]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge branch 'qom-cpu-rest.v1' of git://github.com/afaerber/qemu-cpu
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "gdbstub.h"
3 #include "helper.h"
4 #include "host-utils.h"
5 #include "sysemu.h"
6
7 void cpu_state_reset(CPUARMState *env)
8 {
9 cpu_reset(ENV_GET_CPU(env));
10 }
11
12 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
13 {
14 int nregs;
15
16 /* VFP data registers are always little-endian. */
17 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
18 if (reg < nregs) {
19 stfq_le_p(buf, env->vfp.regs[reg]);
20 return 8;
21 }
22 if (arm_feature(env, ARM_FEATURE_NEON)) {
23 /* Aliases for Q regs. */
24 nregs += 16;
25 if (reg < nregs) {
26 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
27 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
28 return 16;
29 }
30 }
31 switch (reg - nregs) {
32 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
33 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
34 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
35 }
36 return 0;
37 }
38
39 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
40 {
41 int nregs;
42
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 env->vfp.regs[reg] = ldfq_le_p(buf);
46 return 8;
47 }
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 nregs += 16;
50 if (reg < nregs) {
51 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
52 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
53 return 16;
54 }
55 }
56 switch (reg - nregs) {
57 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
58 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
59 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
60 }
61 return 0;
62 }
63
64 ARMCPU *cpu_arm_init(const char *cpu_model)
65 {
66 ARMCPU *cpu;
67 CPUARMState *env;
68 static int inited = 0;
69
70 if (!object_class_by_name(cpu_model)) {
71 return NULL;
72 }
73 cpu = ARM_CPU(object_new(cpu_model));
74 env = &cpu->env;
75 env->cpu_model_str = cpu_model;
76 arm_cpu_realize(cpu);
77
78 if (tcg_enabled() && !inited) {
79 inited = 1;
80 arm_translate_init();
81 }
82
83 cpu_state_reset(env);
84 if (arm_feature(env, ARM_FEATURE_NEON)) {
85 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
86 51, "arm-neon.xml", 0);
87 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
88 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
89 35, "arm-vfp3.xml", 0);
90 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
91 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
92 19, "arm-vfp.xml", 0);
93 }
94 qemu_init_vcpu(env);
95 return cpu;
96 }
97
98 typedef struct ARMCPUListState {
99 fprintf_function cpu_fprintf;
100 FILE *file;
101 } ARMCPUListState;
102
103 /* Sort alphabetically by type name, except for "any". */
104 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
105 {
106 ObjectClass *class_a = (ObjectClass *)a;
107 ObjectClass *class_b = (ObjectClass *)b;
108 const char *name_a, *name_b;
109
110 name_a = object_class_get_name(class_a);
111 name_b = object_class_get_name(class_b);
112 if (strcmp(name_a, "any") == 0) {
113 return 1;
114 } else if (strcmp(name_b, "any") == 0) {
115 return -1;
116 } else {
117 return strcmp(name_a, name_b);
118 }
119 }
120
121 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
122 {
123 ObjectClass *oc = data;
124 ARMCPUListState *s = user_data;
125
126 (*s->cpu_fprintf)(s->file, " %s\n",
127 object_class_get_name(oc));
128 }
129
130 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
131 {
132 ARMCPUListState s = {
133 .file = f,
134 .cpu_fprintf = cpu_fprintf,
135 };
136 GSList *list;
137
138 list = object_class_get_list(TYPE_ARM_CPU, false);
139 list = g_slist_sort(list, arm_cpu_list_compare);
140 (*cpu_fprintf)(f, "Available CPUs:\n");
141 g_slist_foreach(list, arm_cpu_list_entry, &s);
142 g_slist_free(list);
143 }
144
145 static int bad_mode_switch(CPUARMState *env, int mode)
146 {
147 /* Return true if it is not valid for us to switch to
148 * this CPU mode (ie all the UNPREDICTABLE cases in
149 * the ARM ARM CPSRWriteByInstr pseudocode).
150 */
151 switch (mode) {
152 case ARM_CPU_MODE_USR:
153 case ARM_CPU_MODE_SYS:
154 case ARM_CPU_MODE_SVC:
155 case ARM_CPU_MODE_ABT:
156 case ARM_CPU_MODE_UND:
157 case ARM_CPU_MODE_IRQ:
158 case ARM_CPU_MODE_FIQ:
159 return 0;
160 default:
161 return 1;
162 }
163 }
164
165 uint32_t cpsr_read(CPUARMState *env)
166 {
167 int ZF;
168 ZF = (env->ZF == 0);
169 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
170 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
171 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
172 | ((env->condexec_bits & 0xfc) << 8)
173 | (env->GE << 16);
174 }
175
176 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
177 {
178 if (mask & CPSR_NZCV) {
179 env->ZF = (~val) & CPSR_Z;
180 env->NF = val;
181 env->CF = (val >> 29) & 1;
182 env->VF = (val << 3) & 0x80000000;
183 }
184 if (mask & CPSR_Q)
185 env->QF = ((val & CPSR_Q) != 0);
186 if (mask & CPSR_T)
187 env->thumb = ((val & CPSR_T) != 0);
188 if (mask & CPSR_IT_0_1) {
189 env->condexec_bits &= ~3;
190 env->condexec_bits |= (val >> 25) & 3;
191 }
192 if (mask & CPSR_IT_2_7) {
193 env->condexec_bits &= 3;
194 env->condexec_bits |= (val >> 8) & 0xfc;
195 }
196 if (mask & CPSR_GE) {
197 env->GE = (val >> 16) & 0xf;
198 }
199
200 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
201 if (bad_mode_switch(env, val & CPSR_M)) {
202 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
203 * We choose to ignore the attempt and leave the CPSR M field
204 * untouched.
205 */
206 mask &= ~CPSR_M;
207 } else {
208 switch_mode(env, val & CPSR_M);
209 }
210 }
211 mask &= ~CACHED_CPSR_BITS;
212 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
213 }
214
215 /* Sign/zero extend */
216 uint32_t HELPER(sxtb16)(uint32_t x)
217 {
218 uint32_t res;
219 res = (uint16_t)(int8_t)x;
220 res |= (uint32_t)(int8_t)(x >> 16) << 16;
221 return res;
222 }
223
224 uint32_t HELPER(uxtb16)(uint32_t x)
225 {
226 uint32_t res;
227 res = (uint16_t)(uint8_t)x;
228 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
229 return res;
230 }
231
232 uint32_t HELPER(clz)(uint32_t x)
233 {
234 return clz32(x);
235 }
236
237 int32_t HELPER(sdiv)(int32_t num, int32_t den)
238 {
239 if (den == 0)
240 return 0;
241 if (num == INT_MIN && den == -1)
242 return INT_MIN;
243 return num / den;
244 }
245
246 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
247 {
248 if (den == 0)
249 return 0;
250 return num / den;
251 }
252
253 uint32_t HELPER(rbit)(uint32_t x)
254 {
255 x = ((x & 0xff000000) >> 24)
256 | ((x & 0x00ff0000) >> 8)
257 | ((x & 0x0000ff00) << 8)
258 | ((x & 0x000000ff) << 24);
259 x = ((x & 0xf0f0f0f0) >> 4)
260 | ((x & 0x0f0f0f0f) << 4);
261 x = ((x & 0x88888888) >> 3)
262 | ((x & 0x44444444) >> 1)
263 | ((x & 0x22222222) << 1)
264 | ((x & 0x11111111) << 3);
265 return x;
266 }
267
268 uint32_t HELPER(abs)(uint32_t x)
269 {
270 return ((int32_t)x < 0) ? -x : x;
271 }
272
273 #if defined(CONFIG_USER_ONLY)
274
275 void do_interrupt (CPUARMState *env)
276 {
277 env->exception_index = -1;
278 }
279
280 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
281 int mmu_idx)
282 {
283 if (rw == 2) {
284 env->exception_index = EXCP_PREFETCH_ABORT;
285 env->cp15.c6_insn = address;
286 } else {
287 env->exception_index = EXCP_DATA_ABORT;
288 env->cp15.c6_data = address;
289 }
290 return 1;
291 }
292
293 /* These should probably raise undefined insn exceptions. */
294 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
295 {
296 int op1 = (insn >> 8) & 0xf;
297 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
298 return;
299 }
300
301 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
302 {
303 int op1 = (insn >> 8) & 0xf;
304 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
305 return 0;
306 }
307
308 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
309 {
310 cpu_abort(env, "cp15 insn %08x\n", insn);
311 }
312
313 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
314 {
315 cpu_abort(env, "cp15 insn %08x\n", insn);
316 }
317
318 /* These should probably raise undefined insn exceptions. */
319 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
320 {
321 cpu_abort(env, "v7m_mrs %d\n", reg);
322 }
323
324 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
325 {
326 cpu_abort(env, "v7m_mrs %d\n", reg);
327 return 0;
328 }
329
330 void switch_mode(CPUARMState *env, int mode)
331 {
332 if (mode != ARM_CPU_MODE_USR)
