]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge remote branch 'qemu-kvm/uq/master' into staging
[qemu.git] / target-arm / helper.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11
12 static uint32_t cortexa9_cp15_c0_c1[8] =
13 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
14
15 static uint32_t cortexa9_cp15_c0_c2[8] =
16 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
17
18 static uint32_t cortexa8_cp15_c0_c1[8] =
19 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
20
21 static uint32_t cortexa8_cp15_c0_c2[8] =
22 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
23
24 static uint32_t mpcore_cp15_c0_c1[8] =
25 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
26
27 static uint32_t mpcore_cp15_c0_c2[8] =
28 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
29
30 static uint32_t arm1136_cp15_c0_c1[8] =
31 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
32
33 static uint32_t arm1136_cp15_c0_c2[8] =
34 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
35
36 static uint32_t cpu_arm_find_by_name(const char *name);
37
38 static inline void set_feature(CPUARMState *env, int feature)
39 {
40 env->features |= 1u << feature;
41 }
42
43 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
44 {
45 env->cp15.c0_cpuid = id;
46 switch (id) {
47 case ARM_CPUID_ARM926:
48 set_feature(env, ARM_FEATURE_VFP);
49 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
50 env->cp15.c0_cachetype = 0x1dd20d2;
51 env->cp15.c1_sys = 0x00090078;
52 break;
53 case ARM_CPUID_ARM946:
54 set_feature(env, ARM_FEATURE_MPU);
55 env->cp15.c0_cachetype = 0x0f004006;
56 env->cp15.c1_sys = 0x00000078;
57 break;
58 case ARM_CPUID_ARM1026:
59 set_feature(env, ARM_FEATURE_VFP);
60 set_feature(env, ARM_FEATURE_AUXCR);
61 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
62 env->cp15.c0_cachetype = 0x1dd20d2;
63 env->cp15.c1_sys = 0x00090078;
64 break;
65 case ARM_CPUID_ARM1136_R2:
66 case ARM_CPUID_ARM1136:
67 set_feature(env, ARM_FEATURE_V6);
68 set_feature(env, ARM_FEATURE_VFP);
69 set_feature(env, ARM_FEATURE_AUXCR);
70 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
71 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
72 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
73 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
74 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
75 env->cp15.c0_cachetype = 0x1dd20d2;
76 break;
77 case ARM_CPUID_ARM11MPCORE:
78 set_feature(env, ARM_FEATURE_V6);
79 set_feature(env, ARM_FEATURE_V6K);
80 set_feature(env, ARM_FEATURE_VFP);
81 set_feature(env, ARM_FEATURE_AUXCR);
82 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
83 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
84 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
85 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
86 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
87 env->cp15.c0_cachetype = 0x1dd20d2;
88 break;
89 case ARM_CPUID_CORTEXA8:
90 set_feature(env, ARM_FEATURE_V6);
91 set_feature(env, ARM_FEATURE_V6K);
92 set_feature(env, ARM_FEATURE_V7);
93 set_feature(env, ARM_FEATURE_AUXCR);
94 set_feature(env, ARM_FEATURE_THUMB2);
95 set_feature(env, ARM_FEATURE_VFP);
96 set_feature(env, ARM_FEATURE_VFP3);
97 set_feature(env, ARM_FEATURE_NEON);
98 set_feature(env, ARM_FEATURE_THUMB2EE);
99 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
100 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
101 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
102 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
103 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
104 env->cp15.c0_cachetype = 0x82048004;
105 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
106 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
107 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
108 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
109 break;
110 case ARM_CPUID_CORTEXA9:
111 set_feature(env, ARM_FEATURE_V6);
112 set_feature(env, ARM_FEATURE_V6K);
113 set_feature(env, ARM_FEATURE_V7);
114 set_feature(env, ARM_FEATURE_AUXCR);
115 set_feature(env, ARM_FEATURE_THUMB2);
116 set_feature(env, ARM_FEATURE_VFP);
117 set_feature(env, ARM_FEATURE_VFP3);
118 set_feature(env, ARM_FEATURE_VFP_FP16);
119 set_feature(env, ARM_FEATURE_NEON);
120 set_feature(env, ARM_FEATURE_THUMB2EE);
121 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
122 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
123 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
124 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
125 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
126 env->cp15.c0_cachetype = 0x80038003;
127 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
128 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
129 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
130 break;
131 case ARM_CPUID_CORTEXM3:
132 set_feature(env, ARM_FEATURE_V6);
133 set_feature(env, ARM_FEATURE_THUMB2);
134 set_feature(env, ARM_FEATURE_V7);
135 set_feature(env, ARM_FEATURE_M);
136 set_feature(env, ARM_FEATURE_DIV);
137 break;
138 case ARM_CPUID_ANY: /* For userspace emulation. */
139 set_feature(env, ARM_FEATURE_V6);
140 set_feature(env, ARM_FEATURE_V6K);
141 set_feature(env, ARM_FEATURE_V7);
142 set_feature(env, ARM_FEATURE_THUMB2);
143 set_feature(env, ARM_FEATURE_VFP);
144 set_feature(env, ARM_FEATURE_VFP3);
145 set_feature(env, ARM_FEATURE_VFP_FP16);
146 set_feature(env, ARM_FEATURE_NEON);
147 set_feature(env, ARM_FEATURE_THUMB2EE);
148 set_feature(env, ARM_FEATURE_DIV);
149 break;
150 case ARM_CPUID_TI915T:
151 case ARM_CPUID_TI925T:
152 set_feature(env, ARM_FEATURE_OMAPCP);
153 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
154 env->cp15.c0_cachetype = 0x5109149;
155 env->cp15.c1_sys = 0x00000070;
156 env->cp15.c15_i_max = 0x000;
157 env->cp15.c15_i_min = 0xff0;
158 break;
159 case ARM_CPUID_PXA250:
160 case ARM_CPUID_PXA255:
161 case ARM_CPUID_PXA260:
162 case ARM_CPUID_PXA261:
163 case ARM_CPUID_PXA262:
164 set_feature(env, ARM_FEATURE_XSCALE);
165 /* JTAG_ID is ((id << 28) | 0x09265013) */
166 env->cp15.c0_cachetype = 0xd172172;
167 env->cp15.c1_sys = 0x00000078;
168 break;
169 case ARM_CPUID_PXA270_A0:
170 case ARM_CPUID_PXA270_A1:
171 case ARM_CPUID_PXA270_B0:
172 case ARM_CPUID_PXA270_B1:
173 case ARM_CPUID_PXA270_C0:
174 case ARM_CPUID_PXA270_C5:
175 set_feature(env, ARM_FEATURE_XSCALE);
176 /* JTAG_ID is ((id << 28) | 0x09265013) */
177 set_feature(env, ARM_FEATURE_IWMMXT);
178 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179 env->cp15.c0_cachetype = 0xd172172;
180 env->cp15.c1_sys = 0x00000078;
181 break;
182 default:
183 cpu_abort(env, "Bad CPU ID: %x\n", id);
184 break;
185 }
186 }
187
188 void cpu_reset(CPUARMState *env)
189 {
190 uint32_t id;
191
192 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194 log_cpu_state(env, 0);
195 }
196
197 id = env->cp15.c0_cpuid;
198 memset(env, 0, offsetof(CPUARMState, breakpoints));
199 if (id)
200 cpu_reset_model_id(env, id);
201 #if defined (CONFIG_USER_ONLY)
202 env->uncached_cpsr = ARM_CPU_MODE_USR;
203 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
204 #else
205 /* SVC mode with interrupts disabled. */
206 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
207 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
208 clear at reset. */
209 if (IS_M(env))
210 env->uncached_cpsr &= ~CPSR_I;
211 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
212 env->cp15.c2_base_mask = 0xffffc000u;
213 #endif
214 env->regs[15] = 0;
215 tlb_flush(env, 1);
216 }
217
218 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
219 {
220 int nregs;
221
222 /* VFP data registers are always little-endian. */
223 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
224 if (reg < nregs) {
225 stfq_le_p(buf, env->vfp.regs[reg]);
226 return 8;
227 }
228 if (arm_feature(env, ARM_FEATURE_NEON)) {
229 /* Aliases for Q regs. */
230 nregs += 16;
231 if (reg < nregs) {
232 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
