]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / target-arm / helper.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
13 #endif
14
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26
27 static uint32_t mpcore_cp15_c0_c1[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29
30 static uint32_t mpcore_cp15_c0_c2[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32
33 static uint32_t arm1136_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35
36 static uint32_t arm1136_cp15_c0_c2[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38
39 static uint32_t cpu_arm_find_by_name(const char *name);
40
41 static inline void set_feature(CPUARMState *env, int feature)
42 {
43 env->features |= 1u << feature;
44 }
45
46 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47 {
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_VFP);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM946:
57 set_feature(env, ARM_FEATURE_MPU);
58 env->cp15.c0_cachetype = 0x0f004006;
59 env->cp15.c1_sys = 0x00000078;
60 break;
61 case ARM_CPUID_ARM1026:
62 set_feature(env, ARM_FEATURE_VFP);
63 set_feature(env, ARM_FEATURE_AUXCR);
64 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 env->cp15.c1_sys = 0x00090078;
67 break;
68 case ARM_CPUID_ARM1136_R2:
69 case ARM_CPUID_ARM1136:
70 set_feature(env, ARM_FEATURE_V6);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 break;
80 case ARM_CPUID_ARM11MPCORE:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_VFP);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
86 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
87 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
88 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
89 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
90 env->cp15.c0_cachetype = 0x1dd20d2;
91 break;
92 case ARM_CPUID_CORTEXA8:
93 set_feature(env, ARM_FEATURE_V6);
94 set_feature(env, ARM_FEATURE_V6K);
95 set_feature(env, ARM_FEATURE_V7);
96 set_feature(env, ARM_FEATURE_AUXCR);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_VFP);
99 set_feature(env, ARM_FEATURE_VFP3);
100 set_feature(env, ARM_FEATURE_NEON);
101 set_feature(env, ARM_FEATURE_THUMB2EE);
102 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
103 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
104 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
105 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
106 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
107 env->cp15.c0_cachetype = 0x82048004;
108 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
109 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
110 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
111 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
112 break;
113 case ARM_CPUID_CORTEXA9:
114 set_feature(env, ARM_FEATURE_V6);
115 set_feature(env, ARM_FEATURE_V6K);
116 set_feature(env, ARM_FEATURE_V7);
117 set_feature(env, ARM_FEATURE_AUXCR);
118 set_feature(env, ARM_FEATURE_THUMB2);
119 set_feature(env, ARM_FEATURE_VFP);
120 set_feature(env, ARM_FEATURE_VFP3);
121 set_feature(env, ARM_FEATURE_VFP_FP16);
122 set_feature(env, ARM_FEATURE_NEON);
123 set_feature(env, ARM_FEATURE_THUMB2EE);
124 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
125 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
126 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
127 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
128 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
129 env->cp15.c0_cachetype = 0x80038003;
130 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
131 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
132 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
133 break;
134 case ARM_CPUID_CORTEXM3:
135 set_feature(env, ARM_FEATURE_V6);
136 set_feature(env, ARM_FEATURE_THUMB2);
137 set_feature(env, ARM_FEATURE_V7);
138 set_feature(env, ARM_FEATURE_M);
139 set_feature(env, ARM_FEATURE_DIV);
140 break;
141 case ARM_CPUID_ANY: /* For userspace emulation. */
142 set_feature(env, ARM_FEATURE_V6);
143 set_feature(env, ARM_FEATURE_V6K);
144 set_feature(env, ARM_FEATURE_V7);
145 set_feature(env, ARM_FEATURE_THUMB2);
146 set_feature(env, ARM_FEATURE_VFP);
147 set_feature(env, ARM_FEATURE_VFP3);
148 set_feature(env, ARM_FEATURE_VFP_FP16);
149 set_feature(env, ARM_FEATURE_NEON);
150 set_feature(env, ARM_FEATURE_THUMB2EE);
151 set_feature(env, ARM_FEATURE_DIV);
152 break;
153 case ARM_CPUID_TI915T:
154 case ARM_CPUID_TI925T:
155 set_feature(env, ARM_FEATURE_OMAPCP);
156 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
157 env->cp15.c0_cachetype = 0x5109149;
158 env->cp15.c1_sys = 0x00000070;
159 env->cp15.c15_i_max = 0x000;
160 env->cp15.c15_i_min = 0xff0;
161 break;
162 case ARM_CPUID_PXA250:
163 case ARM_CPUID_PXA255:
164 case ARM_CPUID_PXA260:
165 case ARM_CPUID_PXA261:
166 case ARM_CPUID_PXA262:
167 set_feature(env, ARM_FEATURE_XSCALE);
168 /* JTAG_ID is ((id << 28) | 0x09265013) */
169 env->cp15.c0_cachetype = 0xd172172;
170 env->cp15.c1_sys = 0x00000078;
171 break;
172 case ARM_CPUID_PXA270_A0:
173 case ARM_CPUID_PXA270_A1:
174 case ARM_CPUID_PXA270_B0:
175 case ARM_CPUID_PXA270_B1:
176 case ARM_CPUID_PXA270_C0:
177 case ARM_CPUID_PXA270_C5:
178 set_feature(env, ARM_FEATURE_XSCALE);
179 /* JTAG_ID is ((id << 28) | 0x09265013) */
180 set_feature(env, ARM_FEATURE_IWMMXT);
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 env->cp15.c0_cachetype = 0xd172172;
183 env->cp15.c1_sys = 0x00000078;
184 break;
185 default:
186 cpu_abort(env, "Bad CPU ID: %x\n", id);
187 break;
188 }
189 }
190
191 void cpu_reset(CPUARMState *env)
192 {
193 uint32_t id;
194
195 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
196 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
197 log_cpu_state(env, 0);
198 }
199
200 id = env->cp15.c0_cpuid;
201 memset(env, 0, offsetof(CPUARMState, breakpoints));
202 if (id)
203 cpu_reset_model_id(env, id);
204 #if defined (CONFIG_USER_ONLY)
205 env->uncached_cpsr = ARM_CPU_MODE_USR;
206 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
207 #else
208 /* SVC mode with interrupts disabled. */
209 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
210 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
211 clear at reset. Initial SP and PC are loaded from ROM. */
212 if (IS_M(env)) {
213 uint32_t pc;
214 uint8_t *rom;
215 env->uncached_cpsr &= ~CPSR_I;
216 rom = rom_ptr(0);
217 if (rom) {
218 /* We should really use ldl_phys here, in case the guest
219 modified flash and reset itself. However images
220 loaded via -kenrel have not been copied yet, so load the
221 values directly from there. */
222 env->regs[13] = ldl_p(rom);
223 pc = ldl_p(rom + 4);
224 env->thumb = pc & 1;
225 env->regs[15] = pc & ~1;
226 }
227 }
228 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
229 env->cp15.c2_base_mask = 0xffffc000u;
230 #endif
231 tlb_flush(env, 1);
232 }
233
234 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
235 {
236 int nregs;
237
238 /* VFP data registers are always little-endian. */
239 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
240 if (reg < nregs) {
241 stfq_le_p(buf, env->vfp.regs[reg]);
242 return 8;
243 }
244 if (arm_feature(env, ARM_FEATURE_NEON)) {
245 /* Aliases for Q regs. */
246 nregs += 16;
247 if (reg < nregs) {
248 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
249 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
250 return 16;
251 }
252 }
253 switch (reg - nregs) {
254 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
255 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
256 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
257 }
258 return 0;
259 }
260
261 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
262 {
263 int nregs;
264
265 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
266 if (reg < nregs) {
267 env->vfp.regs[reg] = ldfq_le_p(buf);
268 return 8;
269 }
270 if (arm_feature(env, ARM_FEATURE_NEON)) {
271 nregs += 16;
272 if (reg < nregs) {
273 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
274 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
275 return 16;
276 }
277 }
278 switch (reg - nregs) {
279 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
280 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
281 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
282 }
283 return 0;
284 }
285
286 CPUARMState *cpu_arm_init(const char *cpu_model)
287 {
288 CPUARMState *env;
289 uint32_t id;
290 static int inited = 0;
291
292 id = cpu_arm_find_by_name(cpu_model);
293 if (id == 0)
294 return NULL;
295 env = qemu_mallocz(sizeof(CPUARMState));
296 cpu_exec_init(env);
297 if (!inited) {
298 inited = 1;
299 arm_translate_init();
