]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
target-arm: Convert TLS registers
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
6
7 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
8 {
9 int nregs;
10
11 /* VFP data registers are always little-endian. */
12 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
13 if (reg < nregs) {
14 stfq_le_p(buf, env->vfp.regs[reg]);
15 return 8;
16 }
17 if (arm_feature(env, ARM_FEATURE_NEON)) {
18 /* Aliases for Q regs. */
19 nregs += 16;
20 if (reg < nregs) {
21 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
22 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
23 return 16;
24 }
25 }
26 switch (reg - nregs) {
27 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
28 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
29 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
30 }
31 return 0;
32 }
33
34 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
35 {
36 int nregs;
37
38 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
39 if (reg < nregs) {
40 env->vfp.regs[reg] = ldfq_le_p(buf);
41 return 8;
42 }
43 if (arm_feature(env, ARM_FEATURE_NEON)) {
44 nregs += 16;
45 if (reg < nregs) {
46 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
47 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
48 return 16;
49 }
50 }
51 switch (reg - nregs) {
52 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
53 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
54 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
55 }
56 return 0;
57 }
58
59 static const ARMCPRegInfo cp_reginfo[] = {
60 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
61 * version" bits will read as a reserved value, which should cause
62 * Linux to not try to use the debug hardware.
63 */
64 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
65 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
66 REGINFO_SENTINEL
67 };
68
69 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
70 /* Not all pre-v6 cores implemented this WFI, so this is slightly
71 * over-broad.
72 */
73 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
74 .access = PL1_W, .type = ARM_CP_WFI },
75 REGINFO_SENTINEL
76 };
77
78 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
79 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
80 * is UNPREDICTABLE; we choose to NOP as most implementations do).
81 */
82 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
83 .access = PL1_W, .type = ARM_CP_WFI },
84 REGINFO_SENTINEL
85 };
86
87 static const ARMCPRegInfo v6_cp_reginfo[] = {
88 /* prefetch by MVA in v6, NOP in v7 */
89 { .name = "MVA_prefetch",
90 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
91 .access = PL1_W, .type = ARM_CP_NOP },
92 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
93 .access = PL0_W, .type = ARM_CP_NOP },
94 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
95 .access = PL0_W, .type = ARM_CP_NOP },
96 { .name = "ISB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
97 .access = PL0_W, .type = ARM_CP_NOP },
98 REGINFO_SENTINEL
99 };
100
101 static const ARMCPRegInfo v7_cp_reginfo[] = {
102 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
103 * debug components
104 */
105 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
106 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
107 { .name = "DBGDRAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
108 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
109 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
110 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
111 .access = PL1_W, .type = ARM_CP_NOP },
112 REGINFO_SENTINEL
113 };
114
115 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
116 {
117 value &= 1;
118 env->teecr = value;
119 return 0;
120 }
121
122 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
123 uint64_t *value)
124 {
125 /* This is a helper function because the user access rights
126 * depend on the value of the TEECR.
127 */
128 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
129 return EXCP_UDEF;
130 }
131 *value = env->teehbr;
132 return 0;
133 }
134
135 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
136 uint64_t value)
137 {
138 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
139 return EXCP_UDEF;
140 }
141 env->teehbr = value;
142 return 0;
143 }
144
145 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
146 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
148 .resetvalue = 0,
149 .writefn = teecr_write },
150 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
151 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
152 .resetvalue = 0,
153 .readfn = teehbr_read, .writefn = teehbr_write },
154 REGINFO_SENTINEL
155 };
156
157 static const ARMCPRegInfo v6k_cp_reginfo[] = {
158 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
159 .access = PL0_RW,
160 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
161 .resetvalue = 0 },
162 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
163 .access = PL0_R|PL1_W,
164 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
165 .resetvalue = 0 },
166 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
167 .access = PL1_RW,
168 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
169 .resetvalue = 0 },
170 REGINFO_SENTINEL
171 };
172
173 void register_cp_regs_for_features(ARMCPU *cpu)
174 {
175 /* Register all the coprocessor registers based on feature bits */
176 CPUARMState *env = &cpu->env;
177 if (arm_feature(env, ARM_FEATURE_M)) {
178 /* M profile has no coprocessor registers */
179 return;
180 }
181
182 define_arm_cp_regs(cpu, cp_reginfo);
183 if (arm_feature(env, ARM_FEATURE_V6)) {
184 define_arm_cp_regs(cpu, v6_cp_reginfo);
185 } else {
186 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
187 }
188 if (arm_feature(env, ARM_FEATURE_V6K)) {
189 define_arm_cp_regs(cpu, v6k_cp_reginfo);
190 }
191 if (arm_feature(env, ARM_FEATURE_V7)) {
192 define_arm_cp_regs(cpu, v7_cp_reginfo);
193 } else {
194 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
195 }
196 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
197 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
198 }
199 }
200
201 ARMCPU *cpu_arm_init(const char *cpu_model)
202 {
203 ARMCPU *cpu;
204 CPUARMState *env;
205 static int inited = 0;
206
207 if (!object_class_by_name(cpu_model)) {
208 return NULL;
209 }
210 cpu = ARM_CPU(object_new(cpu_model));
211 env = &cpu->env;
212 env->cpu_model_str = cpu_model;
213 arm_cpu_realize(cpu);
214
215 if (tcg_enabled() && !inited) {
216 inited = 1;
217 arm_translate_init();
218 }
219
220 cpu_reset(CPU(cpu));
221 if (arm_feature(env, ARM_FEATURE_NEON)) {
222 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
223 51, "arm-neon.xml", 0);
224 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
225 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
226 35, "arm-vfp3.xml", 0);
227 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
228 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
229 19, "arm-vfp.xml", 0);
230 }
231 qemu_init_vcpu(env);
232 return cpu;
233 }
234
235 typedef struct ARMCPUListState {
236 fprintf_function cpu_fprintf;
237 FILE *file;
238 } ARMCPUListState;
239
240 /* Sort alphabetically by type name, except for "any". */
241 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
242 {
243 ObjectClass *class_a = (ObjectClass *)a;
244 ObjectClass *class_b = (ObjectClass *)b;
245 const char *name_a, *name_b;
246
247 name_a = object_class_get_name(class_a);
248 name_b = object_class_get_name(class_b);
249 if (strcmp(name_a, "any") == 0) {
250 return 1;
251 } else if (strcmp(name_b, "any") == 0) {
252 return -1;
253 } else {
254 return strcmp(name_a, name_b);
255 }
256 }
257
258 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
259 {
260 ObjectClass *oc = data;
261 ARMCPUListState *s = user_data;
262
263 (*s->cpu_fprintf)(s->file, " %s\n",
264 object_class_get_name(oc));
265 }
266
267 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
268 {
269 ARMCPUListState s = {
270 .file = f,
271 .cpu_fprintf = cpu_fprintf,
272 };
273 GSList *list;
274
275 list = object_class_get_list(TYPE_ARM_CPU, false);
276 list = g_slist_sort(list, arm_cpu_list_compare);
277 (*cpu_fprintf)(f, "Available CPUs:\n");
278 g_slist_foreach(list, arm_cpu_list_entry, &s);
279 g_slist_free(list);
280 }
281
282 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
283 const ARMCPRegInfo *r, void *opaque)
284 {
285 /* Define implementations of coprocessor registers.
286 * We store these in a hashtable because typically
287 * there are less than 150 registers in a space which
288 * is 16*16*16*8*8 = 262144 in size.
289 * Wildcarding is supported for the crm, opc1 and opc2 fields.
290 * If a register is defined twice then the second definition is
291 * used, so this can be used to define some generic registers and
292 * then override them with implementation specific variations.
293 * At least one of the original and the second definition should
294 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
295 * against accidental use.
296 */
297 int crm, opc1, opc2;
298 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
299 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
300 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
301 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
302 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
303 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
304 /* 64 bit registers have only CRm and Opc1 fields */
305 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
306 /* Check that the register definition has enough info to handle
307 * reads and writes if they are permitted.
308 */
309 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
310 if (r->access & PL3_R) {
311 assert(r->fieldoffset || r->readfn);
312 }
313 if (r->access & PL3_W) {
314 assert(r->fieldoffset || r->writefn);
315 }
316 }
317 /* Bad type field probably means missing sentinel at end of reg list */
318 assert(cptype_valid(r->type));
319 for (crm = crmmin; crm <= crmmax; crm++) {
320 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
321 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
322 uint32_t *key = g_new(uint32_t, 1);
323 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
324 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
325 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
326 r2->opaque = opaque;
327 /* Make sure reginfo passed to helpers for wildcarded regs
328 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
329 */
330 r2->crm = crm;
331 r2->opc1 = opc1;
332 r2->opc2 = opc2;
333 /* Overriding of an existing definition must be explicitly
334 * requested.
335 */
336 if (!(r->type & ARM_CP_OVERRIDE)) {
337 ARMCPRegInfo *oldreg;
338 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
339 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
340 fprintf(stderr, "Register redefined: cp=%d %d bit "
341 "crn=%d crm=%d opc1=%d opc2=%d, "
342 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
343 r2->crn, r2->crm, r2->opc1, r2->opc2,
344 oldreg->name, r2->name);
345 assert(0);
346 }
347 }
348 g_hash_table_insert(cpu->cp_regs, key, r2);
349 }
350 }
351 }
352 }
353
354 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
355 const ARMCPRegInfo *regs, void *opaque)
356 {
357 /* Define a whole list of registers */
358 const ARMCPRegInfo *r;
359 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
360 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
361 }
362 }
363
364 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
365 {
366 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
367 }
368
369 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
370 uint64_t value)
371 {
372 /* Helper coprocessor write function for write-ignore registers */
373 return 0;
374 }
375
376 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
377 {
378 /* Helper coprocessor write function for read-as-zero registers */
379 *value = 0;
380 return 0;
381 }
382
383 static int bad_mode_switch(CPUARMState *env, int mode)
384 {
385 /* Return true if it is not valid for us to switch to
386 * this CPU mode (ie all the UNPREDICTABLE cases in
387 * the ARM ARM CPSRWriteByInstr pseudocode).
388 */
389 switch (mode) {
390 case ARM_CPU_MODE_USR:
391 case ARM_CPU_MODE_SYS:
392 case ARM_CPU_MODE_SVC:
393 case ARM_CPU_MODE_ABT:
394 case ARM_CPU_MODE_UND:
395 case ARM_CPU_MODE_IRQ:
396 case ARM_CPU_MODE_FIQ:
397 return 0;
398 default:
399 return 1;
400 }
401 }
402
403 uint32_t cpsr_read(CPUARMState *env)
404 {
405 int ZF;
406 ZF = (env->ZF == 0);
407 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
408 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
409 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
410 | ((env->condexec_bits & 0xfc) << 8)
411 | (env->GE << 16);
412 }
413
414 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
415 {
416 if (mask & CPSR_NZCV) {
417 env->ZF = (~val) & CPSR_Z;
418 env->NF = val;
419 env->CF = (val >> 29) & 1;
420 env->VF = (val << 3) & 0x80000000;
421 }
422 if (mask & CPSR_Q)
423 env->QF = ((val & CPSR_Q) != 0);
424 if (mask & CPSR_T)
425 env->thumb = ((val & CPSR_T) != 0);
426 if (mask & CPSR_IT_0_1) {
427 env->condexec_bits &= ~3;
428 env->condexec_bits |= (val >> 25) & 3;
429 }
430 if (mask & CPSR_IT_2_7) {
431 env->condexec_bits &= 3;
432 env->condexec_bits |= (val >> 8) & 0xfc;
433 }
434 if (mask & CPSR_GE) {
435 env->GE = (val >> 16) & 0xf;
436 }
437
438 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
439 if (bad_mode_switch(env, val & CPSR_M)) {
440 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
441 * We choose to ignore the attempt and leave the CPSR M field
442 * untouched.