233 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
234 return 16;
235 }
236 }
237 switch (reg - nregs) {
238 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
239 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
240 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
241 }
242 return 0;
243 }
244
245 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
246 {
247 int nregs;
248
249 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
250 if (reg < nregs) {
251 env->vfp.regs[reg] = ldfq_le_p(buf);
252 return 8;
253 }
254 if (arm_feature(env, ARM_FEATURE_NEON)) {
255 nregs += 16;
256 if (reg < nregs) {
257 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
258 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
259 return 16;
260 }
261 }
262 switch (reg - nregs) {
263 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
264 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
265 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
266 }
267 return 0;
268 }
269
270 CPUARMState *cpu_arm_init(const char *cpu_model)
271 {
272 CPUARMState *env;
273 uint32_t id;
274 static int inited = 0;
275
276 id = cpu_arm_find_by_name(cpu_model);
277 if (id == 0)
278 return NULL;
279 env = qemu_mallocz(sizeof(CPUARMState));
280 cpu_exec_init(env);
281 if (!inited) {
282 inited = 1;
283 arm_translate_init();
284 }
285
286 env->cpu_model_str = cpu_model;
287 env->cp15.c0_cpuid = id;
288 cpu_reset(env);
289 if (arm_feature(env, ARM_FEATURE_NEON)) {
290 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
291 51, "arm-neon.xml", 0);
292 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
293 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
294 35, "arm-vfp3.xml", 0);
295 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
296 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
297 19, "arm-vfp.xml", 0);
298 }
299 qemu_init_vcpu(env);
300 return env;
301 }
302
303 struct arm_cpu_t {
304 uint32_t id;
305 const char *name;
306 };
307
308 static const struct arm_cpu_t arm_cpu_names[] = {
309 { ARM_CPUID_ARM926, "arm926"},
310 { ARM_CPUID_ARM946, "arm946"},
311 { ARM_CPUID_ARM1026, "arm1026"},
312 { ARM_CPUID_ARM1136, "arm1136"},
313 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
314 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
315 { ARM_CPUID_CORTEXM3, "cortex-m3"},
316 { ARM_CPUID_CORTEXA8, "cortex-a8"},
317 { ARM_CPUID_CORTEXA9, "cortex-a9"},
318 { ARM_CPUID_TI925T, "ti925t" },
319 { ARM_CPUID_PXA250, "pxa250" },
320 { ARM_CPUID_PXA255, "pxa255" },
321 { ARM_CPUID_PXA260, "pxa260" },
322 { ARM_CPUID_PXA261, "pxa261" },
323 { ARM_CPUID_PXA262, "pxa262" },
324 { ARM_CPUID_PXA270, "pxa270" },
325 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
326 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
327 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
328 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
329 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
330 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
331 { ARM_CPUID_ANY, "any"},
332 { 0, NULL}
333 };
334
335 void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
336 {
337 int i;
338
339 (*cpu_fprintf)(f, "Available CPUs:\n");
340 for (i = 0; arm_cpu_names[i].name; i++) {
341 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
342 }
343 }
344
345 /* return 0 if not found */
346 static uint32_t cpu_arm_find_by_name(const char *name)
347 {
348 int i;
349 uint32_t id;
350
351 id = 0;
352 for (i = 0; arm_cpu_names[i].name; i++) {
353 if (strcmp(name, arm_cpu_names[i].name) == 0) {
354 id = arm_cpu_names[i].id;
355 break;
356 }
357 }
358 return id;
359 }
360
361 void cpu_arm_close(CPUARMState *env)
362 {
363 free(env);
364 }
365
366 uint32_t cpsr_read(CPUARMState *env)
367 {
368 int ZF;
369 ZF = (env->ZF == 0);
370 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
371 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
372 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
373 | ((env->condexec_bits & 0xfc) << 8)
374 | (env->GE << 16);
375 }
376
377 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
378 {
379 if (mask & CPSR_NZCV) {
380 env->ZF = (~val) & CPSR_Z;
381 env->NF = val;
382 env->CF = (val >> 29) & 1;
383 env->VF = (val << 3) & 0x80000000;
384 }
385 if (mask & CPSR_Q)
386 env->QF = ((val & CPSR_Q) != 0);
387 if (mask & CPSR_T)
388 env->thumb = ((val & CPSR_T) != 0);
389 if (mask & CPSR_IT_0_1) {
390 env->condexec_bits &= ~3;
391 env->condexec_bits |= (val >> 25) & 3;
392 }
393 if (mask & CPSR_IT_2_7) {
394 env->condexec_bits &= 3;
395 env->condexec_bits |= (val >> 8) & 0xfc;
396 }
397 if (mask & CPSR_GE) {
398 env->GE = (val >> 16) & 0xf;
399 }
400
401 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
402 switch_mode(env, val & CPSR_M);
403 }
404 mask &= ~CACHED_CPSR_BITS;
405 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
406 }
407
408 /* Sign/zero extend */
409 uint32_t HELPER(sxtb16)(uint32_t x)
410 {
411 uint32_t res;
412 res = (uint16_t)(int8_t)x;
413 res |= (uint32_t)(int8_t)(x >> 16) << 16;
414 return res;
415 }
416
417 uint32_t HELPER(uxtb16)(uint32_t x)
418 {
419 uint32_t res;
420 res = (uint16_t)(uint8_t)x;
421 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
422 return res;
423 }
424
425 uint32_t HELPER(clz)(uint32_t x)
426 {
427 return clz32(x);
428 }
429
430 int32_t HELPER(sdiv)(int32_t num, int32_t den)
431 {
432 if (den == 0)
433 return 0;
434 if (num == INT_MIN && den == -1)
435 return INT_MIN;
436 return num / den;
437 }
438
439 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
440 {
441 if (den == 0)
442 return 0;
443 return num / den;
444 }
445
446 uint32_t HELPER(rbit)(uint32_t x)
447 {
448 x = ((x & 0xff000000) >> 24)
449 | ((x & 0x00ff0000) >> 8)
450 | ((x & 0x0000ff00) << 8)
451 | ((x & 0x000000ff) << 24);
452 x = ((x & 0xf0f0f0f0) >> 4)
453 | ((x & 0x0f0f0f0f) << 4);
454 x = ((x & 0x88888888) >> 3)
455 | ((x & 0x44444444) >> 1)
456 | ((x & 0x22222222) << 1)
457 | ((x & 0x11111111) << 3);
458 return x;
459 }
460
461 uint32_t HELPER(abs)(uint32_t x)
462 {
463 return ((int32_t)x < 0) ? -x : x;
464 }
465
466 #if defined(CONFIG_USER_ONLY)
467
468 void do_interrupt (CPUState *env)
469 {
470 env->exception_index = -1;
471 }
472
473 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
474 int mmu_idx, int is_softmmu)
475 {
476 if (rw == 2) {
477 env->exception_index = EXCP_PREFETCH_ABORT;
478 env->cp15.c6_insn = address;
479 } else {
480 env->exception_index = EXCP_DATA_ABORT;
481 env->cp15.c6_data = address;
482 }
483 return 1;
484 }
485
486 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
487 {
488 return addr;
489 }
490
491 /* These should probably raise undefined insn exceptions. */
492 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
493 {
494 int op1 = (insn >> 8) & 0xf;
495 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
496 return;
497 }
498
499 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
500 {
501 int op1 = (insn >> 8) & 0xf;
502 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
503 return 0;
504 }
505
506 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
507 {
508 cpu_abort(env, "cp15 insn %08x\n", insn);
509 }
510
511 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
512 {
513 cpu_abort(env, "cp15 insn %08x\n", insn);
514 }
515
516 /* These should probably raise undefined insn exceptions. */
517 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
518 {
519 cpu_abort(env, "v7m_mrs %d\n", reg);
520 }
521
522 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
523 {
524 cpu_abort(env, "v7m_mrs %d\n", reg);
525 return 0;
526 }
527
528 void switch_mode(CPUState *env, int mode)
529 {
530 if (mode != ARM_CPU_MODE_USR)
531 cpu_abort(env, "Tried to switch out of user mode\n");
532 }
533
534 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
535 {
536 cpu_abort(env, "banked r13 write\n");
537 }
538
539 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
540 {
541 cpu_abort(env, "banked r13 read\n");
