]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / target-arm / helper.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "cpu.h"
6 #include "exec-all.h"
7 #include "gdbstub.h"
8 #include "helpers.h"
9 #include "qemu-common.h"
10 #include "host-utils.h"
11 #if !defined(CONFIG_USER_ONLY)
12 #include "hw/loader.h"
13 #endif
14
15 static uint32_t cortexa9_cp15_c0_c1[8] =
16 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17
18 static uint32_t cortexa9_cp15_c0_c2[8] =
19 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20
21 static uint32_t cortexa8_cp15_c0_c1[8] =
22 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23
24 static uint32_t cortexa8_cp15_c0_c2[8] =
25 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26
27 static uint32_t mpcore_cp15_c0_c1[8] =
28 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29
30 static uint32_t mpcore_cp15_c0_c2[8] =
31 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32
33 static uint32_t arm1136_cp15_c0_c1[8] =
34 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35
36 static uint32_t arm1136_cp15_c0_c2[8] =
37 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
38
39 static uint32_t cpu_arm_find_by_name(const char *name);
40
41 static inline void set_feature(CPUARMState *env, int feature)
42 {
43 env->features |= 1u << feature;
44 }
45
46 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47 {
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_VFP);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
53 env->cp15.c0_cachetype = 0x1dd20d2;
54 env->cp15.c1_sys = 0x00090078;
55 break;
56 case ARM_CPUID_ARM946:
57 set_feature(env, ARM_FEATURE_MPU);
58 env->cp15.c0_cachetype = 0x0f004006;
59 env->cp15.c1_sys = 0x00000078;
60 break;
61 case ARM_CPUID_ARM1026:
62 set_feature(env, ARM_FEATURE_VFP);
63 set_feature(env, ARM_FEATURE_AUXCR);
64 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
65 env->cp15.c0_cachetype = 0x1dd20d2;
66 env->cp15.c1_sys = 0x00090078;
67 break;
68 case ARM_CPUID_ARM1136_R2:
69 case ARM_CPUID_ARM1136:
70 set_feature(env, ARM_FEATURE_V6);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 env->cp15.c1_sys = 0x00050078;
80 break;
81 case ARM_CPUID_ARM11MPCORE:
82 set_feature(env, ARM_FEATURE_V6);
83 set_feature(env, ARM_FEATURE_V6K);
84 set_feature(env, ARM_FEATURE_VFP);
85 set_feature(env, ARM_FEATURE_AUXCR);
86 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
87 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
88 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
89 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
90 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
91 env->cp15.c0_cachetype = 0x1dd20d2;
92 break;
93 case ARM_CPUID_CORTEXA8:
94 set_feature(env, ARM_FEATURE_V6);
95 set_feature(env, ARM_FEATURE_V6K);
96 set_feature(env, ARM_FEATURE_V7);
97 set_feature(env, ARM_FEATURE_AUXCR);
98 set_feature(env, ARM_FEATURE_THUMB2);
99 set_feature(env, ARM_FEATURE_VFP);
100 set_feature(env, ARM_FEATURE_VFP3);
101 set_feature(env, ARM_FEATURE_NEON);
102 set_feature(env, ARM_FEATURE_THUMB2EE);
103 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
104 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
105 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
106 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
107 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
108 env->cp15.c0_cachetype = 0x82048004;
109 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
110 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
111 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
112 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
113 env->cp15.c1_sys = 0x00c50078;
114 break;
115 case ARM_CPUID_CORTEXA9:
116 set_feature(env, ARM_FEATURE_V6);
117 set_feature(env, ARM_FEATURE_V6K);
118 set_feature(env, ARM_FEATURE_V7);
119 set_feature(env, ARM_FEATURE_AUXCR);
120 set_feature(env, ARM_FEATURE_THUMB2);
121 set_feature(env, ARM_FEATURE_VFP);
122 set_feature(env, ARM_FEATURE_VFP3);
123 set_feature(env, ARM_FEATURE_VFP_FP16);
124 set_feature(env, ARM_FEATURE_NEON);
125 set_feature(env, ARM_FEATURE_THUMB2EE);