333 cpu_abort(env, "Tried to switch out of user mode\n");
334 }
335
336 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
337 {
338 cpu_abort(env, "banked r13 write\n");
339 }
340
341 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
342 {
343 cpu_abort(env, "banked r13 read\n");
344 return 0;
345 }
346
347 #else
348
349 /* Map CPU modes onto saved register banks. */
350 static inline int bank_number(CPUARMState *env, int mode)
351 {
352 switch (mode) {
353 case ARM_CPU_MODE_USR:
354 case ARM_CPU_MODE_SYS:
355 return 0;
356 case ARM_CPU_MODE_SVC:
357 return 1;
358 case ARM_CPU_MODE_ABT:
359 return 2;
360 case ARM_CPU_MODE_UND:
361 return 3;
362 case ARM_CPU_MODE_IRQ:
363 return 4;
364 case ARM_CPU_MODE_FIQ:
365 return 5;
366 }
367 cpu_abort(env, "Bad mode %x\n", mode);
368 return -1;
369 }
370
371 void switch_mode(CPUARMState *env, int mode)
372 {
373 int old_mode;
374 int i;
375
376 old_mode = env->uncached_cpsr & CPSR_M;
377 if (mode == old_mode)
378 return;
379
380 if (old_mode == ARM_CPU_MODE_FIQ) {
381 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
382 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
383 } else if (mode == ARM_CPU_MODE_FIQ) {
384 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
385 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
386 }
387
388 i = bank_number(env, old_mode);
389 env->banked_r13[i] = env->regs[13];
390 env->banked_r14[i] = env->regs[14];
391 env->banked_spsr[i] = env->spsr;
392
393 i = bank_number(env, mode);
394 env->regs[13] = env->banked_r13[i];
395 env->regs[14] = env->banked_r14[i];
396 env->spsr = env->banked_spsr[i];
397 }
398
399 static void v7m_push(CPUARMState *env, uint32_t val)
400 {
401 env->regs[13] -= 4;
402 stl_phys(env->regs[13], val);
403 }
404
405 static uint32_t v7m_pop(CPUARMState *env)
406 {
407 uint32_t val;
408 val = ldl_phys(env->regs[13]);
409 env->regs[13] += 4;
410 return val;
411 }
412
413 /* Switch to V7M main or process stack pointer. */
414 static void switch_v7m_sp(CPUARMState *env, int process)
415 {
416 uint32_t tmp;
417 if (env->v7m.current_sp != process) {
418 tmp = env->v7m.other_sp;
419 env->v7m.other_sp = env->regs[13];
420 env->regs[13] = tmp;
421 env->v7m.current_sp = process;
422 }
423 }
424
425 static void do_v7m_exception_exit(CPUARMState *env)
426 {
427 uint32_t type;
428 uint32_t xpsr;
429
430 type = env->regs[15];
431 if (env->v7m.exception != 0)
432 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
433
434 /* Switch to the target stack. */
435 switch_v7m_sp(env, (type & 4) != 0);
436 /* Pop registers. */
437 env->regs[0] = v7m_pop(env);
438 env->regs[1] = v7m_pop(env);
439 env->regs[2] = v7m_pop(env);
440 env->regs[3] = v7m_pop(env);
441 env->regs[12] = v7m_pop(env);
442 env->regs[14] = v7m_pop(env);
443 env->regs[15] = v7m_pop(env);
444 xpsr = v7m_pop(env);
445 xpsr_write(env, xpsr, 0xfffffdff);
446 /* Undo stack alignment. */
447 if (xpsr & 0x200)
448 env->regs[13] |= 4;
449 /* ??? The exception return type specifies Thread/Handler mode. However
450 this is also implied by the xPSR value. Not sure what to do
451 if there is a mismatch. */
452 /* ??? Likewise for mismatches between the CONTROL register and the stack
453 pointer. */
454 }
455
456 static void do_interrupt_v7m(CPUARMState *env)
457 {
458 uint32_t xpsr = xpsr_read(env);
459 uint32_t lr;
460 uint32_t addr;
461
462 lr = 0xfffffff1;
463 if (env->v7m.current_sp)
464 lr |= 4;
465 if (env->v7m.exception == 0)
466 lr |= 8;
467
468 /* For exceptions we just mark as pending on the NVIC, and let that
469 handle it. */
470 /* TODO: Need to escalate if the current priority is higher than the
471 one we're raising. */
472 switch (env->exception_index) {
473 case EXCP_UDEF:
474 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
475 return;
476 case EXCP_SWI:
477 env->regs[15] += 2;
478 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
479 return;
480 case EXCP_PREFETCH_ABORT:
481 case EXCP_DATA_ABORT:
482 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
483 return;
484 case EXCP_BKPT:
485 if (semihosting_enabled) {
486 int nr;
487 nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
488 if (nr == 0xab) {
489 env->regs[15] += 2;
490 env->regs[0] = do_arm_semihosting(env);
491 return;
492 }
493 }
494 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
495 return;
496 case EXCP_IRQ:
497 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
498 break;
499 case EXCP_EXCEPTION_EXIT:
500 do_v7m_exception_exit(env);
501 return;
502 default:
503 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
504 return; /* Never happens. Keep compiler happy. */
505 }
506
507 /* Align stack pointer. */
508 /* ??? Should only do this if Configuration Control Register
509 STACKALIGN bit is set. */
510 if (env->regs[13] & 4) {
511 env->regs[13] -= 4;
512 xpsr |= 0x200;
513 }
514 /* Switch to the handler mode. */
515 v7m_push(env, xpsr);
516 v7m_push(env, env->regs[15]);
517 v7m_push(env, env->regs[14]);
518 v7m_push(env, env->regs[12]);
519 v7m_push(env, env->regs[3]);
520 v7m_push(env, env->regs[2]);
521 v7m_push(env, env->regs[1]);
522 v7m_push(env, env->regs[0]);
523 switch_v7m_sp(env, 0);
524 /* Clear IT bits */
525 env->condexec_bits = 0;
526 env->regs[14] = lr;
527 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
528 env->regs[15] = addr & 0xfffffffe;
529 env->thumb = addr & 1;
530 }
531
532 /* Handle a CPU exception. */
533 void do_interrupt(CPUARMState *env)
534 {
535 uint32_t addr;
536 uint32_t mask;
537 int new_mode;
538 uint32_t offset;
539
540 if (IS_M(env)) {
541 do_interrupt_v7m(env);
542 return;
543 }
544 /* TODO: Vectored interrupt controller. */
545 switch (env->exception_index) {
546 case EXCP_UDEF:
547 new_mode = ARM_CPU_MODE_UND;
548 addr = 0x04;
549 mask = CPSR_I;
550 if (env->thumb)
551 offset = 2;
552 else
553 offset = 4;
554 break;
555 case EXCP_SWI:
556 if (semihosting_enabled) {
557 /* Check for semihosting interrupt. */
558 if (env->thumb) {
559 mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
560 } else {
561 mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
562 & 0xffffff;
563 }
564 /* Only intercept calls from privileged modes, to provide some
565 semblance of security. */
566 if (((mask == 0x123456 && !env->thumb)
567 || (mask == 0xab && env->thumb))
568 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
569 env->regs[0] = do_arm_semihosting(env);
570 return;
571 }
572 }
573 new_mode = ARM_CPU_MODE_SVC;
574 addr = 0x08;
575 mask = CPSR_I;
576 /* The PC already points to the next instruction. */
577 offset = 0;
578 break;
579 case EXCP_BKPT:
580 /* See if this is a semihosting syscall. */
581 if (env->thumb && semihosting_enabled) {
582 mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
583 if (mask == 0xab
584 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
585 env->regs[15] += 2;
586 env->regs[0] = do_arm_semihosting(env);
587 return;
588 }
589 }
590 env->cp15.c5_insn = 2;
591 /* Fall through to prefetch abort. */
592 case EXCP_PREFETCH_ABORT:
593 new_mode = ARM_CPU_MODE_ABT;
594 addr = 0x0c;
595 mask = CPSR_A | CPSR_I;
596 offset = 4;
597 break;
598 case EXCP_DATA_ABORT:
599 new_mode = ARM_CPU_MODE_ABT;
600 addr = 0x10;
601 mask = CPSR_A | CPSR_I;
602 offset = 8;
603 break;
604 case EXCP_IRQ:
605 new_mode = ARM_CPU_MODE_IRQ;
606 addr = 0x18;
607 /* Disable IRQ and imprecise data aborts. */
608 mask = CPSR_A | CPSR_I;
609 offset = 4;
610 break;
611 case EXCP_FIQ:
612 new_mode = ARM_CPU_MODE_FIQ;
613 addr = 0x1c;
614 /* Disable FIQ, IRQ and imprecise data aborts. */
615 mask = CPSR_A | CPSR_I | CPSR_F;
616 offset = 4;
617 break;
618 default:
619 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
620 return; /* Never happens. Keep compiler happy. */
621 }
622 /* High vectors. */
623 if (env->cp15.c1_sys & (1 << 13)) {
624 addr += 0xffff0000;
625 }
626 switch_mode (env, new_mode);
627 env->spsr = cpsr_read(env);
628 /* Clear IT bits. */
629 env->condexec_bits = 0;
630 /* Switch to the new mode, and to the correct instruction set. */
631 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
632 env->uncached_cpsr |= mask;
633 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
634 * and we should just guard the thumb mode on V4 */
635 if (arm_feature(env, ARM_FEATURE_V4T)) {
636 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
637 }
638 env->regs[14] = env->regs[15] + offset;
639 env->regs[15] = addr;
640 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
641 }
642
643 /* Check section/page access permissions.