542 return 0;
543 }
544
545 #else
546
547 extern int semihosting_enabled;
548
549 /* Map CPU modes onto saved register banks. */
550 static inline int bank_number (int mode)
551 {
552 switch (mode) {
553 case ARM_CPU_MODE_USR:
554 case ARM_CPU_MODE_SYS:
555 return 0;
556 case ARM_CPU_MODE_SVC:
557 return 1;
558 case ARM_CPU_MODE_ABT:
559 return 2;
560 case ARM_CPU_MODE_UND:
561 return 3;
562 case ARM_CPU_MODE_IRQ:
563 return 4;
564 case ARM_CPU_MODE_FIQ:
565 return 5;
566 }
567 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
568 return -1;
569 }
570
571 void switch_mode(CPUState *env, int mode)
572 {
573 int old_mode;
574 int i;
575
576 old_mode = env->uncached_cpsr & CPSR_M;
577 if (mode == old_mode)
578 return;
579
580 if (old_mode == ARM_CPU_MODE_FIQ) {
581 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
582 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
583 } else if (mode == ARM_CPU_MODE_FIQ) {
584 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
585 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
586 }
587
588 i = bank_number(old_mode);
589 env->banked_r13[i] = env->regs[13];
590 env->banked_r14[i] = env->regs[14];
591 env->banked_spsr[i] = env->spsr;
592
593 i = bank_number(mode);
594 env->regs[13] = env->banked_r13[i];
595 env->regs[14] = env->banked_r14[i];
596 env->spsr = env->banked_spsr[i];
597 }
598
599 static void v7m_push(CPUARMState *env, uint32_t val)
600 {
601 env->regs[13] -= 4;
602 stl_phys(env->regs[13], val);
603 }
604
605 static uint32_t v7m_pop(CPUARMState *env)
606 {
607 uint32_t val;
608 val = ldl_phys(env->regs[13]);
609 env->regs[13] += 4;
610 return val;
611 }
612
613 /* Switch to V7M main or process stack pointer. */
614 static void switch_v7m_sp(CPUARMState *env, int process)
615 {
616 uint32_t tmp;
617 if (env->v7m.current_sp != process) {
618 tmp = env->v7m.other_sp;
619 env->v7m.other_sp = env->regs[13];
620 env->regs[13] = tmp;
621 env->v7m.current_sp = process;
622 }
623 }
624
625 static void do_v7m_exception_exit(CPUARMState *env)
626 {
627 uint32_t type;
628 uint32_t xpsr;
629
630 type = env->regs[15];
631 if (env->v7m.exception != 0)
632 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
633
634 /* Switch to the target stack. */
635 switch_v7m_sp(env, (type & 4) != 0);
636 /* Pop registers. */
637 env->regs[0] = v7m_pop(env);
638 env->regs[1] = v7m_pop(env);
639 env->regs[2] = v7m_pop(env);
640 env->regs[3] = v7m_pop(env);
641 env->regs[12] = v7m_pop(env);
642 env->regs[14] = v7m_pop(env);
643 env->regs[15] = v7m_pop(env);
644 xpsr = v7m_pop(env);
645 xpsr_write(env, xpsr, 0xfffffdff);
646 /* Undo stack alignment. */
647 if (xpsr & 0x200)
648 env->regs[13] |= 4;
649 /* ??? The exception return type specifies Thread/Handler mode. However
650 this is also implied by the xPSR value. Not sure what to do
651 if there is a mismatch. */
652 /* ??? Likewise for mismatches between the CONTROL register and the stack
653 pointer. */
654 }
655
656 static void do_interrupt_v7m(CPUARMState *env)
657 {
658 uint32_t xpsr = xpsr_read(env);
659 uint32_t lr;
660 uint32_t addr;
661
662 lr = 0xfffffff1;
663 if (env->v7m.current_sp)
664 lr |= 4;
665 if (env->v7m.exception == 0)
666 lr |= 8;
667
668 /* For exceptions we just mark as pending on the NVIC, and let that
669 handle it. */
670 /* TODO: Need to escalate if the current priority is higher than the
671 one we're raising. */
672 switch (env->exception_index) {
673 case EXCP_UDEF:
674 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
675 return;
676 case EXCP_SWI:
677 env->regs[15] += 2;
678 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
679 return;
680 case EXCP_PREFETCH_ABORT:
681 case EXCP_DATA_ABORT:
682 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
683 return;
684 case EXCP_BKPT:
685 if (semihosting_enabled) {
686 int nr;
687 nr = lduw_code(env->regs[15]) & 0xff;
688 if (nr == 0xab) {
689 env->regs[15] += 2;
690 env->regs[0] = do_arm_semihosting(env);
691 return;
692 }
693 }
694 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
695 return;
696 case EXCP_IRQ:
697 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
698 break;
699 case EXCP_EXCEPTION_EXIT:
700 do_v7m_exception_exit(env);
701 return;
702 default:
703 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
704 return; /* Never happens. Keep compiler happy. */
705 }
706
707 /* Align stack pointer. */
708 /* ??? Should only do this if Configuration Control Register
709 STACKALIGN bit is set. */
710 if (env->regs[13] & 4) {
711 env->regs[13] -= 4;
712 xpsr |= 0x200;
713 }
714 /* Switch to the handler mode. */
715 v7m_push(env, xpsr);
716 v7m_push(env, env->regs[15]);
717 v7m_push(env, env->regs[14]);
718 v7m_push(env, env->regs[12]);
719 v7m_push(env, env->regs[3]);
720 v7m_push(env, env->regs[2]);
721 v7m_push(env, env->regs[1]);
722 v7m_push(env, env->regs[0]);
723 switch_v7m_sp(env, 0);
724 env->uncached_cpsr &= ~CPSR_IT;
725 env->regs[14] = lr;
726 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
727 env->regs[15] = addr & 0xfffffffe;
728 env->thumb = addr & 1;
729 }
730
731 /* Handle a CPU exception. */
732 void do_interrupt(CPUARMState *env)
733 {
734 uint32_t addr;
735 uint32_t mask;
736 int new_mode;
737 uint32_t offset;
738
739 if (IS_M(env)) {
740 do_interrupt_v7m(env);
741 return;
742 }
743 /* TODO: Vectored interrupt controller. */
744 switch (env->exception_index) {
745 case EXCP_UDEF:
746 new_mode = ARM_CPU_MODE_UND;
747 addr = 0x04;
748 mask = CPSR_I;
749 if (env->thumb)
750 offset = 2;
751 else
752 offset = 4;
753 break;
754 case EXCP_SWI:
755 if (semihosting_enabled) {
756 /* Check for semihosting interrupt. */
757 if (env->thumb) {
758 mask = lduw_code(env->regs[15] - 2) & 0xff;
759 } else {
760 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
761 }
762 /* Only intercept calls from privileged modes, to provide some
763 semblance of security. */
764 if (((mask == 0x123456 && !env->thumb)
765 || (mask == 0xab && env->thumb))
766 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
767 env->regs[0] = do_arm_semihosting(env);
768 return;
769 }
770 }
771 new_mode = ARM_CPU_MODE_SVC;
772 addr = 0x08;
773 mask = CPSR_I;
774 /* The PC already points to the next instruction. */
775 offset = 0;
776 break;
777 case EXCP_BKPT:
778 /* See if this is a semihosting syscall. */
779 if (env->thumb && semihosting_enabled) {
780 mask = lduw_code(env->regs[15]) & 0xff;
781 if (mask == 0xab
782 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
783 env->regs[15] += 2;
784 env->regs[0] = do_arm_semihosting(env);
785 return;
786 }
787 }
788 /* Fall through to prefetch abort. */
789 case EXCP_PREFETCH_ABORT:
790 new_mode = ARM_CPU_MODE_ABT;
791 addr = 0x0c;
792 mask = CPSR_A | CPSR_I;
793 offset = 4;
794 break;
795 case EXCP_DATA_ABORT:
796 new_mode = ARM_CPU_MODE_ABT;
797 addr = 0x10;
798 mask = CPSR_A | CPSR_I;
799 offset = 8;
800 break;
801 case EXCP_IRQ:
802 new_mode = ARM_CPU_MODE_IRQ;
803 addr = 0x18;
804 /* Disable IRQ and imprecise data aborts. */
805 mask = CPSR_A | CPSR_I;
806 offset = 4;
807 break;
808 case EXCP_FIQ:
809 new_mode = ARM_CPU_MODE_FIQ;
810 addr = 0x1c;
811 /* Disable FIQ, IRQ and imprecise data aborts. */
812 mask = CPSR_A | CPSR_I | CPSR_F;
813 offset = 4;
814 break;
815 default:
816 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
817 return; /* Never happens. Keep compiler happy. */
818 }
819 /* High vectors. */
820 if (env->cp15.c1_sys & (1 << 13)) {
821 addr += 0xffff0000;
822 }
823 switch_mode (env, new_mode);
824 env->spsr = cpsr_read(env);
825 /* Clear IT bits. */
826 env->condexec_bits = 0;
827 /* Switch to the new mode, and to the correct instruction set. */
828 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
829 env->uncached_cpsr |= mask;
830 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
831 env->regs[14] = env->regs[15] + offset;
832 env->regs[15] = addr;
833 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
834 }
835
836 /* Check section/page access permissions.