126 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
127 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
128 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
129 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
130 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
131 env->cp15.c0_cachetype = 0x80038003;
132 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
133 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
134 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
135 env->cp15.c1_sys = 0x00c50078;
136 break;
137 case ARM_CPUID_CORTEXM3:
138 set_feature(env, ARM_FEATURE_V6);
139 set_feature(env, ARM_FEATURE_THUMB2);
140 set_feature(env, ARM_FEATURE_V7);
141 set_feature(env, ARM_FEATURE_M);
142 set_feature(env, ARM_FEATURE_DIV);
143 break;
144 case ARM_CPUID_ANY: /* For userspace emulation. */
145 set_feature(env, ARM_FEATURE_V6);
146 set_feature(env, ARM_FEATURE_V6K);
147 set_feature(env, ARM_FEATURE_V7);
148 set_feature(env, ARM_FEATURE_THUMB2);
149 set_feature(env, ARM_FEATURE_VFP);
150 set_feature(env, ARM_FEATURE_VFP3);
151 set_feature(env, ARM_FEATURE_VFP_FP16);
152 set_feature(env, ARM_FEATURE_NEON);
153 set_feature(env, ARM_FEATURE_THUMB2EE);
154 set_feature(env, ARM_FEATURE_DIV);
155 break;
156 case ARM_CPUID_TI915T:
157 case ARM_CPUID_TI925T:
158 set_feature(env, ARM_FEATURE_OMAPCP);
159 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
160 env->cp15.c0_cachetype = 0x5109149;
161 env->cp15.c1_sys = 0x00000070;
162 env->cp15.c15_i_max = 0x000;
163 env->cp15.c15_i_min = 0xff0;
164 break;
165 case ARM_CPUID_PXA250:
166 case ARM_CPUID_PXA255:
167 case ARM_CPUID_PXA260:
168 case ARM_CPUID_PXA261:
169 case ARM_CPUID_PXA262:
170 set_feature(env, ARM_FEATURE_XSCALE);
171 /* JTAG_ID is ((id << 28) | 0x09265013) */
172 env->cp15.c0_cachetype = 0xd172172;
173 env->cp15.c1_sys = 0x00000078;
174 break;
175 case ARM_CPUID_PXA270_A0:
176 case ARM_CPUID_PXA270_A1:
177 case ARM_CPUID_PXA270_B0:
178 case ARM_CPUID_PXA270_B1:
179 case ARM_CPUID_PXA270_C0:
180 case ARM_CPUID_PXA270_C5:
181 set_feature(env, ARM_FEATURE_XSCALE);
182 /* JTAG_ID is ((id << 28) | 0x09265013) */
183 set_feature(env, ARM_FEATURE_IWMMXT);
184 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
185 env->cp15.c0_cachetype = 0xd172172;
186 env->cp15.c1_sys = 0x00000078;
187 break;
188 default:
189 cpu_abort(env, "Bad CPU ID: %x\n", id);
190 break;
191 }
192 }
193
194 void cpu_reset(CPUARMState *env)
195 {
196 uint32_t id;
197
198 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
199 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
200 log_cpu_state(env, 0);
201 }
202
203 id = env->cp15.c0_cpuid;
204 memset(env, 0, offsetof(CPUARMState, breakpoints));
205 if (id)
206 cpu_reset_model_id(env, id);
207 #if defined (CONFIG_USER_ONLY)
208 env->uncached_cpsr = ARM_CPU_MODE_USR;
209 /* For user mode we must enable access to coprocessors */
210 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
211 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
212 env->cp15.c15_cpar = 3;
213 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
214 env->cp15.c15_cpar = 1;
215 }
216 #else
217 /* SVC mode with interrupts disabled. */
218 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
219 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
220 clear at reset. Initial SP and PC are loaded from ROM. */
221 if (IS_M(env)) {
222 uint32_t pc;
223 uint8_t *rom;
224 env->uncached_cpsr &= ~CPSR_I;
225 rom = rom_ptr(0);
226 if (rom) {
227 /* We should really use ldl_phys here, in case the guest
228 modified flash and reset itself. However images
229 loaded via -kenrel have not been copied yet, so load the
230 values directly from there. */
231 env->regs[13] = ldl_p(rom);
232 pc = ldl_p(rom + 4);
233 env->thumb = pc & 1;
234 env->regs[15] = pc & ~1;
235 }
236 }
237 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
238 env->cp15.c2_base_mask = 0xffffc000u;
239 #endif
240 set_flush_to_zero(1, &env->vfp.standard_fp_status);
241 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