300 }
301
302 env->cpu_model_str = cpu_model;
303 env->cp15.c0_cpuid = id;
304 cpu_reset(env);
305 if (arm_feature(env, ARM_FEATURE_NEON)) {
306 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
307 51, "arm-neon.xml", 0);
308 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
309 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
310 35, "arm-vfp3.xml", 0);
311 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
312 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
313 19, "arm-vfp.xml", 0);
314 }
315 qemu_init_vcpu(env);
316 return env;
317 }
318
319 struct arm_cpu_t {
320 uint32_t id;
321 const char *name;
322 };
323
324 static const struct arm_cpu_t arm_cpu_names[] = {
325 { ARM_CPUID_ARM926, "arm926"},
326 { ARM_CPUID_ARM946, "arm946"},
327 { ARM_CPUID_ARM1026, "arm1026"},
328 { ARM_CPUID_ARM1136, "arm1136"},
329 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
330 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
331 { ARM_CPUID_CORTEXM3, "cortex-m3"},
332 { ARM_CPUID_CORTEXA8, "cortex-a8"},
333 { ARM_CPUID_CORTEXA9, "cortex-a9"},
334 { ARM_CPUID_TI925T, "ti925t" },
335 { ARM_CPUID_PXA250, "pxa250" },
336 { ARM_CPUID_PXA255, "pxa255" },
337 { ARM_CPUID_PXA260, "pxa260" },
338 { ARM_CPUID_PXA261, "pxa261" },
339 { ARM_CPUID_PXA262, "pxa262" },
340 { ARM_CPUID_PXA270, "pxa270" },
341 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
342 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
343 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
344 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
345 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
346 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
347 { ARM_CPUID_ANY, "any"},
348 { 0, NULL}
349 };
350
351 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
352 {
353 int i;
354
355 (*cpu_fprintf)(f, "Available CPUs:\n");
356 for (i = 0; arm_cpu_names[i].name; i++) {
357 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
358 }
359 }
360
361 /* return 0 if not found */
362 static uint32_t cpu_arm_find_by_name(const char *name)
363 {
364 int i;
365 uint32_t id;
366
367 id = 0;
368 for (i = 0; arm_cpu_names[i].name; i++) {
369 if (strcmp(name, arm_cpu_names[i].name) == 0) {
370 id = arm_cpu_names[i].id;
371 break;
372 }
373 }
374 return id;
375 }
376
377 void cpu_arm_close(CPUARMState *env)
378 {
379 free(env);
380 }
381
382 uint32_t cpsr_read(CPUARMState *env)
383 {
384 int ZF;
385 ZF = (env->ZF == 0);
386 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
387 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
388 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
389 | ((env->condexec_bits & 0xfc) << 8)
390 | (env->GE << 16);
391 }
392
393 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
394 {
395 if (mask & CPSR_NZCV) {
396 env->ZF = (~val) & CPSR_Z;
397 env->NF = val;
398 env->CF = (val >> 29) & 1;
399 env->VF = (val << 3) & 0x80000000;
400 }
401 if (mask & CPSR_Q)
402 env->QF = ((val & CPSR_Q) != 0);
403 if (mask & CPSR_T)
404 env->thumb = ((val & CPSR_T) != 0);
405 if (mask & CPSR_IT_0_1) {
406 env->condexec_bits &= ~3;
407 env->condexec_bits |= (val >> 25) & 3;
408 }
409 if (mask & CPSR_IT_2_7) {
410 env->condexec_bits &= 3;
411 env->condexec_bits |= (val >> 8) & 0xfc;
412 }
413 if (mask & CPSR_GE) {
414 env->GE = (val >> 16) & 0xf;
415 }
416
417 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
418 switch_mode(env, val & CPSR_M);
419 }
420 mask &= ~CACHED_CPSR_BITS;
421 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
422 }
423
424 /* Sign/zero extend */
425 uint32_t HELPER(sxtb16)(uint32_t x)
426 {
427 uint32_t res;
428 res = (uint16_t)(int8_t)x;
429 res |= (uint32_t)(int8_t)(x >> 16) << 16;
430 return res;
431 }
432
433 uint32_t HELPER(uxtb16)(uint32_t x)
434 {
435 uint32_t res;
436 res = (uint16_t)(uint8_t)x;
437 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
438 return res;
439 }
440
441 uint32_t HELPER(clz)(uint32_t x)
442 {
443 return clz32(x);
444 }
445
446 int32_t HELPER(sdiv)(int32_t num, int32_t den)
447 {
448 if (den == 0)
449 return 0;
450 if (num == INT_MIN && den == -1)
451 return INT_MIN;
452 return num / den;
453 }
454
455 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
456 {
457 if (den == 0)
458 return 0;
459 return num / den;
460 }
461
462 uint32_t HELPER(rbit)(uint32_t x)
463 {
464 x = ((x & 0xff000000) >> 24)
465 | ((x & 0x00ff0000) >> 8)
466 | ((x & 0x0000ff00) << 8)
467 | ((x & 0x000000ff) << 24);
468 x = ((x & 0xf0f0f0f0) >> 4)
469 | ((x & 0x0f0f0f0f) << 4);
470 x = ((x & 0x88888888) >> 3)
471 | ((x & 0x44444444) >> 1)
472 | ((x & 0x22222222) << 1)
473 | ((x & 0x11111111) << 3);
474 return x;
475 }
476
477 uint32_t HELPER(abs)(uint32_t x)
478 {
479 return ((int32_t)x < 0) ? -x : x;
480 }
481
482 #if defined(CONFIG_USER_ONLY)
483
484 void do_interrupt (CPUState *env)
485 {
486 env->exception_index = -1;
487 }
488
489 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
490 int mmu_idx, int is_softmmu)
491 {
492 if (rw == 2) {
493 env->exception_index = EXCP_PREFETCH_ABORT;
494 env->cp15.c6_insn = address;
495 } else {
496 env->exception_index = EXCP_DATA_ABORT;
497 env->cp15.c6_data = address;
498 }
499 return 1;
500 }
501
502 /* These should probably raise undefined insn exceptions. */
503 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
504 {
505 int op1 = (insn >> 8) & 0xf;
506 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
507 return;
508 }
509
510 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
511 {
512 int op1 = (insn >> 8) & 0xf;
513 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
514 return 0;
515 }
516
517 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
518 {
519 cpu_abort(env, "cp15 insn %08x\n", insn);
520 }
521
522 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
523 {
524 cpu_abort(env, "cp15 insn %08x\n", insn);
525 }
526
527 /* These should probably raise undefined insn exceptions. */
528 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
529 {
530 cpu_abort(env, "v7m_mrs %d\n", reg);
531 }
532
533 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
534 {
535 cpu_abort(env, "v7m_mrs %d\n", reg);
536 return 0;
537 }
538
539 void switch_mode(CPUState *env, int mode)
540 {
541 if (mode != ARM_CPU_MODE_USR)
542 cpu_abort(env, "Tried to switch out of user mode\n");
543 }
544
545 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
546 {
547 cpu_abort(env, "banked r13 write\n");
548 }
549
550 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
551 {
552 cpu_abort(env, "banked r13 read\n");
553 return 0;
554 }
555
556 #else
557
558 extern int semihosting_enabled;
559
560 /* Map CPU modes onto saved register banks. */
561 static inline int bank_number (int mode)
562 {
563 switch (mode) {
564 case ARM_CPU_MODE_USR:
565 case ARM_CPU_MODE_SYS:
566 return 0;
567 case ARM_CPU_MODE_SVC:
568 return 1;
569 case ARM_CPU_MODE_ABT:
570 return 2;
571 case ARM_CPU_MODE_UND:
572 return 3;
573 case ARM_CPU_MODE_IRQ:
574 return 4;
575 case ARM_CPU_MODE_FIQ:
576 return 5;
577 }
578 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
579 return -1;
580 }
581
582 void switch_mode(CPUState *env, int mode)
583 {
584 int old_mode;
585 int i;
586
587 old_mode = env->uncached_cpsr & CPSR_M;
588 if (mode == old_mode)
589 return;
590
591 if (old_mode == ARM_CPU_MODE_FIQ) {
592 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
593 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
594 } else if (mode == ARM_CPU_MODE_FIQ) {
595 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
596 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
597 }
598
599 i = bank_number(old_mode);
600 env->banked_r13[i] = env->regs[13];
601 env->banked_r14[i] = env->regs[14];
602 env->banked_spsr[i] = env->spsr;
603
604 i = bank_number(mode);
605 env->regs[13] = env->banked_r13[i];
606 env->regs[14] = env->banked_r14[i];
607 env->spsr = env->banked_spsr[i];
608 }
609
610 static void v7m_push(CPUARMState *env, uint32_t val)
611 {
612 env->regs[13] -= 4;
613 stl_phys(env->regs[13], val);
614 }
615
616 static uint32_t v7m_pop(CPUARMState *env)
617 {
618 uint32_t val;
619 val = ldl_phys(env->regs[13]);
620 env->regs[13] += 4;
621 return val;
622 }
623
624 /* Switch to V7M main or process stack pointer. */
625 static void switch_v7m_sp(CPUARMState *env, int process)
626 {
627 uint32_t tmp;
628 if (env->v7m.current_sp != process) {
629 tmp = env->v7m.other_sp;
630 env->v7m.other_sp = env->regs[13];
631 env->regs[13] = tmp;
632 env->v7m.current_sp = process;
633 }
634 }
635
636 static void do_v7m_exception_exit(CPUARMState *env)
637 {
638 uint32_t type;
639 uint32_t xpsr;
640
641 type = env->regs[15];
642 if (env->v7m.exception != 0)