837 Returns the page protection flags, or zero if the access is not
838 permitted. */
839 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
840 int is_user)
841 {
842 int prot_ro;
843
844 if (domain == 3)
845 return PAGE_READ | PAGE_WRITE;
846
847 if (access_type == 1)
848 prot_ro = 0;
849 else
850 prot_ro = PAGE_READ;
851
852 switch (ap) {
853 case 0:
854 if (access_type == 1)
855 return 0;
856 switch ((env->cp15.c1_sys >> 8) & 3) {
857 case 1:
858 return is_user ? 0 : PAGE_READ;
859 case 2:
860 return PAGE_READ;
861 default:
862 return 0;
863 }
864 case 1:
865 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
866 case 2:
867 if (is_user)
868 return prot_ro;
869 else
870 return PAGE_READ | PAGE_WRITE;
871 case 3:
872 return PAGE_READ | PAGE_WRITE;
873 case 4: /* Reserved. */
874 return 0;
875 case 5:
876 return is_user ? 0 : prot_ro;
877 case 6:
878 return prot_ro;
879 case 7:
880 if (!arm_feature (env, ARM_FEATURE_V7))
881 return 0;
882 return prot_ro;
883 default:
884 abort();
885 }
886 }
887
888 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
889 {
890 uint32_t table;
891
892 if (address & env->cp15.c2_mask)
893 table = env->cp15.c2_base1 & 0xffffc000;
894 else
895 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
896
897 table |= (address >> 18) & 0x3ffc;
898 return table;
899 }
900
901 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
902 int is_user, uint32_t *phys_ptr, int *prot)
903 {
904 int code;
905 uint32_t table;
906 uint32_t desc;
907 int type;
908 int ap;
909 int domain;
910 uint32_t phys_addr;
911
912 /* Pagetable walk. */
913 /* Lookup l1 descriptor. */
914 table = get_level1_table_address(env, address);
915 desc = ldl_phys(table);
916 type = (desc & 3);
917 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
918 if (type == 0) {
919 /* Section translation fault. */
920 code = 5;
921 goto do_fault;
922 }
923 if (domain == 0 || domain == 2) {
924 if (type == 2)
925 code = 9; /* Section domain fault. */
926 else
927 code = 11; /* Page domain fault. */
928 goto do_fault;
929 }
930 if (type == 2) {
931 /* 1Mb section. */
932 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
933 ap = (desc >> 10) & 3;
934 code = 13;
935 } else {
936 /* Lookup l2 entry. */
937 if (type == 1) {
938 /* Coarse pagetable. */
939 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
940 } else {
941 /* Fine pagetable. */
942 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
943 }
944 desc = ldl_phys(table);
945 switch (desc & 3) {
946 case 0: /* Page translation fault. */
947 code = 7;
948 goto do_fault;
949 case 1: /* 64k page. */
950 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
951 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
952 break;
953 case 2: /* 4k page. */
954 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
955 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
956 break;
957 case 3: /* 1k page. */
958 if (type == 1) {
959 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
960 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
961 } else {
962 /* Page translation fault. */
963 code = 7;
964 goto do_fault;
965 }
966 } else {
967 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
968 }
969 ap = (desc >> 4) & 3;
970 break;
971 default:
972 /* Never happens, but compiler isn't smart enough to tell. */
973 abort();
974 }
975 code = 15;
976 }
977 *prot = check_ap(env, ap, domain, access_type, is_user);
978 if (!*prot) {
979 /* Access permission fault. */
980 goto do_fault;
981 }
982 *phys_ptr = phys_addr;
983 return 0;
984 do_fault:
985 return code | (domain << 4);
986 }
987
988 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
989 int is_user, uint32_t *phys_ptr, int *prot)
990 {
991 int code;
992 uint32_t table;
993 uint32_t desc;
994 uint32_t xn;
995 int type;
996 int ap;
997 int domain;
998 uint32_t phys_addr;
999
1000 /* Pagetable walk. */
1001 /* Lookup l1 descriptor. */
1002 table = get_level1_table_address(env, address);
1003 desc = ldl_phys(table);
1004 type = (desc & 3);
1005 if (type == 0) {
1006 /* Section translation fault. */
1007 code = 5;
1008 domain = 0;
1009 goto do_fault;
1010 } else if (type == 2 && (desc & (1 << 18))) {
1011 /* Supersection. */
1012 domain = 0;
1013 } else {
1014 /* Section or page. */
1015 domain = (desc >> 4) & 0x1e;
1016 }
1017 domain = (env->cp15.c3 >> domain) & 3;
1018 if (domain == 0 || domain == 2) {
1019 if (type == 2)
1020 code = 9; /* Section domain fault. */
1021 else
1022 code = 11; /* Page domain fault. */
1023 goto do_fault;
1024 }
1025 if (type == 2) {
1026 if (desc & (1 << 18)) {
1027 /* Supersection. */
1028 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1029 } else {
1030 /* Section. */
1031 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1032 }
1033 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1034 xn = desc & (1 << 4);
1035 code = 13;
1036 } else {
1037 /* Lookup l2 entry. */
1038 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1039 desc = ldl_phys(table);
1040 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1041 switch (desc & 3) {
1042 case 0: /* Page translation fault. */
1043 code = 7;
1044 goto do_fault;
1045 case 1: /* 64k page. */
1046 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1047 xn = desc & (1 << 15);
1048 break;
1049 case 2: case 3: /* 4k page. */
1050 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1051 xn = desc & 1;
1052 break;
1053 default:
1054 /* Never happens, but compiler isn't smart enough to tell. */
1055 abort();
1056 }
1057 code = 15;
1058 }
1059 if (xn && access_type == 2)
1060 goto do_fault;
1061
1062 /* The simplified model uses AP[0] as an access control bit. */
1063 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1064 /* Access flag fault. */
1065 code = (code == 15) ? 6 : 3;
1066 goto do_fault;
1067 }
1068 *prot = check_ap(env, ap, domain, access_type, is_user);
1069 if (!*prot) {
1070 /* Access permission fault. */
1071 goto do_fault;
1072 }
1073 *phys_ptr = phys_addr;
1074 return 0;
1075 do_fault:
1076 return code | (domain << 4);
1077 }
1078
1079 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1080 int is_user, uint32_t *phys_ptr, int *prot)
1081 {
1082 int n;
1083 uint32_t mask;
1084 uint32_t base;
1085
1086 *phys_ptr = address;
1087 for (n = 7; n >= 0; n--) {
1088 base = env->cp15.c6_region[n];
1089 if ((base & 1) == 0)
1090 continue;
1091 mask = 1 << ((base >> 1) & 0x1f);
1092 /* Keep this shift separate from the above to avoid an
1093 (undefined) << 32. */
1094 mask = (mask << 1) - 1;
1095 if (((base ^ address) & ~mask) == 0)
1096 break;
1097 }
1098 if (n < 0)
1099 return 2;
1100
1101 if (access_type == 2) {
1102 mask = env->cp15.c5_insn;
1103 } else {
1104 mask = env->cp15.c5_data;
1105 }
1106 mask = (mask >> (n * 4)) & 0xf;
1107 switch (mask) {
1108 case 0:
1109 return 1;
1110 case 1:
1111 if (is_user)
1112 return 1;
1113 *prot = PAGE_READ | PAGE_WRITE;
1114 break;
1115 case 2:
1116 *prot = PAGE_READ;
1117 if (!is_user)
1118 *prot |= PAGE_WRITE;
1119 break;
1120 case 3:
1121 *prot = PAGE_READ | PAGE_WRITE;
1122 break;
1123 case 5:
1124 if (is_user)
1125 return 1;
1126 *prot = PAGE_READ;
1127 break;
1128 case 6:
1129 *prot = PAGE_READ;
1130 break;
1131 default:
1132 /* Bad permission. */
1133 return 1;
1134 }
1135 return 0;
1136 }
1137
1138 static inline int get_phys_addr(CPUState *env, uint32_t address,
1139 int access_type, int is_user,
1140 uint32_t *phys_ptr, int *prot)
1141 {
1142 /* Fast Context Switch Extension. */
1143 if (address < 0x02000000)
1144 address += env->cp15.c13_fcse;
1145
1146 if ((env->cp15.c1_sys & 1) == 0) {
1147 /* MMU/MPU disabled. */
1148 *phys_ptr = address;
1149 *prot = PAGE_READ | PAGE_WRITE;
1150 return 0;
1151 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1152 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1153 prot);
1154 } else if (env->cp15.c1_sys & (1 << 23)) {
1155 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1156 prot);
1157 } else {
1158 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1159 prot);
1160 }
1161 }
1162