443 */
444 mask &= ~CPSR_M;
445 } else {
446 switch_mode(env, val & CPSR_M);
447 }
448 }
449 mask &= ~CACHED_CPSR_BITS;
450 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
451 }
452
453 /* Sign/zero extend */
454 uint32_t HELPER(sxtb16)(uint32_t x)
455 {
456 uint32_t res;
457 res = (uint16_t)(int8_t)x;
458 res |= (uint32_t)(int8_t)(x >> 16) << 16;
459 return res;
460 }
461
462 uint32_t HELPER(uxtb16)(uint32_t x)
463 {
464 uint32_t res;
465 res = (uint16_t)(uint8_t)x;
466 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
467 return res;
468 }
469
470 uint32_t HELPER(clz)(uint32_t x)
471 {
472 return clz32(x);
473 }
474
475 int32_t HELPER(sdiv)(int32_t num, int32_t den)
476 {
477 if (den == 0)
478 return 0;
479 if (num == INT_MIN && den == -1)
480 return INT_MIN;
481 return num / den;
482 }
483
484 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
485 {
486 if (den == 0)
487 return 0;
488 return num / den;
489 }
490
491 uint32_t HELPER(rbit)(uint32_t x)
492 {
493 x = ((x & 0xff000000) >> 24)
494 | ((x & 0x00ff0000) >> 8)
495 | ((x & 0x0000ff00) << 8)
496 | ((x & 0x000000ff) << 24);
497 x = ((x & 0xf0f0f0f0) >> 4)
498 | ((x & 0x0f0f0f0f) << 4);
499 x = ((x & 0x88888888) >> 3)
500 | ((x & 0x44444444) >> 1)
501 | ((x & 0x22222222) << 1)
502 | ((x & 0x11111111) << 3);
503 return x;
504 }
505
506 uint32_t HELPER(abs)(uint32_t x)
507 {
508 return ((int32_t)x < 0) ? -x : x;
509 }
510
511 #if defined(CONFIG_USER_ONLY)
512
513 void do_interrupt (CPUARMState *env)
514 {
515 env->exception_index = -1;
516 }
517
518 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
519 int mmu_idx)
520 {
521 if (rw == 2) {
522 env->exception_index = EXCP_PREFETCH_ABORT;
523 env->cp15.c6_insn = address;
524 } else {
525 env->exception_index = EXCP_DATA_ABORT;
526 env->cp15.c6_data = address;
527 }
528 return 1;
529 }
530
531 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
532 {
533 cpu_abort(env, "cp15 insn %08x\n", insn);
534 }
535
536 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
537 {
538 cpu_abort(env, "cp15 insn %08x\n", insn);
539 }
540
541 /* These should probably raise undefined insn exceptions. */
542 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
543 {
544 cpu_abort(env, "v7m_mrs %d\n", reg);
545 }
546
547 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
548 {
549 cpu_abort(env, "v7m_mrs %d\n", reg);
550 return 0;
551 }
552
553 void switch_mode(CPUARMState *env, int mode)
554 {
555 if (mode != ARM_CPU_MODE_USR)
556 cpu_abort(env, "Tried to switch out of user mode\n");
557 }
558
559 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
560 {
561 cpu_abort(env, "banked r13 write\n");
562 }
563
564 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
565 {
566 cpu_abort(env, "banked r13 read\n");
567 return 0;
568 }
569
570 #else
571
572 /* Map CPU modes onto saved register banks. */
573 static inline int bank_number(CPUARMState *env, int mode)
574 {
575 switch (mode) {
576 case ARM_CPU_MODE_USR:
577 case ARM_CPU_MODE_SYS:
578 return 0;
579 case ARM_CPU_MODE_SVC:
580 return 1;
581 case ARM_CPU_MODE_ABT:
582 return 2;
583 case ARM_CPU_MODE_UND:
584 return 3;
585 case ARM_CPU_MODE_IRQ:
586 return 4;
587 case ARM_CPU_MODE_FIQ:
588 return 5;
589 }
590 cpu_abort(env, "Bad mode %x\n", mode);
591 return -1;
592 }
593
594 void switch_mode(CPUARMState *env, int mode)
595 {
596 int old_mode;
597 int i;
598
599 old_mode = env->uncached_cpsr & CPSR_M;
600 if (mode == old_mode)
601 return;
602
603 if (old_mode == ARM_CPU_MODE_FIQ) {
604 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
605 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
606 } else if (mode == ARM_CPU_MODE_FIQ) {
607 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
608 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
609 }
610
611 i = bank_number(env, old_mode);
612 env->banked_r13[i] = env->regs[13];
613 env->banked_r14[i] = env->regs[14];
614 env->banked_spsr[i] = env->spsr;
615
616 i = bank_number(env, mode);
617 env->regs[13] = env->banked_r13[i];
618 env->regs[14] = env->banked_r14[i];
619 env->spsr = env->banked_spsr[i];
620 }
621
622 static void v7m_push(CPUARMState *env, uint32_t val)
623 {
624 env->regs[13] -= 4;
625 stl_phys(env->regs[13], val);
626 }
627
628 static uint32_t v7m_pop(CPUARMState *env)
629 {
630 uint32_t val;
631 val = ldl_phys(env->regs[13]);
632 env->regs[13] += 4;
633 return val;
634 }
635
636 /* Switch to V7M main or process stack pointer. */
637 static void switch_v7m_sp(CPUARMState *env, int process)
638 {
639 uint32_t tmp;
640 if (env->v7m.current_sp != process) {
641 tmp = env->v7m.other_sp;
642 env->v7m.other_sp = env->regs[13];
643 env->regs[13] = tmp;
644 env->v7m.current_sp = process;
645 }
646 }
647
648 static void do_v7m_exception_exit(CPUARMState *env)
649 {
650 uint32_t type;
651 uint32_t xpsr;
652
653 type = env->regs[15];
654 if (env->v7m.exception != 0)
655 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
656
657 /* Switch to the target stack. */
658 switch_v7m_sp(env, (type & 4) != 0);
659 /* Pop registers. */
660 env->regs[0] = v7m_pop(env);
661 env->regs[1] = v7m_pop(env);
662 env->regs[2] = v7m_pop(env);
663 env->regs[3] = v7m_pop(env);
664 env->regs[12] = v7m_pop(env);
665 env->regs[14] = v7m_pop(env);
666 env->regs[15] = v7m_pop(env);
667 xpsr = v7m_pop(env);
668 xpsr_write(env, xpsr, 0xfffffdff);
669 /* Undo stack alignment. */
670 if (xpsr & 0x200)
671 env->regs[13] |= 4;
672 /* ??? The exception return type specifies Thread/Handler mode. However
673 this is also implied by the xPSR value. Not sure what to do
674 if there is a mismatch. */
675 /* ??? Likewise for mismatches between the CONTROL register and the stack
676 pointer. */
677 }
678
679 static void do_interrupt_v7m(CPUARMState *env)
680 {
681 uint32_t xpsr = xpsr_read(env);
682 uint32_t lr;
683 uint32_t addr;
684
685 lr = 0xfffffff1;
686 if (env->v7m.current_sp)
687 lr |= 4;
688 if (env->v7m.exception == 0)
689 lr |= 8;
690
691 /* For exceptions we just mark as pending on the NVIC, and let that
692 handle it. */
693 /* TODO: Need to escalate if the current priority is higher than the
694 one we're raising. */
695 switch (env->exception_index) {
696 case EXCP_UDEF:
697 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
698 return;
699 case EXCP_SWI:
700 env->regs[15] += 2;
701 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
702 return;
703 case EXCP_PREFETCH_ABORT:
704 case EXCP_DATA_ABORT:
705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
706 return;
707 case EXCP_BKPT:
708 if (semihosting_enabled) {
709 int nr;
710 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
711 if (nr == 0xab) {
712 env->regs[15] += 2;
713 env->regs[0] = do_arm_semihosting(env);
714 return;
715 }
716 }
717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
718 return;
719 case EXCP_IRQ:
720 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
721 break;
722 case EXCP_EXCEPTION_EXIT:
723 do_v7m_exception_exit(env);
724 return;
725 default:
726 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
727 return; /* Never happens. Keep compiler happy. */
728 }
729
730 /* Align stack pointer. */
731 /* ??? Should only do this if Configuration Control Register
732 STACKALIGN bit is set. */
733 if (env->regs[13] & 4) {
734 env->regs[13] -= 4;
735 xpsr |= 0x200;
736 }
737 /* Switch to the handler mode. */
738 v7m_push(env, xpsr);
739 v7m_push(env, env->regs[15]);
740 v7m_push(env, env->regs[14]);
741 v7m_push(env, env->regs[12]);
742 v7m_push(env, env->regs[3]);
743 v7m_push(env, env->regs[2]);
744 v7m_push(env, env->regs[1]);
745 v7m_push(env, env->regs[0]);
746 switch_v7m_sp(env, 0);
747 /* Clear IT bits */
748 env->condexec_bits = 0;
749 env->regs[14] = lr;
750 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
751 env->regs[15] = addr & 0xfffffffe;
752 env->thumb = addr & 1;
753 }
754
755 /* Handle a CPU exception. */
756 void do_interrupt(CPUARMState *env)
757 {
758 uint32_t addr;
759 uint32_t mask;
760 int new_mode;
761 uint32_t offset;
762
763 if (IS_M(env)) {
764 do_interrupt_v7m(env);
765 return;
766 }
767 /* TODO: Vectored interrupt controller. */
768 switch (env->exception_index) {
769 case EXCP_UDEF:
770 new_mode = ARM_CPU_MODE_UND;
771 addr = 0x04;
772 mask = CPSR_I;
773 if (env->thumb)
774 offset = 2;
775 else
776 offset = 4;
777 break;
778 case EXCP_SWI:
779 if (semihosting_enabled) {
780 /* Check for semihosting interrupt. */
781 if (env->thumb) {
782 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
783 } else {
784 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
785 & 0xffffff;
786 }
787 /* Only intercept calls from privileged modes, to provide some
788 semblance of security. */
789 if (((mask == 0x123456 && !env->thumb)
790 || (mask == 0xab && env->thumb))
791 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
792 env->regs[0] = do_arm_semihosting(env);
793 return;
794 }
795 }
796 new_mode = ARM_CPU_MODE_SVC;
797 addr = 0x08;
798 mask = CPSR_I;
799 /* The PC already points to the next instruction. */
800 offset = 0;
801 break;
802 case EXCP_BKPT:
803 /* See if this is a semihosting syscall. */
804 if (env->thumb && semihosting_enabled) {
805 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
806 if (mask == 0xab
807 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
808 env->regs[15] += 2;
809 env->regs[0] = do_arm_semihosting(env);
810 return;
811 }
812 }
813 env->cp15.c5_insn = 2;
814 /* Fall through to prefetch abort. */
815 case EXCP_PREFETCH_ABORT:
816 new_mode = ARM_CPU_MODE_ABT;
817 addr = 0x0c;
818 mask = CPSR_A | CPSR_I;
819 offset = 4;
820 break;
821 case EXCP_DATA_ABORT:
822 new_mode = ARM_CPU_MODE_ABT;
823 addr = 0x10;
824 mask = CPSR_A | CPSR_I;
825 offset = 8;
826 break;
827 case EXCP_IRQ:
828 new_mode = ARM_CPU_MODE_IRQ;
829 addr = 0x18;
830 /* Disable IRQ and imprecise data aborts. */
831 mask = CPSR_A | CPSR_I;
832 offset = 4;
833 break;
834 case EXCP_FIQ:
835 new_mode = ARM_CPU_MODE_FIQ;
836 addr = 0x1c;
837 /* Disable FIQ, IRQ and imprecise data aborts. */
838 mask = CPSR_A | CPSR_I | CPSR_F;
839 offset = 4;
840 break;
841 default:
842 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
843 return; /* Never happens. Keep compiler happy. */
844 }
845 /* High vectors. */
846 if (env->cp15.c1_sys & (1 << 13)) {
847 addr += 0xffff0000;
848 }
849 switch_mode (env, new_mode);
850 env->spsr = cpsr_read(env);
851 /* Clear IT bits. */
852 env->condexec_bits = 0;
853 /* Switch to the new mode, and to the correct instruction set. */
854 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
855 env->uncached_cpsr |= mask;
856 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
857 * and we should just guard the thumb mode on V4 */
858 if (arm_feature(env, ARM_FEATURE_V4T)) {
859 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
860 }
861 env->regs[14] = env->regs[15] + offset;
862 env->regs[15] = addr;
863 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
864 }
865
866 /* Check section/page access permissions.