644 Returns the page protection flags, or zero if the access is not
645 permitted. */
646 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
647 int access_type, int is_user)
648 {
649 int prot_ro;
650
651 if (domain_prot == 3) {
652 return PAGE_READ | PAGE_WRITE;
653 }
654
655 if (access_type == 1)
656 prot_ro = 0;
657 else
658 prot_ro = PAGE_READ;
659
660 switch (ap) {
661 case 0:
662 if (access_type == 1)
663 return 0;
664 switch ((env->cp15.c1_sys >> 8) & 3) {
665 case 1:
666 return is_user ? 0 : PAGE_READ;
667 case 2:
668 return PAGE_READ;
669 default:
670 return 0;
671 }
672 case 1:
673 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
674 case 2:
675 if (is_user)
676 return prot_ro;
677 else
678 return PAGE_READ | PAGE_WRITE;
679 case 3:
680 return PAGE_READ | PAGE_WRITE;
681 case 4: /* Reserved. */
682 return 0;
683 case 5:
684 return is_user ? 0 : prot_ro;
685 case 6:
686 return prot_ro;
687 case 7:
688 if (!arm_feature (env, ARM_FEATURE_V6K))
689 return 0;
690 return prot_ro;
691 default:
692 abort();
693 }
694 }
695
696 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
697 {
698 uint32_t table;
699
700 if (address & env->cp15.c2_mask)
701 table = env->cp15.c2_base1 & 0xffffc000;
702 else
703 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
704
705 table |= (address >> 18) & 0x3ffc;
706 return table;
707 }
708
709 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
710 int is_user, uint32_t *phys_ptr, int *prot,
711 target_ulong *page_size)
712 {
713 int code;
714 uint32_t table;
715 uint32_t desc;
716 int type;
717 int ap;
718 int domain;
719 int domain_prot;
720 uint32_t phys_addr;
721
722 /* Pagetable walk. */
723 /* Lookup l1 descriptor. */
724 table = get_level1_table_address(env, address);
725 desc = ldl_phys(table);
726 type = (desc & 3);
727 domain = (desc >> 5) & 0x0f;
728 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
729 if (type == 0) {
730 /* Section translation fault. */
731 code = 5;
732 goto do_fault;
733 }
734 if (domain_prot == 0 || domain_prot == 2) {
735 if (type == 2)
736 code = 9; /* Section domain fault. */
737 else
738 code = 11; /* Page domain fault. */
739 goto do_fault;
740 }
741 if (type == 2) {
742 /* 1Mb section. */
743 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
744 ap = (desc >> 10) & 3;
745 code = 13;
746 *page_size = 1024 * 1024;
747 } else {
748 /* Lookup l2 entry. */
749 if (type == 1) {
750 /* Coarse pagetable. */
751 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
752 } else {
753 /* Fine pagetable. */
754 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
755 }
756 desc = ldl_phys(table);
757 switch (desc & 3) {
758 case 0: /* Page translation fault. */
759 code = 7;
760 goto do_fault;
761 case 1: /* 64k page. */
762 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
763 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
764 *page_size = 0x10000;
765 break;
766 case 2: /* 4k page. */
767 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
768 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
769 *page_size = 0x1000;
770 break;
771 case 3: /* 1k page. */
772 if (type == 1) {
773 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
774 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
775 } else {
776 /* Page translation fault. */
777 code = 7;
778 goto do_fault;
779 }
780 } else {
781 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
782 }
783 ap = (desc >> 4) & 3;
784 *page_size = 0x400;
785 break;
786 default:
787 /* Never happens, but compiler isn't smart enough to tell. */
788 abort();
789 }
790 code = 15;
791 }
792 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
793 if (!*prot) {
794 /* Access permission fault. */
795 goto do_fault;
796 }
797 *prot |= PAGE_EXEC;
798 *phys_ptr = phys_addr;
799 return 0;
800 do_fault:
801 return code | (domain << 4);
802 }
803
804 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
805 int is_user, uint32_t *phys_ptr, int *prot,
806 target_ulong *page_size)
807 {
808 int code;
809 uint32_t table;
810 uint32_t desc;
811 uint32_t xn;
812 int type;
813 int ap;
814 int domain;
815 int domain_prot;
816 uint32_t phys_addr;
817
818 /* Pagetable walk. */
819 /* Lookup l1 descriptor. */
820 table = get_level1_table_address(env, address);
821 desc = ldl_phys(table);
822 type = (desc & 3);
823 if (type == 0) {
824 /* Section translation fault. */
825 code = 5;
826 domain = 0;
827 goto do_fault;
828 } else if (type == 2 && (desc & (1 << 18))) {
829 /* Supersection. */
830 domain = 0;
831 } else {
832 /* Section or page. */
833 domain = (desc >> 5) & 0x0f;
834 }
835 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
836 if (domain_prot == 0 || domain_prot == 2) {
837 if (type == 2)
838 code = 9; /* Section domain fault. */
839 else
840 code = 11; /* Page domain fault. */
841 goto do_fault;
842 }
843 if (type == 2) {
844 if (desc & (1 << 18)) {
845 /* Supersection. */
846 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
847 *page_size = 0x1000000;
848 } else {
849 /* Section. */
850 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
851 *page_size = 0x100000;
852 }
853 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
854 xn = desc & (1 << 4);
855 code = 13;
856 } else {
857 /* Lookup l2 entry. */
858 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
859 desc = ldl_phys(table);
860 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
861 switch (desc & 3) {
862 case 0: /* Page translation fault. */
863 code = 7;
864 goto do_fault;
865 case 1: /* 64k page. */
866 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
867 xn = desc & (1 << 15);
868 *page_size = 0x10000;
869 break;
870 case 2: case 3: /* 4k page. */
871 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
872 xn = desc & 1;
873 *page_size = 0x1000;
874 break;
875 default:
876 /* Never happens, but compiler isn't smart enough to tell. */
877 abort();
878 }
879 code = 15;
880 }
881 if (domain_prot == 3) {
882 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
883 } else {
884 if (xn && access_type == 2)
885 goto do_fault;
886
887 /* The simplified model uses AP[0] as an access control bit. */
888 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
889 /* Access flag fault. */
890 code = (code == 15) ? 6 : 3;
891 goto do_fault;
892 }
893 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
894 if (!*prot) {
895 /* Access permission fault. */
896 goto do_fault;
897 }
898 if (!xn) {
899 *prot |= PAGE_EXEC;
900 }
901 }
902 *phys_ptr = phys_addr;
903 return 0;
904 do_fault:
905 return code | (domain << 4);
906 }
907
908 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
909 int is_user, uint32_t *phys_ptr, int *prot)
910 {
911 int n;
912 uint32_t mask;
913 uint32_t base;
914
915 *phys_ptr = address;
916 for (n = 7; n >= 0; n--) {
917 base = env->cp15.c6_region[n];
918 if ((base & 1) == 0)
919 continue;
920 mask = 1 << ((base >> 1) & 0x1f);
921 /* Keep this shift separate from the above to avoid an
922 (undefined) << 32. */
923 mask = (mask << 1) - 1;
924 if (((base ^ address) & ~mask) == 0)
925 break;
926 }
927 if (n < 0)
928 return 2;
929
930 if (access_type == 2) {
931 mask = env->cp15.c5_insn;
932 } else {
933 mask = env->cp15.c5_data;
934 }
935 mask = (mask >> (n * 4)) & 0xf;
936 switch (mask) {
937 case 0:
938 return 1;
939 case 1:
940 if (is_user)
941 return 1;
942 *prot = PAGE_READ | PAGE_WRITE;
943 break;
944 case 2:
945 *prot = PAGE_READ;
946 if (!is_user)
947 *prot |= PAGE_WRITE;
948 break;
949 case 3:
950 *prot = PAGE_READ | PAGE_WRITE;
951 break;
952 case 5:
953 if (is_user)
954 return 1;
955 *prot = PAGE_READ;
956 break;
957 case 6:
958 *prot = PAGE_READ;
959 break;
960 default:
961 /* Bad permission. */
962 return 1;
963 }
964 *prot |= PAGE_EXEC;
965 return 0;
966 }
967
968 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
969 int access_type, int is_user,
970 uint32_t *phys_ptr, int *prot,
971 target_ulong *page_size)
972 {
973 /* Fast Context Switch Extension. */
974 if (address < 0x02000000)
975 address += env->cp15.c13_fcse;
976
977 if ((env->cp15.c1_sys & 1) == 0) {
978 /* MMU/MPU disabled. */
979 *phys_ptr = address;
980 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
981 *page_size = TARGET_PAGE_SIZE;
982 return 0;
983 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
984 *page_size = TARGET_PAGE_SIZE;
985 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
986 prot);
987 } else if (env->cp15.c1_sys & (1 << 23)) {
988 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
989 prot, page_size);
990 } else {
991 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
992 prot, page_size);
993 }
994 }
995
996 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
997 int access_type, int mmu_idx)
998 {
999 uint32_t phys_addr;
1000 target_ulong page_size;
1001 int prot;
1002 int ret, is_user;
1003
1004 is_user = mmu_idx == MMU_USER_IDX;
1005 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1006 &page_size);
1007 if (ret == 0) {
1008 /* Map a single [sub]page. */
1009 phys_addr &= ~(uint32_t)0x3ff;
1010 address &= ~(uint32_t)0x3ff;
1011 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1012 return 0;
1013 }
1014
1015 if (access_type == 2) {
1016 env->cp15.c5_insn = ret;
1017 env->cp15.c6_insn = address;
1018 env->exception_index = EXCP_PREFETCH_ABORT;
1019 } else {
1020 env->cp15.c5_data = ret;
1021 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1022 env->cp15.c5_data |= (1 << 11);
1023 env->cp15.c6_data = address;
1024 env->exception_index = EXCP_DATA_ABORT;
1025 }
1026 return 1;
1027 }
1028
1029 target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
1030 {
1031 uint32_t phys_addr;
1032 target_ulong page_size;
1033 int prot;
1034 int ret;
1035
1036 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1037
1038 if (ret != 0)
1039 return -1;
1040
1041 return phys_addr;
1042 }
1043
1044 void HELPER(set_cp)(CPUARMState *env, uint32_t insn, uint32_t val)
1045 {
1046 int cp_num = (insn >> 8) & 0xf;
1047 int cp_info = (insn >> 5) & 7;
1048 int src = (insn >> 16) & 0xf;
1049 int operand = insn & 0xf;
1050
1051 if (env->cp[cp_num].cp_write)
1052 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1053 cp_info, src, operand, val);
1054 }
1055
1056 uint32_t HELPER(get_cp)(CPUARMState *env, uint32_t insn)
1057 {
1058 int cp_num = (insn >> 8) & 0xf;
1059 int cp_info = (insn >> 5) & 7;
1060 int dest = (insn >> 16) & 0xf;
1061 int operand = insn & 0xf;
1062
1063 if (env->cp[cp_num].cp_read)
1064 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1065 cp_info, dest, operand);
1066 return 0;
1067 }
1068
1069 /* Return basic MPU access permission bits. */
1070 static uint32_t simple_mpu_ap_bits(uint32_t val)
1071 {
1072 uint32_t ret;
1073 uint32_t mask;
1074 int i;
1075 ret = 0;
1076 mask = 3;
1077 for (i = 0; i < 16; i += 2) {
1078 ret |= (val >> i) & mask;
1079 mask <<= 2;
1080 }
1081 return ret;
1082 }
1083
1084 /* Pad basic MPU access permission bits to extended format. */
1085 static uint32_t extended_mpu_ap_bits(uint32_t val)
1086 {
1087 uint32_t ret;
1088 uint32_t mask;
1089 int i;
1090 ret = 0;
1091 mask = 3;
1092 for (i = 0; i < 16; i += 2) {
1093 ret |= (val & mask) << i;
1094 mask <<= 2;
1095 }
1096 return ret;
1097 }
1098
1099 void HELPER(set_cp15)(CPUARMState *env, uint32_t insn, uint32_t val)
1100 {
1101 int op1;
1102 int op2;
1103 int crm;
1104
1105 op1 = (insn >> 21) & 7;
1106 op2 = (insn >> 5) & 7;
1107 crm = insn & 0xf;
1108 switch ((insn >> 16) & 0xf) {
1109 case 0:
1110 /* ID codes. */
1111 if (arm_feature(env, ARM_FEATURE_XSCALE))
1112 break;