1163 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1164 int access_type, int mmu_idx, int is_softmmu)
1165 {
1166 uint32_t phys_addr;
1167 int prot;
1168 int ret, is_user;
1169
1170 is_user = mmu_idx == MMU_USER_IDX;
1171 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1172 if (ret == 0) {
1173 /* Map a single [sub]page. */
1174 phys_addr &= ~(uint32_t)0x3ff;
1175 address &= ~(uint32_t)0x3ff;
1176 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1177 is_softmmu);
1178 }
1179
1180 if (access_type == 2) {
1181 env->cp15.c5_insn = ret;
1182 env->cp15.c6_insn = address;
1183 env->exception_index = EXCP_PREFETCH_ABORT;
1184 } else {
1185 env->cp15.c5_data = ret;
1186 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1187 env->cp15.c5_data |= (1 << 11);
1188 env->cp15.c6_data = address;
1189 env->exception_index = EXCP_DATA_ABORT;
1190 }
1191 return 1;
1192 }
1193
1194 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1195 {
1196 uint32_t phys_addr;
1197 int prot;
1198 int ret;
1199
1200 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1201
1202 if (ret != 0)
1203 return -1;
1204
1205 return phys_addr;
1206 }
1207
1208 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1209 {
1210 int cp_num = (insn >> 8) & 0xf;
1211 int cp_info = (insn >> 5) & 7;
1212 int src = (insn >> 16) & 0xf;
1213 int operand = insn & 0xf;
1214
1215 if (env->cp[cp_num].cp_write)
1216 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1217 cp_info, src, operand, val);
1218 }
1219
1220 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1221 {
1222 int cp_num = (insn >> 8) & 0xf;
1223 int cp_info = (insn >> 5) & 7;
1224 int dest = (insn >> 16) & 0xf;
1225 int operand = insn & 0xf;
1226
1227 if (env->cp[cp_num].cp_read)
1228 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1229 cp_info, dest, operand);
1230 return 0;
1231 }
1232
1233 /* Return basic MPU access permission bits. */
1234 static uint32_t simple_mpu_ap_bits(uint32_t val)
1235 {
1236 uint32_t ret;
1237 uint32_t mask;
1238 int i;
1239 ret = 0;
1240 mask = 3;
1241 for (i = 0; i < 16; i += 2) {
1242 ret |= (val >> i) & mask;
1243 mask <<= 2;
1244 }
1245 return ret;
1246 }
1247
1248 /* Pad basic MPU access permission bits to extended format. */
1249 static uint32_t extended_mpu_ap_bits(uint32_t val)
1250 {
1251 uint32_t ret;
1252 uint32_t mask;
1253 int i;
1254 ret = 0;
1255 mask = 3;
1256 for (i = 0; i < 16; i += 2) {
1257 ret |= (val & mask) << i;
1258 mask <<= 2;
1259 }
1260 return ret;
1261 }
1262
1263 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1264 {
1265 int op1;
1266 int op2;
1267 int crm;
1268
1269 op1 = (insn >> 21) & 7;
1270 op2 = (insn >> 5) & 7;
1271 crm = insn & 0xf;
1272 switch ((insn >> 16) & 0xf) {
1273 case 0:
1274 /* ID codes. */
1275 if (arm_feature(env, ARM_FEATURE_XSCALE))
1276 break;
1277 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1278 break;
1279 if (arm_feature(env, ARM_FEATURE_V7)
1280 && op1 == 2 && crm == 0 && op2 == 0) {
1281 env->cp15.c0_cssel = val & 0xf;
1282 break;
1283 }
1284 goto bad_reg;
1285 case 1: /* System configuration. */
1286 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1287 op2 = 0;
1288 switch (op2) {
1289 case 0:
1290 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1291 env->cp15.c1_sys = val;
1292 /* ??? Lots of these bits are not implemented. */
1293 /* This may enable/disable the MMU, so do a TLB flush. */
1294 tlb_flush(env, 1);
1295 break;
1296 case 1: /* Auxiliary cotrol register. */
1297 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1298 env->cp15.c1_xscaleauxcr = val;
1299 break;
1300 }
1301 /* Not implemented. */
1302 break;
1303 case 2:
1304 if (arm_feature(env, ARM_FEATURE_XSCALE))
1305 goto bad_reg;
1306 if (env->cp15.c1_coproc != val) {
1307 env->cp15.c1_coproc = val;
1308 /* ??? Is this safe when called from within a TB? */
1309 tb_flush(env);
1310 }
1311 break;
1312 default:
1313 goto bad_reg;
1314 }
1315 break;
1316 case 2: /* MMU Page table control / MPU cache control. */
1317 if (arm_feature(env, ARM_FEATURE_MPU)) {
1318 switch (op2) {
1319 case 0:
1320 env->cp15.c2_data = val;
1321 break;
1322 case 1:
1323 env->cp15.c2_insn = val;
1324 break;
1325 default:
1326 goto bad_reg;
1327 }
1328 } else {
1329 switch (op2) {
1330 case 0:
1331 env->cp15.c2_base0 = val;
1332 break;
1333 case 1:
1334 env->cp15.c2_base1 = val;
1335 break;
1336 case 2:
1337 val &= 7;
1338 env->cp15.c2_control = val;
1339 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1340 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1341 break;
1342 default:
1343 goto bad_reg;
1344 }
1345 }
1346 break;
1347 case 3: /* MMU Domain access control / MPU write buffer control. */
1348 env->cp15.c3 = val;
1349 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1350 break;
1351 case 4: /* Reserved. */
1352 goto bad_reg;
1353 case 5: /* MMU Fault status / MPU access permission. */
1354 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1355 op2 = 0;
1356 switch (op2) {
1357 case 0:
1358 if (arm_feature(env, ARM_FEATURE_MPU))
1359 val = extended_mpu_ap_bits(val);
1360 env->cp15.c5_data = val;
1361 break;
1362 case 1:
1363 if (arm_feature(env, ARM_FEATURE_MPU))
1364 val = extended_mpu_ap_bits(val);
1365 env->cp15.c5_insn = val;
1366 break;
1367 case 2:
1368 if (!arm_feature(env, ARM_FEATURE_MPU))
1369 goto bad_reg;
1370 env->cp15.c5_data = val;
1371 break;
1372 case 3:
1373 if (!arm_feature(env, ARM_FEATURE_MPU))
1374 goto bad_reg;
1375 env->cp15.c5_insn = val;
1376 break;
1377 default:
1378 goto bad_reg;
1379 }
1380 break;
1381 case 6: /* MMU Fault address / MPU base/size. */
1382 if (arm_feature(env, ARM_FEATURE_MPU)) {
1383 if (crm >= 8)
1384 goto bad_reg;
1385 env->cp15.c6_region[crm] = val;
1386 } else {
1387 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1388 op2 = 0;
1389 switch (op2) {
1390 case 0:
1391 env->cp15.c6_data = val;
1392 break;
1393 case 1: /* ??? This is WFAR on armv6 */
1394 case 2:
1395 env->cp15.c6_insn = val;
1396 break;
1397 default:
1398 goto bad_reg;
1399 }
1400 }
1401 break;
1402 case 7: /* Cache control. */
1403 env->cp15.c15_i_max = 0x000;
1404 env->cp15.c15_i_min = 0xff0;
1405 /* No cache, so nothing to do. */
1406 /* ??? MPCore has VA to PA translation functions. */
1407 break;
1408 case 8: /* MMU TLB control. */
1409 switch (op2) {
1410 case 0: /* Invalidate all. */
1411 tlb_flush(env, 0);
1412 break;
1413 case 1: /* Invalidate single TLB entry. */
1414 #if 0
1415 /* ??? This is wrong for large pages and sections. */
1416 /* As an ugly hack to make linux work we always flush a 4K
1417 pages. */
1418 val &= 0xfffff000;
1419 tlb_flush_page(env, val);
1420 tlb_flush_page(env, val + 0x400);
1421 tlb_flush_page(env, val + 0x800);
1422 tlb_flush_page(env, val + 0xc00);
1423 #else
1424 tlb_flush(env, 1);
1425 #endif
1426 break;
1427 case 2: /* Invalidate on ASID. */
1428 tlb_flush(env, val == 0);
1429 break;
1430 case 3: /* Invalidate single entry on MVA. */
1431 /* ??? This is like case 1, but ignores ASID. */
1432 tlb_flush(env, 1);
1433 break;
1434 default:
1435 goto bad_reg;
1436 }
1437 break;
1438 case 9:
1439 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1440 break;
1441 switch (crm) {
1442 case 0: /* Cache lockdown. */
1443 switch (op1) {
1444 case 0: /* L1 cache. */
1445 switch (op2) {
1446 case 0:
1447 env->cp15.c9_data = val;
1448 break;
1449 case 1:
1450 env->cp15.c9_insn = val;
1451 break;
1452 default:
1453 goto bad_reg;
1454 }
1455 break;
1456 case 1: /* L2 cache. */
1457 /* Ignore writes to L2 lockdown/auxiliary registers. */
1458 break;
1459 default:
1460 goto bad_reg;
1461 }
1462 break;
1463 case 1: /* TCM memory region registers. */
1464 /* Not implemented. */
1465 goto bad_reg;
1466 default:
1467 goto bad_reg;
1468 }
1469 break;
1470 case 10: /* MMU TLB lockdown. */
1471 /* ??? TLB lockdown not implemented. */
1472 break;
1473 case 12: /* Reserved. */
1474 goto bad_reg;
1475 case 13: /* Process ID. */
1476 switch (op2) {
1477 case 0:
1478 /* Unlike real hardware the qemu TLB uses virtual addresses,
1479 not modified virtual addresses, so this causes a TLB flush.