643 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
644
645 /* Switch to the target stack. */
646 switch_v7m_sp(env, (type & 4) != 0);
647 /* Pop registers. */
648 env->regs[0] = v7m_pop(env);
649 env->regs[1] = v7m_pop(env);
650 env->regs[2] = v7m_pop(env);
651 env->regs[3] = v7m_pop(env);
652 env->regs[12] = v7m_pop(env);
653 env->regs[14] = v7m_pop(env);
654 env->regs[15] = v7m_pop(env);
655 xpsr = v7m_pop(env);
656 xpsr_write(env, xpsr, 0xfffffdff);
657 /* Undo stack alignment. */
658 if (xpsr & 0x200)
659 env->regs[13] |= 4;
660 /* ??? The exception return type specifies Thread/Handler mode. However
661 this is also implied by the xPSR value. Not sure what to do
662 if there is a mismatch. */
663 /* ??? Likewise for mismatches between the CONTROL register and the stack
664 pointer. */
665 }
666
667 static void do_interrupt_v7m(CPUARMState *env)
668 {
669 uint32_t xpsr = xpsr_read(env);
670 uint32_t lr;
671 uint32_t addr;
672
673 lr = 0xfffffff1;
674 if (env->v7m.current_sp)
675 lr |= 4;
676 if (env->v7m.exception == 0)
677 lr |= 8;
678
679 /* For exceptions we just mark as pending on the NVIC, and let that
680 handle it. */
681 /* TODO: Need to escalate if the current priority is higher than the
682 one we're raising. */
683 switch (env->exception_index) {
684 case EXCP_UDEF:
685 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
686 return;
687 case EXCP_SWI:
688 env->regs[15] += 2;
689 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
690 return;
691 case EXCP_PREFETCH_ABORT:
692 case EXCP_DATA_ABORT:
693 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
694 return;
695 case EXCP_BKPT:
696 if (semihosting_enabled) {
697 int nr;
698 nr = lduw_code(env->regs[15]) & 0xff;
699 if (nr == 0xab) {
700 env->regs[15] += 2;
701 env->regs[0] = do_arm_semihosting(env);
702 return;
703 }
704 }
705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
706 return;
707 case EXCP_IRQ:
708 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
709 break;
710 case EXCP_EXCEPTION_EXIT:
711 do_v7m_exception_exit(env);
712 return;
713 default:
714 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
715 return; /* Never happens. Keep compiler happy. */
716 }
717
718 /* Align stack pointer. */
719 /* ??? Should only do this if Configuration Control Register
720 STACKALIGN bit is set. */
721 if (env->regs[13] & 4) {
722 env->regs[13] -= 4;
723 xpsr |= 0x200;
724 }
725 /* Switch to the handler mode. */
726 v7m_push(env, xpsr);
727 v7m_push(env, env->regs[15]);
728 v7m_push(env, env->regs[14]);
729 v7m_push(env, env->regs[12]);
730 v7m_push(env, env->regs[3]);
731 v7m_push(env, env->regs[2]);
732 v7m_push(env, env->regs[1]);
733 v7m_push(env, env->regs[0]);
734 switch_v7m_sp(env, 0);
735 env->uncached_cpsr &= ~CPSR_IT;
736 env->regs[14] = lr;
737 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
738 env->regs[15] = addr & 0xfffffffe;
739 env->thumb = addr & 1;
740 }
741
742 /* Handle a CPU exception. */
743 void do_interrupt(CPUARMState *env)
744 {
745 uint32_t addr;
746 uint32_t mask;
747 int new_mode;
748 uint32_t offset;
749
750 if (IS_M(env)) {
751 do_interrupt_v7m(env);
752 return;
753 }
754 /* TODO: Vectored interrupt controller. */
755 switch (env->exception_index) {
756 case EXCP_UDEF:
757 new_mode = ARM_CPU_MODE_UND;
758 addr = 0x04;
759 mask = CPSR_I;
760 if (env->thumb)
761 offset = 2;
762 else
763 offset = 4;
764 break;
765 case EXCP_SWI:
766 if (semihosting_enabled) {
767 /* Check for semihosting interrupt. */
768 if (env->thumb) {
769 mask = lduw_code(env->regs[15] - 2) & 0xff;
770 } else {
771 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
772 }
773 /* Only intercept calls from privileged modes, to provide some
774 semblance of security. */
775 if (((mask == 0x123456 && !env->thumb)
776 || (mask == 0xab && env->thumb))
777 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
778 env->regs[0] = do_arm_semihosting(env);
779 return;
780 }
781 }
782 new_mode = ARM_CPU_MODE_SVC;
783 addr = 0x08;
784 mask = CPSR_I;
785 /* The PC already points to the next instruction. */
786 offset = 0;
787 break;
788 case EXCP_BKPT:
789 /* See if this is a semihosting syscall. */
790 if (env->thumb && semihosting_enabled) {
791 mask = lduw_code(env->regs[15]) & 0xff;
792 if (mask == 0xab
793 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
794 env->regs[15] += 2;
795 env->regs[0] = do_arm_semihosting(env);
796 return;
797 }
798 }
799 /* Fall through to prefetch abort. */
800 case EXCP_PREFETCH_ABORT:
801 new_mode = ARM_CPU_MODE_ABT;
802 addr = 0x0c;
803 mask = CPSR_A | CPSR_I;
804 offset = 4;
805 break;
806 case EXCP_DATA_ABORT:
807 new_mode = ARM_CPU_MODE_ABT;
808 addr = 0x10;
809 mask = CPSR_A | CPSR_I;
810 offset = 8;
811 break;
812 case EXCP_IRQ:
813 new_mode = ARM_CPU_MODE_IRQ;
814 addr = 0x18;
815 /* Disable IRQ and imprecise data aborts. */
816 mask = CPSR_A | CPSR_I;
817 offset = 4;
818 break;
819 case EXCP_FIQ:
820 new_mode = ARM_CPU_MODE_FIQ;
821 addr = 0x1c;
822 /* Disable FIQ, IRQ and imprecise data aborts. */
823 mask = CPSR_A | CPSR_I | CPSR_F;
824 offset = 4;
825 break;
826 default:
827 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
828 return; /* Never happens. Keep compiler happy. */
829 }
830 /* High vectors. */
831 if (env->cp15.c1_sys & (1 << 13)) {
832 addr += 0xffff0000;
833 }
834 switch_mode (env, new_mode);
835 env->spsr = cpsr_read(env);
836 /* Clear IT bits. */
837 env->condexec_bits = 0;
838 /* Switch to the new mode, and to the correct instruction set. */
839 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
840 env->uncached_cpsr |= mask;
841 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
842 env->regs[14] = env->regs[15] + offset;
843 env->regs[15] = addr;
844 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
845 }
846
847 /* Check section/page access permissions.
848 Returns the page protection flags, or zero if the access is not
849 permitted. */
850 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
851 int is_user)
852 {
853 int prot_ro;
854
855 if (domain == 3)
856 return PAGE_READ | PAGE_WRITE;
857
858 if (access_type == 1)
859 prot_ro = 0;
860 else
861 prot_ro = PAGE_READ;
862
863 switch (ap) {
864 case 0:
865 if (access_type == 1)
866 return 0;
867 switch ((env->cp15.c1_sys >> 8) & 3) {
868 case 1:
869 return is_user ? 0 : PAGE_READ;
870 case 2:
871 return PAGE_READ;
872 default:
873 return 0;
874 }
875 case 1:
876 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
877 case 2:
878 if (is_user)
879 return prot_ro;
880 else
881 return PAGE_READ | PAGE_WRITE;
882 case 3:
883 return PAGE_READ | PAGE_WRITE;
884 case 4: /* Reserved. */
885 return 0;
886 case 5:
887 return is_user ? 0 : prot_ro;
888 case 6:
889 return prot_ro;
890 case 7:
891 if (!arm_feature (env, ARM_FEATURE_V7))
892 return 0;
893 return prot_ro;
894 default:
895 abort();
896 }
897 }
898
899 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
900 {
901 uint32_t table;
902
903 if (address & env->cp15.c2_mask)
904 table = env->cp15.c2_base1 & 0xffffc000;
905 else
906 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
907
908 table |= (address >> 18) & 0x3ffc;
909 return table;
910 }
911
912 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
913 int is_user, uint32_t *phys_ptr, int *prot,
914 target_ulong *page_size)
915 {
916 int code;
917 uint32_t table;
918 uint32_t desc;
919 int type;
920 int ap;
921 int domain;
922 uint32_t phys_addr;
923
924 /* Pagetable walk. */
925 /* Lookup l1 descriptor. */
926 table = get_level1_table_address(env, address);
927 desc = ldl_phys(table);
928 type = (desc & 3);
929 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
930 if (type == 0) {
931 /* Section translation fault. */
932 code = 5;
933 goto do_fault;
934 }
935 if (domain == 0 || domain == 2) {
936 if (type == 2)
937 code = 9; /* Section domain fault. */
938 else
939 code = 11; /* Page domain fault. */
940 goto do_fault;
941 }
942 if (type == 2) {
943 /* 1Mb section. */
944 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
945 ap = (desc >> 10) & 3;
946 code = 13;
947 *page_size = 1024 * 1024;
948 } else {
949 /* Lookup l2 entry. */
950 if (type == 1) {
951 /* Coarse pagetable. */
952 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
953 } else {
954 /* Fine pagetable. */
955 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
956 }
957 desc = ldl_phys(table);
958 switch (desc & 3) {
959 case 0: /* Page translation fault. */
960 code = 7;
961 goto do_fault;
962 case 1: /* 64k page. */
963 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
964 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
965 *page_size = 0x10000;
966 break;