242 set_default_nan_mode(1, &env->vfp.standard_fp_status);
243 tlb_flush(env, 1);
244 }
245
246 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
247 {
248 int nregs;
249
250 /* VFP data registers are always little-endian. */
251 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
252 if (reg < nregs) {
253 stfq_le_p(buf, env->vfp.regs[reg]);
254 return 8;
255 }
256 if (arm_feature(env, ARM_FEATURE_NEON)) {
257 /* Aliases for Q regs. */
258 nregs += 16;
259 if (reg < nregs) {
260 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
261 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
262 return 16;
263 }
264 }
265 switch (reg - nregs) {
266 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
267 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
268 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
269 }
270 return 0;
271 }
272
273 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
274 {
275 int nregs;
276
277 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
278 if (reg < nregs) {
279 env->vfp.regs[reg] = ldfq_le_p(buf);
280 return 8;
281 }
282 if (arm_feature(env, ARM_FEATURE_NEON)) {
283 nregs += 16;
284 if (reg < nregs) {
285 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
286 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
287 return 16;
288 }
289 }
290 switch (reg - nregs) {
291 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
292 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
293 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
294 }
295 return 0;
296 }
297
298 CPUARMState *cpu_arm_init(const char *cpu_model)
299 {
300 CPUARMState *env;
301 uint32_t id;
302 static int inited = 0;
303
304 id = cpu_arm_find_by_name(cpu_model);
305 if (id == 0)
306 return NULL;
307 env = qemu_mallocz(sizeof(CPUARMState));
308 cpu_exec_init(env);
309 if (!inited) {
310 inited = 1;
311 arm_translate_init();
312 }
313
314 env->cpu_model_str = cpu_model;
315 env->cp15.c0_cpuid = id;
316 cpu_reset(env);
317 if (arm_feature(env, ARM_FEATURE_NEON)) {
318 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
319 51, "arm-neon.xml", 0);
320 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
321 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
322 35, "arm-vfp3.xml", 0);
323 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
324 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
325 19, "arm-vfp.xml", 0);
326 }
327 qemu_init_vcpu(env);
328 return env;
329 }
330
331 struct arm_cpu_t {
332 uint32_t id;
333 const char *name;
334 };
335
336 static const struct arm_cpu_t arm_cpu_names[] = {
337 { ARM_CPUID_ARM926, "arm926"},
338 { ARM_CPUID_ARM946, "arm946"},
339 { ARM_CPUID_ARM1026, "arm1026"},
340 { ARM_CPUID_ARM1136, "arm1136"},
341 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
342 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
343 { ARM_CPUID_CORTEXM3, "cortex-m3"},
344 { ARM_CPUID_CORTEXA8, "cortex-a8"},
345 { ARM_CPUID_CORTEXA9, "cortex-a9"},
346 { ARM_CPUID_TI925T, "ti925t" },
347 { ARM_CPUID_PXA250, "pxa250" },
348 { ARM_CPUID_PXA255, "pxa255" },
349 { ARM_CPUID_PXA260, "pxa260" },
350 { ARM_CPUID_PXA261, "pxa261" },
351 { ARM_CPUID_PXA262, "pxa262" },
352 { ARM_CPUID_PXA270, "pxa270" },
353 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
354 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
355 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
356 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
357 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
358 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
359 { ARM_CPUID_ANY, "any"},
360 { 0, NULL}
361 };
362
363 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
364 {
365 int i;
366
367 (*cpu_fprintf)(f, "Available CPUs:\n");
368 for (i = 0; arm_cpu_names[i].name; i++) {
369 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
370 }
371 }
372
373 /* return 0 if not found */
374 static uint32_t cpu_arm_find_by_name(const char *name)
375 {
376 int i;
377 uint32_t id;
378
379 id = 0;
380 for (i = 0; arm_cpu_names[i].name; i++) {
381 if (strcmp(name, arm_cpu_names[i].name) == 0) {
382 id = arm_cpu_names[i].id;