1480 */
1481 if (env->cp15.c13_fcse != val)
1482 tlb_flush(env, 1);
1483 env->cp15.c13_fcse = val;
1484 break;
1485 case 1:
1486 /* This changes the ASID, so do a TLB flush. */
1487 if (env->cp15.c13_context != val
1488 && !arm_feature(env, ARM_FEATURE_MPU))
1489 tlb_flush(env, 0);
1490 env->cp15.c13_context = val;
1491 break;
1492 default:
1493 goto bad_reg;
1494 }
1495 break;
1496 case 14: /* Reserved. */
1497 goto bad_reg;
1498 case 15: /* Implementation specific. */
1499 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1500 if (op2 == 0 && crm == 1) {
1501 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1502 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1503 tb_flush(env);
1504 env->cp15.c15_cpar = val & 0x3fff;
1505 }
1506 break;
1507 }
1508 goto bad_reg;
1509 }
1510 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1511 switch (crm) {
1512 case 0:
1513 break;
1514 case 1: /* Set TI925T configuration. */
1515 env->cp15.c15_ticonfig = val & 0xe7;
1516 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1517 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1518 break;
1519 case 2: /* Set I_max. */
1520 env->cp15.c15_i_max = val;
1521 break;
1522 case 3: /* Set I_min. */
1523 env->cp15.c15_i_min = val;
1524 break;
1525 case 4: /* Set thread-ID. */
1526 env->cp15.c15_threadid = val & 0xffff;
1527 break;
1528 case 8: /* Wait-for-interrupt (deprecated). */
1529 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1530 break;
1531 default:
1532 goto bad_reg;
1533 }
1534 }
1535 break;
1536 }
1537 return;
1538 bad_reg:
1539 /* ??? For debugging only. Should raise illegal instruction exception. */
1540 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1541 (insn >> 16) & 0xf, crm, op1, op2);
1542 }
1543
1544 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1545 {
1546 int op1;
1547 int op2;
1548 int crm;
1549
1550 op1 = (insn >> 21) & 7;
1551 op2 = (insn >> 5) & 7;
1552 crm = insn & 0xf;
1553 switch ((insn >> 16) & 0xf) {
1554 case 0: /* ID codes. */
1555 switch (op1) {
1556 case 0:
1557 switch (crm) {
1558 case 0:
1559 switch (op2) {
1560 case 0: /* Device ID. */
1561 return env->cp15.c0_cpuid;
1562 case 1: /* Cache Type. */
1563 return env->cp15.c0_cachetype;
1564 case 2: /* TCM status. */
1565 return 0;
1566 case 3: /* TLB type register. */
1567 return 0; /* No lockable TLB entries. */
1568 case 5: /* CPU ID */
1569 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1570 return env->cpu_index | 0x80000900;
1571 } else {
1572 return env->cpu_index;
1573 }
1574 default:
1575 goto bad_reg;
1576 }
1577 case 1:
1578 if (!arm_feature(env, ARM_FEATURE_V6))
1579 goto bad_reg;
1580 return env->cp15.c0_c1[op2];
1581 case 2:
1582 if (!arm_feature(env, ARM_FEATURE_V6))
1583 goto bad_reg;
1584 return env->cp15.c0_c2[op2];
1585 case 3: case 4: case 5: case 6: case 7:
1586 return 0;
1587 default:
1588 goto bad_reg;
1589 }
1590 case 1:
1591 /* These registers aren't documented on arm11 cores. However
1592 Linux looks at them anyway. */
1593 if (!arm_feature(env, ARM_FEATURE_V6))
1594 goto bad_reg;
1595 if (crm != 0)
1596 goto bad_reg;
1597 if (!arm_feature(env, ARM_FEATURE_V7))
1598 return 0;
1599
1600 switch (op2) {
1601 case 0:
1602 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1603 case 1:
1604 return env->cp15.c0_clid;
1605 case 7:
1606 return 0;
1607 }
1608 goto bad_reg;
1609 case 2:
1610 if (op2 != 0 || crm != 0)
1611 goto bad_reg;
1612 return env->cp15.c0_cssel;
1613 default:
1614 goto bad_reg;
1615 }
1616 case 1: /* System configuration. */
1617 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1618 op2 = 0;
1619 switch (op2) {
1620 case 0: /* Control register. */
1621 return env->cp15.c1_sys;
1622 case 1: /* Auxiliary control register. */
1623 if (arm_feature(env, ARM_FEATURE_XSCALE))
1624 return env->cp15.c1_xscaleauxcr;
1625 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1626 goto bad_reg;
1627 switch (ARM_CPUID(env)) {
1628 case ARM_CPUID_ARM1026:
1629 return 1;
1630 case ARM_CPUID_ARM1136:
1631 case ARM_CPUID_ARM1136_R2:
1632 return 7;
1633 case ARM_CPUID_ARM11MPCORE:
1634 return 1;
1635 case ARM_CPUID_CORTEXA8:
1636 return 2;
1637 case ARM_CPUID_CORTEXA9:
1638 return 0;
1639 default:
1640 goto bad_reg;
1641 }
1642 case 2: /* Coprocessor access register. */
1643 if (arm_feature(env, ARM_FEATURE_XSCALE))
1644 goto bad_reg;
1645 return env->cp15.c1_coproc;
1646 default:
1647 goto bad_reg;
1648 }
1649 case 2: /* MMU Page table control / MPU cache control. */
1650 if (arm_feature(env, ARM_FEATURE_MPU)) {
1651 switch (op2) {
1652 case 0:
1653 return env->cp15.c2_data;
1654 break;
1655 case 1:
1656 return env->cp15.c2_insn;
1657 break;
1658 default:
1659 goto bad_reg;
1660 }
1661 } else {
1662 switch (op2) {
1663 case 0:
1664 return env->cp15.c2_base0;
1665 case 1:
1666 return env->cp15.c2_base1;
1667 case 2:
1668 return env->cp15.c2_control;
1669 default:
1670 goto bad_reg;
1671 }
1672 }
1673 case 3: /* MMU Domain access control / MPU write buffer control. */
1674 return env->cp15.c3;
1675 case 4: /* Reserved. */
1676 goto bad_reg;
1677 case 5: /* MMU Fault status / MPU access permission. */
1678 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1679 op2 = 0;
1680 switch (op2) {
1681 case 0:
1682 if (arm_feature(env, ARM_FEATURE_MPU))
1683 return simple_mpu_ap_bits(env->cp15.c5_data);
1684 return env->cp15.c5_data;
1685 case 1:
1686 if (arm_feature(env, ARM_FEATURE_MPU))
1687 return simple_mpu_ap_bits(env->cp15.c5_data);
1688 return env->cp15.c5_insn;
1689 case 2:
1690 if (!arm_feature(env, ARM_FEATURE_MPU))
1691 goto bad_reg;
1692 return env->cp15.c5_data;
1693 case 3:
1694 if (!arm_feature(env, ARM_FEATURE_MPU))
1695 goto bad_reg;
1696 return env->cp15.c5_insn;
1697 default:
1698 goto bad_reg;
1699 }
1700 case 6: /* MMU Fault address. */
1701 if (arm_feature(env, ARM_FEATURE_MPU)) {
1702 if (crm >= 8)
1703 goto bad_reg;
1704 return env->cp15.c6_region[crm];
1705 } else {
1706 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1707 op2 = 0;
1708 switch (op2) {
1709 case 0:
1710 return env->cp15.c6_data;
1711 case 1:
1712 if (arm_feature(env, ARM_FEATURE_V6)) {
1713 /* Watchpoint Fault Adrress. */
1714 return 0; /* Not implemented. */
1715 } else {
1716 /* Instruction Fault Adrress. */
1717 /* Arm9 doesn't have an IFAR, but implementing it anyway
1718 shouldn't do any harm. */
1719 return env->cp15.c6_insn;
1720 }
1721 case 2:
1722 if (arm_feature(env, ARM_FEATURE_V6)) {
1723 /* Instruction Fault Adrress. */
1724 return env->cp15.c6_insn;
1725 } else {
1726 goto bad_reg;
1727 }
1728 default:
1729 goto bad_reg;
1730 }
1731 }
1732 case 7: /* Cache control. */
1733 /* FIXME: Should only clear Z flag if destination is r15. */
1734 env->ZF = 0;
1735 return 0;
1736 case 8: /* MMU TLB control. */
1737 goto bad_reg;
1738 case 9: /* Cache lockdown. */
1739 switch (op1) {
1740 case 0: /* L1 cache. */
1741 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1742 return 0;
1743 switch (op2) {
1744 case 0:
1745 return env->cp15.c9_data;
1746 case 1:
1747 return env->cp15.c9_insn;
1748 default:
1749 goto bad_reg;
1750 }
1751 case 1: /* L2 cache */
1752 if (crm != 0)
1753 goto bad_reg;
1754 /* L2 Lockdown and Auxiliary control. */
1755 return 0;
1756 default:
1757 goto bad_reg;
1758 }
1759 case 10: /* MMU TLB lockdown. */
1760 /* ??? TLB lockdown not implemented. */
1761 return 0;
1762 case 11: /* TCM DMA control. */
1763 case 12: /* Reserved. */
1764 goto bad_reg;
1765 case 13: /* Process ID. */
1766 switch (op2) {
1767 case 0:
1768 return env->cp15.c13_fcse;
1769 case 1:
1770 return env->cp15.c13_context;
1771 default:
1772 goto bad_reg;
1773 }
1774 case 14: /* Reserved. */
1775 goto bad_reg;
1776 case 15: /* Implementation specific. */
1777 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1778 if (op2 == 0 && crm == 1)
1779 return env->cp15.c15_cpar;
1780
1781 goto bad_reg;
1782 }
1783 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1784 switch (crm) {
1785 case 0:
1786 return 0;
1787 case 1: /* Read TI925T configuration. */
1788 return env->cp15.c15_ticonfig;
1789 case 2: /* Read I_max. */
1790 return env->cp15.c15_i_max;
1791 case 3: /* Read I_min. */
1792 return env->cp15.c15_i_min;
1793 case 4: /* Read thread-ID. */
1794 return env->cp15.c15_threadid;
1795 case 8: /* TI925T_status */
1796 return 0;
1797 }
1798 /* TODO: Peripheral port remap register:
1799 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1800 * controller base address at $rn & ~0xfff and map size of
1801 * 0x200 << ($rn & 0xfff), when MMU is off. */
1802 goto bad_reg;
1803 }
1804 return 0;
1805 }
1806 bad_reg:
1807 /* ??? For debugging only. Should raise illegal instruction exception. */
1808 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1809 (insn >> 16) & 0xf, crm, op1, op2);
1810 return 0;
1811 }
1812
1813 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1814 {
1815 env->banked_r13[bank_number(mode)] = val;
1816 }
1817
1818 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1819 {
1820 return env->banked_r13[bank_number(mode)];
1821 }
1822
1823 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1824 {
1825 switch (reg) {
1826 case 0: /* APSR */
1827 return xpsr_read(env) & 0xf8000000;
1828 case 1: /* IAPSR */
1829 return xpsr_read(env) & 0xf80001ff;
1830 case 2: /* EAPSR */
1831 return xpsr_read(env) & 0xff00fc00;
1832 case 3: /* xPSR */
1833 return xpsr_read(env) & 0xff00fdff;
1834 case 5: /* IPSR */
1835 return xpsr_read(env) & 0x000001ff;
1836 case 6: /* EPSR */
1837 return xpsr_read(env) & 0x0700fc00;
1838 case 7: /* IEPSR */
1839 return xpsr_read(env) & 0x0700edff;
1840 case 8: /* MSP */
1841 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1842 case 9: /* PSP */
1843 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1844 case 16: /* PRIMASK */
1845 return (env->uncached_cpsr & CPSR_I) != 0;
1846 case 17: /* FAULTMASK */
1847 return (env->uncached_cpsr & CPSR_F) != 0;
1848 case 18: /* BASEPRI */
1849 case 19: /* BASEPRI_MAX */
1850 return env->v7m.basepri;
1851 case 20: /* CONTROL */
1852 return env->v7m.control;
1853 default:
1854 /* ??? For debugging only. */
1855 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1856 return 0;
1857 }
1858 }
1859
1860 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1861 {
1862 switch (reg) {
1863 case 0: /* APSR */
1864 xpsr_write(env, val, 0xf8000000);
1865 break;
1866 case 1: /* IAPSR */
1867 xpsr_write(env, val, 0xf8000000);
1868 break;
1869 case 2: /* EAPSR */
1870 xpsr_write(env, val, 0xfe00fc00);
1871 break;
1872 case 3: /* xPSR */
1873 xpsr_write(env, val, 0xfe00fc00);
1874 break;
1875 case 5: /* IPSR */
1876 /* IPSR bits are readonly. */
1877 break;
1878 case 6: /* EPSR */
1879 xpsr_write(env, val, 0x0600fc00);
1880 break;
1881 case 7: /* IEPSR */
1882 xpsr_write(env, val, 0x0600fc00);
1883 break;
1884 case 8: /* MSP */
1885 if (env->v7m.current_sp)
1886 env->v7m.other_sp = val;
1887 else
1888 env->regs[13] = val;
1889 break;
1890 case 9: /* PSP */
1891 if (env->v7m.current_sp)
1892 env->regs[13] = val;
1893 else
1894 env->v7m.other_sp = val;
1895 break;
1896 case 16: /* PRIMASK */
1897 if (val & 1)
1898 env->uncached_cpsr |= CPSR_I;
1899 else
1900 env->uncached_cpsr &= ~CPSR_I;
1901 break;
1902 case 17: /* FAULTMASK */
1903 if (val & 1)
1904 env->uncached_cpsr |= CPSR_F;
1905 else
1906 env->uncached_cpsr &= ~CPSR_F;
1907 break;
1908 case 18: /* BASEPRI */
1909 env->v7m.basepri = val & 0xff;
1910 break;
1911 case 19: /* BASEPRI_MAX */
1912 val &= 0xff;
1913 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1914 env->v7m.basepri = val;
1915 break;
1916 case 20: /* CONTROL */
1917 env->v7m.control = val & 3;
1918 switch_v7m_sp(env, (val & 2) != 0);
1919 break;
1920 default:
1921 /* ??? For debugging only. */
1922 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1923 return;
1924 }
1925 }
1926
1927 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1928 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1929 void *opaque)
1930 {
1931 if (cpnum < 0 || cpnum > 14) {
1932 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1933 return;
1934 }
1935
1936 env->cp[cpnum].cp_read = cp_read;
1937 env->cp[cpnum].cp_write = cp_write;
1938 env->cp[cpnum].opaque = opaque;
1939 }
1940
1941 #endif
1942
1943 /* Note that signed overflow is undefined in C. The following routines are
1944 careful to use unsigned types where modulo arithmetic is required.
