & 0xff;
2083 } else {
2084 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2085 & 0xffffff;
2086 }
2087 /* Only intercept calls from privileged modes, to provide some
2088 semblance of security. */
2089 if (((mask == 0x123456 && !env->thumb)
2090 || (mask == 0xab && env->thumb))
2091 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2092 env->regs[0] = do_arm_semihosting(env);
2093 return;
2094 }
2095 }
2096 new_mode = ARM_CPU_MODE_SVC;
2097 addr = 0x08;
2098 mask = CPSR_I;
2099 /* The PC already points to the next instruction. */
2100 offset = 0;
2101 break;
2102 case EXCP_BKPT:
2103 /* See if this is a semihosting syscall. */
2104 if (env->thumb && semihosting_enabled) {
2105 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2106 if (mask == 0xab
2107 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2108 env->regs[15] += 2;
2109 env->regs[0] = do_arm_semihosting(env);
2110 return;
2111 }
2112 }
2113 env->cp15.c5_insn = 2;
2114 /* Fall through to prefetch abort. */
2115 case EXCP_PREFETCH_ABORT:
2116 new_mode = ARM_CPU_MODE_ABT;
2117 addr = 0x0c;
2118 mask = CPSR_A | CPSR_I;
2119 offset = 4;
2120 break;
2121 case EXCP_DATA_ABORT:
2122 new_mode = ARM_CPU_MODE_ABT;
2123 addr = 0x10;
2124 mask = CPSR_A | CPSR_I;
2125 offset = 8;
2126 break;
2127 case EXCP_IRQ:
2128 new_mode = ARM_CPU_MODE_IRQ;
2129 addr = 0x18;
2130 /* Disable IRQ and imprecise data aborts. */
2131 mask = CPSR_A | CPSR_I;
2132 offset = 4;
2133 break;
2134 case EXCP_FIQ:
2135 new_mode = ARM_CPU_MODE_FIQ;
2136 addr = 0x1c;
2137 /* Disable FIQ, IRQ and imprecise data aborts. */
2138 mask = CPSR_A | CPSR_I | CPSR_F;
2139 offset = 4;
2140 break;
2141 default:
2142 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2143 return; /* Never happens. Keep compiler happy. */
2144 }
2145 /* High vectors. */
2146 if (env->cp15.c1_sys & (1 << 13)) {
2147 addr += 0xffff0000;
2148 }
2149 switch_mode (env, new_mode);
2150 env->spsr = cpsr_read(env);
2151 /* Clear IT bits. */
2152 env->condexec_bits = 0;
2153 /* Switch to the new mode, and to the correct instruction set. */
2154 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2155 env->uncached_cpsr |= mask;
2156 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2157 * and we should just guard the thumb mode on V4 */
2158 if (arm_feature(env, ARM_FEATURE_V4T)) {
2159 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2160 }
2161 env->regs[14] = env->regs[15] + offset;
2162 env->regs[15] = addr;
2163 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2164 }
2165
2166 /* Check section/page access permissions.
2167 Returns the page protection flags, or zero if the access is not
2168 permitted. */
2169 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2170 int access_type, int is_user)
2171 {
2172 int prot_ro;
2173
2174 if (domain_prot == 3) {
2175 return PAGE_READ | PAGE_WRITE;
2176 }
2177
2178 if (access_type == 1)
2179 prot_ro = 0;
2180 else
2181 prot_ro = PAGE_READ;
2182
2183 switch (ap) {
2184 case 0:
2185 if (access_type == 1)
2186 return 0;
2187 switch ((env->cp15.c1_sys >> 8) & 3) {
2188 case 1:
2189 return is_user ? 0 : PAGE_READ;
2190 case 2:
2191 return PAGE_READ;
2192 default:
2193 return 0;
2194 }
2195 case 1:
2196 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2197 case 2:
2198 if (is_user)
2199 return prot_ro;
2200 else
2201 return PAGE_READ | PAGE_WRITE;
2202 case 3:
2203 return PAGE_READ | PAGE_WRITE;
2204 case 4: /* Reserved. */
2205 return 0;
2206 case 5:
2207 return is_user ? 0 : prot_ro;
2208 case 6:
2209 return prot_ro;
2210 case 7:
2211 if (!arm_feature (env, ARM_FEATURE_V6K))
2212 return 0;
2213 return prot_ro;
2214 default:
2215 abort();
2216 }
2217 }
2218
2219 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2220 {
2221 uint32_t table;
2222
2223 if (address & env->cp15.c2_mask)
2224 table = env->cp15.c2_base1 & 0xffffc000;
2225 else
2226 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2227
2228 table |= (address >> 18) & 0x3ffc;
2229 return table;
2230 }
2231
2232 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2233 int is_user, hwaddr *phys_ptr,
2234 int *prot, target_ulong *page_size)
2235 {
2236 int code;
2237 uint32_t table;
2238 uint32_t desc;
2239 int type;
2240 int ap;
2241 int domain;
2242 int domain_prot;
2243 hwaddr phys_addr;
2244
2245 /* Pagetable walk. */
2246 /* Lookup l1 descriptor. */
2247 table = get_level1_table_address(env, address);
2248 desc = ldl_phys(table);
2249 type = (desc & 3);
2250 domain = (desc >> 5) & 0x0f;
2251 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2252 if (type == 0) {
2253 /* Section translation fault. */
2254 code = 5;
2255 goto do_fault;
2256 }
2257 if (domain_prot == 0 || domain_prot == 2) {
2258 if (type == 2)
2259 code = 9; /* Section domain fault. */
2260 else
2261 code = 11; /* Page domain fault. */
2262 goto do_fault;
2263 }
2264 if (type == 2) {
2265 /* 1Mb section. */
2266 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2267 ap = (desc >> 10) & 3;
2268 code = 13;
2269 *page_size = 1024 * 1024;
2270 } else {
2271 /* Lookup l2 entry. */
2272 if (type == 1) {
2273 /* Coarse pagetable. */
2274 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2275 } else {
2276 /* Fine pagetable. */
2277 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2278 }
2279 desc = ldl_phys(table);
2280 switch (desc & 3) {
2281 case 0: /* Page translation fault. */
2282 code = 7;
2283 goto do_fault;
2284 case 1: /* 64k page. */
2285 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2286 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2287 *page_size = 0x10000;
2288 break;
2289 case 2: /* 4k page. */
2290 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2291 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2292 *page_size = 0x1000;
2293 break;
2294 case 3: /* 1k page. */
2295 if (type == 1) {
2296 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2297 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2298 } else {
2299 /* Page translation fault. */
2300 code = 7;
2301 goto do_fault;
2302 }
2303 } else {
2304 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2305 }
2306 ap = (desc >> 4) & 3;
2307 *page_size = 0x400;
2308 break;
2309 default:
2310 /* Never happens, but compiler isn't smart enough to tell. */
2311 abort();
2312 }
2313 code = 15;
2314 }
2315 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2316 if (!*prot) {
2317 /* Access permission fault. */
2318 goto do_fault;
2319 }
2320 *prot |= PAGE_EXEC;
2321 *phys_ptr = phys_addr;
2322 return 0;
2323 do_fault:
2324 return code | (domain << 4);
2325 }
2326
2327 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2328 int is_user, hwaddr *phys_ptr,
2329 int *prot, target_ulong *page_size)
2330 {
2331 int code;
2332 uint32_t table;
2333 uint32_t desc;
2334 uint32_t xn;
2335 uint32_t pxn = 0;
2336 int type;
2337 int ap;
2338 int domain = 0;
2339 int domain_prot;
2340 hwaddr phys_addr;
2341
2342 /* Pagetable walk. */
2343 /* Lookup l1 descriptor. */
2344 table = get_level1_table_address(env, address);
2345 desc = ldl_phys(table);
2346 type = (desc & 3);
2347 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2348 /* Section translation fault, or attempt to use the encoding
2349 * which is Reserved on implementations without PXN.