867 Returns the page protection flags, or zero if the access is not
868 permitted. */
869 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
870 int access_type, int is_user)
871 {
872 int prot_ro;
873
874 if (domain_prot == 3) {
875 return PAGE_READ | PAGE_WRITE;
876 }
877
878 if (access_type == 1)
879 prot_ro = 0;
880 else
881 prot_ro = PAGE_READ;
882
883 switch (ap) {
884 case 0:
885 if (access_type == 1)
886 return 0;
887 switch ((env->cp15.c1_sys >> 8) & 3) {
888 case 1:
889 return is_user ? 0 : PAGE_READ;
890 case 2:
891 return PAGE_READ;
892 default:
893 return 0;
894 }
895 case 1:
896 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
897 case 2:
898 if (is_user)
899 return prot_ro;
900 else
901 return PAGE_READ | PAGE_WRITE;
902 case 3:
903 return PAGE_READ | PAGE_WRITE;
904 case 4: /* Reserved. */
905 return 0;
906 case 5:
907 return is_user ? 0 : prot_ro;
908 case 6:
909 return prot_ro;
910 case 7:
911 if (!arm_feature (env, ARM_FEATURE_V6K))
912 return 0;
913 return prot_ro;
914 default:
915 abort();
916 }
917 }
918
919 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
920 {
921 uint32_t table;
922
923 if (address & env->cp15.c2_mask)
924 table = env->cp15.c2_base1 & 0xffffc000;
925 else
926 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
927
928 table |= (address >> 18) & 0x3ffc;
929 return table;
930 }
931
932 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
933 int is_user, uint32_t *phys_ptr, int *prot,
934 target_ulong *page_size)
935 {
936 int code;
937 uint32_t table;
938 uint32_t desc;
939 int type;
940 int ap;
941 int domain;
942 int domain_prot;
943 uint32_t phys_addr;
944
945 /* Pagetable walk. */
946 /* Lookup l1 descriptor. */
947 table = get_level1_table_address(env, address);
948 desc = ldl_phys(table);
949 type = (desc & 3);
950 domain = (desc >> 5) & 0x0f;
951 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
952 if (type == 0) {
953 /* Section translation fault. */
954 code = 5;
955 goto do_fault;
956 }
957 if (domain_prot == 0 || domain_prot == 2) {
958 if (type == 2)
959 code = 9; /* Section domain fault. */
960 else
961 code = 11; /* Page domain fault. */
962 goto do_fault;
963 }
964 if (type == 2) {
965 /* 1Mb section. */
966 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
967 ap = (desc >> 10) & 3;
968 code = 13;
969 *page_size = 1024 * 1024;
970 } else {
971 /* Lookup l2 entry. */
972 if (type == 1) {
973 /* Coarse pagetable. */
974 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
975 } else {
976 /* Fine pagetable. */
977 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
978 }
979 desc = ldl_phys(table);
980 switch (desc & 3) {
981 case 0: /* Page translation fault. */
982 code = 7;
983 goto do_fault;
984 case 1: /* 64k page. */
985 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
986 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
987 *page_size = 0x10000;
988 break;
989 case 2: /* 4k page. */
990 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
991 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
992 *page_size = 0x1000;
993 break;
994 case 3: /* 1k page. */
995 if (type == 1) {
996 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
997 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
998 } else {
999 /* Page translation fault. */
1000 code = 7;
1001 goto do_fault;
1002 }
1003 } else {
1004 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1005 }
1006 ap = (desc >> 4) & 3;
1007 *page_size = 0x400;
1008 break;
1009 default:
1010 /* Never happens, but compiler isn't smart enough to tell. */
1011 abort();
1012 }
1013 code = 15;
1014 }
1015 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1016 if (!*prot) {
1017 /* Access permission fault. */
1018 goto do_fault;
1019 }
1020 *prot |= PAGE_EXEC;
1021 *phys_ptr = phys_addr;
1022 return 0;
1023 do_fault:
1024 return code | (domain << 4);
1025 }
1026
1027 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
1028 int is_user, uint32_t *phys_ptr, int *prot,
1029 target_ulong *page_size)
1030 {
1031 int code;
1032 uint32_t table;
1033 uint32_t desc;
1034 uint32_t xn;
1035 int type;
1036 int ap;
1037 int domain;
1038 int domain_prot;
1039 uint32_t phys_addr;
1040
1041 /* Pagetable walk. */
1042 /* Lookup l1 descriptor. */
1043 table = get_level1_table_address(env, address);
1044 desc = ldl_phys(table);
1045 type = (desc & 3);
1046 if (type == 0) {
1047 /* Section translation fault. */
1048 code = 5;
1049 domain = 0;
1050 goto do_fault;
1051 } else if (type == 2 && (desc & (1 << 18))) {
1052 /* Supersection. */
1053 domain = 0;
1054 } else {
1055 /* Section or page. */
1056 domain = (desc >> 5) & 0x0f;
1057 }
1058 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1059 if (domain_prot == 0 || domain_prot == 2) {
1060 if (type == 2)
1061 code = 9; /* Section domain fault. */
1062 else
1063 code = 11; /* Page domain fault. */
1064 goto do_fault;
1065 }
1066 if (type == 2) {
1067 if (desc & (1 << 18)) {
1068 /* Supersection. */
1069 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1070 *page_size = 0x1000000;
1071 } else {
1072 /* Section. */
1073 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1074 *page_size = 0x100000;
1075 }
1076 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1077 xn = desc & (1 << 4);
1078 code = 13;
1079 } else {
1080 /* Lookup l2 entry. */
1081 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1082 desc = ldl_phys(table);
1083 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1084 switch (desc & 3) {
1085 case 0: /* Page translation fault. */
1086 code = 7;
1087 goto do_fault;
1088 case 1: /* 64k page. */
1089 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1090 xn = desc & (1 << 15);
1091 *page_size = 0x10000;
1092 break;
1093 case 2: case 3: /* 4k page. */
1094 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1095 xn = desc & 1;
1096 *page_size = 0x1000;
1097 break;
1098 default:
1099 /* Never happens, but compiler isn't smart enough to tell. */
1100 abort();
1101 }
1102 code = 15;
1103 }
1104 if (domain_prot == 3) {
1105 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1106 } else {
1107 if (xn && access_type == 2)
1108 goto do_fault;
1109
1110 /* The simplified model uses AP[0] as an access control bit. */
1111 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1112 /* Access flag fault. */
1113 code = (code == 15) ? 6 : 3;
1114 goto do_fault;
1115 }
1116 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1117 if (!*prot) {
1118 /* Access permission fault. */
1119 goto do_fault;
1120 }
1121 if (!xn) {
1122 *prot |= PAGE_EXEC;
1123 }
1124 }
1125 *phys_ptr = phys_addr;
1126 return 0;
1127 do_fault:
1128 return code | (domain << 4);
1129 }
1130
1131 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
1132 int is_user, uint32_t *phys_ptr, int *prot)
1133 {
1134 int n;
1135 uint32_t mask;
1136 uint32_t base;
1137
1138 *phys_ptr = address;
1139 for (n = 7; n >= 0; n--) {
1140 base = env->cp15.c6_region[n];
1141 if ((base & 1) == 0)
1142 continue;
1143 mask = 1 << ((base >> 1) & 0x1f);
1144 /* Keep this shift separate from the above to avoid an
1145 (undefined) << 32. */
1146 mask = (mask << 1) - 1;
1147 if (((base ^ address) & ~mask) == 0)
1148 break;
1149 }
1150 if (n < 0)
1151 return 2;
1152
1153 if (access_type == 2) {
1154 mask = env->cp15.c5_insn;
1155 } else {
1156 mask = env->cp15.c5_data;
1157 }
1158 mask = (mask >> (n * 4)) & 0xf;
1159 switch (mask) {
1160 case 0:
1161 return 1;
1162 case 1:
1163 if (is_user)
1164 return 1;
1165 *prot = PAGE_READ | PAGE_WRITE;
1166 break;
1167 case 2:
1168 *prot = PAGE_READ;
1169 if (!is_user)
1170 *prot |= PAGE_WRITE;
1171 break;
1172 case 3:
1173 *prot = PAGE_READ | PAGE_WRITE;
1174 break;
1175 case 5:
1176 if (is_user)
1177 return 1;
1178 *prot = PAGE_READ;
1179 break;
1180 case 6:
1181 *prot = PAGE_READ;
1182 break;
1183 default:
1184 /* Bad permission. */
1185 return 1;
1186 }
1187 *prot |= PAGE_EXEC;
1188 return 0;
1189 }
1190
1191 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
1192 int access_type, int is_user,
1193 uint32_t *phys_ptr, int *prot,
1194 target_ulong *page_size)
1195 {
1196 /* Fast Context Switch Extension. */
1197 if (address < 0x02000000)
1198 address += env->cp15.c13_fcse;
1199
1200 if ((env->cp15.c1_sys & 1) == 0) {
1201 /* MMU/MPU disabled. */
1202 *phys_ptr = address;
1203 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1204 *page_size = TARGET_PAGE_SIZE;
1205 return 0;
1206 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1207 *page_size = TARGET_PAGE_SIZE;
1208 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1209 prot);
1210 } else if (env->cp15.c1_sys & (1 << 23)) {
1211 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1212 prot, page_size);
1213 } else {
1214 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1215 prot, page_size);
1216 }
1217 }
1218
1219 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
1220 int access_type, int mmu_idx)
1221 {
1222 uint32_t phys_addr;
1223 target_ulong page_size;
1224 int prot;
1225 int ret, is_user;
1226
1227 is_user = mmu_idx == MMU_USER_IDX;
1228 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1229 &page_size);
1230 if (ret == 0) {
1231 /* Map a single [sub]page. */
1232 phys_addr &= ~(uint32_t)0x3ff;
1233 address &= ~(uint32_t)0x3ff;
1234 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1235 return 0;
1236 }
1237
1238 if (access_type == 2) {
1239 env->cp15.c5_insn = ret;
1240 env->cp15.c6_insn = address;
1241 env->exception_index = EXCP_PREFETCH_ABORT;
1242 } else {
1243 env->cp15.c5_data = ret;
1244 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1245 env->cp15.c5_data |= (1 << 11);
1246 env->cp15.c6_data = address;
1247 env->exception_index = EXCP_DATA_ABORT;
1248 }
1249 return 1;
1250 }
1251
1252 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1253 {