383 break;
384 }
385 }
386 return id;
387 }
388
389 void cpu_arm_close(CPUARMState *env)
390 {
391 free(env);
392 }
393
394 uint32_t cpsr_read(CPUARMState *env)
395 {
396 int ZF;
397 ZF = (env->ZF == 0);
398 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
399 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
400 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
401 | ((env->condexec_bits & 0xfc) << 8)
402 | (env->GE << 16);
403 }
404
405 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
406 {
407 if (mask & CPSR_NZCV) {
408 env->ZF = (~val) & CPSR_Z;
409 env->NF = val;
410 env->CF = (val >> 29) & 1;
411 env->VF = (val << 3) & 0x80000000;
412 }
413 if (mask & CPSR_Q)
414 env->QF = ((val & CPSR_Q) != 0);
415 if (mask & CPSR_T)
416 env->thumb = ((val & CPSR_T) != 0);
417 if (mask & CPSR_IT_0_1) {
418 env->condexec_bits &= ~3;
419 env->condexec_bits |= (val >> 25) & 3;
420 }
421 if (mask & CPSR_IT_2_7) {
422 env->condexec_bits &= 3;
423 env->condexec_bits |= (val >> 8) & 0xfc;
424 }
425 if (mask & CPSR_GE) {
426 env->GE = (val >> 16) & 0xf;
427 }
428
429 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
430 switch_mode(env, val & CPSR_M);
431 }
432 mask &= ~CACHED_CPSR_BITS;
433 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
434 }
435
436 /* Sign/zero extend */
437 uint32_t HELPER(sxtb16)(uint32_t x)
438 {
439 uint32_t res;
440 res = (uint16_t)(int8_t)x;
441 res |= (uint32_t)(int8_t)(x >> 16) << 16;
442 return res;
443 }
444
445 uint32_t HELPER(uxtb16)(uint32_t x)
446 {
447 uint32_t res;
448 res = (uint16_t)(uint8_t)x;
449 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
450 return res;
451 }
452
453 uint32_t HELPER(clz)(uint32_t x)
454 {
455 return clz32(x);
456 }
457
458 int32_t HELPER(sdiv)(int32_t num, int32_t den)
459 {
460 if (den == 0)
461 return 0;
462 if (num == INT_MIN && den == -1)
463 return INT_MIN;
464 return num / den;
465 }
466
467 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
468 {
469 if (den == 0)
470 return 0;
471 return num / den;
472 }
473
474 uint32_t HELPER(rbit)(uint32_t x)
475 {
476 x = ((x & 0xff000000) >> 24)
477 | ((x & 0x00ff0000) >> 8)
478 | ((x & 0x0000ff00) << 8)
479 | ((x & 0x000000ff) << 24);
480 x = ((x & 0xf0f0f0f0) >> 4)
481 | ((x & 0x0f0f0f0f) << 4);
482 x = ((x & 0x88888888) >> 3)
483 | ((x & 0x44444444) >> 1)
484 | ((x & 0x22222222) << 1)
485 | ((x & 0x11111111) << 3);
486 return x;
487 }
488
489 uint32_t HELPER(abs)(uint32_t x)
490 {
491 return ((int32_t)x < 0) ? -x : x;
492 }
493
494 #if defined(CONFIG_USER_ONLY)
495
496 void do_interrupt (CPUState *env)
497 {
498 env->exception_index = -1;
499 }
500
501 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
502 int mmu_idx, int is_softmmu)
503 {
504 if (rw == 2) {
505 env->exception_index = EXCP_PREFETCH_ABORT;
506 env->cp15.c6_insn = address;
507 } else {
508 env->exception_index = EXCP_DATA_ABORT;
509 env->cp15.c6_data = address;
510 }
511 return 1;
512 }
513
514 /* These should probably raise undefined insn exceptions. */
515 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
516 {
517 int op1 = (insn >> 8) & 0xf;
518 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
519 return;
520 }
521
522 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
523 {
524 int op1 = (insn >> 8) & 0xf;
525 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
526 return 0;
527 }
528
529 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
530 {
531 cpu_abort(env, "cp15 insn %08x\n", insn);
532 }
533
534 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
535 {
536 cpu_abort(env, "cp15 insn %08x\n", insn);
537 }
538
539 /* These should probably raise undefined insn exceptions. */
540 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
541 {
542 cpu_abort(env, "v7m_mrs %d\n", reg);
543 }
544
545 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
546 {
547 cpu_abort(env, "v7m_mrs %d\n", reg);
548 return 0;
549 }
550
551 void switch_mode(CPUState *env, int mode)
552 {
553 if (mode != ARM_CPU_MODE_USR)
554 cpu_abort(env, "Tried to switch out of user mode\n");
555 }
556