2350 */
2351 code = 5;
2352 goto do_fault;
2353 }
2354 if ((type == 1) || !(desc & (1 << 18))) {
2355 /* Page or Section. */
2356 domain = (desc >> 5) & 0x0f;
2357 }
2358 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2359 if (domain_prot == 0 || domain_prot == 2) {
2360 if (type != 1) {
2361 code = 9; /* Section domain fault. */
2362 } else {
2363 code = 11; /* Page domain fault. */
2364 }
2365 goto do_fault;
2366 }
2367 if (type != 1) {
2368 if (desc & (1 << 18)) {
2369 /* Supersection. */
2370 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2371 *page_size = 0x1000000;
2372 } else {
2373 /* Section. */
2374 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2375 *page_size = 0x100000;
2376 }
2377 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2378 xn = desc & (1 << 4);
2379 pxn = desc & 1;
2380 code = 13;
2381 } else {
2382 if (arm_feature(env, ARM_FEATURE_PXN)) {
2383 pxn = (desc >> 2) & 1;
2384 }
2385 /* Lookup l2 entry. */
2386 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2387 desc = ldl_phys(table);
2388 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2389 switch (desc & 3) {
2390 case 0: /* Page translation fault. */
2391 code = 7;
2392 goto do_fault;
2393 case 1: /* 64k page. */
2394 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2395 xn = desc & (1 << 15);
2396 *page_size = 0x10000;
2397 break;
2398 case 2: case 3: /* 4k page. */
2399 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2400 xn = desc & 1;
2401 *page_size = 0x1000;
2402 break;
2403 default:
2404 /* Never happens, but compiler isn't smart enough to tell. */
2405 abort();
2406 }
2407 code = 15;
2408 }
2409 if (domain_prot == 3) {
2410 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2411 } else {
2412 if (pxn && !is_user) {
2413 xn = 1;
2414 }
2415 if (xn && access_type == 2)
2416 goto do_fault;
2417
2418 /* The simplified model uses AP[0] as an access control bit. */
2419 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2420 /* Access flag fault. */
2421 code = (code == 15) ? 6 : 3;
2422 goto do_fault;
2423 }
2424 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2425 if (!*prot) {
2426 /* Access permission fault. */
2427 goto do_fault;
2428 }
2429 if (!xn) {
2430 *prot |= PAGE_EXEC;
2431 }
2432 }
2433 *phys_ptr = phys_addr;
2434 return 0;
2435 do_fault:
2436 return code | (domain << 4);
2437 }
2438
2439 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2440 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2441 */
2442 typedef enum {
2443 translation_fault = 1,
2444 access_fault = 2,
2445 permission_fault = 3,
2446 } MMUFaultType;
2447
2448 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2449 int access_type, int is_user,
2450 hwaddr *phys_ptr, int *prot,
2451 target_ulong *page_size_ptr)
2452 {
2453 /* Read an LPAE long-descriptor translation table. */
2454 MMUFaultType fault_type = translation_fault;
2455 uint32_t level = 1;
2456 uint32_t epd;
2457 uint32_t tsz;
2458 uint64_t ttbr;
2459 int ttbr_select;
2460 int n;
2461 hwaddr descaddr;
2462 uint32_t tableattrs;
2463 target_ulong page_size;
2464 uint32_t attrs;
2465
2466 /* Determine whether this address is in the region controlled by
2467 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2468 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2469 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2470 */
2471 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2472 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2473 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2474 /* there is a ttbr0 region and we are in it (high bits all zero) */
2475 ttbr_select = 0;
2476 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2477 /* there is a ttbr1 region and we are in it (high bits all one) */
2478 ttbr_select = 1;
2479 } else if (!t0sz) {
2480 /* ttbr0 region is "everything not in the ttbr1 region" */
2481 ttbr_select = 0;
2482 } else if (!t1sz) {
2483 /* ttbr1 region is "everything not in the ttbr0 region" */
2484 ttbr_select = 1;
2485 } else {
2486 /* in the gap between the two regions, this is a Translation fault */
2487 fault_type = translation_fault;
2488 goto do_fault;
2489 }
2490
2491 /* Note that QEMU ignores shareability and cacheability attributes,
2492 * so we don't need to do anything with the SH, ORGN, IRGN fields
2493 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2494 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2495 * implement any ASID-like capability so we can ignore it (instead
2496 * we will always flush the TLB any time the ASID is changed).