1254 uint32_t phys_addr;
1255 target_ulong page_size;
1256 int prot;
1257 int ret;
1258
1259 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1260
1261 if (ret != 0)
1262 return -1;
1263
1264 return phys_addr;
1265 }
1266
1267 /* Return basic MPU access permission bits. */
1268 static uint32_t simple_mpu_ap_bits(uint32_t val)
1269 {
1270 uint32_t ret;
1271 uint32_t mask;
1272 int i;
1273 ret = 0;
1274 mask = 3;
1275 for (i = 0; i < 16; i += 2) {
1276 ret |= (val >> i) & mask;
1277 mask <<= 2;
1278 }
1279 return ret;
1280 }
1281
1282 /* Pad basic MPU access permission bits to extended format. */
1283 static uint32_t extended_mpu_ap_bits(uint32_t val)
1284 {
1285 uint32_t ret;
1286 uint32_t mask;
1287 int i;
1288 ret = 0;
1289 mask = 3;
1290 for (i = 0; i < 16; i += 2) {
1291 ret |= (val & mask) << i;
1292 mask <<= 2;
1293 }
1294 return ret;
1295 }
1296
1297 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1298 {
1299 int op1;
1300 int op2;
1301 int crm;
1302
1303 op1 = (insn >> 21) & 7;
1304 op2 = (insn >> 5) & 7;
1305 crm = insn & 0xf;
1306 switch ((insn >> 16) & 0xf) {
1307 case 0:
1308 /* ID codes. */
1309 if (arm_feature(env, ARM_FEATURE_XSCALE))
1310 break;
1311 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1312 break;
1313 if (arm_feature(env, ARM_FEATURE_V7)
1314 && op1 == 2 && crm == 0 && op2 == 0) {
1315 env->cp15.c0_cssel = val & 0xf;
1316 break;
1317 }
1318 goto bad_reg;
1319 case 1: /* System configuration. */
1320 if (arm_feature(env, ARM_FEATURE_V7)
1321 && op1 == 0 && crm == 1 && op2 == 0) {
1322 env->cp15.c1_scr = val;
1323 break;
1324 }
1325 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1326 op2 = 0;
1327 switch (op2) {
1328 case 0:
1329 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1330 env->cp15.c1_sys = val;
1331 /* ??? Lots of these bits are not implemented. */
1332 /* This may enable/disable the MMU, so do a TLB flush. */
1333 tlb_flush(env, 1);
1334 break;
1335 case 1: /* Auxiliary control register. */
1336 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1337 env->cp15.c1_xscaleauxcr = val;
1338 break;
1339 }
1340 /* Not implemented. */
1341 break;
1342 case 2:
1343 if (arm_feature(env, ARM_FEATURE_XSCALE))
1344 goto bad_reg;
1345 if (env->cp15.c1_coproc != val) {
1346 env->cp15.c1_coproc = val;
1347 /* ??? Is this safe when called from within a TB? */
1348 tb_flush(env);
1349 }
1350 break;
1351 default:
1352 goto bad_reg;
1353 }
1354 break;
1355 case 2: /* MMU Page table control / MPU cache control. */
1356 if (arm_feature(env, ARM_FEATURE_MPU)) {
1357 switch (op2) {
1358 case 0:
1359 env->cp15.c2_data = val;
1360 break;
1361 case 1:
1362 env->cp15.c2_insn = val;
1363 break;
1364 default:
1365 goto bad_reg;
1366 }
1367 } else {
1368 switch (op2) {
1369 case 0:
1370 env->cp15.c2_base0 = val;
1371 break;
1372 case 1:
1373 env->cp15.c2_base1 = val;
1374 break;
1375 case 2:
1376 val &= 7;
1377 env->cp15.c2_control = val;
1378 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1379 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1380 break;
1381 default:
1382 goto bad_reg;
1383 }
1384 }
1385 break;
1386 case 3: /* MMU Domain access control / MPU write buffer control. */
1387 env->cp15.c3 = val;
1388 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1389 break;
1390 case 4: /* Reserved. */
1391 goto bad_reg;
1392 case 5: /* MMU Fault status / MPU access permission. */
1393 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1394 op2 = 0;
1395 switch (op2) {
1396 case 0:
1397 if (arm_feature(env, ARM_FEATURE_MPU))
1398 val = extended_mpu_ap_bits(val);
1399 env->cp15.c5_data = val;
1400 break;
1401 case 1:
1402 if (arm_feature(env, ARM_FEATURE_MPU))
1403 val = extended_mpu_ap_bits(val);
1404 env->cp15.c5_insn = val;
1405 break;
1406 case 2:
1407 if (!arm_feature(env, ARM_FEATURE_MPU))
1408 goto bad_reg;
1409 env->cp15.c5_data = val;
1410 break;
1411 case 3:
1412 if (!arm_feature(env, ARM_FEATURE_MPU))
1413 goto bad_reg;
1414 env->cp15.c5_insn = val;
1415 break;
1416 default:
1417 goto bad_reg;
1418 }
1419 break;
1420 case 6: /* MMU Fault address / MPU base/size. */
1421 if (arm_feature(env, ARM_FEATURE_MPU)) {
1422 if (crm >= 8)
1423 goto bad_reg;
1424 env->cp15.c6_region[crm] = val;
1425 } else {
1426 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1427 op2 = 0;
1428 switch (op2) {
1429 case 0:
1430 env->cp15.c6_data = val;
1431 break;
1432 case 1: /* ??? This is WFAR on armv6 */
1433 case 2:
1434 env->cp15.c6_insn = val;
1435 break;
1436 default:
1437 goto bad_reg;
1438 }
1439 }
1440 break;
1441 case 7: /* Cache control. */
1442 env->cp15.c15_i_max = 0x000;
1443 env->cp15.c15_i_min = 0xff0;
1444 if (op1 != 0) {
1445 goto bad_reg;
1446 }
1447 /* No cache, so nothing to do except VA->PA translations. */
1448 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1449 switch (crm) {
1450 case 4:
1451 if (arm_feature(env, ARM_FEATURE_V7)) {
1452 env->cp15.c7_par = val & 0xfffff6ff;
1453 } else {
1454 env->cp15.c7_par = val & 0xfffff1ff;
1455 }
1456 break;
1457 case 8: {
1458 uint32_t phys_addr;
1459 target_ulong page_size;
1460 int prot;
1461 int ret, is_user = op2 & 2;
1462 int access_type = op2 & 1;
1463
1464 if (op2 & 4) {
1465 /* Other states are only available with TrustZone */
1466 goto bad_reg;
1467 }
1468 ret = get_phys_addr(env, val, access_type, is_user,
1469 &phys_addr, &prot, &page_size);
1470 if (ret == 0) {
1471 /* We do not set any attribute bits in the PAR */
1472 if (page_size == (1 << 24)
1473 && arm_feature(env, ARM_FEATURE_V7)) {
1474 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1475 } else {
1476 env->cp15.c7_par = phys_addr & 0xfffff000;
1477 }
1478 } else {
1479 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1480 ((ret & (12 << 1)) >> 6) |
1481 ((ret & 0xf) << 1) | 1;
1482 }
1483 break;
1484 }
1485 }
1486 }
1487 break;
1488 case 8: /* MMU TLB control. */
1489 switch (op2) {
1490 case 0: /* Invalidate all (TLBIALL) */
1491 tlb_flush(env, 1);
1492 break;
1493 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1494 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1495 break;
1496 case 2: /* Invalidate by ASID (TLBIASID) */
1497 tlb_flush(env, val == 0);
1498 break;
1499 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1500 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1501 break;
1502 default:
1503 goto bad_reg;
1504 }
1505 break;
1506 case 9:
1507 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1508 break;
1509 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1510 break; /* Ignore ReadBuffer access */
1511 switch (crm) {
1512 case 0: /* Cache lockdown. */
1513 switch (op1) {
1514 case 0: /* L1 cache. */
1515 switch (op2) {
1516 case 0:
1517 env->cp15.c9_data = val;
1518 break;
1519 case 1:
1520 env->cp15.c9_insn = val;
1521 break;
1522 default:
1523 goto bad_reg;
1524 }
1525 break;
1526 case 1: /* L2 cache. */
1527 /* Ignore writes to L2 lockdown/auxiliary registers. */
1528 break;
1529 default:
1530 goto bad_reg;
1531 }
1532 break;
1533 case 1: /* TCM memory region registers. */
1534 /* Not implemented. */
1535 goto bad_reg;
1536 case 12: /* Performance monitor control */
1537 /* Performance monitors are implementation defined in v7,
1538 * but with an ARM recommended set of registers, which we
1539 * follow (although we don't actually implement any counters)
1540 */
1541 if (!arm_feature(env, ARM_FEATURE_V7)) {
1542 goto bad_reg;
1543 }
1544 switch (op2) {
1545 case 0: /* performance monitor control register */
1546 /* only the DP, X, D and E bits are writable */
1547 env->cp15.c9_pmcr &= ~0x39;
1548 env->cp15.c9_pmcr |= (val & 0x39);
1549 break;
1550 case 1: /* Count enable set register */
1551 val &= (1 << 31);
1552 env->cp15.c9_pmcnten |= val;
1553 break;
1554 case 2: /* Count enable clear */
1555 val &= (1 << 31);
1556 env->cp15.c9_pmcnten &= ~val;
1557 break;
1558 case 3: /* Overflow flag status */
1559 env->cp15.c9_pmovsr &= ~val;
1560 break;
1561 case 4: /* Software increment */
1562 /* RAZ/WI since we don't implement the software-count event */
1563 break;
1564 case 5: /* Event counter selection register */
1565 /* Since we don't implement any events, writing to this register
1566 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1567 */
1568 break;
1569 default:
1570 goto bad_reg;
1571 }
1572 break;
1573 case 13: /* Performance counters */
1574 if (!arm_feature(env, ARM_FEATURE_V7)) {
1575 goto bad_reg;
1576 }
1577 switch (op2) {
1578 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1579 break;
1580 case 1: /* Event type select */
1581 env->cp15.c9_pmxevtyper = val & 0xff;
1582 break;
1583 case 2: /* Event count register */
1584 /* Unimplemented (we have no events), RAZ/WI */
1585 break;
1586 default:
1587 goto bad_reg;
1588 }
1589 break;
1590 case 14: /* Performance monitor control */
1591 if (!arm_feature(env, ARM_FEATURE_V7)) {
1592 goto bad_reg;
1593 }
1594 switch (op2) {
1595 case 0: /* user enable */
1596 env->cp15.c9_pmuserenr = val & 1;
1597 /* changes access rights for cp registers, so flush tbs */
1598 tb_flush(env);
1599 break;
1600 case 1: /* interrupt enable set */
1601 /* We have no event counters so only the C bit can be changed */
1602 val &= (1 << 31);
1603 env->cp15.c9_pminten |= val;
1604 break;
1605 case 2: /* interrupt enable clear */
1606 val &= (1 << 31);
1607 env->cp15.c9_pminten &= ~val;
1608 break;
1609 }
1610 break;
1611 default:
1612 goto bad_reg;
1613 }
1614 break;
1615 case 10: /* MMU TLB lockdown. */
1616 /* ??? TLB lockdown not implemented. */
1617 break;
1618 case 12: /* Reserved. */
1619 goto bad_reg;
1620 case 13: /* Process ID. */
1621 switch (op2) {
1622 case 0:
1623 /* Unlike real hardware the qemu TLB uses virtual addresses,
1624 not modified virtual addresses, so this causes a TLB flush.