967 case 2: /* 4k page. */
968 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
969 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
970 *page_size = 0x1000;
971 break;
972 case 3: /* 1k page. */
973 if (type == 1) {
974 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
975 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
976 } else {
977 /* Page translation fault. */
978 code = 7;
979 goto do_fault;
980 }
981 } else {
982 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
983 }
984 ap = (desc >> 4) & 3;
985 *page_size = 0x400;
986 break;
987 default:
988 /* Never happens, but compiler isn't smart enough to tell. */
989 abort();
990 }
991 code = 15;
992 }
993 *prot = check_ap(env, ap, domain, access_type, is_user);
994 if (!*prot) {
995 /* Access permission fault. */
996 goto do_fault;
997 }
998 *prot |= PAGE_EXEC;
999 *phys_ptr = phys_addr;
1000 return 0;
1001 do_fault:
1002 return code | (domain << 4);
1003 }
1004
1005 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1006 int is_user, uint32_t *phys_ptr, int *prot,
1007 target_ulong *page_size)
1008 {
1009 int code;
1010 uint32_t table;
1011 uint32_t desc;
1012 uint32_t xn;
1013 int type;
1014 int ap;
1015 int domain;
1016 uint32_t phys_addr;
1017
1018 /* Pagetable walk. */
1019 /* Lookup l1 descriptor. */
1020 table = get_level1_table_address(env, address);
1021 desc = ldl_phys(table);
1022 type = (desc & 3);
1023 if (type == 0) {
1024 /* Section translation fault. */
1025 code = 5;
1026 domain = 0;
1027 goto do_fault;
1028 } else if (type == 2 && (desc & (1 << 18))) {
1029 /* Supersection. */
1030 domain = 0;
1031 } else {
1032 /* Section or page. */
1033 domain = (desc >> 4) & 0x1e;
1034 }
1035 domain = (env->cp15.c3 >> domain) & 3;
1036 if (domain == 0 || domain == 2) {
1037 if (type == 2)
1038 code = 9; /* Section domain fault. */
1039 else
1040 code = 11; /* Page domain fault. */
1041 goto do_fault;
1042 }
1043 if (type == 2) {
1044 if (desc & (1 << 18)) {
1045 /* Supersection. */
1046 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1047 *page_size = 0x1000000;
1048 } else {
1049 /* Section. */
1050 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1051 *page_size = 0x100000;
1052 }
1053 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1054 xn = desc & (1 << 4);
1055 code = 13;
1056 } else {
1057 /* Lookup l2 entry. */
1058 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1059 desc = ldl_phys(table);
1060 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1061 switch (desc & 3) {
1062 case 0: /* Page translation fault. */
1063 code = 7;
1064 goto do_fault;
1065 case 1: /* 64k page. */
1066 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1067 xn = desc & (1 << 15);
1068 *page_size = 0x10000;
1069 break;
1070 case 2: case 3: /* 4k page. */
1071 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1072 xn = desc & 1;
1073 *page_size = 0x1000;
1074 break;
1075 default:
1076 /* Never happens, but compiler isn't smart enough to tell. */
1077 abort();
1078 }
1079 code = 15;
1080 }
1081 if (xn && access_type == 2)
1082 goto do_fault;
1083
1084 /* The simplified model uses AP[0] as an access control bit. */
1085 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1086 /* Access flag fault. */
1087 code = (code == 15) ? 6 : 3;
1088 goto do_fault;
1089 }
1090 *prot = check_ap(env, ap, domain, access_type, is_user);
1091 if (!*prot) {
1092 /* Access permission fault. */
1093 goto do_fault;
1094 }
1095 if (!xn) {
1096 *prot |= PAGE_EXEC;
1097 }
1098 *phys_ptr = phys_addr;
1099 return 0;
1100 do_fault:
1101 return code | (domain << 4);
1102 }
1103
1104 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1105 int is_user, uint32_t *phys_ptr, int *prot)
1106 {
1107 int n;
1108 uint32_t mask;
1109 uint32_t base;
1110
1111 *phys_ptr = address;
1112 for (n = 7; n >= 0; n--) {
1113 base = env->cp15.c6_region[n];
1114 if ((base & 1) == 0)
1115 continue;
1116 mask = 1 << ((base >> 1) & 0x1f);
1117 /* Keep this shift separate from the above to avoid an
1118 (undefined) << 32. */
1119 mask = (mask << 1) - 1;
1120 if (((base ^ address) & ~mask) == 0)
1121 break;
1122 }
1123 if (n < 0)
1124 return 2;
1125
1126 if (access_type == 2) {
1127 mask = env->cp15.c5_insn;
1128 } else {
1129 mask = env->cp15.c5_data;
1130 }
1131 mask = (mask >> (n * 4)) & 0xf;
1132 switch (mask) {
1133 case 0:
1134 return 1;
1135 case 1:
1136 if (is_user)
1137 return 1;
1138 *prot = PAGE_READ | PAGE_WRITE;
1139 break;
1140 case 2:
1141 *prot = PAGE_READ;
1142 if (!is_user)
1143 *prot |= PAGE_WRITE;
1144 break;
1145 case 3:
1146 *prot = PAGE_READ | PAGE_WRITE;
1147 break;
1148 case 5:
1149 if (is_user)
1150 return 1;
1151 *prot = PAGE_READ;
1152 break;
1153 case 6:
1154 *prot = PAGE_READ;
1155 break;
1156 default:
1157 /* Bad permission. */
1158 return 1;
1159 }
1160 *prot |= PAGE_EXEC;
1161 return 0;
1162 }
1163
1164 static inline int get_phys_addr(CPUState *env, uint32_t address,
1165 int access_type, int is_user,
1166 uint32_t *phys_ptr, int *prot,
1167 target_ulong *page_size)
1168 {
1169 /* Fast Context Switch Extension. */
1170 if (address < 0x02000000)
1171 address += env->cp15.c13_fcse;
1172
1173 if ((env->cp15.c1_sys & 1) == 0) {
1174 /* MMU/MPU disabled. */
1175 *phys_ptr = address;
1176 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1177 *page_size = TARGET_PAGE_SIZE;
1178 return 0;
1179 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1180 *page_size = TARGET_PAGE_SIZE;
1181 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1182 prot);
1183 } else if (env->cp15.c1_sys & (1 << 23)) {
1184 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1185 prot, page_size);
1186 } else {
1187 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1188 prot, page_size);
1189 }
1190 }
1191
1192 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1193 int access_type, int mmu_idx, int is_softmmu)
1194 {
1195 uint32_t phys_addr;
1196 target_ulong page_size;
1197 int prot;
1198 int ret, is_user;
1199
1200 is_user = mmu_idx == MMU_USER_IDX;
1201 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1202 &page_size);
1203 if (ret == 0) {
1204 /* Map a single [sub]page. */
1205 phys_addr &= ~(uint32_t)0x3ff;
1206 address &= ~(uint32_t)0x3ff;
1207 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1208 return 0;
1209 }
1210
1211 if (access_type == 2) {
1212 env->cp15.c5_insn = ret;
1213 env->cp15.c6_insn = address;
1214 env->exception_index = EXCP_PREFETCH_ABORT;
1215 } else {
1216 env->cp15.c5_data = ret;
1217 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1218 env->cp15.c5_data |= (1 << 11);
1219 env->cp15.c6_data = address;
1220 env->exception_index = EXCP_DATA_ABORT;
1221 }
1222 return 1;
1223 }
1224
1225 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1226 {
1227 uint32_t phys_addr;
1228 target_ulong page_size;
1229 int prot;
1230 int ret;
1231
1232 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1233
1234 if (ret != 0)
1235 return -1;
1236
1237 return phys_addr;
1238 }
1239
1240 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1241 {
1242 int cp_num = (insn >> 8) & 0xf;
1243 int cp_info = (insn >> 5) & 7;
1244 int src = (insn >> 16) & 0xf;
1245 int operand = insn & 0xf;
1246
1247 if (env->cp[cp_num].cp_write)
1248 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1249 cp_info, src, operand, val);
1250 }
1251
1252 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1253 {
1254 int cp_num = (insn >> 8) & 0xf;
1255 int cp_info = (insn >> 5) & 7;
1256 int dest = (insn >> 16) & 0xf;
1257 int operand = insn & 0xf;
1258
1259 if (env->cp[cp_num].cp_read)
1260 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1261 cp_info, dest, operand);
1262 return 0;
1263 }
1264
1265 /* Return basic MPU access permission bits. */
1266 static uint32_t simple_mpu_ap_bits(uint32_t val)
1267 {
1268 uint32_t ret;
1269 uint32_t mask;
1270 int i;
1271 ret = 0;
1272 mask = 3;
1273 for (i = 0; i < 16; i += 2) {
1274 ret |= (val >> i) & mask;
1275 mask <<= 2;
1276 }
1277 return ret;
1278 }
1279
1280 /* Pad basic MPU access permission bits to extended format. */
1281 static uint32_t extended_mpu_ap_bits(uint32_t val)
1282 {
1283 uint32_t ret;
1284 uint32_t mask;
1285 int i;
1286 ret = 0;
1287 mask = 3;
1288 for (i = 0; i < 16; i += 2) {
1289 ret |= (val & mask) << i;
1290 mask <<= 2;
1291 }
1292 return ret;
1293 }
1294
1295 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1296 {
1297 int op1;
1298 int op2;
1299 int crm;
1300
1301 op1 = (insn >> 21) & 7;
1302 op2 = (insn >> 5) & 7;
1303 crm = insn & 0xf;
1304 switch ((insn >> 16) & 0xf) {
1305 case 0:
1306 /* ID codes. */
1307 if (arm_feature(env, ARM_FEATURE_XSCALE))
1308 break;