2497 */
2498 if (ttbr_select == 0) {
2499 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2500 epd = extract32(env->cp15.c2_control, 7, 1);
2501 tsz = t0sz;
2502 } else {
2503 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2504 epd = extract32(env->cp15.c2_control, 23, 1);
2505 tsz = t1sz;
2506 }
2507
2508 if (epd) {
2509 /* Translation table walk disabled => Translation fault on TLB miss */
2510 goto do_fault;
2511 }
2512
2513 /* If the region is small enough we will skip straight to a 2nd level
2514 * lookup. This affects the number of bits of the address used in
2515 * combination with the TTBR to find the first descriptor. ('n' here
2516 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2517 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2518 */
2519 if (tsz > 1) {
2520 level = 2;
2521 n = 14 - tsz;
2522 } else {
2523 n = 5 - tsz;
2524 }
2525
2526 /* Clear the vaddr bits which aren't part of the within-region address,
2527 * so that we don't have to special case things when calculating the
2528 * first descriptor address.
2529 */
2530 address &= (0xffffffffU >> tsz);
2531
2532 /* Now we can extract the actual base address from the TTBR */
2533 descaddr = extract64(ttbr, 0, 40);
2534 descaddr &= ~((1ULL << n) - 1);
2535
2536 tableattrs = 0;
2537 for (;;) {
2538 uint64_t descriptor;
2539
2540 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2541 descriptor = ldq_phys(descaddr);
2542 if (!(descriptor & 1) ||
2543 (!(descriptor & 2) && (level == 3))) {
2544 /* Invalid, or the Reserved level 3 encoding */
2545 goto do_fault;
2546 }
2547 descaddr = descriptor & 0xfffffff000ULL;
2548
2549 if ((descriptor & 2) && (level < 3)) {
2550 /* Table entry. The top five bits are attributes which may
2551 * propagate down through lower levels of the table (and
2552 * which are all arranged so that 0 means "no effect", so
2553 * we can gather them up by ORing in the bits at each level).
2554 */
2555 tableattrs |= extract64(descriptor, 59, 5);
2556 level++;
2557 continue;
2558 }
2559 /* Block entry at level 1 or 2, or page entry at level 3.
2560 * These are basically the same thing, although the number
2561 * of bits we pull in from the vaddr varies.
2562 */
2563 page_size = (1 << (39 - (9 * level)));
2564 descaddr |= (address & (page_size - 1));
2565 /* Extract attributes from the descriptor and merge with table attrs */
2566 attrs = extract64(descriptor, 2, 10)
2567 | (extract64(descriptor, 52, 12) << 10);
2568 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2569 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2570 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2571 * means "force PL1 access only", which means forcing AP[1] to 0.
2572 */
2573 if (extract32(tableattrs, 2, 1)) {
2574 attrs &= ~(1 << 4);
2575 }
2576 /* Since we're always in the Non-secure state, NSTable is ignored. */
2577 break;
2578 }
2579 /* Here descaddr is the final physical address, and attributes
2580 * are all in attrs.
2581 */
2582 fault_type = access_fault;
2583 if ((attrs & (1 << 8)) == 0) {
2584 /* Access flag */
2585 goto do_fault;
2586 }
2587 fault_type = permission_fault;
2588 if (is_user && !(attrs & (1 << 4))) {
2589 /* Unprivileged access not enabled */
2590 goto do_fault;
2591 }
2592 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2593 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2594 /* XN or PXN */
2595 if (access_type == 2) {
2596 goto do_fault;
2597 }
2598 *prot &= ~PAGE_EXEC;
2599 }
2600 if (attrs & (1 << 5)) {
2601 /* Write access forbidden */
2602 if (access_type == 1) {
2603 goto do_fault;
2604 }
2605 *prot &= ~PAGE_WRITE;
2606 }
2607
2608 *phys_ptr = descaddr;
2609 *page_size_ptr = page_size;
2610 return 0;
2611
2612 do_fault:
2613 /* Long-descriptor format IFSR/DFSR value */
2614 return (1 << 9) | (fault_type << 2) | level;
2615 }
2616
2617 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2618 int access_type, int is_user,
2619 hwaddr *phys_ptr, int *prot)
2620 {
2621 int n;
2622 uint32_t mask;
2623 uint32_t base;
2624
2625 *phys_ptr = address;
2626 for (n = 7; n >= 0; n--) {
2627 base = env->cp15.c6_region[n];
2628 if ((base & 1) == 0)
2629 continue;
2630 mask = 1 << ((base >> 1) & 0x1f);
2631 /* Keep this shift separate from the above to avoid an
2632 (undefined) << 32. */
2633 mask = (mask << 1) - 1;
2634 if (((base ^ address) & ~mask) == 0)
2635 break;
2636 }
2637 if (n < 0)
2638 return 2;
2639
2640 if (access_type == 2) {
2641 mask = env->cp15.c5_insn;
2642 } else {
2643 mask = env->cp15.c5_data;
2644 }
2645 mask = (mask >> (n * 4)) & 0xf;
2646 switch (mask) {
2647 case 0:
2648 return 1;
2649 case 1:
2650 if (is_user)
2651 return 1;
2652 *prot = PAGE_READ | PAGE_WRITE;
2653 break;
2654 case 2:
2655 *prot = PAGE_READ;
2656 if (!is_user)
2657 *prot |= PAGE_WRITE;
2658 break;
2659 case 3:
2660 *prot = PAGE_READ | PAGE_WRITE;
2661 break;
2662 case 5:
2663 if (is_user)
2664 return 1;
2665 *prot = PAGE_READ;
2666 break;
2667 case 6:
2668 *prot = PAGE_READ;
2669 break;
2670 default:
2671 /* Bad permission. */
2672 return 1;
2673 }
2674 *prot |= PAGE_EXEC;
2675 return 0;
2676 }
2677
2678 /* get_phys_addr - get the physical address for this virtual address
2679 *
2680 * Find the physical address corresponding to the given virtual address,
2681 * by doing a translation table walk on MMU based systems or using the
2682 * MPU state on MPU based systems.