557 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
558 {
559 cpu_abort(env, "banked r13 write\n");
560 }
561
562 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
563 {
564 cpu_abort(env, "banked r13 read\n");
565 return 0;
566 }
567
568 #else
569
570 extern int semihosting_enabled;
571
572 /* Map CPU modes onto saved register banks. */
573 static inline int bank_number (int mode)
574 {
575 switch (mode) {
576 case ARM_CPU_MODE_USR:
577 case ARM_CPU_MODE_SYS:
578 return 0;
579 case ARM_CPU_MODE_SVC:
580 return 1;
581 case ARM_CPU_MODE_ABT:
582 return 2;
583 case ARM_CPU_MODE_UND:
584 return 3;
585 case ARM_CPU_MODE_IRQ:
586 return 4;
587 case ARM_CPU_MODE_FIQ:
588 return 5;
589 }
590 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
591 return -1;
592 }
593
594 void switch_mode(CPUState *env, int mode)
595 {
596 int old_mode;
597 int i;
598
599 old_mode = env->uncached_cpsr & CPSR_M;
600 if (mode == old_mode)
601 return;
602
603 if (old_mode == ARM_CPU_MODE_FIQ) {
604 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
605 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
606 } else if (mode == ARM_CPU_MODE_FIQ) {
607 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
608 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
609 }
610
611 i = bank_number(old_mode);
612 env->banked_r13[i] = env->regs[13];
613 env->banked_r14[i] = env->regs[14];
614 env->banked_spsr[i] = env->spsr;
615
616 i = bank_number(mode);
617 env->regs[13] = env->banked_r13[i];
618 env->regs[14] = env->banked_r14[i];
619 env->spsr = env->banked_spsr[i];
620 }
621
622 static void v7m_push(CPUARMState *env, uint32_t val)
623 {
624 env->regs[13] -= 4;
625 stl_phys(env->regs[13], val);
626 }
627
628 static uint32_t v7m_pop(CPUARMState *env)
629 {
630 uint32_t val;
631 val = ldl_phys(env->regs[13]);
632 env->regs[13] += 4;
633 return val;
634 }
635
636 /* Switch to V7M main or process stack pointer. */
637 static void switch_v7m_sp(CPUARMState *env, int process)
638 {
639 uint32_t tmp;
640 if (env->v7m.current_sp != process) {
641 tmp = env->v7m.other_sp;
642 env->v7m.other_sp = env->regs[13];
643 env->regs[13] = tmp;
644 env->v7m.current_sp = process;
645 }
646 }
647
648 static void do_v7m_exception_exit(CPUARMState *env)
649 {
650 uint32_t type;
651 uint32_t xpsr;
652
653 type = env->regs[15];
654 if (env->v7m.exception != 0)
655 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
656
657 /* Switch to the target stack. */
658 switch_v7m_sp(env, (type & 4) != 0);
659 /* Pop registers. */
660 env->regs[0] = v7m_pop(env);
661 env->regs[1] = v7m_pop(env);
662 env->regs[2] = v7m_pop(env);
663 env->regs[3] = v7m_pop(env);
664 env->regs[12] = v7m_pop(env);
665 env->regs[14] = v7m_pop(env);
666 env->regs[15] = v7m_pop(env);
667 xpsr = v7m_pop(env);
668 xpsr_write(env, xpsr, 0xfffffdff);
669 /* Undo stack alignment. */
670 if (xpsr & 0x200)
671 env->regs[13] |= 4;
672 /* ??? The exception return type specifies Thread/Handler mode. However
673 this is also implied by the xPSR value. Not sure what to do
674 if there is a mismatch. */
675 /* ??? Likewise for mismatches between the CONTROL register and the stack
676 pointer. */
677 }
678
679 static void do_interrupt_v7m(CPUARMState *env)
680 {
681 uint32_t xpsr = xpsr_read(env);
682 uint32_t lr;
683 uint32_t addr;
684
685 lr = 0xfffffff1;
686 if (env->v7m.current_sp)
687 lr |= 4;
688 if (env->v7m.exception == 0)
689 lr |= 8;
690
691 /* For exceptions we just mark as pending on the NVIC, and let that
692 handle it. */
693 /* TODO: Need to escalate if the current priority is higher than the
694 one we're raising. */
695 switch (env->exception_index) {
696 case EXCP_UDEF:
697 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
698 return;
699 case EXCP_SWI:
700 env->regs[15] += 2;
701 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
702 return;
703 case EXCP_PREFETCH_ABORT:
704 case EXCP_DATA_ABORT:
705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
706 return;
707 case EXCP_BKPT:
708 if (semihosting_enabled) {
709 int nr;
710 nr = lduw_code(env->regs[15]) & 0xff;
711 if (nr == 0xab) {