1945 Failure to do so _will_ break on newer gcc. */
1946
1947 /* Signed saturating arithmetic. */
1948
1949 /* Perform 16-bit signed saturating addition. */
1950 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1951 {
1952 uint16_t res;
1953
1954 res = a + b;
1955 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1956 if (a & 0x8000)
1957 res = 0x8000;
1958 else
1959 res = 0x7fff;
1960 }
1961 return res;
1962 }
1963
1964 /* Perform 8-bit signed saturating addition. */
1965 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1966 {
1967 uint8_t res;
1968
1969 res = a + b;
1970 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1971 if (a & 0x80)
1972 res = 0x80;
1973 else
1974 res = 0x7f;
1975 }
1976 return res;
1977 }
1978
1979 /* Perform 16-bit signed saturating subtraction. */
1980 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1981 {
1982 uint16_t res;
1983
1984 res = a - b;
1985 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1986 if (a & 0x8000)
1987 res = 0x8000;
1988 else
1989 res = 0x7fff;
1990 }
1991 return res;
1992 }
1993
1994 /* Perform 8-bit signed saturating subtraction. */
1995 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1996 {
1997 uint8_t res;
1998
1999 res = a - b;
2000 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2001 if (a & 0x80)
2002 res = 0x80;
2003 else
2004 res = 0x7f;
2005 }
2006 return res;
2007 }
2008
2009 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2010 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2011 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2012 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2013 #define PFX q
2014
2015 #include "op_addsub.h"
2016
2017 /* Unsigned saturating arithmetic. */
2018 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2019 {
2020 uint16_t res;
2021 res = a + b;
2022 if (res < a)
2023 res = 0xffff;
2024 return res;
2025 }
2026
2027 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2028 {
2029 if (a < b)
2030 return a - b;
2031 else
2032 return 0;
2033 }
2034
2035 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2036 {
2037 uint8_t res;
2038 res = a + b;
2039 if (res < a)
2040 res = 0xff;
2041 return res;
2042 }
2043
2044 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2045 {
2046 if (a < b)
2047 return a - b;
2048 else
2049 return 0;
2050 }
2051
2052 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2053 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2054 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2055 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2056 #define PFX uq
2057
2058 #include "op_addsub.h"
2059
2060 /* Signed modulo arithmetic. */
2061 #define SARITH16(a, b, n, op) do { \
2062 int32_t sum; \
2063 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2064 RESULT(sum, n, 16); \
2065 if (sum >= 0) \
2066 ge |= 3 << (n * 2); \
2067 } while(0)
2068
2069 #define SARITH8(a, b, n, op) do { \
2070 int32_t sum; \
2071 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2072 RESULT(sum, n, 8); \
2073 if (sum >= 0) \
2074 ge |= 1 << n; \
2075 } while(0)
2076
2077
2078 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2079 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2080 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2081 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2082 #define PFX s
2083 #define ARITH_GE
2084
2085 #include "op_addsub.h"
2086
2087 /* Unsigned modulo arithmetic. */
2088 #define ADD16(a, b, n) do { \
2089 uint32_t sum; \
2090 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2091 RESULT(sum, n, 16); \
2092 if ((sum >> 16) == 1) \
2093 ge |= 3 << (n * 2); \
2094 } while(0)
2095
2096 #define ADD8(a, b, n) do { \
2097 uint32_t sum; \
2098 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2099 RESULT(sum, n, 8); \
2100 if ((sum >> 8) == 1) \
2101 ge |= 1 << n; \
2102 } while(0)
2103
2104 #define SUB16(a, b, n) do { \
2105 uint32_t sum; \
2106 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2107 RESULT(sum, n, 16); \
2108 if ((sum >> 16) == 0) \
2109 ge |= 3 << (n * 2); \
2110 } while(0)
2111
2112 #define SUB8(a, b, n) do { \
2113 uint32_t sum; \
2114 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2115 RESULT(sum, n, 8); \
2116 if ((sum >> 8) == 0) \
2117 ge |= 1 << n; \
2118 } while(0)
2119
2120 #define PFX u
2121 #define ARITH_GE
2122
2123 #include "op_addsub.h"
2124
2125 /* Halved signed arithmetic. */
2126 #define ADD16(a, b, n) \
2127 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2128 #define SUB16(a, b, n) \
2129 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2130 #define ADD8(a, b, n) \
2131 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2132 #define SUB8(a, b, n) \
2133 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2134 #define PFX sh
2135
2136 #include "op_addsub.h"
2137
2138 /* Halved unsigned arithmetic. */
2139 #define ADD16(a, b, n) \
2140 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2141 #define SUB16(a, b, n) \
2142 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2143 #define ADD8(a, b, n) \
2144 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2145 #define SUB8(a, b, n) \
2146 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2147 #define PFX uh
2148
2149 #include "op_addsub.h"
2150
2151 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2152 {
2153 if (a > b)
2154 return a - b;
2155 else
2156 return b - a;
2157 }
2158
2159 /* Unsigned sum of absolute byte differences. */
2160 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2161 {
2162 uint32_t sum;
2163 sum = do_usad(a, b);
2164 sum += do_usad(a >> 8, b >> 8);
2165 sum += do_usad(a >> 16, b >>16);
2166 sum += do_usad(a >> 24, b >> 24);
2167 return sum;
2168 }
2169
2170 /* For ARMv6 SEL instruction. */
2171 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2172 {
2173 uint32_t mask;
2174
2175 mask = 0;
2176 if (flags & 1)
2177 mask |= 0xff;
2178 if (flags & 2)
2179 mask |= 0xff00;
2180 if (flags & 4)
2181 mask |= 0xff0000;
2182 if (flags & 8)
2183 mask |= 0xff000000;
2184 return (a & mask) | (b & ~mask);
2185 }
2186
2187 uint32_t HELPER(logicq_cc)(uint64_t val)
2188 {
2189 return (val >> 32) | (val != 0);
2190 }
2191
2192 /* VFP support. We follow the convention used for VFP instrunctions:
2193 Single precition routines have a "s" suffix, double precision a
2194 "d" suffix. */
2195
2196 /* Convert host exception flags to vfp form. */
2197 static inline int vfp_exceptbits_from_host(int host_bits)
2198 {
2199 int target_bits = 0;
2200
2201 if (host_bits & float_flag_invalid)
2202 target_bits |= 1;
2203 if (host_bits & float_flag_divbyzero)
2204 target_bits |= 2;
2205 if (host_bits & float_flag_overflow)
2206 target_bits |= 4;
2207 if (host_bits & float_flag_underflow)
2208 target_bits |= 8;
2209 if (host_bits & float_flag_inexact)
2210 target_bits |= 0x10;
2211 return target_bits;
2212 }
2213
2214 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2215 {
2216 int i;
2217 uint32_t fpscr;
2218
2219 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2220 | (env->vfp.vec_len << 16)
2221 | (env->vfp.vec_stride << 20);
2222 i = get_float_exception_flags(&env->vfp.fp_status);
2223 fpscr |= vfp_exceptbits_from_host(i);
2224 return fpscr;
2225 }
2226
2227 /* Convert vfp exception flags to target form. */
2228 static inline int vfp_exceptbits_to_host(int target_bits)
2229 {
2230 int host_bits = 0;
2231
2232 if (target_bits & 1)
2233 host_bits |= float_flag_invalid;
2234 if (target_bits & 2)
2235 host_bits |= float_flag_divbyzero;
2236 if (target_bits & 4)
2237 host_bits |= float_flag_overflow;
2238 if (target_bits & 8)
2239 host_bits |= float_flag_underflow;
2240 if (target_bits & 0x10)
2241 host_bits |= float_flag_inexact;
2242 return host_bits;
2243 }
2244
2245 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2246 {
2247 int i;
2248 uint32_t changed;
2249
2250 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2251 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2252 env->vfp.vec_len = (val >> 16) & 7;
2253 env->vfp.vec_stride = (val >> 20) & 3;
2254
2255 changed ^= val;
2256 if (changed & (3 << 22)) {
2257 i = (val >> 22) & 3;
2258 switch (i) {
2259 case 0:
2260 i = float_round_nearest_even;
2261 break;
2262 case 1:
2263 i = float_round_up;
2264 break;
2265 case 2:
2266 i = float_round_down;
2267 break;
2268 case 3:
2269 i = float_round_to_zero;
2270 break;
2271 }
2272 set_float_rounding_mode(i, &env->vfp.fp_status);
2273 }