2683 *
2684 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2685 * prot and page_size are not filled in, and the return value provides
2686 * information on why the translation aborted, in the format of a
2687 * DFSR/IFSR fault register, with the following caveats:
2688 * * we honour the short vs long DFSR format differences.
2689 * * the WnR bit is never set (the caller must do this).
2690 * * for MPU based systems we don't bother to return a full FSR format
2691 * value.
2692 *
2693 * @env: CPUARMState
2694 * @address: virtual address to get physical address for
2695 * @access_type: 0 for read, 1 for write, 2 for execute
2696 * @is_user: 0 for privileged access, 1 for user
2697 * @phys_ptr: set to the physical address corresponding to the virtual address
2698 * @prot: set to the permissions for the page containing phys_ptr
2699 * @page_size: set to the size of the page containing phys_ptr
2700 */
2701 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2702 int access_type, int is_user,
2703 hwaddr *phys_ptr, int *prot,
2704 target_ulong *page_size)
2705 {
2706 /* Fast Context Switch Extension. */
2707 if (address < 0x02000000)
2708 address += env->cp15.c13_fcse;
2709
2710 if ((env->cp15.c1_sys & 1) == 0) {
2711 /* MMU/MPU disabled. */
2712 *phys_ptr = address;
2713 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2714 *page_size = TARGET_PAGE_SIZE;
2715 return 0;
2716 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2717 *page_size = TARGET_PAGE_SIZE;
2718 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2719 prot);
2720 } else if (extended_addresses_enabled(env)) {
2721 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2722 prot, page_size);
2723 } else if (env->cp15.c1_sys & (1 << 23)) {
2724 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2725 prot, page_size);
2726 } else {
2727 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2728 prot, page_size);
2729 }
2730 }
2731
2732 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2733 int access_type, int mmu_idx)
2734 {
2735 hwaddr phys_addr;
2736 target_ulong page_size;
2737 int prot;
2738 int ret, is_user;
2739
2740 is_user = mmu_idx == MMU_USER_IDX;
2741 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2742 &page_size);
2743 if (ret == 0) {
2744 /* Map a single [sub]page. */
2745 phys_addr &= ~(hwaddr)0x3ff;
2746 address &= ~(uint32_t)0x3ff;
2747 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2748 return 0;
2749 }
2750
2751 if (access_type == 2) {
2752 env->cp15.c5_insn = ret;
2753 env->cp15.c6_insn = address;
2754 env->exception_index = EXCP_PREFETCH_ABORT;
2755 } else {
2756 env->cp15.c5_data = ret;
2757 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2758 env->cp15.c5_data |= (1 << 11);
2759 env->cp15.c6_data = address;
2760 env->exception_index = EXCP_DATA_ABORT;
2761 }
2762 return 1;
2763 }
2764
2765 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2766 {
2767 hwaddr phys_addr;
2768 target_ulong page_size;
2769 int prot;
2770 int ret;
2771
2772 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2773
2774 if (ret != 0)
2775 return -1;
2776
2777 return phys_addr;
2778 }
2779
2780 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2781 {
2782 if ((env->uncached_cpsr & CPSR_M) == mode) {
2783 env->regs[13] = val;
2784 } else {
2785 env->banked_r13[bank_number(mode)] = val;
2786 }
2787 }
2788
2789 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2790 {
2791 if ((env->uncached_cpsr & CPSR_M) == mode) {
2792 return env->regs[13];
2793 } else {
2794 return env->banked_r13[bank_number(mode)];
2795 }
2796 }
2797
2798 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2799 {
2800 switch (reg) {
2801 case 0: /* APSR */
2802 return xpsr_read(env) & 0xf8000000;
2803 case 1: /* IAPSR */
2804 return xpsr_read(env) & 0xf80001ff;
2805 case 2: /* EAPSR */
2806 return xpsr_read(env) & 0xff00fc00;
2807 case 3: /* xPSR */
2808 return xpsr_read(env) & 0xff00fdff;
2809 case 5: /* IPSR */
2810 return xpsr_read(env) & 0x000001ff;
2811 case 6: /* EPSR */
2812 return xpsr_read(env) & 0x0700fc00;
2813 case 7: /* IEPSR */
2814 return xpsr_read(env) & 0x0700edff;
2815 case 8: /* MSP */
2816 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2817 case 9: /* PSP */
2818 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2819 case 16: /* PRIMASK */
2820 return (env->uncached_cpsr & CPSR_I) != 0;
2821 case 17: /* BASEPRI */
2822 case 18: /* BASEPRI_MAX */
2823 return env->v7m.basepri;
2824 case 19: /* FAULTMASK */
2825 return (env->uncached_cpsr & CPSR_F) != 0;
2826 case 20: /* CONTROL */
2827 return env->v7m.control;
2828 default:
2829 /* ??? For debugging only. */
2830 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2831 return 0;
2832 }
2833 }
2834
2835 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2836 {
2837 switch (reg) {
2838 case 0: /* APSR */
2839 xpsr_write(env, val, 0xf8000000);
2840 break;
2841 case 1: /* IAPSR */
2842 xpsr_write(env, val, 0xf8000000);
2843 break;
2844 case 2: /* EAPSR */
2845 xpsr_write(env, val, 0xfe00fc00);
2846 break;
2847 case 3: /* xPSR */
2848 xpsr_write(env, val, 0xfe00fc00);
2849 break;
2850 case 5: /* IPSR */
2851 /* IPSR bits are readonly. */
2852 break;
2853 case 6: /* EPSR */
2854 xpsr_write(env, val, 0x0600fc00);
2855 break;
2856 case 7: /* IEPSR */
2857 xpsr_write(env, val, 0x0600fc00);
2858 break;
2859 case 8: /* MSP */
2860 if (env->v7m.current_sp)
2861 env->v7m.other_sp = val;
2862 else
2863 env->regs[13] = val;
2864 break;
2865 case 9: /* PSP */
2866 if (env->v7m.current_sp)
2867 env->regs[13] = val;
2868 else
2869 env->v7m.other_sp = val;
2870 break;
2871 case 16: /* PRIMASK */
2872 if (val & 1)
2873 env->uncached_cpsr |= CPSR_I;
2874 else
2875 env->uncached_cpsr &= ~CPSR_I;
2876 break;
2877 case 17: /* BASEPRI */
2878 env->v7m.basepri = val & 0xff;
2879 break;
2880 case 18: /* BASEPRI_MAX */
2881 val &= 0xff;
2882 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2883 env->v7m.basepri = val;
2884 break;
2885 case 19: /* FAULTMASK */
2886 if (val & 1)
2887 env->uncached_cpsr |= CPSR_F;
2888 else
2889 env->uncached_cpsr &= ~CPSR_F;
2890 break;
2891 case 20: /* CONTROL */
2892 env->v7m.control = val & 3;
2893 switch_v7m_sp(env, (val & 2) != 0);
2894 break;
2895 default:
2896 /* ??? For debugging only. */
2897 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2898 return;
2899 }
2900 }
2901
2902 #endif
2903
2904 /* Note that signed overflow is undefined in C. The following routines are
2905 careful to use unsigned types where modulo arithmetic is required.