1625 */
1626 if (env->cp15.c13_fcse != val)
1627 tlb_flush(env, 1);
1628 env->cp15.c13_fcse = val;
1629 break;
1630 case 1:
1631 /* This changes the ASID, so do a TLB flush. */
1632 if (env->cp15.c13_context != val
1633 && !arm_feature(env, ARM_FEATURE_MPU))
1634 tlb_flush(env, 0);
1635 env->cp15.c13_context = val;
1636 break;
1637 default:
1638 goto bad_reg;
1639 }
1640 break;
1641 case 14: /* Generic timer */
1642 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1643 /* Dummy implementation: RAZ/WI for all */
1644 break;
1645 }
1646 goto bad_reg;
1647 case 15: /* Implementation specific. */
1648 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1649 if (op2 == 0 && crm == 1) {
1650 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1651 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1652 tb_flush(env);
1653 env->cp15.c15_cpar = val & 0x3fff;
1654 }
1655 break;
1656 }
1657 goto bad_reg;
1658 }
1659 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1660 switch (crm) {
1661 case 0:
1662 break;
1663 case 1: /* Set TI925T configuration. */
1664 env->cp15.c15_ticonfig = val & 0xe7;
1665 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1666 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1667 break;
1668 case 2: /* Set I_max. */
1669 env->cp15.c15_i_max = val;
1670 break;
1671 case 3: /* Set I_min. */
1672 env->cp15.c15_i_min = val;
1673 break;
1674 case 4: /* Set thread-ID. */
1675 env->cp15.c15_threadid = val & 0xffff;
1676 break;
1677 case 8: /* Wait-for-interrupt (deprecated). */
1678 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1679 break;
1680 default:
1681 goto bad_reg;
1682 }
1683 }
1684 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1685 switch (crm) {
1686 case 0:
1687 if ((op1 == 0) && (op2 == 0)) {
1688 env->cp15.c15_power_control = val;
1689 } else if ((op1 == 0) && (op2 == 1)) {
1690 env->cp15.c15_diagnostic = val;
1691 } else if ((op1 == 0) && (op2 == 2)) {
1692 env->cp15.c15_power_diagnostic = val;
1693 }
1694 default:
1695 break;
1696 }
1697 }
1698 break;
1699 }
1700 return;
1701 bad_reg:
1702 /* ??? For debugging only. Should raise illegal instruction exception. */
1703 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1704 (insn >> 16) & 0xf, crm, op1, op2);
1705 }
1706
1707 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1708 {
1709 int op1;
1710 int op2;
1711 int crm;
1712
1713 op1 = (insn >> 21) & 7;
1714 op2 = (insn >> 5) & 7;
1715 crm = insn & 0xf;
1716 switch ((insn >> 16) & 0xf) {
1717 case 0: /* ID codes. */
1718 switch (op1) {
1719 case 0:
1720 switch (crm) {
1721 case 0:
1722 switch (op2) {
1723 case 0: /* Device ID. */
1724 return env->cp15.c0_cpuid;
1725 case 1: /* Cache Type. */
1726 return env->cp15.c0_cachetype;
1727 case 2: /* TCM status. */
1728 return 0;
1729 case 3: /* TLB type register. */
1730 return 0; /* No lockable TLB entries. */
1731 case 5: /* MPIDR */
1732 /* The MPIDR was standardised in v7; prior to
1733 * this it was implemented only in the 11MPCore.
1734 * For all other pre-v7 cores it does not exist.
1735 */
1736 if (arm_feature(env, ARM_FEATURE_V7) ||
1737 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1738 int mpidr = env->cpu_index;
1739 /* We don't support setting cluster ID ([8..11])
1740 * so these bits always RAZ.
1741 */
1742 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1743 mpidr |= (1 << 31);
1744 /* Cores which are uniprocessor (non-coherent)
1745 * but still implement the MP extensions set
1746 * bit 30. (For instance, A9UP.) However we do
1747 * not currently model any of those cores.
1748 */
1749 }
1750 return mpidr;
1751 }
1752 /* otherwise fall through to the unimplemented-reg case */
1753 default:
1754 goto bad_reg;
1755 }
1756 case 1:
1757 if (!arm_feature(env, ARM_FEATURE_V6))
1758 goto bad_reg;
1759 return env->cp15.c0_c1[op2];
1760 case 2:
1761 if (!arm_feature(env, ARM_FEATURE_V6))
1762 goto bad_reg;
1763 return env->cp15.c0_c2[op2];
1764 case 3: case 4: case 5: case 6: case 7:
1765 return 0;
1766 default:
1767 goto bad_reg;
1768 }
1769 case 1:
1770 /* These registers aren't documented on arm11 cores. However
1771 Linux looks at them anyway. */
1772 if (!arm_feature(env, ARM_FEATURE_V6))
1773 goto bad_reg;
1774 if (crm != 0)
1775 goto bad_reg;
1776 if (!arm_feature(env, ARM_FEATURE_V7))
1777 return 0;
1778
1779 switch (op2) {
1780 case 0:
1781 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1782 case 1:
1783 return env->cp15.c0_clid;
1784 case 7:
1785 return 0;
1786 }
1787 goto bad_reg;
1788 case 2:
1789 if (op2 != 0 || crm != 0)
1790 goto bad_reg;
1791 return env->cp15.c0_cssel;
1792 default:
1793 goto bad_reg;
1794 }
1795 case 1: /* System configuration. */
1796 if (arm_feature(env, ARM_FEATURE_V7)
1797 && op1 == 0 && crm == 1 && op2 == 0) {
1798 return env->cp15.c1_scr;
1799 }
1800 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1801 op2 = 0;
1802 switch (op2) {
1803 case 0: /* Control register. */
1804 return env->cp15.c1_sys;
1805 case 1: /* Auxiliary control register. */
1806 if (arm_feature(env, ARM_FEATURE_XSCALE))
1807 return env->cp15.c1_xscaleauxcr;
1808 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1809 goto bad_reg;
1810 switch (ARM_CPUID(env)) {
1811 case ARM_CPUID_ARM1026:
1812 return 1;
1813 case ARM_CPUID_ARM1136:
1814 case ARM_CPUID_ARM1136_R2:
1815 case ARM_CPUID_ARM1176:
1816 return 7;
1817 case ARM_CPUID_ARM11MPCORE:
1818 return 1;
1819 case ARM_CPUID_CORTEXA8:
1820 return 2;
1821 case ARM_CPUID_CORTEXA9:
1822 case ARM_CPUID_CORTEXA15:
1823 return 0;
1824 default:
1825 goto bad_reg;
1826 }
1827 case 2: /* Coprocessor access register. */
1828 if (arm_feature(env, ARM_FEATURE_XSCALE))
1829 goto bad_reg;
1830 return env->cp15.c1_coproc;
1831 default:
1832 goto bad_reg;
1833 }
1834 case 2: /* MMU Page table control / MPU cache control. */
1835 if (arm_feature(env, ARM_FEATURE_MPU)) {
1836 switch (op2) {
1837 case 0:
1838 return env->cp15.c2_data;
1839 break;
1840 case 1:
1841 return env->cp15.c2_insn;
1842 break;
1843 default:
1844 goto bad_reg;
1845 }
1846 } else {
1847 switch (op2) {
1848 case 0:
1849 return env->cp15.c2_base0;
1850 case 1:
1851 return env->cp15.c2_base1;
1852 case 2:
1853 return env->cp15.c2_control;
1854 default:
1855 goto bad_reg;
1856 }
1857 }
1858 case 3: /* MMU Domain access control / MPU write buffer control. */
1859 return env->cp15.c3;
1860 case 4: /* Reserved. */
1861 goto bad_reg;
1862 case 5: /* MMU Fault status / MPU access permission. */
1863 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1864 op2 = 0;
1865 switch (op2) {
1866 case 0:
1867 if (arm_feature(env, ARM_FEATURE_MPU))
1868 return simple_mpu_ap_bits(env->cp15.c5_data);
1869 return env->cp15.c5_data;
1870 case 1:
1871 if (arm_feature(env, ARM_FEATURE_MPU))
1872 return simple_mpu_ap_bits(env->cp15.c5_insn);
1873 return env->cp15.c5_insn;
1874 case 2:
1875 if (!arm_feature(env, ARM_FEATURE_MPU))
1876 goto bad_reg;
1877 return env->cp15.c5_data;
1878 case 3:
1879 if (!arm_feature(env, ARM_FEATURE_MPU))
1880 goto bad_reg;
1881 return env->cp15.c5_insn;
1882 default:
1883 goto bad_reg;
1884 }
1885 case 6: /* MMU Fault address. */
1886 if (arm_feature(env, ARM_FEATURE_MPU)) {
1887 if (crm >= 8)
1888 goto bad_reg;
1889 return env->cp15.c6_region[crm];
1890 } else {
1891 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1892 op2 = 0;
1893 switch (op2) {
1894 case 0:
1895 return env->cp15.c6_data;
1896 case 1:
1897 if (arm_feature(env, ARM_FEATURE_V6)) {
1898 /* Watchpoint Fault Adrress. */
1899 return 0; /* Not implemented. */
1900 } else {
1901 /* Instruction Fault Adrress. */
1902 /* Arm9 doesn't have an IFAR, but implementing it anyway
1903 shouldn't do any harm. */
1904 return env->cp15.c6_insn;
1905 }
1906 case 2:
1907 if (arm_feature(env, ARM_FEATURE_V6)) {
1908 /* Instruction Fault Adrress. */
1909 return env->cp15.c6_insn;
1910 } else {
1911 goto bad_reg;
1912 }
1913 default:
1914 goto bad_reg;
1915 }
1916 }
1917 case 7: /* Cache control. */
1918 if (crm == 4 && op1 == 0 && op2 == 0) {
1919 return env->cp15.c7_par;
1920 }
1921 /* FIXME: Should only clear Z flag if destination is r15. */
1922 env->ZF = 0;
1923 return 0;
1924 case 8: /* MMU TLB control. */
1925 goto bad_reg;
1926 case 9:
1927 switch (crm) {
1928 case 0: /* Cache lockdown */
1929 switch (op1) {
1930 case 0: /* L1 cache. */
1931 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1932 return 0;
1933 }
1934 switch (op2) {
1935 case 0:
1936 return env->cp15.c9_data;
1937 case 1:
1938 return env->cp15.c9_insn;
1939 default:
1940 goto bad_reg;
1941 }
1942 case 1: /* L2 cache */
1943 /* L2 Lockdown and Auxiliary control. */
1944 switch (op2) {
1945 case 0:
1946 /* L2 cache lockdown (A8 only) */
1947 return 0;
1948 case 2:
1949 /* L2 cache auxiliary control (A8) or control (A15) */
1950 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1951 /* Linux wants the number of processors from here.