1113 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1114 break;
1115 if (arm_feature(env, ARM_FEATURE_V7)
1116 && op1 == 2 && crm == 0 && op2 == 0) {
1117 env->cp15.c0_cssel = val & 0xf;
1118 break;
1119 }
1120 goto bad_reg;
1121 case 1: /* System configuration. */
1122 if (arm_feature(env, ARM_FEATURE_V7)
1123 && op1 == 0 && crm == 1 && op2 == 0) {
1124 env->cp15.c1_scr = val;
1125 break;
1126 }
1127 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1128 op2 = 0;
1129 switch (op2) {
1130 case 0:
1131 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1132 env->cp15.c1_sys = val;
1133 /* ??? Lots of these bits are not implemented. */
1134 /* This may enable/disable the MMU, so do a TLB flush. */
1135 tlb_flush(env, 1);
1136 break;
1137 case 1: /* Auxiliary control register. */
1138 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1139 env->cp15.c1_xscaleauxcr = val;
1140 break;
1141 }
1142 /* Not implemented. */
1143 break;
1144 case 2:
1145 if (arm_feature(env, ARM_FEATURE_XSCALE))
1146 goto bad_reg;
1147 if (env->cp15.c1_coproc != val) {
1148 env->cp15.c1_coproc = val;
1149 /* ??? Is this safe when called from within a TB? */
1150 tb_flush(env);
1151 }
1152 break;
1153 default:
1154 goto bad_reg;
1155 }
1156 break;
1157 case 2: /* MMU Page table control / MPU cache control. */
1158 if (arm_feature(env, ARM_FEATURE_MPU)) {
1159 switch (op2) {
1160 case 0:
1161 env->cp15.c2_data = val;
1162 break;
1163 case 1:
1164 env->cp15.c2_insn = val;
1165 break;
1166 default:
1167 goto bad_reg;
1168 }
1169 } else {
1170 switch (op2) {
1171 case 0:
1172 env->cp15.c2_base0 = val;
1173 break;
1174 case 1:
1175 env->cp15.c2_base1 = val;
1176 break;
1177 case 2:
1178 val &= 7;
1179 env->cp15.c2_control = val;
1180 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1181 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1182 break;
1183 default:
1184 goto bad_reg;
1185 }
1186 }
1187 break;
1188 case 3: /* MMU Domain access control / MPU write buffer control. */
1189 env->cp15.c3 = val;
1190 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1191 break;
1192 case 4: /* Reserved. */
1193 goto bad_reg;
1194 case 5: /* MMU Fault status / MPU access permission. */
1195 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1196 op2 = 0;
1197 switch (op2) {
1198 case 0:
1199 if (arm_feature(env, ARM_FEATURE_MPU))
1200 val = extended_mpu_ap_bits(val);
1201 env->cp15.c5_data = val;
1202 break;
1203 case 1:
1204 if (arm_feature(env, ARM_FEATURE_MPU))
1205 val = extended_mpu_ap_bits(val);
1206 env->cp15.c5_insn = val;
1207 break;
1208 case 2:
1209 if (!arm_feature(env, ARM_FEATURE_MPU))
1210 goto bad_reg;
1211 env->cp15.c5_data = val;
1212 break;
1213 case 3:
1214 if (!arm_feature(env, ARM_FEATURE_MPU))
1215 goto bad_reg;
1216 env->cp15.c5_insn = val;
1217 break;
1218 default:
1219 goto bad_reg;
1220 }
1221 break;
1222 case 6: /* MMU Fault address / MPU base/size. */
1223 if (arm_feature(env, ARM_FEATURE_MPU)) {
1224 if (crm >= 8)
1225 goto bad_reg;
1226 env->cp15.c6_region[crm] = val;
1227 } else {
1228 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1229 op2 = 0;
1230 switch (op2) {
1231 case 0:
1232 env->cp15.c6_data = val;
1233 break;
1234 case 1: /* ??? This is WFAR on armv6 */
1235 case 2:
1236 env->cp15.c6_insn = val;
1237 break;
1238 default:
1239 goto bad_reg;
1240 }
1241 }
1242 break;
1243 case 7: /* Cache control. */
1244 env->cp15.c15_i_max = 0x000;
1245 env->cp15.c15_i_min = 0xff0;
1246 if (op1 != 0) {
1247 goto bad_reg;
1248 }
1249 /* No cache, so nothing to do except VA->PA translations. */
1250 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1251 switch (crm) {
1252 case 4:
1253 if (arm_feature(env, ARM_FEATURE_V7)) {
1254 env->cp15.c7_par = val & 0xfffff6ff;
1255 } else {
1256 env->cp15.c7_par = val & 0xfffff1ff;
1257 }
1258 break;
1259 case 8: {
1260 uint32_t phys_addr;
1261 target_ulong page_size;
1262 int prot;
1263 int ret, is_user = op2 & 2;
1264 int access_type = op2 & 1;
1265
1266 if (op2 & 4) {
1267 /* Other states are only available with TrustZone */
1268 goto bad_reg;
1269 }
1270 ret = get_phys_addr(env, val, access_type, is_user,
1271 &phys_addr, &prot, &page_size);
1272 if (ret == 0) {
1273 /* We do not set any attribute bits in the PAR */
1274 if (page_size == (1 << 24)
1275 && arm_feature(env, ARM_FEATURE_V7)) {
1276 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1277 } else {
1278 env->cp15.c7_par = phys_addr & 0xfffff000;
1279 }
1280 } else {
1281 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1282 ((ret & (12 << 1)) >> 6) |
1283 ((ret & 0xf) << 1) | 1;
1284 }
1285 break;
1286 }
1287 }
1288 }
1289 break;
1290 case 8: /* MMU TLB control. */
1291 switch (op2) {
1292 case 0: /* Invalidate all (TLBIALL) */
1293 tlb_flush(env, 1);
1294 break;
1295 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1296 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1297 break;
1298 case 2: /* Invalidate by ASID (TLBIASID) */
1299 tlb_flush(env, val == 0);
1300 break;
1301 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1302 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1303 break;
1304 default:
1305 goto bad_reg;
1306 }
1307 break;
1308 case 9:
1309 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1310 break;
1311 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1312 break; /* Ignore ReadBuffer access */
1313 switch (crm) {
1314 case 0: /* Cache lockdown. */
1315 switch (op1) {
1316 case 0: /* L1 cache. */
1317 switch (op2) {
1318 case 0:
1319 env->cp15.c9_data = val;
1320 break;
1321 case 1:
1322 env->cp15.c9_insn = val;
1323 break;
1324 default:
1325 goto bad_reg;
1326 }
1327 break;
1328 case 1: /* L2 cache. */
1329 /* Ignore writes to L2 lockdown/auxiliary registers. */
1330 break;
1331 default:
1332 goto bad_reg;
1333 }
1334 break;
1335 case 1: /* TCM memory region registers. */
1336 /* Not implemented. */
1337 goto bad_reg;
1338 case 12: /* Performance monitor control */
1339 /* Performance monitors are implementation defined in v7,
1340 * but with an ARM recommended set of registers, which we
1341 * follow (although we don't actually implement any counters)
1342 */
1343 if (!arm_feature(env, ARM_FEATURE_V7)) {
1344 goto bad_reg;
1345 }
1346 switch (op2) {
1347 case 0: /* performance monitor control register */
1348 /* only the DP, X, D and E bits are writable */
1349 env->cp15.c9_pmcr &= ~0x39;
1350 env->cp15.c9_pmcr |= (val & 0x39);
1351 break;
1352 case 1: /* Count enable set register */
1353 val &= (1 << 31);
1354 env->cp15.c9_pmcnten |= val;
1355 break;
1356 case 2: /* Count enable clear */
1357 val &= (1 << 31);
1358 env->cp15.c9_pmcnten &= ~val;
1359 break;
1360 case 3: /* Overflow flag status */
1361 env->cp15.c9_pmovsr &= ~val;
1362 break;
1363 case 4: /* Software increment */
1364 /* RAZ/WI since we don't implement the software-count event */
1365 break;
1366 case 5: /* Event counter selection register */
1367 /* Since we don't implement any events, writing to this register
1368 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1369 */
1370 break;
1371 default:
1372 goto bad_reg;
1373 }
1374 break;
1375 case 13: /* Performance counters */
1376 if (!arm_feature(env, ARM_FEATURE_V7)) {
1377 goto bad_reg;
1378 }
1379 switch (op2) {
1380 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1381 break;
1382 case 1: /* Event type select */
1383 env->cp15.c9_pmxevtyper = val & 0xff;
1384 break;
1385 case 2: /* Event count register */
1386 /* Unimplemented (we have no events), RAZ/WI */
1387 break;
1388 default:
1389 goto bad_reg;
1390 }
1391 break;
1392 case 14: /* Performance monitor control */
1393 if (!arm_feature(env, ARM_FEATURE_V7)) {
1394 goto bad_reg;
1395 }
1396 switch (op2) {
1397 case 0: /* user enable */
1398 env->cp15.c9_pmuserenr = val & 1;
1399 /* changes access rights for cp registers, so flush tbs */
1400 tb_flush(env);
1401 break;
1402 case 1: /* interrupt enable set */
1403 /* We have no event counters so only the C bit can be changed */
1404 val &= (1 << 31);
1405 env->cp15.c9_pminten |= val;
1406 break;
1407 case 2: /* interrupt enable clear */
1408 val &= (1 << 31);
1409 env->cp15.c9_pminten &= ~val;
1410 break;
1411 }
1412 break;
1413 default:
1414 goto bad_reg;
1415 }
1416 break;
1417 case 10: /* MMU TLB lockdown. */
1418 /* ??? TLB lockdown not implemented. */
1419 break;
1420 case 12: /* Reserved. */
1421 goto bad_reg;
1422 case 13: /* Process ID. */
1423 switch (op2) {
1424 case 0:
1425 /* Unlike real hardware the qemu TLB uses virtual addresses,
1426 not modified virtual addresses, so this causes a TLB flush.
1427 */
1428 if (env->cp15.c13_fcse != val)
1429 tlb_flush(env, 1);
1430 env->cp15.c13_fcse = val;
1431 break;
1432 case 1:
1433 /* This changes the ASID, so do a TLB flush. */
1434 if (env->cp15.c13_context != val
1435 && !arm_feature(env, ARM_FEATURE_MPU))
1436 tlb_flush(env, 0);
1437 env->cp15.c13_context = val;
1438 break;
1439 default:
1440 goto bad_reg;
1441 }
1442 break;
1443 case 14: /* Generic timer */
1444 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1445 /* Dummy implementation: RAZ/WI for all */
1446 break;
1447 }
1448 goto bad_reg;
1449 case 15: /* Implementation specific. */
1450 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1451 if (op2 == 0 && crm == 1) {
1452 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1453 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1454 tb_flush(env);
1455 env->cp15.c15_cpar = val & 0x3fff;
1456 }
1457 break;
1458 }
1459 goto bad_reg;
1460 }
1461 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1462 switch (crm) {
1463 case 0:
1464 break;
1465 case 1: /* Set TI925T configuration. */
1466 env->cp15.c15_ticonfig = val & 0xe7;
1467 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1468 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1469 break;
1470 case 2: /* Set I_max. */
1471 env->cp15.c15_i_max = val;
1472 break;
1473 case 3: /* Set I_min. */
1474 env->cp15.c15_i_min = val;
1475 break;
1476 case 4: /* Set thread-ID. */
1477 env->cp15.c15_threadid = val & 0xffff;
1478 break;
1479 case 8: /* Wait-for-interrupt (deprecated). */
1480 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1481 break;
1482 default:
1483 goto bad_reg;
1484 }
1485 }
1486 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1487 switch (crm) {
1488 case 0:
1489 if ((op1 == 0) && (op2 == 0)) {
1490 env->cp15.c15_power_control = val;
1491 } else if ((op1 == 0) && (op2 == 1)) {
1492 env->cp15.c15_diagnostic = val;
1493 } else if ((op1 == 0) && (op2 == 2)) {
1494 env->cp15.c15_power_diagnostic = val;
1495 }
1496 default:
1497 break;
1498 }
1499 }
1500 break;
1501 }
1502 return;
1503 bad_reg:
1504 /* ??? For debugging only. Should raise illegal instruction exception. */
1505 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1506 (insn >> 16) & 0xf, crm, op1, op2);
1507 }
1508
1509 uint32_t HELPER(get_cp15)(CPUARMState *env, uint32_t insn)
1510 {
1511 int op1;
1512 int op2;
1513 int crm;
1514
1515 op1 = (insn >> 21) & 7;
1516 op2 = (insn >> 5) & 7;
1517 crm = insn & 0xf;
1518 switch ((insn >> 16) & 0xf) {
1519 case 0: /* ID codes. */
1520 switch (op1) {
1521 case 0:
1522 switch (crm) {
1523 case 0:
1524 switch (op2) {
1525 case 0: /* Device ID. */
1526 return env->cp15.c0_cpuid;
1527 case 1: /* Cache Type. */
1528 return env->cp15.c0_cachetype;
1529 case 2: /* TCM status. */
1530 return 0;
1531 case 3: /* TLB type register. */
1532 return 0; /* No lockable TLB entries. */
1533 case 5: /* MPIDR */
1534 /* The MPIDR was standardised in v7; prior to
1535 * this it was implemented only in the 11MPCore.