2906 Failure to do so _will_ break on newer gcc. */
2907
2908 /* Signed saturating arithmetic. */
2909
2910 /* Perform 16-bit signed saturating addition. */
2911 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2912 {
2913 uint16_t res;
2914
2915 res = a + b;
2916 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2917 if (a & 0x8000)
2918 res = 0x8000;
2919 else
2920 res = 0x7fff;
2921 }
2922 return res;
2923 }
2924
2925 /* Perform 8-bit signed saturating addition. */
2926 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2927 {
2928 uint8_t res;
2929
2930 res = a + b;
2931 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2932 if (a & 0x80)
2933 res = 0x80;
2934 else
2935 res = 0x7f;
2936 }
2937 return res;
2938 }
2939
2940 /* Perform 16-bit signed saturating subtraction. */
2941 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2942 {
2943 uint16_t res;
2944
2945 res = a - b;
2946 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2947 if (a & 0x8000)
2948 res = 0x8000;
2949 else
2950 res = 0x7fff;
2951 }
2952 return res;
2953 }
2954
2955 /* Perform 8-bit signed saturating subtraction. */
2956 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2957 {
2958 uint8_t res;
2959
2960 res = a - b;
2961 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2962 if (a & 0x80)
2963 res = 0x80;
2964 else
2965 res = 0x7f;
2966 }
2967 return res;
2968 }
2969
2970 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2971 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2972 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2973 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2974 #define PFX q
2975
2976 #include "op_addsub.h"
2977
2978 /* Unsigned saturating arithmetic. */
2979 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2980 {
2981 uint16_t res;
2982 res = a + b;
2983 if (res < a)
2984 res = 0xffff;
2985 return res;
2986 }
2987
2988 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2989 {
2990 if (a > b)
2991 return a - b;
2992 else
2993 return 0;
2994 }
2995
2996 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2997 {
2998 uint8_t res;
2999 res = a + b;
3000 if (res < a)
3001 res = 0xff;
3002 return res;
3003 }
3004
3005 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3006 {
3007 if (a > b)
3008 return a - b;
3009 else
3010 return 0;
3011 }
3012
3013 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3014 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3015 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3016 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3017 #define PFX uq
3018
3019 #include "op_addsub.h"
3020
3021 /* Signed modulo arithmetic. */
3022 #define SARITH16(a, b, n, op) do { \
3023 int32_t sum; \
3024 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3025 RESULT(sum, n, 16); \
3026 if (sum >= 0) \
3027 ge |= 3 << (n * 2); \
3028 } while(0)
3029
3030 #define SARITH8(a, b, n, op) do { \
3031 int32_t sum; \
3032 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3033 RESULT(sum, n, 8); \
3034 if (sum >= 0) \
3035 ge |= 1 << n; \
3036 } while(0)
3037
3038
3039 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3040 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3041 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3042 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3043 #define PFX s
3044 #define ARITH_GE
3045
3046 #include "op_addsub.h"
3047
3048 /* Unsigned modulo arithmetic. */
3049 #define ADD16(a, b, n) do { \
3050 uint32_t sum; \
3051 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3052 RESULT(sum, n, 16); \
3053 if ((sum >> 16) == 1) \
3054 ge |= 3 << (n * 2); \
3055 } while(0)
3056
3057 #define ADD8(a, b, n) do { \
3058 uint32_t sum; \
3059 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3060 RESULT(sum, n, 8); \
3061 if ((sum >> 8) == 1) \
3062 ge |= 1 << n; \
3063 } while(0)
3064
3065 #define SUB16(a, b, n) do { \
3066 uint32_t sum; \
3067 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3068 RESULT(sum, n, 16); \
3069 if ((sum >> 16) == 0) \
3070 ge |= 3 << (n * 2); \
3071 } while(0)
3072
3073 #define SUB8(a, b, n) do { \
3074 uint32_t sum; \
3075 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3076 RESULT(sum, n, 8); \
3077 if ((sum >> 8) == 0) \
3078 ge |= 1 << n; \
3079 } while(0)
3080
3081 #define PFX u
3082 #define ARITH_GE
3083
3084 #include "op_addsub.h"
3085
3086 /* Halved signed arithmetic. */
3087 #define ADD16(a, b, n) \
3088 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3089 #define SUB16(a, b, n) \
3090 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3091 #define ADD8(a, b, n) \
3092 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3093 #define SUB8(a, b, n) \
3094 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3095 #define PFX sh
3096
3097 #include "op_addsub.h"
3098
3099 /* Halved unsigned arithmetic. */
3100 #define ADD16(a, b, n) \
3101 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3102 #define SUB16(a, b, n) \
3103 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3104 #define ADD8(a, b, n) \
3105 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3106 #define SUB8(a, b, n) \
3107 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3108 #define PFX uh
3109
3110 #include "op_addsub.h"
3111
3112 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3113 {
3114 if (a > b)
3115 return a - b;
3116 else
3117 return b - a;
3118 }
3119
3120 /* Unsigned sum of absolute byte differences. */
3121 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3122 {
3123 uint32_t sum;
3124 sum = do_usad(a, b);
3125 sum += do_usad(a >> 8, b >> 8);
3126 sum += do_usad(a >> 16, b >>16);
3127 sum += do_usad(a >> 24, b >> 24);
3128 return sum;
3129 }
3130
3131 /* For ARMv6 SEL instruction. */
3132 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3133 {
3134 uint32_t mask;
3135
3136 mask = 0;
3137 if (flags & 1)
3138 mask |= 0xff;
3139 if (flags & 2)
3140 mask |= 0xff00;
3141 if (flags & 4)
3142 mask |= 0xff0000;
3143 if (flags & 8)
3144 mask |= 0xff000000;
3145 return (a & mask) | (b & ~mask);
3146 }
3147
3148 /* VFP support. We follow the convention used for VFP instructions:
3149 Single precision routines have a "s" suffix, double precision a
3150 "d" suffix. */
3151
3152 /* Convert host exception flags to vfp form. */
3153 static inline int vfp_exceptbits_from_host(int host_bits)