1952 * Might as well set the interrupt-controller bit too.
1953 */
1954 return ((smp_cpus - 1) << 24) | (1 << 23);
1955 }
1956 return 0;
1957 case 3:
1958 /* L2 cache extended control (A15) */
1959 return 0;
1960 default:
1961 goto bad_reg;
1962 }
1963 default:
1964 goto bad_reg;
1965 }
1966 break;
1967 case 12: /* Performance monitor control */
1968 if (!arm_feature(env, ARM_FEATURE_V7)) {
1969 goto bad_reg;
1970 }
1971 switch (op2) {
1972 case 0: /* performance monitor control register */
1973 return env->cp15.c9_pmcr;
1974 case 1: /* count enable set */
1975 case 2: /* count enable clear */
1976 return env->cp15.c9_pmcnten;
1977 case 3: /* overflow flag status */
1978 return env->cp15.c9_pmovsr;
1979 case 4: /* software increment */
1980 case 5: /* event counter selection register */
1981 return 0; /* Unimplemented, RAZ/WI */
1982 default:
1983 goto bad_reg;
1984 }
1985 case 13: /* Performance counters */
1986 if (!arm_feature(env, ARM_FEATURE_V7)) {
1987 goto bad_reg;
1988 }
1989 switch (op2) {
1990 case 1: /* Event type select */
1991 return env->cp15.c9_pmxevtyper;
1992 case 0: /* Cycle count register */
1993 case 2: /* Event count register */
1994 /* Unimplemented, so RAZ/WI */
1995 return 0;
1996 default:
1997 goto bad_reg;
1998 }
1999 case 14: /* Performance monitor control */
2000 if (!arm_feature(env, ARM_FEATURE_V7)) {
2001 goto bad_reg;
2002 }
2003 switch (op2) {
2004 case 0: /* user enable */
2005 return env->cp15.c9_pmuserenr;
2006 case 1: /* interrupt enable set */
2007 case 2: /* interrupt enable clear */
2008 return env->cp15.c9_pminten;
2009 default:
2010 goto bad_reg;
2011 }
2012 default:
2013 goto bad_reg;
2014 }
2015 break;
2016 case 10: /* MMU TLB lockdown. */
2017 /* ??? TLB lockdown not implemented. */
2018 return 0;
2019 case 11: /* TCM DMA control. */
2020 case 12: /* Reserved. */
2021 goto bad_reg;
2022 case 13: /* Process ID. */
2023 switch (op2) {
2024 case 0:
2025 return env->cp15.c13_fcse;
2026 case 1:
2027 return env->cp15.c13_context;
2028 default:
2029 goto bad_reg;
2030 }
2031 case 14: /* Generic timer */
2032 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2033 /* Dummy implementation: RAZ/WI for all */
2034 return 0;
2035 }
2036 goto bad_reg;
2037 case 15: /* Implementation specific. */
2038 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2039 if (op2 == 0 && crm == 1)
2040 return env->cp15.c15_cpar;
2041
2042 goto bad_reg;
2043 }
2044 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2045 switch (crm) {
2046 case 0:
2047 return 0;
2048 case 1: /* Read TI925T configuration. */
2049 return env->cp15.c15_ticonfig;
2050 case 2: /* Read I_max. */
2051 return env->cp15.c15_i_max;
2052 case 3: /* Read I_min. */
2053 return env->cp15.c15_i_min;
2054 case 4: /* Read thread-ID. */
2055 return env->cp15.c15_threadid;
2056 case 8: /* TI925T_status */
2057 return 0;
2058 }
2059 /* TODO: Peripheral port remap register:
2060 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2061 * controller base address at $rn & ~0xfff and map size of
2062 * 0x200 << ($rn & 0xfff), when MMU is off. */
2063 goto bad_reg;
2064 }
2065 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2066 switch (crm) {
2067 case 0:
2068 if ((op1 == 4) && (op2 == 0)) {
2069 /* The config_base_address should hold the value of
2070 * the peripheral base. ARM should get this from a CPU
2071 * object property, but that support isn't available in
2072 * December 2011. Default to 0 for now and board models
2073 * that care can set it by a private hook */
2074 return env->cp15.c15_config_base_address;
2075 } else if ((op1 == 0) && (op2 == 0)) {
2076 /* power_control should be set to maximum latency. Again,
2077 default to 0 and set by private hook */
2078 return env->cp15.c15_power_control;
2079 } else if ((op1 == 0) && (op2 == 1)) {
2080 return env->cp15.c15_diagnostic;
2081 } else if ((op1 == 0) && (op2 == 2)) {
2082 return env->cp15.c15_power_diagnostic;
2083 }
2084 break;
2085 case 1: /* NEON Busy */
2086 return 0;
2087 case 5: /* tlb lockdown */
2088 case 6:
2089 case 7:
2090 if ((op1 == 5) && (op2 == 2)) {
2091 return 0;
2092 }
2093 break;
2094 default:
2095 break;
2096 }
2097 goto bad_reg;
2098 }
2099 return 0;
2100 }
2101 bad_reg:
2102 /* ??? For debugging only. Should raise illegal instruction exception. */
2103 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2104 (insn >> 16) & 0xf, crm, op1, op2);
2105 return 0;
2106 }
2107
2108 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2109 {
2110 if ((env->uncached_cpsr & CPSR_M) == mode) {
2111 env->regs[13] = val;
2112 } else {
2113 env->banked_r13[bank_number(env, mode)] = val;
2114 }
2115 }
2116
2117 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2118 {
2119 if ((env->uncached_cpsr & CPSR_M) == mode) {
2120 return env->regs[13];
2121 } else {
2122 return env->banked_r13[bank_number(env, mode)];
2123 }
2124 }
2125
2126 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2127 {
2128 switch (reg) {
2129 case 0: /* APSR */
2130 return xpsr_read(env) & 0xf8000000;
2131 case 1: /* IAPSR */
2132 return xpsr_read(env) & 0xf80001ff;
2133 case 2: /* EAPSR */
2134 return xpsr_read(env) & 0xff00fc00;
2135 case 3: /* xPSR */
2136 return xpsr_read(env) & 0xff00fdff;
2137 case 5: /* IPSR */
2138 return xpsr_read(env) & 0x000001ff;
2139 case 6: /* EPSR */
2140 return xpsr_read(env) & 0x0700fc00;
2141 case 7: /* IEPSR */
2142 return xpsr_read(env) & 0x0700edff;
2143 case 8: /* MSP */
2144 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2145 case 9: /* PSP */
2146 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2147 case 16: /* PRIMASK */
2148 return (env->uncached_cpsr & CPSR_I) != 0;
2149 case 17: /* BASEPRI */
2150 case 18: /* BASEPRI_MAX */
2151 return env->v7m.basepri;
2152 case 19: /* FAULTMASK */
2153 return (env->uncached_cpsr & CPSR_F) != 0;
2154 case 20: /* CONTROL */
2155 return env->v7m.control;
2156 default:
2157 /* ??? For debugging only. */
2158 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2159 return 0;
2160 }
2161 }
2162
2163 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2164 {
2165 switch (reg) {
2166 case 0: /* APSR */
2167 xpsr_write(env, val, 0xf8000000);
2168 break;
2169 case 1: /* IAPSR */
2170 xpsr_write(env, val, 0xf8000000);
2171 break;
2172 case 2: /* EAPSR */
2173 xpsr_write(env, val, 0xfe00fc00);
2174 break;
2175 case 3: /* xPSR */
2176 xpsr_write(env, val, 0xfe00fc00);
2177 break;
2178 case 5: /* IPSR */
2179 /* IPSR bits are readonly. */
2180 break;
2181 case 6: /* EPSR */
2182 xpsr_write(env, val, 0x0600fc00);
2183 break;
2184 case 7: /* IEPSR */
2185 xpsr_write(env, val, 0x0600fc00);
2186 break;
2187 case 8: /* MSP */
2188 if (env->v7m.current_sp)
2189 env->v7m.other_sp = val;
2190 else
2191 env->regs[13] = val;
2192 break;
2193 case 9: /* PSP */
2194 if (env->v7m.current_sp)
2195 env->regs[13] = val;
2196 else
2197 env->v7m.other_sp = val;
2198 break;
2199 case 16: /* PRIMASK */
2200 if (val & 1)
2201 env->uncached_cpsr |= CPSR_I;
2202 else
2203 env->uncached_cpsr &= ~CPSR_I;
2204 break;
2205 case 17: /* BASEPRI */
2206 env->v7m.basepri = val & 0xff;
2207 break;
2208 case 18: /* BASEPRI_MAX */
2209 val &= 0xff;
2210 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2211 env->v7m.basepri = val;
2212 break;
2213 case 19: /* FAULTMASK */
2214 if (val & 1)
2215 env->uncached_cpsr |= CPSR_F;
2216 else
2217 env->uncached_cpsr &= ~CPSR_F;
2218 break;
2219 case 20: /* CONTROL */
2220 env->v7m.control = val & 3;
2221 switch_v7m_sp(env, (val & 2) != 0);
2222 break;
2223 default:
2224 /* ??? For debugging only. */
2225 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2226 return;
2227 }
2228 }
2229
2230 #endif
2231
2232 /* Note that signed overflow is undefined in C. The following routines are
2233 careful to use unsigned types where modulo arithmetic is required.