1536 * For all other pre-v7 cores it does not exist.
1537 */
1538 if (arm_feature(env, ARM_FEATURE_V7) ||
1539 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1540 int mpidr = env->cpu_index;
1541 /* We don't support setting cluster ID ([8..11])
1542 * so these bits always RAZ.
1543 */
1544 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1545 mpidr |= (1 << 31);
1546 /* Cores which are uniprocessor (non-coherent)
1547 * but still implement the MP extensions set
1548 * bit 30. (For instance, A9UP.) However we do
1549 * not currently model any of those cores.
1550 */
1551 }
1552 return mpidr;
1553 }
1554 /* otherwise fall through to the unimplemented-reg case */
1555 default:
1556 goto bad_reg;
1557 }
1558 case 1:
1559 if (!arm_feature(env, ARM_FEATURE_V6))
1560 goto bad_reg;
1561 return env->cp15.c0_c1[op2];
1562 case 2:
1563 if (!arm_feature(env, ARM_FEATURE_V6))
1564 goto bad_reg;
1565 return env->cp15.c0_c2[op2];
1566 case 3: case 4: case 5: case 6: case 7:
1567 return 0;
1568 default:
1569 goto bad_reg;
1570 }
1571 case 1:
1572 /* These registers aren't documented on arm11 cores. However
1573 Linux looks at them anyway. */
1574 if (!arm_feature(env, ARM_FEATURE_V6))
1575 goto bad_reg;
1576 if (crm != 0)
1577 goto bad_reg;
1578 if (!arm_feature(env, ARM_FEATURE_V7))
1579 return 0;
1580
1581 switch (op2) {
1582 case 0:
1583 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1584 case 1:
1585 return env->cp15.c0_clid;
1586 case 7:
1587 return 0;
1588 }
1589 goto bad_reg;
1590 case 2:
1591 if (op2 != 0 || crm != 0)
1592 goto bad_reg;
1593 return env->cp15.c0_cssel;
1594 default:
1595 goto bad_reg;
1596 }
1597 case 1: /* System configuration. */
1598 if (arm_feature(env, ARM_FEATURE_V7)
1599 && op1 == 0 && crm == 1 && op2 == 0) {
1600 return env->cp15.c1_scr;
1601 }
1602 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1603 op2 = 0;
1604 switch (op2) {
1605 case 0: /* Control register. */
1606 return env->cp15.c1_sys;
1607 case 1: /* Auxiliary control register. */
1608 if (arm_feature(env, ARM_FEATURE_XSCALE))
1609 return env->cp15.c1_xscaleauxcr;
1610 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1611 goto bad_reg;
1612 switch (ARM_CPUID(env)) {
1613 case ARM_CPUID_ARM1026:
1614 return 1;
1615 case ARM_CPUID_ARM1136:
1616 case ARM_CPUID_ARM1136_R2:
1617 case ARM_CPUID_ARM1176:
1618 return 7;
1619 case ARM_CPUID_ARM11MPCORE:
1620 return 1;
1621 case ARM_CPUID_CORTEXA8:
1622 return 2;
1623 case ARM_CPUID_CORTEXA9:
1624 case ARM_CPUID_CORTEXA15:
1625 return 0;
1626 default:
1627 goto bad_reg;
1628 }
1629 case 2: /* Coprocessor access register. */
1630 if (arm_feature(env, ARM_FEATURE_XSCALE))
1631 goto bad_reg;
1632 return env->cp15.c1_coproc;
1633 default:
1634 goto bad_reg;
1635 }
1636 case 2: /* MMU Page table control / MPU cache control. */
1637 if (arm_feature(env, ARM_FEATURE_MPU)) {
1638 switch (op2) {
1639 case 0:
1640 return env->cp15.c2_data;
1641 break;
1642 case 1:
1643 return env->cp15.c2_insn;
1644 break;
1645 default:
1646 goto bad_reg;
1647 }
1648 } else {
1649 switch (op2) {
1650 case 0:
1651 return env->cp15.c2_base0;
1652 case 1:
1653 return env->cp15.c2_base1;
1654 case 2:
1655 return env->cp15.c2_control;
1656 default:
1657 goto bad_reg;
1658 }
1659 }
1660 case 3: /* MMU Domain access control / MPU write buffer control. */
1661 return env->cp15.c3;
1662 case 4: /* Reserved. */
1663 goto bad_reg;
1664 case 5: /* MMU Fault status / MPU access permission. */
1665 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1666 op2 = 0;
1667 switch (op2) {
1668 case 0:
1669 if (arm_feature(env, ARM_FEATURE_MPU))
1670 return simple_mpu_ap_bits(env->cp15.c5_data);
1671 return env->cp15.c5_data;
1672 case 1:
1673 if (arm_feature(env, ARM_FEATURE_MPU))
1674 return simple_mpu_ap_bits(env->cp15.c5_insn);
1675 return env->cp15.c5_insn;
1676 case 2:
1677 if (!arm_feature(env, ARM_FEATURE_MPU))
1678 goto bad_reg;
1679 return env->cp15.c5_data;
1680 case 3:
1681 if (!arm_feature(env, ARM_FEATURE_MPU))
1682 goto bad_reg;
1683 return env->cp15.c5_insn;
1684 default:
1685 goto bad_reg;
1686 }
1687 case 6: /* MMU Fault address. */
1688 if (arm_feature(env, ARM_FEATURE_MPU)) {
1689 if (crm >= 8)
1690 goto bad_reg;
1691 return env->cp15.c6_region[crm];
1692 } else {
1693 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1694 op2 = 0;
1695 switch (op2) {
1696 case 0:
1697 return env->cp15.c6_data;
1698 case 1:
1699 if (arm_feature(env, ARM_FEATURE_V6)) {
1700 /* Watchpoint Fault Adrress. */
1701 return 0; /* Not implemented. */
1702 } else {
1703 /* Instruction Fault Adrress. */
1704 /* Arm9 doesn't have an IFAR, but implementing it anyway
1705 shouldn't do any harm. */
1706 return env->cp15.c6_insn;
1707 }
1708 case 2:
1709 if (arm_feature(env, ARM_FEATURE_V6)) {
1710 /* Instruction Fault Adrress. */
1711 return env->cp15.c6_insn;
1712 } else {
1713 goto bad_reg;
1714 }
1715 default:
1716 goto bad_reg;
1717 }
1718 }
1719 case 7: /* Cache control. */
1720 if (crm == 4 && op1 == 0 && op2 == 0) {
1721 return env->cp15.c7_par;
1722 }
1723 /* FIXME: Should only clear Z flag if destination is r15. */
1724 env->ZF = 0;
1725 return 0;
1726 case 8: /* MMU TLB control. */
1727 goto bad_reg;
1728 case 9:
1729 switch (crm) {
1730 case 0: /* Cache lockdown */
1731 switch (op1) {
1732 case 0: /* L1 cache. */
1733 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1734 return 0;
1735 }
1736 switch (op2) {
1737 case 0:
1738 return env->cp15.c9_data;
1739 case 1:
1740 return env->cp15.c9_insn;
1741 default:
1742 goto bad_reg;
1743 }
1744 case 1: /* L2 cache */
1745 /* L2 Lockdown and Auxiliary control. */
1746 switch (op2) {
1747 case 0:
1748 /* L2 cache lockdown (A8 only) */
1749 return 0;
1750 case 2:
1751 /* L2 cache auxiliary control (A8) or control (A15) */
1752 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
1753 /* Linux wants the number of processors from here.
1754 * Might as well set the interrupt-controller bit too.