3154 {
3155 int target_bits = 0;
3156
3157 if (host_bits & float_flag_invalid)
3158 target_bits |= 1;
3159 if (host_bits & float_flag_divbyzero)
3160 target_bits |= 2;
3161 if (host_bits & float_flag_overflow)
3162 target_bits |= 4;
3163 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3164 target_bits |= 8;
3165 if (host_bits & float_flag_inexact)
3166 target_bits |= 0x10;
3167 if (host_bits & float_flag_input_denormal)
3168 target_bits |= 0x80;
3169 return target_bits;
3170 }
3171
3172 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3173 {
3174 int i;
3175 uint32_t fpscr;
3176
3177 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3178 | (env->vfp.vec_len << 16)
3179 | (env->vfp.vec_stride << 20);
3180 i = get_float_exception_flags(&env->vfp.fp_status);
3181 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3182 fpscr |= vfp_exceptbits_from_host(i);
3183 return fpscr;
3184 }
3185
3186 uint32_t vfp_get_fpscr(CPUARMState *env)
3187 {
3188 return HELPER(vfp_get_fpscr)(env);
3189 }
3190
3191 /* Convert vfp exception flags to target form. */
3192 static inline int vfp_exceptbits_to_host(int target_bits)
3193 {
3194 int host_bits = 0;
3195
3196 if (target_bits & 1)
3197 host_bits |= float_flag_invalid;
3198 if (target_bits & 2)
3199 host_bits |= float_flag_divbyzero;
3200 if (target_bits & 4)
3201 host_bits |= float_flag_overflow;
3202 if (target_bits & 8)
3203 host_bits |= float_flag_underflow;
3204 if (target_bits & 0x10)
3205 host_bits |= float_flag_inexact;
3206 if (target_bits & 0x80)
3207 host_bits |= float_flag_input_denormal;
3208 return host_bits;
3209 }
3210
3211 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3212 {
3213 int i;
3214 uint32_t changed;
3215
3216 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3217 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3218 env->vfp.vec_len = (val >> 16) & 7;
3219 env->vfp.vec_stride = (val >> 20) & 3;
3220
3221 changed ^= val;
3222 if (changed & (3 << 22)) {
3223 i = (val >> 22) & 3;
3224 switch (i) {
3225 case 0:
3226 i = float_round_nearest_even;
3227 break;
3228 case 1:
3229 i = float_round_up;
3230 break;
3231 case 2:
3232 i = float_round_down;
3233 break;
3234 case 3:
3235 i = float_round_to_zero;
3236 break;
3237 }
3238 set_float_rounding_mode(i, &env->vfp.fp_status);
3239 }
3240 if (changed & (1 << 24)) {
3241 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3242 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3243 }
3244 if (changed & (1 << 25))
3245 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3246
3247 i = vfp_exceptbits_to_host(val);
3248 set_float_exception_flags(i, &env->vfp.fp_status);
3249 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3250 }
3251
3252 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3253 {
3254 HELPER(vfp_set_fpscr)(env, val);
3255 }
3256
3257 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3258
3259 #define VFP_BINOP(name) \
3260 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3261 { \
3262 float_status *fpst = fpstp; \
3263 return float32_ ## name(a, b, fpst); \
3264 } \
3265 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3266 { \
3267 float_status *fpst = fpstp; \
3268 return float64_ ## name(a, b, fpst); \
3269 }
3270 VFP_BINOP(add)
3271 VFP_BINOP(sub)
3272 VFP_BINOP(mul)
3273 VFP_BINOP(div)
3274 #undef VFP_BINOP
3275
3276 float32 VFP_HELPER(neg, s)(float32 a)
3277 {
3278 return float32_chs(a);
3279 }
3280
3281 float64 VFP_HELPER(neg, d)(float64 a)
3282 {
3283 return float64_chs(a);
3284 }
3285
3286 float32 VFP_HELPER(abs, s)(float32 a)
3287 {
3288 return float32_abs(a);
3289 }
3290
3291 float64 VFP_HELPER(abs, d)(float64 a)
3292 {
3293 return float64_abs(a);
3294 }
3295
3296 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3297 {
3298 return float32_sqrt(a, &env->vfp.fp_status);
3299 }
3300
3301 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3302 {
3303 return float64_sqrt(a, &env->vfp.fp_status);
3304 }
3305
3306 /* XXX: check quiet/signaling case */
3307 #define DO_VFP_cmp(p, type) \
3308 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3309 { \
3310 uint32_t flags; \
3311 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3312 case 0: flags = 0x6; break; \
3313 case -1: flags = 0x8; break; \
3314 case 1: flags = 0x2; break; \
3315 default: case 2: flags = 0x3; break; \
3316 } \
3317 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3318 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3319 } \
3320 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3321 { \
3322 uint32_t flags; \
3323 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3324 case 0: flags = 0x6; break; \
3325 case -1: flags = 0x8; break; \
3326 case 1: flags = 0x2; break; \
3327 default: case 2: flags = 0x3; break; \
3328 } \
3329 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3330 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3331 }
3332 DO_VFP_cmp(s, float32)
3333 DO_VFP_cmp(d, float64)
3334 #undef DO_VFP_cmp
3335
3336 /* Integer to float and float to integer conversions */
3337
3338 #define CONV_ITOF(name, fsz, sign) \
3339 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3340 { \
3341 float_status *fpst = fpstp; \
3342 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3343 }
3344
3345 #define CONV_FTOI(name, fsz, sign, round) \
3346 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3347 { \
3348 float_status *fpst = fpstp; \
3349 if (float##fsz##_is_any_nan(x)) { \
3350 float_raise(float_flag_invalid, fpst); \
3351 return 0; \
3352 } \
3353 return float##fsz##_to_##sign##int32##round(x, fpst); \
3354 }
3355
3356 #define FLOAT_CONVS(name, p, fsz, sign) \
3357 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3358 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3359 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3360
3361 FLOAT_CONVS(si, s, 32, )
3362 FLOAT_CONVS(si, d, 64, )
3363 FLOAT_CONVS(ui, s, 32, u)
3364 FLOAT_CONVS(ui, d, 64, u)
3365
3366 #undef CONV_ITOF
3367 #undef CONV_FTOI
3368 #undef FLOAT_CONVS
3369
3370 /* floating point conversion */
3371 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3372 {
3373 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3374 /* ARM requires that S<->D conversion of any kind of NaN generates
3375 * a quiet NaN by forcing the most significant frac bit to 1.