2234 Failure to do so _will_ break on newer gcc. */
2235
2236 /* Signed saturating arithmetic. */
2237
2238 /* Perform 16-bit signed saturating addition. */
2239 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2240 {
2241 uint16_t res;
2242
2243 res = a + b;
2244 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2245 if (a & 0x8000)
2246 res = 0x8000;
2247 else
2248 res = 0x7fff;
2249 }
2250 return res;
2251 }
2252
2253 /* Perform 8-bit signed saturating addition. */
2254 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2255 {
2256 uint8_t res;
2257
2258 res = a + b;
2259 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2260 if (a & 0x80)
2261 res = 0x80;
2262 else
2263 res = 0x7f;
2264 }
2265 return res;
2266 }
2267
2268 /* Perform 16-bit signed saturating subtraction. */
2269 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2270 {
2271 uint16_t res;
2272
2273 res = a - b;
2274 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2275 if (a & 0x8000)
2276 res = 0x8000;
2277 else
2278 res = 0x7fff;
2279 }
2280 return res;
2281 }
2282
2283 /* Perform 8-bit signed saturating subtraction. */
2284 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2285 {
2286 uint8_t res;
2287
2288 res = a - b;
2289 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2290 if (a & 0x80)
2291 res = 0x80;
2292 else
2293 res = 0x7f;
2294 }
2295 return res;
2296 }
2297
2298 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2299 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2300 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2301 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2302 #define PFX q
2303
2304 #include "op_addsub.h"
2305
2306 /* Unsigned saturating arithmetic. */
2307 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2308 {
2309 uint16_t res;
2310 res = a + b;
2311 if (res < a)
2312 res = 0xffff;
2313 return res;
2314 }
2315
2316 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2317 {
2318 if (a > b)
2319 return a - b;
2320 else
2321 return 0;
2322 }
2323
2324 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2325 {
2326 uint8_t res;
2327 res = a + b;
2328 if (res < a)
2329 res = 0xff;
2330 return res;
2331 }
2332
2333 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2334 {
2335 if (a > b)
2336 return a - b;
2337 else
2338 return 0;
2339 }
2340
2341 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2342 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2343 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2344 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2345 #define PFX uq
2346
2347 #include "op_addsub.h"
2348
2349 /* Signed modulo arithmetic. */
2350 #define SARITH16(a, b, n, op) do { \
2351 int32_t sum; \
2352 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2353 RESULT(sum, n, 16); \
2354 if (sum >= 0) \
2355 ge |= 3 << (n * 2); \
2356 } while(0)
2357
2358 #define SARITH8(a, b, n, op) do { \
2359 int32_t sum; \
2360 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2361 RESULT(sum, n, 8); \
2362 if (sum >= 0) \
2363 ge |= 1 << n; \
2364 } while(0)
2365
2366
2367 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2368 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2369 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2370 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2371 #define PFX s
2372 #define ARITH_GE
2373
2374 #include "op_addsub.h"
2375
2376 /* Unsigned modulo arithmetic. */
2377 #define ADD16(a, b, n) do { \
2378 uint32_t sum; \
2379 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2380 RESULT(sum, n, 16); \
2381 if ((sum >> 16) == 1) \
2382 ge |= 3 << (n * 2); \
2383 } while(0)
2384
2385 #define ADD8(a, b, n) do { \
2386 uint32_t sum; \
2387 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2388 RESULT(sum, n, 8); \
2389 if ((sum >> 8) == 1) \
2390 ge |= 1 << n; \
2391 } while(0)
2392
2393 #define SUB16(a, b, n) do { \
2394 uint32_t sum; \
2395 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2396 RESULT(sum, n, 16); \
2397 if ((sum >> 16) == 0) \
2398 ge |= 3 << (n * 2); \
2399 } while(0)
2400
2401 #define SUB8(a, b, n) do { \
2402 uint32_t sum; \
2403 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2404 RESULT(sum, n, 8); \
2405 if ((sum >> 8) == 0) \
2406 ge |= 1 << n; \
2407 } while(0)
2408
2409 #define PFX u
2410 #define ARITH_GE
2411
2412 #include "op_addsub.h"
2413
2414 /* Halved signed arithmetic. */
2415 #define ADD16(a, b, n) \
2416 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2417 #define SUB16(a, b, n) \
2418 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2419 #define ADD8(a, b, n) \
2420 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2421 #define SUB8(a, b, n) \
2422 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2423 #define PFX sh
2424
2425 #include "op_addsub.h"
2426
2427 /* Halved unsigned arithmetic. */
2428 #define ADD16(a, b, n) \
2429 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2430 #define SUB16(a, b, n) \
2431 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2432 #define ADD8(a, b, n) \
2433 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2434 #define SUB8(a, b, n) \
2435 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2436 #define PFX uh
2437
2438 #include "op_addsub.h"
2439
2440 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2441 {
2442 if (a > b)
2443 return a - b;
2444 else
2445 return b - a;
2446 }
2447
2448 /* Unsigned sum of absolute byte differences. */
2449 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2450 {
2451 uint32_t sum;
2452 sum = do_usad(a, b);
2453 sum += do_usad(a >> 8, b >> 8);
2454 sum += do_usad(a >> 16, b >>16);
2455 sum += do_usad(a >> 24, b >> 24);
2456 return sum;
2457 }
2458
2459 /* For ARMv6 SEL instruction. */
2460 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2461 {
2462 uint32_t mask;
2463
2464 mask = 0;
2465 if (flags & 1)
2466 mask |= 0xff;
2467 if (flags & 2)
2468 mask |= 0xff00;
2469 if (flags & 4)
2470 mask |= 0xff0000;
2471 if (flags & 8)
2472 mask |= 0xff000000;
2473 return (a & mask) | (b & ~mask);
2474 }
2475
2476 uint32_t HELPER(logicq_cc)(uint64_t val)
2477 {
2478 return (val >> 32) | (val != 0);
2479 }
2480
2481 /* VFP support. We follow the convention used for VFP instrunctions:
2482 Single precition routines have a "s" suffix, double precision a
2483 "d" suffix. */
2484
2485 /* Convert host exception flags to vfp form. */
2486 static inline int vfp_exceptbits_from_host(int host_bits)
2487 {
2488 int target_bits = 0;
2489
2490 if (host_bits & float_flag_invalid)
2491 target_bits |= 1;
2492 if (host_bits & float_flag_divbyzero)
2493 target_bits |= 2;
2494 if (host_bits & float_flag_overflow)
2495 target_bits |= 4;
2496 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2497 target_bits |= 8;
2498 if (host_bits & float_flag_inexact)
2499 target_bits |= 0x10;
2500 if (host_bits & float_flag_input_denormal)
2501 target_bits |= 0x80;
2502 return target_bits;
2503 }
2504
2505 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2506 {
2507 int i;
2508 uint32_t fpscr;
2509
2510 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2511 | (env->vfp.vec_len << 16)
2512 | (env->vfp.vec_stride << 20);
2513 i = get_float_exception_flags(&env->vfp.fp_status);
2514 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2515 fpscr |= vfp_exceptbits_from_host(i);
2516 return fpscr;
2517 }
2518
2519 uint32_t vfp_get_fpscr(CPUARMState *env)
2520 {
2521 return HELPER(vfp_get_fpscr)(env);
2522 }
2523
2524 /* Convert vfp exception flags to target form. */
2525 static inline int vfp_exceptbits_to_host(int target_bits)
2526 {
2527 int host_bits = 0;
2528
2529 if (target_bits & 1)
2530 host_bits |= float_flag_invalid;
2531 if (target_bits & 2)
2532 host_bits |= float_flag_divbyzero;
2533 if (target_bits & 4)
2534 host_bits |= float_flag_overflow;
2535 if (target_bits & 8)
2536 host_bits |= float_flag_underflow;
2537 if (target_bits & 0x10)
2538 host_bits |= float_flag_inexact;
2539 if (target_bits & 0x80)
2540 host_bits |= float_flag_input_denormal;
2541 return host_bits;
2542 }
2543
2544 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2545 {
2546 int i;
2547 uint32_t changed;
2548
2549 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2550 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2551 env->vfp.vec_len = (val >> 16) & 7;
2552 env->vfp.vec_stride = (val >> 20) & 3;
2553
2554 changed ^= val;
2555 if (changed & (3 << 22)) {
2556 i = (val >> 22) & 3;
2557 switch (i) {
2558 case 0:
2559 i = float_round_nearest_even;
2560 break;
2561 case 1:
2562 i = float_round_up;
2563 break;
2564 case 2:
2565 i = float_round_down;
2566 break;
2567 case 3:
2568 i = float_round_to_zero;
2569 break;
2570 }
2571 set_float_rounding_mode(i, &env->vfp.fp_status);
2572 }
2573 if (changed & (1 << 24)) {
2574 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2575 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2576 }
2577 if (changed & (1 << 25))
2578 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2579
2580 i = vfp_exceptbits_to_host(val);
2581 set_float_exception_flags(i, &env->vfp.fp_status);
2582 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2583 }
2584
2585 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2586 {
2587 HELPER(vfp_set_fpscr)(env, val);
2588 }
2589
2590 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2591
2592 #define VFP_BINOP(name) \
2593 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2594 { \
2595 float_status *fpst = fpstp; \
2596 return float32_ ## name(a, b, fpst); \
2597 } \
2598 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2599 { \
2600 float_status *fpst = fpstp; \
2601 return float64_ ## name(a, b, fpst); \
2602 }
2603 VFP_BINOP(add)
2604 VFP_BINOP(sub)
2605 VFP_BINOP(mul)
2606 VFP_BINOP(div)
2607 #undef VFP_BINOP
2608
2609 float32 VFP_HELPER(neg, s)(float32 a)
2610 {
2611 return float32_chs(a);
2612 }
2613
2614 float64 VFP_HELPER(neg, d)(float64 a)
2615 {
2616 return float64_chs(a);
2617 }
2618
2619 float32 VFP_HELPER(abs, s)(float32 a)
2620 {
2621 return float32_abs(a);
2622 }
2623
2624 float64 VFP_HELPER(abs, d)(float64 a)
2625 {
2626 return float64_abs(a);
2627 }
2628
2629 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2630 {
2631 return float32_sqrt(a, &env->vfp.fp_status);
2632 }
2633
2634 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2635 {
2636 return float64_sqrt(a, &env->vfp.fp_status);
2637 }
2638
2639 /* XXX: check quiet/signaling case */
2640 #define DO_VFP_cmp(p, type) \
2641 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2642 { \
2643 uint32_t flags; \
2644 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2645 case 0: flags = 0x6; break; \
2646 case -1: flags = 0x8; break; \
2647 case 1: flags = 0x2; break; \
2648 default: case 2: flags = 0x3; break; \
2649 } \
2650 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2651 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2652 } \
2653 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2654 { \
2655 uint32_t flags; \
2656 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2657 case 0: flags = 0x6; break; \
2658 case -1: flags = 0x8; break; \
2659 case 1: flags = 0x2; break; \
2660 default: case 2: flags = 0x3; break; \
2661 } \
2662 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2663 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2664 }
2665 DO_VFP_cmp(s, float32)
2666 DO_VFP_cmp(d, float64)
2667 #undef DO_VFP_cmp
2668
2669 /* Integer to float and float to integer conversions */
2670
2671 #define CONV_ITOF(name, fsz, sign) \
2672 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2673 { \
2674 float_status *fpst = fpstp; \
2675 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2676 }
2677
2678 #define CONV_FTOI(name, fsz, sign, round) \
2679 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2680 { \
2681 float_status *fpst = fpstp; \
2682 if (float##fsz##_is_any_nan(x)) { \
2683 float_raise(float_flag_invalid, fpst); \
2684 return 0; \
2685 } \
2686 return float##fsz##_to_##sign##int32##round(x, fpst); \
2687 }
2688
2689 #define FLOAT_CONVS(name, p, fsz, sign) \
2690 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2691 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2692 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2693
2694 FLOAT_CONVS(si, s, 32, )
2695 FLOAT_CONVS(si, d, 64, )
2696 FLOAT_CONVS(ui, s, 32, u)
2697 FLOAT_CONVS(ui, d, 64, u)
2698
2699 #undef CONV_ITOF
2700 #undef CONV_FTOI
2701 #undef FLOAT_CONVS
2702
2703 /* floating point conversion */
2704 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2705 {
2706 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2707 /* ARM requires that S<->D conversion of any kind of NaN generates
2708 * a quiet NaN by forcing the most significant frac bit to 1.