1309 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1310 break;
1311 if (arm_feature(env, ARM_FEATURE_V7)
1312 && op1 == 2 && crm == 0 && op2 == 0) {
1313 env->cp15.c0_cssel = val & 0xf;
1314 break;
1315 }
1316 goto bad_reg;
1317 case 1: /* System configuration. */
1318 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1319 op2 = 0;
1320 switch (op2) {
1321 case 0:
1322 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1323 env->cp15.c1_sys = val;
1324 /* ??? Lots of these bits are not implemented. */
1325 /* This may enable/disable the MMU, so do a TLB flush. */
1326 tlb_flush(env, 1);
1327 break;
1328 case 1: /* Auxiliary cotrol register. */
1329 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1330 env->cp15.c1_xscaleauxcr = val;
1331 break;
1332 }
1333 /* Not implemented. */
1334 break;
1335 case 2:
1336 if (arm_feature(env, ARM_FEATURE_XSCALE))
1337 goto bad_reg;
1338 if (env->cp15.c1_coproc != val) {
1339 env->cp15.c1_coproc = val;
1340 /* ??? Is this safe when called from within a TB? */
1341 tb_flush(env);
1342 }
1343 break;
1344 default:
1345 goto bad_reg;
1346 }
1347 break;
1348 case 2: /* MMU Page table control / MPU cache control. */
1349 if (arm_feature(env, ARM_FEATURE_MPU)) {
1350 switch (op2) {
1351 case 0:
1352 env->cp15.c2_data = val;
1353 break;
1354 case 1:
1355 env->cp15.c2_insn = val;
1356 break;
1357 default:
1358 goto bad_reg;
1359 }
1360 } else {
1361 switch (op2) {
1362 case 0:
1363 env->cp15.c2_base0 = val;
1364 break;
1365 case 1:
1366 env->cp15.c2_base1 = val;
1367 break;
1368 case 2:
1369 val &= 7;
1370 env->cp15.c2_control = val;
1371 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1372 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1373 break;
1374 default:
1375 goto bad_reg;
1376 }
1377 }
1378 break;
1379 case 3: /* MMU Domain access control / MPU write buffer control. */
1380 env->cp15.c3 = val;
1381 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1382 break;
1383 case 4: /* Reserved. */
1384 goto bad_reg;
1385 case 5: /* MMU Fault status / MPU access permission. */
1386 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1387 op2 = 0;
1388 switch (op2) {
1389 case 0:
1390 if (arm_feature(env, ARM_FEATURE_MPU))
1391 val = extended_mpu_ap_bits(val);
1392 env->cp15.c5_data = val;
1393 break;
1394 case 1:
1395 if (arm_feature(env, ARM_FEATURE_MPU))
1396 val = extended_mpu_ap_bits(val);
1397 env->cp15.c5_insn = val;
1398 break;
1399 case 2:
1400 if (!arm_feature(env, ARM_FEATURE_MPU))
1401 goto bad_reg;
1402 env->cp15.c5_data = val;
1403 break;
1404 case 3:
1405 if (!arm_feature(env, ARM_FEATURE_MPU))
1406 goto bad_reg;
1407 env->cp15.c5_insn = val;
1408 break;
1409 default:
1410 goto bad_reg;
1411 }
1412 break;
1413 case 6: /* MMU Fault address / MPU base/size. */
1414 if (arm_feature(env, ARM_FEATURE_MPU)) {
1415 if (crm >= 8)
1416 goto bad_reg;
1417 env->cp15.c6_region[crm] = val;
1418 } else {
1419 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1420 op2 = 0;
1421 switch (op2) {
1422 case 0:
1423 env->cp15.c6_data = val;
1424 break;
1425 case 1: /* ??? This is WFAR on armv6 */
1426 case 2:
1427 env->cp15.c6_insn = val;
1428 break;
1429 default:
1430 goto bad_reg;
1431 }
1432 }
1433 break;
1434 case 7: /* Cache control. */
1435 env->cp15.c15_i_max = 0x000;
1436 env->cp15.c15_i_min = 0xff0;
1437 /* No cache, so nothing to do. */
1438 /* ??? MPCore has VA to PA translation functions. */
1439 break;
1440 case 8: /* MMU TLB control. */
1441 switch (op2) {
1442 case 0: /* Invalidate all. */
1443 tlb_flush(env, 0);
1444 break;
1445 case 1: /* Invalidate single TLB entry. */
1446 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1447 break;
1448 case 2: /* Invalidate on ASID. */
1449 tlb_flush(env, val == 0);
1450 break;
1451 case 3: /* Invalidate single entry on MVA. */
1452 /* ??? This is like case 1, but ignores ASID. */
1453 tlb_flush(env, 1);
1454 break;
1455 default:
1456 goto bad_reg;
1457 }
1458 break;
1459 case 9:
1460 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1461 break;
1462 switch (crm) {
1463 case 0: /* Cache lockdown. */
1464 switch (op1) {
1465 case 0: /* L1 cache. */
1466 switch (op2) {
1467 case 0:
1468 env->cp15.c9_data = val;
1469 break;
1470 case 1:
1471 env->cp15.c9_insn = val;
1472 break;
1473 default:
1474 goto bad_reg;
1475 }
1476 break;
1477 case 1: /* L2 cache. */
1478 /* Ignore writes to L2 lockdown/auxiliary registers. */
1479 break;
1480 default:
1481 goto bad_reg;
1482 }
1483 break;
1484 case 1: /* TCM memory region registers. */
1485 /* Not implemented. */
1486 goto bad_reg;
1487 default:
1488 goto bad_reg;
1489 }
1490 break;
1491 case 10: /* MMU TLB lockdown. */
1492 /* ??? TLB lockdown not implemented. */
1493 break;
1494 case 12: /* Reserved. */
1495 goto bad_reg;
1496 case 13: /* Process ID. */
1497 switch (op2) {
1498 case 0:
1499 /* Unlike real hardware the qemu TLB uses virtual addresses,
1500 not modified virtual addresses, so this causes a TLB flush.
1501 */
1502 if (env->cp15.c13_fcse != val)
1503 tlb_flush(env, 1);
1504 env->cp15.c13_fcse = val;
1505 break;
1506 case 1:
1507 /* This changes the ASID, so do a TLB flush. */
1508 if (env->cp15.c13_context != val
1509 && !arm_feature(env, ARM_FEATURE_MPU))
1510 tlb_flush(env, 0);
1511 env->cp15.c13_context = val;
1512 break;
1513 default:
1514 goto bad_reg;
1515 }
1516 break;
1517 case 14: /* Reserved. */
1518 goto bad_reg;
1519 case 15: /* Implementation specific. */
1520 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1521 if (op2 == 0 && crm == 1) {
1522 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1523 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1524 tb_flush(env);
1525 env->cp15.c15_cpar = val & 0x3fff;
1526 }
1527 break;
1528 }
1529 goto bad_reg;
1530 }
1531 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1532 switch (crm) {
1533 case 0:
1534 break;
1535 case 1: /* Set TI925T configuration. */
1536 env->cp15.c15_ticonfig = val & 0xe7;
1537 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1538 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1539 break;
1540 case 2: /* Set I_max. */
1541 env->cp15.c15_i_max = val;
1542 break;
1543 case 3: /* Set I_min. */
1544 env->cp15.c15_i_min = val;
1545 break;
1546 case 4: /* Set thread-ID. */
1547 env->cp15.c15_threadid = val & 0xffff;
1548 break;
1549 case 8: /* Wait-for-interrupt (deprecated). */
1550 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1551 break;
1552 default:
1553 goto bad_reg;
1554 }
1555 }
1556 break;
1557 }
1558 return;
1559 bad_reg:
1560 /* ??? For debugging only. Should raise illegal instruction exception. */
1561 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1562 (insn >> 16) & 0xf, crm, op1, op2);
1563 }
1564
1565 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1566 {
1567 int op1;
1568 int op2;
1569 int crm;
1570
1571 op1 = (insn >> 21) & 7;
1572 op2 = (insn >> 5) & 7;
1573 crm = insn & 0xf;
1574 switch ((insn >> 16) & 0xf) {
1575 case 0: /* ID codes. */
1576 switch (op1) {
1577 case 0:
1578 switch (crm) {
1579 case 0:
1580 switch (op2) {
1581 case 0: /* Device ID. */
1582 return env->cp15.c0_cpuid;
1583 case 1: /* Cache Type. */
1584 return env->cp15.c0_cachetype;
1585 case 2: /* TCM status. */
1586 return 0;
1587 case 3: /* TLB type register. */
1588 return 0; /* No lockable TLB entries. */
1589 case 5: /* CPU ID */
1590 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1591 return env->cpu_index | 0x80000900;
1592 } else {
1593 return env->cpu_index;
1594 }
1595 default:
1596 goto bad_reg;
1597 }
1598 case 1:
1599 if (!arm_feature(env, ARM_FEATURE_V6))
1600 goto bad_reg;
1601 return env->cp15.c0_c1[op2];
1602 case 2:
1603 if (!arm_feature(env, ARM_FEATURE_V6))
1604 goto bad_reg;
1605 return env->cp15.c0_c2[op2];
1606 case 3: case 4: case 5: case 6: case 7:
1607 return 0;
1608 default:
1609 goto bad_reg;
1610 }
1611 case 1:
1612 /* These registers aren't documented on arm11 cores. However
1613 Linux looks at them anyway. */
1614 if (!arm_feature(env, ARM_FEATURE_V6))
1615 goto bad_reg;
1616 if (crm != 0)
1617 goto bad_reg;
1618 if (!arm_feature(env, ARM_FEATURE_V7))
1619 return 0;
1620
1621 switch (op2) {
1622 case 0:
1623 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1624 case 1:
1625 return env->cp15.c0_clid;
1626 case 7:
1627 return 0;
1628 }
1629 goto bad_reg;
1630 case 2:
1631 if (op2 != 0 || crm != 0)
1632 goto bad_reg;
1633 return env->cp15.c0_cssel;
1634 default:
1635 goto bad_reg;
1636 }
1637 case 1: /* System configuration. */
1638 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1639 op2 = 0;
1640 switch (op2) {
1641 case 0: /* Control register. */
1642 return env->cp15.c1_sys;