3376 */
3377 return float64_maybe_silence_nan(r);
3378 }
3379
3380 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3381 {
3382 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3383 /* ARM requires that S<->D conversion of any kind of NaN generates
3384 * a quiet NaN by forcing the most significant frac bit to 1.
3385 */
3386 return float32_maybe_silence_nan(r);
3387 }
3388
3389 /* VFP3 fixed point conversion. */
3390 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3391 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3392 void *fpstp) \
3393 { \
3394 float_status *fpst = fpstp; \
3395 float##fsz tmp; \
3396 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3397 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3398 } \
3399 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3400 void *fpstp) \
3401 { \
3402 float_status *fpst = fpstp; \
3403 float##fsz tmp; \
3404 if (float##fsz##_is_any_nan(x)) { \
3405 float_raise(float_flag_invalid, fpst); \
3406 return 0; \
3407 } \
3408 tmp = float##fsz##_scalbn(x, shift, fpst); \
3409 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3410 }
3411
3412 VFP_CONV_FIX(sh, d, 64, int16, )
3413 VFP_CONV_FIX(sl, d, 64, int32, )
3414 VFP_CONV_FIX(uh, d, 64, uint16, u)
3415 VFP_CONV_FIX(ul, d, 64, uint32, u)
3416 VFP_CONV_FIX(sh, s, 32, int16, )
3417 VFP_CONV_FIX(sl, s, 32, int32, )
3418 VFP_CONV_FIX(uh, s, 32, uint16, u)
3419 VFP_CONV_FIX(ul, s, 32, uint32, u)
3420 #undef VFP_CONV_FIX
3421
3422 /* Half precision conversions. */
3423 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3424 {
3425 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3426 float32 r = float16_to_float32(make_float16(a), ieee, s);
3427 if (ieee) {
3428 return float32_maybe_silence_nan(r);
3429 }
3430 return r;
3431 }
3432
3433 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3434 {
3435 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3436 float16 r = float32_to_float16(a, ieee, s);
3437 if (ieee) {
3438 r = float16_maybe_silence_nan(r);
3439 }
3440 return float16_val(r);
3441 }
3442
3443 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3444 {
3445 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3446 }
3447
3448 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3449 {
3450 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3451 }
3452
3453 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3454 {
3455 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3456 }
3457
3458 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3459 {
3460 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3461 }
3462
3463 #define float32_two make_float32(0x40000000)
3464 #define float32_three make_float32(0x40400000)
3465 #define float32_one_point_five make_float32(0x3fc00000)
3466
3467 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3468 {
3469 float_status *s = &env->vfp.standard_fp_status;
3470 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3471 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3472 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3473 float_raise(float_flag_input_denormal, s);
3474 }
3475 return float32_two;
3476 }
3477 return float32_sub(float32_two, float32_mul(a, b, s), s);
3478 }
3479
3480 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3481 {
3482 float_status *s = &env->vfp.standard_fp_status;
3483 float32 product;
3484 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3485 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3486 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3487 float_raise(float_flag_input_denormal, s);
3488 }
3489 return float32_one_point_five;
3490 }
3491 product = float32_mul(a, b, s);
3492 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3493 }
3494
3495 /* NEON helpers. */
3496
3497 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3498 * int->float conversions at run-time. */
3499 #define float64_256 make_float64(0x4070000000000000LL)
3500 #define float64_512 make_float64(0x4080000000000000LL)
3501
3502 /* The algorithm that must be used to calculate the estimate
3503 * is specified by the ARM ARM.
3504 */
3505 static float64 recip_estimate(float64 a, CPUARMState *env)
3506 {
3507 /* These calculations mustn't set any fp exception flags,
3508 * so we use a local copy of the fp_status.
3509 */
3510 float_status dummy_status = env->vfp.standard_fp_status;
3511 float_status *s = &dummy_status;
3512 /* q = (int)(a * 512.0) */
3513 float64 q = float64_mul(float64_512, a, s);
3514 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3515
3516 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3517 q = int64_to_float64(q_int, s);
3518 q = float64_add(q, float64_half, s);
3519 q = float64_div(q, float64_512, s);
3520 q = float64_div(float64_one, q, s);
3521
3522 /* s = (int)(256.0 * r + 0.5) */
3523 q = float64_mul(q, float64_256, s);
3524 q = float64_add(q, float64_half, s);
3525 q_int = float64_to_int64_round_to_zero(q, s);
3526
3527 /* return (double)s / 256.0 */
3528 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3529 }
3530
3531 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3532 {
3533 float_status *s = &env->vfp.standard_fp_status;
3534 float64 f64;
3535 uint32_t val32 = float32_val(a);
3536
3537 int result_exp;
3538 int a_exp = (val32 & 0x7f800000) >> 23;
3539 int sign = val32 & 0x80000000;
3540
3541 if (float32_is_any_nan(a)) {
3542 if (float32_is_signaling_nan(a)) {
3543 float_raise(float_flag_invalid, s);
3544 }
3545 return float32_default_nan;
3546 } else if (float32_is_infinity(a)) {
3547 return float32_set_sign(float32_zero, float32_is_neg(a));
3548 } else if (float32_is_zero_or_denormal(a)) {
3549 if (!float32_is_zero(a)) {
3550 float_raise(float_flag_input_denormal, s);
3551 }
3552 float_raise(float_flag_divbyzero, s);
3553 return float32_set_sign(float32_infinity, float32_is_neg(a));
3554 } else if (a_exp >= 253) {
3555 float_raise(float_flag_underflow, s);
3556 return float32_set_sign(float32_zero, float32_is_neg(a));
3557 }
3558
3559 f64 = make_float64((0x3feULL << 52)
3560 | ((int64_t)(val32 & 0x7fffff) << 29));
3561
3562 result_exp = 253 - a_exp;
3563
3564 f64 = recip_estimate(f64, env);
3565
3566 val32 = sign
3567 | ((result_exp & 0xff) << 23)
3568 | ((float64_val(f64) >> 29) & 0x7fffff);
3569 return make_float32(val32);
3570 }
3571
3572 /* The algorithm that must be used to calculate the estimate
3573 * is specified by the ARM ARM.