2274 if (changed & (1 << 24))
2275 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2276 if (changed & (1 << 25))
2277 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2278
2279 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2280 set_float_exception_flags(i, &env->vfp.fp_status);
2281 }
2282
2283 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2284
2285 #define VFP_BINOP(name) \
2286 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2287 { \
2288 return float32_ ## name (a, b, &env->vfp.fp_status); \
2289 } \
2290 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2291 { \
2292 return float64_ ## name (a, b, &env->vfp.fp_status); \
2293 }
2294 VFP_BINOP(add)
2295 VFP_BINOP(sub)
2296 VFP_BINOP(mul)
2297 VFP_BINOP(div)
2298 #undef VFP_BINOP
2299
2300 float32 VFP_HELPER(neg, s)(float32 a)
2301 {
2302 return float32_chs(a);
2303 }
2304
2305 float64 VFP_HELPER(neg, d)(float64 a)
2306 {
2307 return float64_chs(a);
2308 }
2309
2310 float32 VFP_HELPER(abs, s)(float32 a)
2311 {
2312 return float32_abs(a);
2313 }
2314
2315 float64 VFP_HELPER(abs, d)(float64 a)
2316 {
2317 return float64_abs(a);
2318 }
2319
2320 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2321 {
2322 return float32_sqrt(a, &env->vfp.fp_status);
2323 }
2324
2325 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2326 {
2327 return float64_sqrt(a, &env->vfp.fp_status);
2328 }
2329
2330 /* XXX: check quiet/signaling case */
2331 #define DO_VFP_cmp(p, type) \
2332 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2333 { \
2334 uint32_t flags; \
2335 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2336 case 0: flags = 0x6; break; \
2337 case -1: flags = 0x8; break; \
2338 case 1: flags = 0x2; break; \
2339 default: case 2: flags = 0x3; break; \
2340 } \
2341 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2342 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2343 } \
2344 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2345 { \
2346 uint32_t flags; \
2347 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2348 case 0: flags = 0x6; break; \
2349 case -1: flags = 0x8; break; \
2350 case 1: flags = 0x2; break; \
2351 default: case 2: flags = 0x3; break; \
2352 } \
2353 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2354 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2355 }
2356 DO_VFP_cmp(s, float32)
2357 DO_VFP_cmp(d, float64)
2358 #undef DO_VFP_cmp
2359
2360 /* Helper routines to perform bitwise copies between float and int. */
2361 static inline float32 vfp_itos(uint32_t i)
2362 {
2363 union {
2364 uint32_t i;
2365 float32 s;
2366 } v;
2367
2368 v.i = i;
2369 return v.s;
2370 }
2371
2372 static inline uint32_t vfp_stoi(float32 s)
2373 {
2374 union {
2375 uint32_t i;
2376 float32 s;
2377 } v;
2378
2379 v.s = s;
2380 return v.i;
2381 }
2382
2383 static inline float64 vfp_itod(uint64_t i)
2384 {
2385 union {
2386 uint64_t i;
2387 float64 d;
2388 } v;
2389
2390 v.i = i;
2391 return v.d;
2392 }
2393
2394 static inline uint64_t vfp_dtoi(float64 d)
2395 {
2396 union {
2397 uint64_t i;
2398 float64 d;
2399 } v;
2400
2401 v.d = d;
2402 return v.i;
2403 }
2404
2405 /* Integer to float conversion. */
2406 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2407 {
2408 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2409 }
2410
2411 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2412 {
2413 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2414 }
2415
2416 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2417 {
2418 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2419 }
2420
2421 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2422 {
2423 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2424 }
2425
2426 /* Float to integer conversion. */
2427 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2428 {
2429 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2430 }
2431
2432 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2433 {
2434 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2435 }
2436
2437 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2438 {
2439 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2440 }
2441
2442 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2443 {
2444 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2445 }
2446
2447 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2448 {
2449 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2450 }
2451
2452 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2453 {
2454 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2455 }
2456
2457 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2458 {
2459 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2460 }
2461
2462 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2463 {
2464 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2465 }
2466
2467 /* floating point conversion */
2468 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2469 {
2470 return float32_to_float64(x, &env->vfp.fp_status);
2471 }
2472
2473 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2474 {
2475 return float64_to_float32(x, &env->vfp.fp_status);
2476 }
2477
2478 /* VFP3 fixed point conversion. */
2479 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2480 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2481 { \
2482 ftype tmp; \
2483 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2484 &env->vfp.fp_status); \
2485 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2486 } \
2487 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2488 { \
2489 ftype tmp; \
2490 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2491 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2492 &env->vfp.fp_status)); \
2493 }
2494
2495 VFP_CONV_FIX(sh, d, float64, int16, )
2496 VFP_CONV_FIX(sl, d, float64, int32, )
2497 VFP_CONV_FIX(uh, d, float64, uint16, u)
2498 VFP_CONV_FIX(ul, d, float64, uint32, u)
2499 VFP_CONV_FIX(sh, s, float32, int16, )
2500 VFP_CONV_FIX(sl, s, float32, int32, )
2501 VFP_CONV_FIX(uh, s, float32, uint16, u)
2502 VFP_CONV_FIX(ul, s, float32, uint32, u)
2503 #undef VFP_CONV_FIX
2504
2505 /* Half precision conversions. */
2506 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2507 {
2508 float_status *s = &env->vfp.fp_status;
2509 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2510 return float16_to_float32(a, ieee, s);
2511 }
2512
2513 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2514 {
2515 float_status *s = &env->vfp.fp_status;
2516 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2517 return float32_to_float16(a, ieee, s);
2518 }
2519
2520 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2521 {
2522 float_status *s = &env->vfp.fp_status;
2523 float32 two = int32_to_float32(2, s);
2524 return float32_sub(two, float32_mul(a, b, s), s);
2525 }
2526
2527 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2528 {
2529 float_status *s = &env->vfp.fp_status;
2530 float32 three = int32_to_float32(3, s);
2531 return float32_sub(three, float32_mul(a, b, s), s);
2532 }
2533
2534 /* NEON helpers. */
2535
2536 /* TODO: The architecture specifies the value that the estimate functions
2537 should return. We return the exact reciprocal/root instead. */
2538 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2539 {
2540 float_status *s = &env->vfp.fp_status;
2541 float32 one = int32_to_float32(1, s);
2542 return float32_div(one, a, s);
2543 }
2544
2545 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2546 {
2547 float_status *s = &env->vfp.fp_status;
2548 float32 one = int32_to_float32(1, s);
2549 return float32_div(one, float32_sqrt(a, s), s);
2550 }
2551
2552 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2553 {
2554 float_status *s = &env->vfp.fp_status;
2555 float32 tmp;
2556 tmp = int32_to_float32(a, s);
2557 tmp = float32_scalbn(tmp, -32, s);
2558 tmp = helper_recpe_f32(tmp, env);
2559 tmp = float32_scalbn(tmp, 31, s);
2560 return float32_to_int32(tmp, s);
2561 }
2562
2563 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2564 {
2565 float_status *s = &env->vfp.fp_status;
2566 float32 tmp;
2567 tmp = int32_to_float32(a, s);
2568 tmp = float32_scalbn(tmp, -32, s);
2569 tmp = helper_rsqrte_f32(tmp, env);
2570 tmp = float32_scalbn(tmp, 31, s);
2571 return float32_to_int32(tmp, s);
2572 }
2573
2574 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2575 {
2576 val &= 1;
2577 if (env->teecr != val) {
2578 env->teecr = val;
2579 tb_flush(env);
2580 }
2581 }