712 env->regs[15] += 2;
713 env->regs[0] = do_arm_semihosting(env);
714 return;
715 }
716 }
717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
718 return;
719 case EXCP_IRQ:
720 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
721 break;
722 case EXCP_EXCEPTION_EXIT:
723 do_v7m_exception_exit(env);
724 return;
725 default:
726 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
727 return; /* Never happens. Keep compiler happy. */
728 }
729
730 /* Align stack pointer. */
731 /* ??? Should only do this if Configuration Control Register
732 STACKALIGN bit is set. */
733 if (env->regs[13] & 4) {
734 env->regs[13] -= 4;
735 xpsr |= 0x200;
736 }
737 /* Switch to the handler mode. */
738 v7m_push(env, xpsr);
739 v7m_push(env, env->regs[15]);
740 v7m_push(env, env->regs[14]);
741 v7m_push(env, env->regs[12]);
742 v7m_push(env, env->regs[3]);
743 v7m_push(env, env->regs[2]);
744 v7m_push(env, env->regs[1]);
745 v7m_push(env, env->regs[0]);
746 switch_v7m_sp(env, 0);
747 env->uncached_cpsr &= ~CPSR_IT;
748 env->regs[14] = lr;
749 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
750 env->regs[15] = addr & 0xfffffffe;
751 env->thumb = addr & 1;
752 }
753
754 /* Handle a CPU exception. */
755 void do_interrupt(CPUARMState *env)
756 {
757 uint32_t addr;
758 uint32_t mask;
759 int new_mode;
760 uint32_t offset;
761
762 if (IS_M(env)) {
763 do_interrupt_v7m(env);
764 return;
765 }
766 /* TODO: Vectored interrupt controller. */
767 switch (env->exception_index) {
768 case EXCP_UDEF:
769 new_mode = ARM_CPU_MODE_UND;
770 addr = 0x04;
771 mask = CPSR_I;
772 if (env->thumb)
773 offset = 2;
774 else
775 offset = 4;
776 break;
777 case EXCP_SWI:
778 if (semihosting_enabled) {
779 /* Check for semihosting interrupt. */
780 if (env->thumb) {
781 mask = lduw_code(env->regs[15] - 2) & 0xff;
782 } else {
783 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
784 }
785 /* Only intercept calls from privileged modes, to provide some
786 semblance of security. */
787 if (((mask == 0x123456 && !env->thumb)
788 || (mask == 0xab && env->thumb))
789 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
790 env->regs[0] = do_arm_semihosting(env);
791 return;
792 }
793 }
794 new_mode = ARM_CPU_MODE_SVC;
795 addr = 0x08;
796 mask = CPSR_I;
797 /* The PC already points to the next instruction. */
798 offset = 0;
799 break;
800 case EXCP_BKPT:
801 /* See if this is a semihosting syscall. */
802 if (env->thumb && semihosting_enabled) {
803 mask = lduw_code(env->regs[15]) & 0xff;
804 if (mask == 0xab
805 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
806 env->regs[15] += 2;
807 env->regs[0] = do_arm_semihosting(env);
808 return;
809 }
810 }
811 /* Fall through to prefetch abort. */
812 case EXCP_PREFETCH_ABORT:
813 new_mode = ARM_CPU_MODE_ABT;
814 addr = 0x0c;
815 mask = CPSR_A | CPSR_I;
816 offset = 4;
817 break;
818 case EXCP_DATA_ABORT:
819 new_mode = ARM_CPU_MODE_ABT;
820 addr = 0x10;
821 mask = CPSR_A | CPSR_I;
822 offset = 8;
823 break;
824 case EXCP_IRQ:
825 new_mode = ARM_CPU_MODE_IRQ;
826 addr = 0x18;
827 /* Disable IRQ and imprecise data aborts. */
828 mask = CPSR_A | CPSR_I;
829 offset = 4;
830 break;
831 case EXCP_FIQ:
832 new_mode = ARM_CPU_MODE_FIQ;
833 addr = 0x1c;
834 /* Disable FIQ, IRQ and imprecise data aborts. */
835 mask = CPSR_A | CPSR_I | CPSR_F;
836 offset = 4;
837 break;
838 default:
839 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
840 return; /* Never happens. Keep compiler happy. */
841 }
842 /* High vectors. */
843 if (env->cp15.c1_sys & (1 << 13)) {
844 addr += 0xffff0000;
845 }
846 switch_mode (env, new_mode);
847 env->spsr = cpsr_read(env);
848 /* Clear IT bits. */
849 env->condexec_bits = 0;
850 /* Switch to the new mode, and to the correct instruction set. */
851 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
852 env->uncached_cpsr |= mask;
853 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
854 env->regs[14] = env->regs[15] + offset;
855 env->regs[15] = addr;
856 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
857 }
858
859 /* Check section/page access permissions.