3574 */
3575 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3576 {
3577 /* These calculations mustn't set any fp exception flags,
3578 * so we use a local copy of the fp_status.
3579 */
3580 float_status dummy_status = env->vfp.standard_fp_status;
3581 float_status *s = &dummy_status;
3582 float64 q;
3583 int64_t q_int;
3584
3585 if (float64_lt(a, float64_half, s)) {
3586 /* range 0.25 <= a < 0.5 */
3587
3588 /* a in units of 1/512 rounded down */
3589 /* q0 = (int)(a * 512.0); */
3590 q = float64_mul(float64_512, a, s);
3591 q_int = float64_to_int64_round_to_zero(q, s);
3592
3593 /* reciprocal root r */
3594 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3595 q = int64_to_float64(q_int, s);
3596 q = float64_add(q, float64_half, s);
3597 q = float64_div(q, float64_512, s);
3598 q = float64_sqrt(q, s);
3599 q = float64_div(float64_one, q, s);
3600 } else {
3601 /* range 0.5 <= a < 1.0 */
3602
3603 /* a in units of 1/256 rounded down */
3604 /* q1 = (int)(a * 256.0); */
3605 q = float64_mul(float64_256, a, s);
3606 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3607
3608 /* reciprocal root r */
3609 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3610 q = int64_to_float64(q_int, s);
3611 q = float64_add(q, float64_half, s);
3612 q = float64_div(q, float64_256, s);
3613 q = float64_sqrt(q, s);
3614 q = float64_div(float64_one, q, s);
3615 }
3616 /* r in units of 1/256 rounded to nearest */
3617 /* s = (int)(256.0 * r + 0.5); */
3618
3619 q = float64_mul(q, float64_256,s );
3620 q = float64_add(q, float64_half, s);
3621 q_int = float64_to_int64_round_to_zero(q, s);
3622
3623 /* return (double)s / 256.0;*/
3624 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3625 }
3626
3627 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3628 {
3629 float_status *s = &env->vfp.standard_fp_status;
3630 int result_exp;
3631 float64 f64;
3632 uint32_t val;
3633 uint64_t val64;
3634
3635 val = float32_val(a);
3636
3637 if (float32_is_any_nan(a)) {
3638 if (float32_is_signaling_nan(a)) {
3639 float_raise(float_flag_invalid, s);
3640 }
3641 return float32_default_nan;
3642 } else if (float32_is_zero_or_denormal(a)) {
3643 if (!float32_is_zero(a)) {
3644 float_raise(float_flag_input_denormal, s);
3645 }
3646 float_raise(float_flag_divbyzero, s);
3647 return float32_set_sign(float32_infinity, float32_is_neg(a));
3648 } else if (float32_is_neg(a)) {
3649 float_raise(float_flag_invalid, s);
3650 return float32_default_nan;
3651 } else if (float32_is_infinity(a)) {
3652 return float32_zero;
3653 }
3654
3655 /* Normalize to a double-precision value between 0.25 and 1.0,
3656 * preserving the parity of the exponent. */
3657 if ((val & 0x800000) == 0) {
3658 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3659 | (0x3feULL << 52)
3660 | ((uint64_t)(val & 0x7fffff) << 29));
3661 } else {
3662 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3663 | (0x3fdULL << 52)
3664 | ((uint64_t)(val & 0x7fffff) << 29));
3665 }
3666
3667 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3668
3669 f64 = recip_sqrt_estimate(f64, env);
3670
3671 val64 = float64_val(f64);
3672
3673 val = ((result_exp & 0xff) << 23)
3674 | ((val64 >> 29) & 0x7fffff);
3675 return make_float32(val);
3676 }
3677
3678 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3679 {
3680 float64 f64;
3681
3682 if ((a & 0x80000000) == 0) {
3683 return 0xffffffff;
3684 }
3685
3686 f64 = make_float64((0x3feULL << 52)
3687 | ((int64_t)(a & 0x7fffffff) << 21));
3688
3689 f64 = recip_estimate (f64, env);
3690
3691 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3692 }
3693
3694 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3695 {
3696 float64 f64;
3697
3698 if ((a & 0xc0000000) == 0) {
3699 return 0xffffffff;
3700 }
3701
3702 if (a & 0x80000000) {
3703 f64 = make_float64((0x3feULL << 52)
3704 | ((uint64_t)(a & 0x7fffffff) << 21));
3705 } else { /* bits 31-30 == '01' */
3706 f64 = make_float64((0x3fdULL << 52)
3707 | ((uint64_t)(a & 0x3fffffff) << 22));
3708 }
3709
3710 f64 = recip_sqrt_estimate(f64, env);
3711
3712 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3713 }
3714
3715 /* VFPv4 fused multiply-accumulate */
3716 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3717 {
3718 float_status *fpst = fpstp;
3719 return float32_muladd(a, b, c, 0, fpst);
3720 }
3721
3722 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3723 {
3724 float_status *fpst = fpstp;
3725 return float64_muladd(a, b, c, 0, fpst);
3726 }