1643 case 1: /* Auxiliary control register. */
1644 if (arm_feature(env, ARM_FEATURE_XSCALE))
1645 return env->cp15.c1_xscaleauxcr;
1646 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1647 goto bad_reg;
1648 switch (ARM_CPUID(env)) {
1649 case ARM_CPUID_ARM1026:
1650 return 1;
1651 case ARM_CPUID_ARM1136:
1652 case ARM_CPUID_ARM1136_R2:
1653 return 7;
1654 case ARM_CPUID_ARM11MPCORE:
1655 return 1;
1656 case ARM_CPUID_CORTEXA8:
1657 return 2;
1658 case ARM_CPUID_CORTEXA9:
1659 return 0;
1660 default:
1661 goto bad_reg;
1662 }
1663 case 2: /* Coprocessor access register. */
1664 if (arm_feature(env, ARM_FEATURE_XSCALE))
1665 goto bad_reg;
1666 return env->cp15.c1_coproc;
1667 default:
1668 goto bad_reg;
1669 }
1670 case 2: /* MMU Page table control / MPU cache control. */
1671 if (arm_feature(env, ARM_FEATURE_MPU)) {
1672 switch (op2) {
1673 case 0:
1674 return env->cp15.c2_data;
1675 break;
1676 case 1:
1677 return env->cp15.c2_insn;
1678 break;
1679 default:
1680 goto bad_reg;
1681 }
1682 } else {
1683 switch (op2) {
1684 case 0:
1685 return env->cp15.c2_base0;
1686 case 1:
1687 return env->cp15.c2_base1;
1688 case 2:
1689 return env->cp15.c2_control;
1690 default:
1691 goto bad_reg;
1692 }
1693 }
1694 case 3: /* MMU Domain access control / MPU write buffer control. */
1695 return env->cp15.c3;
1696 case 4: /* Reserved. */
1697 goto bad_reg;
1698 case 5: /* MMU Fault status / MPU access permission. */
1699 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1700 op2 = 0;
1701 switch (op2) {
1702 case 0:
1703 if (arm_feature(env, ARM_FEATURE_MPU))
1704 return simple_mpu_ap_bits(env->cp15.c5_data);
1705 return env->cp15.c5_data;
1706 case 1:
1707 if (arm_feature(env, ARM_FEATURE_MPU))
1708 return simple_mpu_ap_bits(env->cp15.c5_data);
1709 return env->cp15.c5_insn;
1710 case 2:
1711 if (!arm_feature(env, ARM_FEATURE_MPU))
1712 goto bad_reg;
1713 return env->cp15.c5_data;
1714 case 3:
1715 if (!arm_feature(env, ARM_FEATURE_MPU))
1716 goto bad_reg;
1717 return env->cp15.c5_insn;
1718 default:
1719 goto bad_reg;
1720 }
1721 case 6: /* MMU Fault address. */
1722 if (arm_feature(env, ARM_FEATURE_MPU)) {
1723 if (crm >= 8)
1724 goto bad_reg;
1725 return env->cp15.c6_region[crm];
1726 } else {
1727 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1728 op2 = 0;
1729 switch (op2) {
1730 case 0:
1731 return env->cp15.c6_data;
1732 case 1:
1733 if (arm_feature(env, ARM_FEATURE_V6)) {
1734 /* Watchpoint Fault Adrress. */
1735 return 0; /* Not implemented. */
1736 } else {
1737 /* Instruction Fault Adrress. */
1738 /* Arm9 doesn't have an IFAR, but implementing it anyway
1739 shouldn't do any harm. */
1740 return env->cp15.c6_insn;
1741 }
1742 case 2:
1743 if (arm_feature(env, ARM_FEATURE_V6)) {
1744 /* Instruction Fault Adrress. */
1745 return env->cp15.c6_insn;
1746 } else {
1747 goto bad_reg;
1748 }
1749 default:
1750 goto bad_reg;
1751 }
1752 }
1753 case 7: /* Cache control. */
1754 /* FIXME: Should only clear Z flag if destination is r15. */
1755 env->ZF = 0;
1756 return 0;
1757 case 8: /* MMU TLB control. */
1758 goto bad_reg;
1759 case 9: /* Cache lockdown. */
1760 switch (op1) {
1761 case 0: /* L1 cache. */
1762 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1763 return 0;
1764 switch (op2) {
1765 case 0:
1766 return env->cp15.c9_data;
1767 case 1:
1768 return env->cp15.c9_insn;
1769 default:
1770 goto bad_reg;
1771 }
1772 case 1: /* L2 cache */
1773 if (crm != 0)
1774 goto bad_reg;
1775 /* L2 Lockdown and Auxiliary control. */
1776 return 0;
1777 default:
1778 goto bad_reg;
1779 }
1780 case 10: /* MMU TLB lockdown. */
1781 /* ??? TLB lockdown not implemented. */
1782 return 0;
1783 case 11: /* TCM DMA control. */
1784 case 12: /* Reserved. */
1785 goto bad_reg;
1786 case 13: /* Process ID. */
1787 switch (op2) {
1788 case 0:
1789 return env->cp15.c13_fcse;
1790 case 1:
1791 return env->cp15.c13_context;
1792 default:
1793 goto bad_reg;
1794 }
1795 case 14: /* Reserved. */
1796 goto bad_reg;
1797 case 15: /* Implementation specific. */
1798 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1799 if (op2 == 0 && crm == 1)
1800 return env->cp15.c15_cpar;
1801
1802 goto bad_reg;
1803 }
1804 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1805 switch (crm) {
1806 case 0:
1807 return 0;
1808 case 1: /* Read TI925T configuration. */
1809 return env->cp15.c15_ticonfig;
1810 case 2: /* Read I_max. */
1811 return env->cp15.c15_i_max;
1812 case 3: /* Read I_min. */
1813 return env->cp15.c15_i_min;
1814 case 4: /* Read thread-ID. */
1815 return env->cp15.c15_threadid;
1816 case 8: /* TI925T_status */
1817 return 0;
1818 }
1819 /* TODO: Peripheral port remap register:
1820 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1821 * controller base address at $rn & ~0xfff and map size of
1822 * 0x200 << ($rn & 0xfff), when MMU is off. */
1823 goto bad_reg;
1824 }
1825 return 0;
1826 }
1827 bad_reg:
1828 /* ??? For debugging only. Should raise illegal instruction exception. */
1829 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1830 (insn >> 16) & 0xf, crm, op1, op2);
1831 return 0;
1832 }
1833
1834 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1835 {
1836 env->banked_r13[bank_number(mode)] = val;
1837 }
1838
1839 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1840 {
1841 return env->banked_r13[bank_number(mode)];
1842 }
1843
1844 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1845 {
1846 switch (reg) {
1847 case 0: /* APSR */
1848 return xpsr_read(env) & 0xf8000000;
1849 case 1: /* IAPSR */
1850 return xpsr_read(env) & 0xf80001ff;
1851 case 2: /* EAPSR */
1852 return xpsr_read(env) & 0xff00fc00;
1853 case 3: /* xPSR */
1854 return xpsr_read(env) & 0xff00fdff;
1855 case 5: /* IPSR */
1856 return xpsr_read(env) & 0x000001ff;
1857 case 6: /* EPSR */
1858 return xpsr_read(env) & 0x0700fc00;
1859 case 7: /* IEPSR */
1860 return xpsr_read(env) & 0x0700edff;
1861 case 8: /* MSP */
1862 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1863 case 9: /* PSP */
1864 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1865 case 16: /* PRIMASK */
1866 return (env->uncached_cpsr & CPSR_I) != 0;
1867 case 17: /* FAULTMASK */
1868 return (env->uncached_cpsr & CPSR_F) != 0;
1869 case 18: /* BASEPRI */
1870 case 19: /* BASEPRI_MAX */
1871 return env->v7m.basepri;
1872 case 20: /* CONTROL */
1873 return env->v7m.control;
1874 default:
1875 /* ??? For debugging only. */
1876 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1877 return 0;
1878 }
1879 }
1880
1881 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1882 {
1883 switch (reg) {
1884 case 0: /* APSR */
1885 xpsr_write(env, val, 0xf8000000);
1886 break;
1887 case 1: /* IAPSR */
1888 xpsr_write(env, val, 0xf8000000);
1889 break;
1890 case 2: /* EAPSR */
1891 xpsr_write(env, val, 0xfe00fc00);
1892 break;
1893 case 3: /* xPSR */
1894 xpsr_write(env, val, 0xfe00fc00);
1895 break;
1896 case 5: /* IPSR */
1897 /* IPSR bits are readonly. */
1898 break;
1899 case 6: /* EPSR */
1900 xpsr_write(env, val, 0x0600fc00);
1901 break;
1902 case 7: /* IEPSR */
1903 xpsr_write(env, val, 0x0600fc00);
1904 break;
1905 case 8: /* MSP */
1906 if (env->v7m.current_sp)
1907 env->v7m.other_sp = val;
1908 else
1909 env->regs[13] = val;
1910 break;
1911 case 9: /* PSP */
1912 if (env->v7m.current_sp)
1913 env->regs[13] = val;
1914 else
1915 env->v7m.other_sp = val;
1916 break;
1917 case 16: /* PRIMASK */
1918 if (val & 1)
1919 env->uncached_cpsr |= CPSR_I;
1920 else
1921 env->uncached_cpsr &= ~CPSR_I;
1922 break;
1923 case 17: /* FAULTMASK */
1924 if (val & 1)
1925 env->uncached_cpsr |= CPSR_F;
1926 else
1927 env->uncached_cpsr &= ~CPSR_F;
1928 break;
1929 case 18: /* BASEPRI */
1930 env->v7m.basepri = val & 0xff;
1931 break;
1932 case 19: /* BASEPRI_MAX */
1933 val &= 0xff;
1934 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1935 env->v7m.basepri = val;
1936 break;
1937 case 20: /* CONTROL */
1938 env->v7m.control = val & 3;
1939 switch_v7m_sp(env, (val & 2) != 0);
1940 break;
1941 default:
1942 /* ??? For debugging only. */
1943 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1944 return;
1945 }
1946 }
1947
1948 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1949 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1950 void *opaque)
1951 {
1952 if (cpnum < 0 || cpnum > 14) {
1953 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1954 return;
1955 }
1956
1957 env->cp[cpnum].cp_read = cp_read;
1958 env->cp[cpnum].cp_write = cp_write;
1959 env->cp[cpnum].opaque = opaque;
1960 }
1961
1962 #endif
1963
1964 /* Note that signed overflow is undefined in C. The following routines are
1965 careful to use unsigned types where modulo arithmetic is required.