1755 */
1756 return ((smp_cpus - 1) << 24) | (1 << 23);
1757 }
1758 return 0;
1759 case 3:
1760 /* L2 cache extended control (A15) */
1761 return 0;
1762 default:
1763 goto bad_reg;
1764 }
1765 default:
1766 goto bad_reg;
1767 }
1768 break;
1769 case 12: /* Performance monitor control */
1770 if (!arm_feature(env, ARM_FEATURE_V7)) {
1771 goto bad_reg;
1772 }
1773 switch (op2) {
1774 case 0: /* performance monitor control register */
1775 return env->cp15.c9_pmcr;
1776 case 1: /* count enable set */
1777 case 2: /* count enable clear */
1778 return env->cp15.c9_pmcnten;
1779 case 3: /* overflow flag status */
1780 return env->cp15.c9_pmovsr;
1781 case 4: /* software increment */
1782 case 5: /* event counter selection register */
1783 return 0; /* Unimplemented, RAZ/WI */
1784 default:
1785 goto bad_reg;
1786 }
1787 case 13: /* Performance counters */
1788 if (!arm_feature(env, ARM_FEATURE_V7)) {
1789 goto bad_reg;
1790 }
1791 switch (op2) {
1792 case 1: /* Event type select */
1793 return env->cp15.c9_pmxevtyper;
1794 case 0: /* Cycle count register */
1795 case 2: /* Event count register */
1796 /* Unimplemented, so RAZ/WI */
1797 return 0;
1798 default:
1799 goto bad_reg;
1800 }
1801 case 14: /* Performance monitor control */
1802 if (!arm_feature(env, ARM_FEATURE_V7)) {
1803 goto bad_reg;
1804 }
1805 switch (op2) {
1806 case 0: /* user enable */
1807 return env->cp15.c9_pmuserenr;
1808 case 1: /* interrupt enable set */
1809 case 2: /* interrupt enable clear */
1810 return env->cp15.c9_pminten;
1811 default:
1812 goto bad_reg;
1813 }
1814 default:
1815 goto bad_reg;
1816 }
1817 break;
1818 case 10: /* MMU TLB lockdown. */
1819 /* ??? TLB lockdown not implemented. */
1820 return 0;
1821 case 11: /* TCM DMA control. */
1822 case 12: /* Reserved. */
1823 goto bad_reg;
1824 case 13: /* Process ID. */
1825 switch (op2) {
1826 case 0:
1827 return env->cp15.c13_fcse;
1828 case 1:
1829 return env->cp15.c13_context;
1830 default:
1831 goto bad_reg;
1832 }
1833 case 14: /* Generic timer */
1834 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1835 /* Dummy implementation: RAZ/WI for all */
1836 return 0;
1837 }
1838 goto bad_reg;
1839 case 15: /* Implementation specific. */
1840 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1841 if (op2 == 0 && crm == 1)
1842 return env->cp15.c15_cpar;
1843
1844 goto bad_reg;
1845 }
1846 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1847 switch (crm) {
1848 case 0:
1849 return 0;
1850 case 1: /* Read TI925T configuration. */
1851 return env->cp15.c15_ticonfig;
1852 case 2: /* Read I_max. */
1853 return env->cp15.c15_i_max;
1854 case 3: /* Read I_min. */
1855 return env->cp15.c15_i_min;
1856 case 4: /* Read thread-ID. */
1857 return env->cp15.c15_threadid;
1858 case 8: /* TI925T_status */
1859 return 0;
1860 }
1861 /* TODO: Peripheral port remap register:
1862 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1863 * controller base address at $rn & ~0xfff and map size of
1864 * 0x200 << ($rn & 0xfff), when MMU is off. */
1865 goto bad_reg;
1866 }
1867 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1868 switch (crm) {
1869 case 0:
1870 if ((op1 == 4) && (op2 == 0)) {
1871 /* The config_base_address should hold the value of
1872 * the peripheral base. ARM should get this from a CPU
1873 * object property, but that support isn't available in
1874 * December 2011. Default to 0 for now and board models
1875 * that care can set it by a private hook */
1876 return env->cp15.c15_config_base_address;
1877 } else if ((op1 == 0) && (op2 == 0)) {
1878 /* power_control should be set to maximum latency. Again,
1879 default to 0 and set by private hook */
1880 return env->cp15.c15_power_control;
1881 } else if ((op1 == 0) && (op2 == 1)) {
1882 return env->cp15.c15_diagnostic;
1883 } else if ((op1 == 0) && (op2 == 2)) {
1884 return env->cp15.c15_power_diagnostic;
1885 }
1886 break;
1887 case 1: /* NEON Busy */
1888 return 0;
1889 case 5: /* tlb lockdown */
1890 case 6:
1891 case 7:
1892 if ((op1 == 5) && (op2 == 2)) {
1893 return 0;
1894 }
1895 break;
1896 default:
1897 break;
1898 }
1899 goto bad_reg;
1900 }
1901 return 0;
1902 }
1903 bad_reg:
1904 /* ??? For debugging only. Should raise illegal instruction exception. */
1905 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1906 (insn >> 16) & 0xf, crm, op1, op2);
1907 return 0;
1908 }
1909
1910 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1911 {
1912 if ((env->uncached_cpsr & CPSR_M) == mode) {
1913 env->regs[13] = val;
1914 } else {
1915 env->banked_r13[bank_number(env, mode)] = val;
1916 }
1917 }
1918
1919 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1920 {
1921 if ((env->uncached_cpsr & CPSR_M) == mode) {
1922 return env->regs[13];
1923 } else {
1924 return env->banked_r13[bank_number(env, mode)];
1925 }
1926 }
1927
1928 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1929 {
1930 switch (reg) {
1931 case 0: /* APSR */
1932 return xpsr_read(env) & 0xf8000000;
1933 case 1: /* IAPSR */
1934 return xpsr_read(env) & 0xf80001ff;
1935 case 2: /* EAPSR */
1936 return xpsr_read(env) & 0xff00fc00;
1937 case 3: /* xPSR */
1938 return xpsr_read(env) & 0xff00fdff;
1939 case 5: /* IPSR */
1940 return xpsr_read(env) & 0x000001ff;
1941 case 6: /* EPSR */
1942 return xpsr_read(env) & 0x0700fc00;
1943 case 7: /* IEPSR */
1944 return xpsr_read(env) & 0x0700edff;
1945 case 8: /* MSP */
1946 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1947 case 9: /* PSP */
1948 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1949 case 16: /* PRIMASK */
1950 return (env->uncached_cpsr & CPSR_I) != 0;
1951 case 17: /* BASEPRI */
1952 case 18: /* BASEPRI_MAX */
1953 return env->v7m.basepri;
1954 case 19: /* FAULTMASK */
1955 return (env->uncached_cpsr & CPSR_F) != 0;
1956 case 20: /* CONTROL */
1957 return env->v7m.control;
1958 default:
1959 /* ??? For debugging only. */
1960 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1961 return 0;
1962 }
1963 }
1964
1965 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1966 {
1967 switch (reg) {
1968 case 0: /* APSR */
1969 xpsr_write(env, val, 0xf8000000);
1970 break;
1971 case 1: /* IAPSR */
1972 xpsr_write(env, val, 0xf8000000);
1973 break;
1974 case 2: /* EAPSR */
1975 xpsr_write(env, val, 0xfe00fc00);
1976 break;
1977 case 3: /* xPSR */
1978 xpsr_write(env, val, 0xfe00fc00);
1979 break;
1980 case 5: /* IPSR */
1981 /* IPSR bits are readonly. */
1982 break;
1983 case 6: /* EPSR */
1984 xpsr_write(env, val, 0x0600fc00);
1985 break;
1986 case 7: /* IEPSR */
1987 xpsr_write(env, val, 0x0600fc00);
1988 break;
1989 case 8: /* MSP */
1990 if (env->v7m.current_sp)
1991 env->v7m.other_sp = val;
1992 else
1993 env->regs[13] = val;
1994 break;
1995 case 9: /* PSP */
1996 if (env->v7m.current_sp)
1997 env->regs[13] = val;
1998 else
1999 env->v7m.other_sp = val;
2000 break;
2001 case 16: /* PRIMASK */
2002 if (val & 1)
2003 env->uncached_cpsr |= CPSR_I;
2004 else
2005 env->uncached_cpsr &= ~CPSR_I;
2006 break;
2007 case 17: /* BASEPRI */
2008 env->v7m.basepri = val & 0xff;
2009 break;
2010 case 18: /* BASEPRI_MAX */
2011 val &= 0xff;
2012 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2013 env->v7m.basepri = val;
2014 break;
2015 case 19: /* FAULTMASK */
2016 if (val & 1)
2017 env->uncached_cpsr |= CPSR_F;
2018 else
2019 env->uncached_cpsr &= ~CPSR_F;
2020 break;
2021 case 20: /* CONTROL */
2022 env->v7m.control = val & 3;
2023 switch_v7m_sp(env, (val & 2) != 0);
2024 break;
2025 default:
2026 /* ??? For debugging only. */
2027 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2028 return;
2029 }
2030 }
2031
2032 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2033 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2034 void *opaque)
2035 {
2036 if (cpnum < 0 || cpnum > 14) {
2037 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2038 return;
2039 }
2040
2041 env->cp[cpnum].cp_read = cp_read;
2042 env->cp[cpnum].cp_write = cp_write;
2043 env->cp[cpnum].opaque = opaque;
2044 }
2045
2046 #endif
2047
2048 /* Note that signed overflow is undefined in C. The following routines are
2049 careful to use unsigned types where modulo arithmetic is required.