2709 */
2710 return float64_maybe_silence_nan(r);
2711 }
2712
2713 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2714 {
2715 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2716 /* ARM requires that S<->D conversion of any kind of NaN generates
2717 * a quiet NaN by forcing the most significant frac bit to 1.
2718 */
2719 return float32_maybe_silence_nan(r);
2720 }
2721
2722 /* VFP3 fixed point conversion. */
2723 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2724 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2725 void *fpstp) \
2726 { \
2727 float_status *fpst = fpstp; \
2728 float##fsz tmp; \
2729 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2730 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2731 } \
2732 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2733 void *fpstp) \
2734 { \
2735 float_status *fpst = fpstp; \
2736 float##fsz tmp; \
2737 if (float##fsz##_is_any_nan(x)) { \
2738 float_raise(float_flag_invalid, fpst); \
2739 return 0; \
2740 } \
2741 tmp = float##fsz##_scalbn(x, shift, fpst); \
2742 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2743 }
2744
2745 VFP_CONV_FIX(sh, d, 64, int16, )
2746 VFP_CONV_FIX(sl, d, 64, int32, )
2747 VFP_CONV_FIX(uh, d, 64, uint16, u)
2748 VFP_CONV_FIX(ul, d, 64, uint32, u)
2749 VFP_CONV_FIX(sh, s, 32, int16, )
2750 VFP_CONV_FIX(sl, s, 32, int32, )
2751 VFP_CONV_FIX(uh, s, 32, uint16, u)
2752 VFP_CONV_FIX(ul, s, 32, uint32, u)
2753 #undef VFP_CONV_FIX
2754
2755 /* Half precision conversions. */
2756 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2757 {
2758 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2759 float32 r = float16_to_float32(make_float16(a), ieee, s);
2760 if (ieee) {
2761 return float32_maybe_silence_nan(r);
2762 }
2763 return r;
2764 }
2765
2766 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2767 {
2768 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2769 float16 r = float32_to_float16(a, ieee, s);
2770 if (ieee) {
2771 r = float16_maybe_silence_nan(r);
2772 }
2773 return float16_val(r);
2774 }
2775
2776 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2777 {
2778 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2779 }
2780
2781 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2782 {
2783 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2784 }
2785
2786 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2787 {
2788 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2789 }
2790
2791 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2792 {
2793 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2794 }
2795
2796 #define float32_two make_float32(0x40000000)
2797 #define float32_three make_float32(0x40400000)
2798 #define float32_one_point_five make_float32(0x3fc00000)
2799
2800 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2801 {
2802 float_status *s = &env->vfp.standard_fp_status;
2803 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2804 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2805 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2806 float_raise(float_flag_input_denormal, s);
2807 }
2808 return float32_two;
2809 }
2810 return float32_sub(float32_two, float32_mul(a, b, s), s);
2811 }
2812
2813 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2814 {
2815 float_status *s = &env->vfp.standard_fp_status;
2816 float32 product;
2817 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2818 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2819 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2820 float_raise(float_flag_input_denormal, s);
2821 }
2822 return float32_one_point_five;
2823 }
2824 product = float32_mul(a, b, s);
2825 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2826 }
2827
2828 /* NEON helpers. */
2829
2830 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2831 * int->float conversions at run-time. */
2832 #define float64_256 make_float64(0x4070000000000000LL)
2833 #define float64_512 make_float64(0x4080000000000000LL)
2834
2835 /* The algorithm that must be used to calculate the estimate
2836 * is specified by the ARM ARM.
2837 */
2838 static float64 recip_estimate(float64 a, CPUARMState *env)
2839 {
2840 /* These calculations mustn't set any fp exception flags,
2841 * so we use a local copy of the fp_status.
2842 */
2843 float_status dummy_status = env->vfp.standard_fp_status;
2844 float_status *s = &dummy_status;
2845 /* q = (int)(a * 512.0) */
2846 float64 q = float64_mul(float64_512, a, s);
2847 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2848
2849 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2850 q = int64_to_float64(q_int, s);
2851 q = float64_add(q, float64_half, s);
2852 q = float64_div(q, float64_512, s);
2853 q = float64_div(float64_one, q, s);
2854
2855 /* s = (int)(256.0 * r + 0.5) */
2856 q = float64_mul(q, float64_256, s);
2857 q = float64_add(q, float64_half, s);
2858 q_int = float64_to_int64_round_to_zero(q, s);
2859
2860 /* return (double)s / 256.0 */
2861 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2862 }
2863
2864 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2865 {
2866 float_status *s = &env->vfp.standard_fp_status;
2867 float64 f64;
2868 uint32_t val32 = float32_val(a);
2869
2870 int result_exp;
2871 int a_exp = (val32 & 0x7f800000) >> 23;
2872 int sign = val32 & 0x80000000;
2873
2874 if (float32_is_any_nan(a)) {
2875 if (float32_is_signaling_nan(a)) {
2876 float_raise(float_flag_invalid, s);
2877 }
2878 return float32_default_nan;
2879 } else if (float32_is_infinity(a)) {
2880 return float32_set_sign(float32_zero, float32_is_neg(a));
2881 } else if (float32_is_zero_or_denormal(a)) {
2882 if (!float32_is_zero(a)) {
2883 float_raise(float_flag_input_denormal, s);
2884 }
2885 float_raise(float_flag_divbyzero, s);
2886 return float32_set_sign(float32_infinity, float32_is_neg(a));
2887 } else if (a_exp >= 253) {
2888 float_raise(float_flag_underflow, s);
2889 return float32_set_sign(float32_zero, float32_is_neg(a));
2890 }
2891
2892 f64 = make_float64((0x3feULL << 52)
2893 | ((int64_t)(val32 & 0x7fffff) << 29));
2894
2895 result_exp = 253 - a_exp;
2896
2897 f64 = recip_estimate(f64, env);
2898
2899 val32 = sign
2900 | ((result_exp & 0xff) << 23)
2901 | ((float64_val(f64) >> 29) & 0x7fffff);
2902 return make_float32(val32);
2903 }
2904
2905 /* The algorithm that must be used to calculate the estimate
2906 * is specified by the ARM ARM.
2907 */
2908 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2909 {
2910 /* These calculations mustn't set any fp exception flags,
2911 * so we use a local copy of the fp_status.
2912 */
2913 float_status dummy_status = env->vfp.standard_fp_status;
2914 float_status *s = &dummy_status;
2915 float64 q;
2916 int64_t q_int;
2917
2918 if (float64_lt(a, float64_half, s)) {
2919 /* range 0.25 <= a < 0.5 */
2920
2921 /* a in units of 1/512 rounded down */
2922 /* q0 = (int)(a * 512.0); */
2923 q = float64_mul(float64_512, a, s);
2924 q_int = float64_to_int64_round_to_zero(q, s);
2925
2926 /* reciprocal root r */
2927 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2928 q = int64_to_float64(q_int, s);
2929 q = float64_add(q, float64_half, s);
2930 q = float64_div(q, float64_512, s);
2931 q = float64_sqrt(q, s);
2932 q = float64_div(float64_one, q, s);
2933 } else {
2934 /* range 0.5 <= a < 1.0 */
2935
2936 /* a in units of 1/256 rounded down */
2937 /* q1 = (int)(a * 256.0); */
2938 q = float64_mul(float64_256, a, s);
2939 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2940
2941 /* reciprocal root r */
2942 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2943 q = int64_to_float64(q_int, s);
2944 q = float64_add(q, float64_half, s);
2945 q = float64_div(q, float64_256, s);
2946 q = float64_sqrt(q, s);
2947 q = float64_div(float64_one, q, s);
2948 }
2949 /* r in units of 1/256 rounded to nearest */
2950 /* s = (int)(256.0 * r + 0.5); */
2951
2952 q = float64_mul(q, float64_256,s );
2953 q = float64_add(q, float64_half, s);
2954 q_int = float64_to_int64_round_to_zero(q, s);
2955
2956 /* return (double)s / 256.0;*/
2957 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2958 }
2959
2960 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
2961 {
2962 float_status *s = &env->vfp.standard_fp_status;
2963 int result_exp;
2964 float64 f64;
2965 uint32_t val;
2966 uint64_t val64;
2967
2968 val = float32_val(a);
2969
2970 if (float32_is_any_nan(a)) {
2971 if (float32_is_signaling_nan(a)) {
2972 float_raise(float_flag_invalid, s);
2973 }
2974 return float32_default_nan;
2975 } else if (float32_is_zero_or_denormal(a)) {
2976 if (!float32_is_zero(a)) {
2977 float_raise(float_flag_input_denormal, s);
2978 }
2979 float_raise(float_flag_divbyzero, s);
2980 return float32_set_sign(float32_infinity, float32_is_neg(a));
2981 } else if (float32_is_neg(a)) {
2982 float_raise(float_flag_invalid, s);
2983 return float32_default_nan;
2984 } else if (float32_is_infinity(a)) {
2985 return float32_zero;
2986 }
2987
2988 /* Normalize to a double-precision value between 0.25 and 1.0,
2989 * preserving the parity of the exponent. */
2990 if ((val & 0x800000) == 0) {
2991 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2992 | (0x3feULL << 52)
2993 | ((uint64_t)(val & 0x7fffff) << 29));
2994 } else {
2995 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2996 | (0x3fdULL << 52)
2997 | ((uint64_t)(val & 0x7fffff) << 29));
2998 }
2999
3000 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3001
3002 f64 = recip_sqrt_estimate(f64, env);
3003
3004 val64 = float64_val(f64);
3005
3006 val = ((result_exp & 0xff) << 23)
3007 | ((val64 >> 29) & 0x7fffff);
3008 return make_float32(val);
3009 }
3010
3011 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3012 {
3013 float64 f64;
3014
3015 if ((a & 0x80000000) == 0) {
3016 return 0xffffffff;
3017 }
3018
3019 f64 = make_float64((0x3feULL << 52)
3020 | ((int64_t)(a & 0x7fffffff) << 21));
3021
3022 f64 = recip_estimate (f64, env);
3023
3024 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3025 }
3026
3027 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3028 {
3029 float64 f64;
3030
3031 if ((a & 0xc0000000) == 0) {
3032 return 0xffffffff;
3033 }
3034
3035 if (a & 0x80000000) {
3036 f64 = make_float64((0x3feULL << 52)
3037 | ((uint64_t)(a & 0x7fffffff) << 21));
3038 } else { /* bits 31-30 == '01' */
3039 f64 = make_float64((0x3fdULL << 52)
3040 | ((uint64_t)(a & 0x3fffffff) << 22));
3041 }
3042
3043 f64 = recip_sqrt_estimate(f64, env);
3044
3045 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3046 }
3047
3048 /* VFPv4 fused multiply-accumulate */
3049 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3050 {
3051 float_status *fpst = fpstp;
3052 return float32_muladd(a, b, c, 0, fpst);
3053 }
3054
3055 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3056 {
3057 float_status *fpst = fpstp;
3058 return float64_muladd(a, b, c, 0, fpst);
3059 }