1966 Failure to do so _will_ break on newer gcc. */
1967
1968 /* Signed saturating arithmetic. */
1969
1970 /* Perform 16-bit signed saturating addition. */
1971 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1972 {
1973 uint16_t res;
1974
1975 res = a + b;
1976 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1977 if (a & 0x8000)
1978 res = 0x8000;
1979 else
1980 res = 0x7fff;
1981 }
1982 return res;
1983 }
1984
1985 /* Perform 8-bit signed saturating addition. */
1986 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1987 {
1988 uint8_t res;
1989
1990 res = a + b;
1991 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1992 if (a & 0x80)
1993 res = 0x80;
1994 else
1995 res = 0x7f;
1996 }
1997 return res;
1998 }
1999
2000 /* Perform 16-bit signed saturating subtraction. */
2001 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2002 {
2003 uint16_t res;
2004
2005 res = a - b;
2006 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2007 if (a & 0x8000)
2008 res = 0x8000;
2009 else
2010 res = 0x7fff;
2011 }
2012 return res;
2013 }
2014
2015 /* Perform 8-bit signed saturating subtraction. */
2016 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2017 {
2018 uint8_t res;
2019
2020 res = a - b;
2021 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2022 if (a & 0x80)
2023 res = 0x80;
2024 else
2025 res = 0x7f;
2026 }
2027 return res;
2028 }
2029
2030 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2031 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2032 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2033 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2034 #define PFX q
2035
2036 #include "op_addsub.h"
2037
2038 /* Unsigned saturating arithmetic. */
2039 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2040 {
2041 uint16_t res;
2042 res = a + b;
2043 if (res < a)
2044 res = 0xffff;
2045 return res;
2046 }
2047
2048 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2049 {
2050 if (a < b)
2051 return a - b;
2052 else
2053 return 0;
2054 }
2055
2056 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2057 {
2058 uint8_t res;
2059 res = a + b;
2060 if (res < a)
2061 res = 0xff;
2062 return res;
2063 }
2064
2065 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2066 {
2067 if (a < b)
2068 return a - b;
2069 else
2070 return 0;
2071 }
2072
2073 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2074 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2075 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2076 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2077 #define PFX uq
2078
2079 #include "op_addsub.h"
2080
2081 /* Signed modulo arithmetic. */
2082 #define SARITH16(a, b, n, op) do { \
2083 int32_t sum; \
2084 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2085 RESULT(sum, n, 16); \
2086 if (sum >= 0) \
2087 ge |= 3 << (n * 2); \
2088 } while(0)
2089
2090 #define SARITH8(a, b, n, op) do { \
2091 int32_t sum; \
2092 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2093 RESULT(sum, n, 8); \
2094 if (sum >= 0) \
2095 ge |= 1 << n; \
2096 } while(0)
2097
2098
2099 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2100 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2101 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2102 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2103 #define PFX s
2104 #define ARITH_GE
2105
2106 #include "op_addsub.h"
2107
2108 /* Unsigned modulo arithmetic. */
2109 #define ADD16(a, b, n) do { \
2110 uint32_t sum; \
2111 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2112 RESULT(sum, n, 16); \
2113 if ((sum >> 16) == 1) \
2114 ge |= 3 << (n * 2); \
2115 } while(0)
2116
2117 #define ADD8(a, b, n) do { \
2118 uint32_t sum; \
2119 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2120 RESULT(sum, n, 8); \
2121 if ((sum >> 8) == 1) \
2122 ge |= 1 << n; \
2123 } while(0)
2124
2125 #define SUB16(a, b, n) do { \
2126 uint32_t sum; \
2127 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2128 RESULT(sum, n, 16); \
2129 if ((sum >> 16) == 0) \
2130 ge |= 3 << (n * 2); \
2131 } while(0)
2132
2133 #define SUB8(a, b, n) do { \
2134 uint32_t sum; \
2135 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2136 RESULT(sum, n, 8); \
2137 if ((sum >> 8) == 0) \
2138 ge |= 1 << n; \
2139 } while(0)
2140
2141 #define PFX u
2142 #define ARITH_GE
2143
2144 #include "op_addsub.h"
2145
2146 /* Halved signed arithmetic. */
2147 #define ADD16(a, b, n) \
2148 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2149 #define SUB16(a, b, n) \
2150 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2151 #define ADD8(a, b, n) \
2152 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2153 #define SUB8(a, b, n) \
2154 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2155 #define PFX sh
2156
2157 #include "op_addsub.h"
2158
2159 /* Halved unsigned arithmetic. */
2160 #define ADD16(a, b, n) \
2161 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2162 #define SUB16(a, b, n) \
2163 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2164 #define ADD8(a, b, n) \
2165 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2166 #define SUB8(a, b, n) \
2167 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2168 #define PFX uh
2169
2170 #include "op_addsub.h"
2171
2172 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2173 {
2174 if (a > b)
2175 return a - b;
2176 else
2177 return b - a;
2178 }
2179
2180 /* Unsigned sum of absolute byte differences. */
2181 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2182 {
2183 uint32_t sum;
2184 sum = do_usad(a, b);
2185 sum += do_usad(a >> 8, b >> 8);
2186 sum += do_usad(a >> 16, b >>16);
2187 sum += do_usad(a >> 24, b >> 24);
2188 return sum;
2189 }
2190
2191 /* For ARMv6 SEL instruction. */
2192 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2193 {
2194 uint32_t mask;
2195
2196 mask = 0;
2197 if (flags & 1)
2198 mask |= 0xff;
2199 if (flags & 2)
2200 mask |= 0xff00;
2201 if (flags & 4)
2202 mask |= 0xff0000;
2203 if (flags & 8)
2204 mask |= 0xff000000;
2205 return (a & mask) | (b & ~mask);
2206 }
2207
2208 uint32_t HELPER(logicq_cc)(uint64_t val)
2209 {
2210 return (val >> 32) | (val != 0);
2211 }
2212
2213 /* VFP support. We follow the convention used for VFP instrunctions:
2214 Single precition routines have a "s" suffix, double precision a
2215 "d" suffix. */
2216
2217 /* Convert host exception flags to vfp form. */
2218 static inline int vfp_exceptbits_from_host(int host_bits)
2219 {
2220 int target_bits = 0;
2221
2222 if (host_bits & float_flag_invalid)
2223 target_bits |= 1;
2224 if (host_bits & float_flag_divbyzero)
2225 target_bits |= 2;
2226 if (host_bits & float_flag_overflow)
2227 target_bits |= 4;
2228 if (host_bits & float_flag_underflow)
2229 target_bits |= 8;
2230 if (host_bits & float_flag_inexact)
2231 target_bits |= 0x10;
2232 return target_bits;
2233 }
2234
2235 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2236 {
2237 int i;
2238 uint32_t fpscr;
2239
2240 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2241 | (env->vfp.vec_len << 16)
2242 | (env->vfp.vec_stride << 20);
2243 i = get_float_exception_flags(&env->vfp.fp_status);
2244 fpscr |= vfp_exceptbits_from_host(i);
2245 return fpscr;
2246 }
2247
2248 /* Convert vfp exception flags to target form. */
2249 static inline int vfp_exceptbits_to_host(int target_bits)
2250 {
2251 int host_bits = 0;
2252
2253 if (target_bits & 1)
2254 host_bits |= float_flag_invalid;
2255 if (target_bits & 2)
2256 host_bits |= float_flag_divbyzero;
2257 if (target_bits & 4)
2258 host_bits |= float_flag_overflow;
2259 if (target_bits & 8)
2260 host_bits |= float_flag_underflow;
2261 if (target_bits & 0x10)
2262 host_bits |= float_flag_inexact;
2263 return host_bits;
2264 }
2265
2266 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2267 {
2268 int i;
2269 uint32_t changed;
2270
2271 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2272 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2273 env->vfp.vec_len = (val >> 16) & 7;
2274 env->vfp.vec_stride = (val >> 20) & 3;
2275
2276 changed ^= val;
2277 if (changed & (3 << 22)) {
2278 i = (val >> 22) & 3;
2279 switch (i) {
2280 case 0:
2281 i = float_round_nearest_even;
2282 break;
2283 case 1:
2284 i = float_round_up;
2285 break;
2286 case 2:
2287 i = float_round_down;
2288 break;
2289 case 3:
2290 i = float_round_to_zero;
2291 break;
2292 }
2293 set_float_rounding_mode(i, &env->vfp.fp_status);
2294 }