2050 Failure to do so _will_ break on newer gcc. */
2051
2052 /* Signed saturating arithmetic. */
2053
2054 /* Perform 16-bit signed saturating addition. */
2055 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2056 {
2057 uint16_t res;
2058
2059 res = a + b;
2060 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2061 if (a & 0x8000)
2062 res = 0x8000;
2063 else
2064 res = 0x7fff;
2065 }
2066 return res;
2067 }
2068
2069 /* Perform 8-bit signed saturating addition. */
2070 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2071 {
2072 uint8_t res;
2073
2074 res = a + b;
2075 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2076 if (a & 0x80)
2077 res = 0x80;
2078 else
2079 res = 0x7f;
2080 }
2081 return res;
2082 }
2083
2084 /* Perform 16-bit signed saturating subtraction. */
2085 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2086 {
2087 uint16_t res;
2088
2089 res = a - b;
2090 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2091 if (a & 0x8000)
2092 res = 0x8000;
2093 else
2094 res = 0x7fff;
2095 }
2096 return res;
2097 }
2098
2099 /* Perform 8-bit signed saturating subtraction. */
2100 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2101 {
2102 uint8_t res;
2103
2104 res = a - b;
2105 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2106 if (a & 0x80)
2107 res = 0x80;
2108 else
2109 res = 0x7f;
2110 }
2111 return res;
2112 }
2113
2114 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2115 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2116 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2117 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2118 #define PFX q
2119
2120 #include "op_addsub.h"
2121
2122 /* Unsigned saturating arithmetic. */
2123 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2124 {
2125 uint16_t res;
2126 res = a + b;
2127 if (res < a)
2128 res = 0xffff;
2129 return res;
2130 }
2131
2132 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2133 {
2134 if (a > b)
2135 return a - b;
2136 else
2137 return 0;
2138 }
2139
2140 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2141 {
2142 uint8_t res;
2143 res = a + b;
2144 if (res < a)
2145 res = 0xff;
2146 return res;
2147 }
2148
2149 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2150 {
2151 if (a > b)
2152 return a - b;
2153 else
2154 return 0;
2155 }
2156
2157 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2158 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2159 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2160 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2161 #define PFX uq
2162
2163 #include "op_addsub.h"
2164
2165 /* Signed modulo arithmetic. */
2166 #define SARITH16(a, b, n, op) do { \
2167 int32_t sum; \
2168 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2169 RESULT(sum, n, 16); \
2170 if (sum >= 0) \
2171 ge |= 3 << (n * 2); \
2172 } while(0)
2173
2174 #define SARITH8(a, b, n, op) do { \
2175 int32_t sum; \
2176 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2177 RESULT(sum, n, 8); \
2178 if (sum >= 0) \
2179 ge |= 1 << n; \
2180 } while(0)
2181
2182
2183 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2184 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2185 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2186 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2187 #define PFX s
2188 #define ARITH_GE
2189
2190 #include "op_addsub.h"
2191
2192 /* Unsigned modulo arithmetic. */
2193 #define ADD16(a, b, n) do { \
2194 uint32_t sum; \
2195 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2196 RESULT(sum, n, 16); \
2197 if ((sum >> 16) == 1) \
2198 ge |= 3 << (n * 2); \
2199 } while(0)
2200
2201 #define ADD8(a, b, n) do { \
2202 uint32_t sum; \
2203 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2204 RESULT(sum, n, 8); \
2205 if ((sum >> 8) == 1) \
2206 ge |= 1 << n; \
2207 } while(0)
2208
2209 #define SUB16(a, b, n) do { \
2210 uint32_t sum; \
2211 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2212 RESULT(sum, n, 16); \
2213 if ((sum >> 16) == 0) \
2214 ge |= 3 << (n * 2); \
2215 } while(0)
2216
2217 #define SUB8(a, b, n) do { \
2218 uint32_t sum; \
2219 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2220 RESULT(sum, n, 8); \
2221 if ((sum >> 8) == 0) \
2222 ge |= 1 << n; \
2223 } while(0)
2224
2225 #define PFX u
2226 #define ARITH_GE
2227
2228 #include "op_addsub.h"
2229
2230 /* Halved signed arithmetic. */
2231 #define ADD16(a, b, n) \
2232 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2233 #define SUB16(a, b, n) \
2234 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2235 #define ADD8(a, b, n) \
2236 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2237 #define SUB8(a, b, n) \
2238 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2239 #define PFX sh
2240
2241 #include "op_addsub.h"
2242
2243 /* Halved unsigned arithmetic. */
2244 #define ADD16(a, b, n) \
2245 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2246 #define SUB16(a, b, n) \
2247 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2248 #define ADD8(a, b, n) \
2249 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2250 #define SUB8(a, b, n) \
2251 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2252 #define PFX uh
2253
2254 #include "op_addsub.h"
2255
2256 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2257 {
2258 if (a > b)
2259 return a - b;
2260 else
2261 return b - a;
2262 }
2263
2264 /* Unsigned sum of absolute byte differences. */
2265 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2266 {
2267 uint32_t sum;
2268 sum = do_usad(a, b);
2269 sum += do_usad(a >> 8, b >> 8);
2270 sum += do_usad(a >> 16, b >>16);
2271 sum += do_usad(a >> 24, b >> 24);
2272 return sum;
2273 }
2274
2275 /* For ARMv6 SEL instruction. */
2276 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2277 {
2278 uint32_t mask;
2279
2280 mask = 0;
2281 if (flags & 1)
2282 mask |= 0xff;
2283 if (flags & 2)
2284 mask |= 0xff00;
2285 if (flags & 4)
2286 mask |= 0xff0000;
2287 if (flags & 8)
2288 mask |= 0xff000000;
2289 return (a & mask) | (b & ~mask);
2290 }
2291
2292 uint32_t HELPER(logicq_cc)(uint64_t val)
2293 {
2294 return (val >> 32) | (val != 0);
2295 }
2296
2297 /* VFP support. We follow the convention used for VFP instrunctions:
2298 Single precition routines have a "s" suffix, double precision a
2299 "d" suffix. */
2300
2301 /* Convert host exception flags to vfp form. */
2302 static inline int vfp_exceptbits_from_host(int host_bits)
2303 {
2304 int target_bits = 0;
2305
2306 if (host_bits & float_flag_invalid)
2307 target_bits |= 1;
2308 if (host_bits & float_flag_divbyzero)
2309 target_bits |= 2;
2310 if (host_bits & float_flag_overflow)
2311 target_bits |= 4;
2312 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2313 target_bits |= 8;
2314 if (host_bits & float_flag_inexact)
2315 target_bits |= 0x10;
2316 if (host_bits & float_flag_input_denormal)
2317 target_bits |= 0x80;
2318 return target_bits;
2319 }
2320
2321 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2322 {
2323 int i;
2324 uint32_t fpscr;
2325
2326 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2327 | (env->vfp.vec_len << 16)
2328 | (env->vfp.vec_stride << 20);
2329 i = get_float_exception_flags(&env->vfp.fp_status);
2330 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2331 fpscr |= vfp_exceptbits_from_host(i);
2332 return fpscr;
2333 }
2334
2335 uint32_t vfp_get_fpscr(CPUARMState *env)
2336 {
2337 return HELPER(vfp_get_fpscr)(env);
2338 }
2339
2340 /* Convert vfp exception flags to target form. */
2341 static inline int vfp_exceptbits_to_host(int target_bits)
2342 {
2343 int host_bits = 0;
2344
2345 if (target_bits & 1)
2346 host_bits |= float_flag_invalid;
2347 if (target_bits & 2)
2348 host_bits |= float_flag_divbyzero;
2349 if (target_bits & 4)
2350 host_bits |= float_flag_overflow;
2351 if (target_bits & 8)
2352 host_bits |= float_flag_underflow;
2353 if (target_bits & 0x10)
2354 host_bits |= float_flag_inexact;
2355 if (target_bits & 0x80)
2356 host_bits |= float_flag_input_denormal;
2357 return host_bits;
2358 }
2359
2360 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2361 {
2362 int i;
2363 uint32_t changed;
2364
2365 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2366 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2367 env->vfp.vec_len = (val >> 16) & 7;
2368 env->vfp.vec_stride = (val >> 20) & 3;
2369
2370 changed ^= val;
2371 if (changed & (3 << 22)) {
2372 i = (val >> 22) & 3;
2373 switch (i) {
2374 case 0:
2375 i = float_round_nearest_even;
2376 break;
2377 case 1:
2378 i = float_round_up;
2379 break;
2380 case 2:
2381 i = float_round_down;
2382 break;
2383 case 3:
2384 i = float_round_to_zero;
2385 break;
2386 }
2387 set_float_rounding_mode(i, &env->vfp.fp_status);
2388 }
2389 if (changed & (1 << 24)) {
2390 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2391 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2392 }
2393 if (changed & (1 << 25))
2394 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2395
2396 i = vfp_exceptbits_to_host(val);
2397 set_float_exception_flags(i, &env->vfp.fp_status);
2398 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2399 }
2400
2401 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
2402 {
2403 HELPER(vfp_set_fpscr)(env, val);
2404 }
2405
2406 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2407
2408 #define VFP_BINOP(name) \
2409 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2410 { \
2411 float_status *fpst = fpstp; \
2412 return float32_ ## name(a, b, fpst); \
2413 } \
2414 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2415 { \
2416 float_status *fpst = fpstp; \
2417 return float64_ ## name(a, b, fpst); \
2418 }
2419 VFP_BINOP(add)
2420 VFP_BINOP(sub)
2421 VFP_BINOP(mul)
2422 VFP_BINOP(div)
2423 #undef VFP_BINOP
2424
2425 float32 VFP_HELPER(neg, s)(float32 a)
2426 {
2427 return float32_chs(a);
2428 }
2429
2430 float64 VFP_HELPER(neg, d)(float64 a)
2431 {
2432 return float64_chs(a);
2433 }
2434
2435 float32 VFP_HELPER(abs, s)(float32 a)
2436 {
2437 return float32_abs(a);
2438 }
2439
2440 float64 VFP_HELPER(abs, d)(float64 a)
2441 {
2442 return float64_abs(a);
2443 }
2444
2445 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
2446 {
2447 return float32_sqrt(a, &env->vfp.fp_status);
2448 }
2449
2450 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
2451 {
2452 return float64_sqrt(a, &env->vfp.fp_status);
2453 }
2454
2455 /* XXX: check quiet/signaling case */
2456 #define DO_VFP_cmp(p, type) \
2457 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
2458 { \
2459 uint32_t flags; \
2460 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2461 case 0: flags = 0x6; break; \
2462 case -1: flags = 0x8; break; \
2463 case 1: flags = 0x2; break; \
2464 default: case 2: flags = 0x3; break; \
2465 } \
2466 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2467 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2468 } \
2469 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
2470 { \
2471 uint32_t flags; \
2472 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2473 case 0: flags = 0x6; break; \
2474 case -1: flags = 0x8; break; \
2475 case 1: flags = 0x2; break; \
2476 default: case 2: flags = 0x3; break; \
2477 } \
2478 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2479 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2480 }
2481 DO_VFP_cmp(s, float32)
2482 DO_VFP_cmp(d, float64)
2483 #undef DO_VFP_cmp
2484
2485 /* Integer to float and float to integer conversions */
2486
2487 #define CONV_ITOF(name, fsz, sign) \
2488 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2489 { \
2490 float_status *fpst = fpstp; \
2491 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2492 }
2493
2494 #define CONV_FTOI(name, fsz, sign, round) \
2495 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2496 { \
2497 float_status *fpst = fpstp; \
2498 if (float##fsz##_is_any_nan(x)) { \
2499 float_raise(float_flag_invalid, fpst); \
2500 return 0; \
2501 } \
2502 return float##fsz##_to_##sign##int32##round(x, fpst); \
2503 }
2504
2505 #define FLOAT_CONVS(name, p, fsz, sign) \
2506 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2507 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2508 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2509
2510 FLOAT_CONVS(si, s, 32, )
2511 FLOAT_CONVS(si, d, 64, )
2512 FLOAT_CONVS(ui, s, 32, u)
2513 FLOAT_CONVS(ui, d, 64, u)
2514
2515 #undef CONV_ITOF
2516 #undef CONV_FTOI
2517 #undef FLOAT_CONVS
2518
2519 /* floating point conversion */
2520 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
2521 {
2522 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2523 /* ARM requires that S<->D conversion of any kind of NaN generates
2524 * a quiet NaN by forcing the most significant frac bit to 1.
2525 */
2526 return float64_maybe_silence_nan(r);
2527 }
2528
2529 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
2530 {
2531 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2532 /* ARM requires that S<->D conversion of any kind of NaN generates
2533 * a quiet NaN by forcing the most significant frac bit to 1.