2295 if (changed & (1 << 24))
2296 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2297 if (changed & (1 << 25))
2298 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2299
2300 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2301 set_float_exception_flags(i, &env->vfp.fp_status);
2302 }
2303
2304 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2305
2306 #define VFP_BINOP(name) \
2307 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2308 { \
2309 return float32_ ## name (a, b, &env->vfp.fp_status); \
2310 } \
2311 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2312 { \
2313 return float64_ ## name (a, b, &env->vfp.fp_status); \
2314 }
2315 VFP_BINOP(add)
2316 VFP_BINOP(sub)
2317 VFP_BINOP(mul)
2318 VFP_BINOP(div)
2319 #undef VFP_BINOP
2320
2321 float32 VFP_HELPER(neg, s)(float32 a)
2322 {
2323 return float32_chs(a);
2324 }
2325
2326 float64 VFP_HELPER(neg, d)(float64 a)
2327 {
2328 return float64_chs(a);
2329 }
2330
2331 float32 VFP_HELPER(abs, s)(float32 a)
2332 {
2333 return float32_abs(a);
2334 }
2335
2336 float64 VFP_HELPER(abs, d)(float64 a)
2337 {
2338 return float64_abs(a);
2339 }
2340
2341 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2342 {
2343 return float32_sqrt(a, &env->vfp.fp_status);
2344 }
2345
2346 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2347 {
2348 return float64_sqrt(a, &env->vfp.fp_status);
2349 }
2350
2351 /* XXX: check quiet/signaling case */
2352 #define DO_VFP_cmp(p, type) \
2353 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2354 { \
2355 uint32_t flags; \
2356 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2357 case 0: flags = 0x6; break; \
2358 case -1: flags = 0x8; break; \
2359 case 1: flags = 0x2; break; \
2360 default: case 2: flags = 0x3; break; \
2361 } \
2362 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2363 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2364 } \
2365 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2366 { \
2367 uint32_t flags; \
2368 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2369 case 0: flags = 0x6; break; \
2370 case -1: flags = 0x8; break; \
2371 case 1: flags = 0x2; break; \
2372 default: case 2: flags = 0x3; break; \
2373 } \
2374 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2375 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2376 }
2377 DO_VFP_cmp(s, float32)
2378 DO_VFP_cmp(d, float64)
2379 #undef DO_VFP_cmp
2380
2381 /* Helper routines to perform bitwise copies between float and int. */
2382 static inline float32 vfp_itos(uint32_t i)
2383 {
2384 union {
2385 uint32_t i;
2386 float32 s;
2387 } v;
2388
2389 v.i = i;
2390 return v.s;
2391 }
2392
2393 static inline uint32_t vfp_stoi(float32 s)
2394 {
2395 union {
2396 uint32_t i;
2397 float32 s;
2398 } v;
2399
2400 v.s = s;
2401 return v.i;
2402 }
2403
2404 static inline float64 vfp_itod(uint64_t i)
2405 {
2406 union {
2407 uint64_t i;
2408 float64 d;
2409 } v;
2410
2411 v.i = i;
2412 return v.d;
2413 }
2414
2415 static inline uint64_t vfp_dtoi(float64 d)
2416 {
2417 union {
2418 uint64_t i;
2419 float64 d;
2420 } v;
2421
2422 v.d = d;
2423 return v.i;
2424 }
2425
2426 /* Integer to float conversion. */
2427 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2428 {
2429 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2430 }
2431
2432 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2433 {
2434 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2435 }
2436
2437 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2438 {
2439 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2440 }
2441
2442 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2443 {
2444 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2445 }
2446
2447 /* Float to integer conversion. */
2448 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2449 {
2450 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2451 }
2452
2453 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2454 {
2455 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2456 }
2457
2458 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2459 {
2460 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2461 }
2462
2463 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2464 {
2465 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2466 }
2467
2468 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2469 {
2470 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2471 }
2472
2473 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2474 {
2475 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2476 }
2477
2478 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2479 {
2480 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2481 }
2482
2483 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2484 {
2485 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2486 }
2487
2488 /* floating point conversion */
2489 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2490 {
2491 return float32_to_float64(x, &env->vfp.fp_status);
2492 }
2493
2494 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2495 {
2496 return float64_to_float32(x, &env->vfp.fp_status);
2497 }
2498
2499 /* VFP3 fixed point conversion. */
2500 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2501 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2502 { \
2503 ftype tmp; \
2504 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2505 &env->vfp.fp_status); \
2506 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2507 } \
2508 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2509 { \
2510 ftype tmp; \
2511 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2512 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2513 &env->vfp.fp_status)); \
2514 }
2515
2516 VFP_CONV_FIX(sh, d, float64, int16, )
2517 VFP_CONV_FIX(sl, d, float64, int32, )
2518 VFP_CONV_FIX(uh, d, float64, uint16, u)
2519 VFP_CONV_FIX(ul, d, float64, uint32, u)
2520 VFP_CONV_FIX(sh, s, float32, int16, )
2521 VFP_CONV_FIX(sl, s, float32, int32, )
2522 VFP_CONV_FIX(uh, s, float32, uint16, u)
2523 VFP_CONV_FIX(ul, s, float32, uint32, u)
2524 #undef VFP_CONV_FIX
2525
2526 /* Half precision conversions. */
2527 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2528 {
2529 float_status *s = &env->vfp.fp_status;
2530 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2531 return float16_to_float32(a, ieee, s);
2532 }
2533
2534 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2535 {
2536 float_status *s = &env->vfp.fp_status;
2537 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2538 return float32_to_float16(a, ieee, s);
2539 }
2540
2541 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2542 {
2543 float_status *s = &env->vfp.fp_status;
2544 float32 two = int32_to_float32(2, s);
2545 return float32_sub(two, float32_mul(a, b, s), s);
2546 }
2547
2548 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2549 {
2550 float_status *s = &env->vfp.fp_status;
2551 float32 three = int32_to_float32(3, s);
2552 return float32_sub(three, float32_mul(a, b, s), s);
2553 }
2554
2555 /* NEON helpers. */
2556
2557 /* TODO: The architecture specifies the value that the estimate functions
2558 should return. We return the exact reciprocal/root instead. */
2559 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2560 {
2561 float_status *s = &env->vfp.fp_status;
2562 float32 one = int32_to_float32(1, s);
2563 return float32_div(one, a, s);
2564 }
2565
2566 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2567 {
2568 float_status *s = &env->vfp.fp_status;
2569 float32 one = int32_to_float32(1, s);
2570 return float32_div(one, float32_sqrt(a, s), s);
2571 }
2572
2573 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2574 {
2575 float_status *s = &env->vfp.fp_status;
2576 float32 tmp;
2577 tmp = int32_to_float32(a, s);
2578 tmp = float32_scalbn(tmp, -32, s);
2579 tmp = helper_recpe_f32(tmp, env);
2580 tmp = float32_scalbn(tmp, 31, s);
2581 return float32_to_int32(tmp, s);
2582 }
2583
2584 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2585 {
2586 float_status *s = &env->vfp.fp_status;
2587 float32 tmp;
2588 tmp = int32_to_float32(a, s);
2589 tmp = float32_scalbn(tmp, -32, s);
2590 tmp = helper_rsqrte_f32(tmp, env);
2591 tmp = float32_scalbn(tmp, 31, s);
2592 return float32_to_int32(tmp, s);
2593 }
2594
2595 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2596 {
2597 val &= 1;
2598 if (env->teecr != val) {
2599 env->teecr = val;
2600 tb_flush(env);
2601 }
2602 }