2534 */
2535 return float32_maybe_silence_nan(r);
2536 }
2537
2538 /* VFP3 fixed point conversion. */
2539 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2540 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2541 void *fpstp) \
2542 { \
2543 float_status *fpst = fpstp; \
2544 float##fsz tmp; \
2545 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2546 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2547 } \
2548 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2549 void *fpstp) \
2550 { \
2551 float_status *fpst = fpstp; \
2552 float##fsz tmp; \
2553 if (float##fsz##_is_any_nan(x)) { \
2554 float_raise(float_flag_invalid, fpst); \
2555 return 0; \
2556 } \
2557 tmp = float##fsz##_scalbn(x, shift, fpst); \
2558 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2559 }
2560
2561 VFP_CONV_FIX(sh, d, 64, int16, )
2562 VFP_CONV_FIX(sl, d, 64, int32, )
2563 VFP_CONV_FIX(uh, d, 64, uint16, u)
2564 VFP_CONV_FIX(ul, d, 64, uint32, u)
2565 VFP_CONV_FIX(sh, s, 32, int16, )
2566 VFP_CONV_FIX(sl, s, 32, int32, )
2567 VFP_CONV_FIX(uh, s, 32, uint16, u)
2568 VFP_CONV_FIX(ul, s, 32, uint32, u)
2569 #undef VFP_CONV_FIX
2570
2571 /* Half precision conversions. */
2572 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
2573 {
2574 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2575 float32 r = float16_to_float32(make_float16(a), ieee, s);
2576 if (ieee) {
2577 return float32_maybe_silence_nan(r);
2578 }
2579 return r;
2580 }
2581
2582 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
2583 {
2584 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2585 float16 r = float32_to_float16(a, ieee, s);
2586 if (ieee) {
2587 r = float16_maybe_silence_nan(r);
2588 }
2589 return float16_val(r);
2590 }
2591
2592 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2593 {
2594 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2595 }
2596
2597 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2598 {
2599 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2600 }
2601
2602 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2603 {
2604 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2605 }
2606
2607 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2608 {
2609 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2610 }
2611
2612 #define float32_two make_float32(0x40000000)
2613 #define float32_three make_float32(0x40400000)
2614 #define float32_one_point_five make_float32(0x3fc00000)
2615
2616 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
2617 {
2618 float_status *s = &env->vfp.standard_fp_status;
2619 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2620 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2621 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2622 float_raise(float_flag_input_denormal, s);
2623 }
2624 return float32_two;
2625 }
2626 return float32_sub(float32_two, float32_mul(a, b, s), s);
2627 }
2628
2629 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
2630 {
2631 float_status *s = &env->vfp.standard_fp_status;
2632 float32 product;
2633 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2634 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2635 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2636 float_raise(float_flag_input_denormal, s);
2637 }
2638 return float32_one_point_five;
2639 }
2640 product = float32_mul(a, b, s);
2641 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
2642 }
2643
2644 /* NEON helpers. */
2645
2646 /* Constants 256 and 512 are used in some helpers; we avoid relying on
2647 * int->float conversions at run-time. */
2648 #define float64_256 make_float64(0x4070000000000000LL)
2649 #define float64_512 make_float64(0x4080000000000000LL)
2650
2651 /* The algorithm that must be used to calculate the estimate
2652 * is specified by the ARM ARM.
2653 */
2654 static float64 recip_estimate(float64 a, CPUARMState *env)
2655 {
2656 /* These calculations mustn't set any fp exception flags,
2657 * so we use a local copy of the fp_status.
2658 */
2659 float_status dummy_status = env->vfp.standard_fp_status;
2660 float_status *s = &dummy_status;
2661 /* q = (int)(a * 512.0) */
2662 float64 q = float64_mul(float64_512, a, s);
2663 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2664
2665 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2666 q = int64_to_float64(q_int, s);
2667 q = float64_add(q, float64_half, s);
2668 q = float64_div(q, float64_512, s);
2669 q = float64_div(float64_one, q, s);
2670
2671 /* s = (int)(256.0 * r + 0.5) */
2672 q = float64_mul(q, float64_256, s);
2673 q = float64_add(q, float64_half, s);
2674 q_int = float64_to_int64_round_to_zero(q, s);
2675
2676 /* return (double)s / 256.0 */
2677 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2678 }
2679
2680 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
2681 {
2682 float_status *s = &env->vfp.standard_fp_status;
2683 float64 f64;
2684 uint32_t val32 = float32_val(a);
2685
2686 int result_exp;
2687 int a_exp = (val32 & 0x7f800000) >> 23;
2688 int sign = val32 & 0x80000000;
2689
2690 if (float32_is_any_nan(a)) {
2691 if (float32_is_signaling_nan(a)) {
2692 float_raise(float_flag_invalid, s);
2693 }
2694 return float32_default_nan;
2695 } else if (float32_is_infinity(a)) {
2696 return float32_set_sign(float32_zero, float32_is_neg(a));
2697 } else if (float32_is_zero_or_denormal(a)) {
2698 if (!float32_is_zero(a)) {
2699 float_raise(float_flag_input_denormal, s);
2700 }
2701 float_raise(float_flag_divbyzero, s);
2702 return float32_set_sign(float32_infinity, float32_is_neg(a));
2703 } else if (a_exp >= 253) {
2704 float_raise(float_flag_underflow, s);
2705 return float32_set_sign(float32_zero, float32_is_neg(a));
2706 }
2707
2708 f64 = make_float64((0x3feULL << 52)
2709 | ((int64_t)(val32 & 0x7fffff) << 29));
2710
2711 result_exp = 253 - a_exp;
2712
2713 f64 = recip_estimate(f64, env);
2714
2715 val32 = sign
2716 | ((result_exp & 0xff) << 23)
2717 | ((float64_val(f64) >> 29) & 0x7fffff);
2718 return make_float32(val32);
2719 }
2720
2721 /* The algorithm that must be used to calculate the estimate
2722 * is specified by the ARM ARM.
2723 */
2724 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
2725 {
2726 /* These calculations mustn't set any fp exception flags,
2727 * so we use a local copy of the fp_status.
2728 */
2729 float_status dummy_status = env->vfp.standard_fp_status;
2730 float_status *s = &dummy_status;
2731 float64 q;
2732 int64_t q_int;
2733
2734 if (float64_lt(a, float64_half, s)) {
2735 /* range 0.25 <= a < 0.5 */
2736
2737 /* a in units of 1/512 rounded down */
2738 /* q0 = (int)(a * 512.0); */
2739 q = float64_mul(float64_512, a, s);
2740 q_int = float64_to_int64_round_to_zero(q, s);
2741
2742 /* reciprocal root r */
2743 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2744 q = int64_to_float64(q_int, s);
2745 q = float64_add(q, float64_half, s);
2746 q = float64_div(q, float64_512, s);
2747 q = float64_sqrt(q, s);
2748 q = float64_div(float64_one, q, s);
2749 } else {
2750 /* range 0.5 <= a < 1.0 */
2751
2752 /* a in units of 1/256 rounded down */
2753 /* q1 = (int)(a * 256.0); */
2754 q = float64_mul(float64_256, a, s);
2755 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2756
2757 /* reciprocal root r */
2758 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2759 q = int64_to_float64(q_int, s);
2760 q = float64_add(q, float64_half, s);
2761 q = float64_div(q, float64_256, s);
2762 q = float64_sqrt(q, s);
2763 q = float64_div(float64_one, q, s);
2764 }
2765 /* r in units of 1/256 rounded to nearest */
2766 /* s = (int)(256.0 * r + 0.5); */
2767
2768 q = float64_mul(q, float64_256,s );
2769 q = float64_add(q, float64_half, s);
2770 q_int = float64_to_int64_round_to_zero(q, s);
2771
2772 /* return (double)s / 256.0;*/
2773 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2774 }
2775
2776 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
2777 {
2778 float_status *s = &env->vfp.standard_fp_status;
2779 int result_exp;
2780 float64 f64;
2781 uint32_t val;
2782 uint64_t val64;
2783
2784 val = float32_val(a);
2785
2786 if (float32_is_any_nan(a)) {
2787 if (float32_is_signaling_nan(a)) {
2788 float_raise(float_flag_invalid, s);
2789 }
2790 return float32_default_nan;
2791 } else if (float32_is_zero_or_denormal(a)) {
2792 if (!float32_is_zero(a)) {
2793 float_raise(float_flag_input_denormal, s);
2794 }
2795 float_raise(float_flag_divbyzero, s);
2796 return float32_set_sign(float32_infinity, float32_is_neg(a));
2797 } else if (float32_is_neg(a)) {
2798 float_raise(float_flag_invalid, s);
2799 return float32_default_nan;
2800 } else if (float32_is_infinity(a)) {
2801 return float32_zero;
2802 }
2803
2804 /* Normalize to a double-precision value between 0.25 and 1.0,
2805 * preserving the parity of the exponent. */
2806 if ((val & 0x800000) == 0) {
2807 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2808 | (0x3feULL << 52)
2809 | ((uint64_t)(val & 0x7fffff) << 29));
2810 } else {
2811 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2812 | (0x3fdULL << 52)
2813 | ((uint64_t)(val & 0x7fffff) << 29));
2814 }
2815
2816 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2817
2818 f64 = recip_sqrt_estimate(f64, env);
2819
2820 val64 = float64_val(f64);
2821
2822 val = ((result_exp & 0xff) << 23)
2823 | ((val64 >> 29) & 0x7fffff);
2824 return make_float32(val);
2825 }
2826
2827 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
2828 {
2829 float64 f64;
2830
2831 if ((a & 0x80000000) == 0) {
2832 return 0xffffffff;
2833 }
2834
2835 f64 = make_float64((0x3feULL << 52)
2836 | ((int64_t)(a & 0x7fffffff) << 21));
2837
2838 f64 = recip_estimate (f64, env);
2839
2840 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2841 }
2842
2843 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
2844 {
2845 float64 f64;
2846
2847 if ((a & 0xc0000000) == 0) {
2848 return 0xffffffff;
2849 }
2850
2851 if (a & 0x80000000) {
2852 f64 = make_float64((0x3feULL << 52)
2853 | ((uint64_t)(a & 0x7fffffff) << 21));
2854 } else { /* bits 31-30 == '01' */
2855 f64 = make_float64((0x3fdULL << 52)
2856 | ((uint64_t)(a & 0x3fffffff) << 22));
2857 }
2858
2859 f64 = recip_sqrt_estimate(f64, env);
2860
2861 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
2862 }
2863
2864 /* VFPv4 fused multiply-accumulate */
2865 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
2866 {
2867 float_status *fpst = fpstp;
2868 return float32_muladd(a, b, c, 0, fpst);
2869 }
2870
2871 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
2872 {
2873 float_status *fpst = fpstp;
2874 return float64_muladd(a, b, c, 0, fpst);
2875 }
2876
2877 void HELPER(set_teecr)(CPUARMState *env, uint32_t val)
2878 {
2879 val &= 1;
2880 if (env->teecr != val) {
2881 env->teecr = val;
2882 tb_flush(env);
2883 }
2884 }