860 Returns the page protection flags, or zero if the access is not
861 permitted. */
862 static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
863 int is_user)
864 {
865 int prot_ro;
866
867 if (domain == 3)
868 return PAGE_READ | PAGE_WRITE;
869
870 if (access_type == 1)
871 prot_ro = 0;
872 else
873 prot_ro = PAGE_READ;
874
875 switch (ap) {
876 case 0:
877 if (access_type == 1)
878 return 0;
879 switch ((env->cp15.c1_sys >> 8) & 3) {
880 case 1:
881 return is_user ? 0 : PAGE_READ;
882 case 2:
883 return PAGE_READ;
884 default:
885 return 0;
886 }
887 case 1:
888 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
889 case 2:
890 if (is_user)
891 return prot_ro;
892 else
893 return PAGE_READ | PAGE_WRITE;
894 case 3:
895 return PAGE_READ | PAGE_WRITE;
896 case 4: /* Reserved. */
897 return 0;
898 case 5:
899 return is_user ? 0 : prot_ro;
900 case 6:
901 return prot_ro;
902 case 7:
903 if (!arm_feature (env, ARM_FEATURE_V7))
904 return 0;
905 return prot_ro;
906 default:
907 abort();
908 }
909 }
910
911 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
912 {
913 uint32_t table;
914
915 if (address & env->cp15.c2_mask)
916 table = env->cp15.c2_base1 & 0xffffc000;
917 else
918 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
919
920 table |= (address >> 18) & 0x3ffc;
921 return table;
922 }
923
924 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
925 int is_user, uint32_t *phys_ptr, int *prot,
926 target_ulong *page_size)
927 {
928 int code;
929 uint32_t table;
930 uint32_t desc;
931 int type;
932 int ap;
933 int domain;
934 uint32_t phys_addr;
935
936 /* Pagetable walk. */
937 /* Lookup l1 descriptor. */
938 table = get_level1_table_address(env, address);
939 desc = ldl_phys(table);
940 type = (desc & 3);
941 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
942 if (type == 0) {
943 /* Section translation fault. */
944 code = 5;
945 goto do_fault;
946 }
947 if (domain == 0 || domain == 2) {
948 if (type == 2)
949 code = 9; /* Section domain fault. */
950 else
951 code = 11; /* Page domain fault. */
952 goto do_fault;
953 }
954 if (type == 2) {
955 /* 1Mb section. */
956 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
957 ap = (desc >> 10) & 3;
958 code = 13;
959 *page_size = 1024 * 1024;
960 } else {
961 /* Lookup l2 entry. */
962 if (type == 1) {
963 /* Coarse pagetable. */
964 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
965 } else {
966 /* Fine pagetable. */
967 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
968 }
969 desc = ldl_phys(table);
970 switch (desc & 3) {
971 case 0: /* Page translation fault. */
972 code = 7;
973 goto do_fault;
974 case 1: /* 64k page. */
975 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
976 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
977 *page_size = 0x10000;
978 break;
979 case 2: /* 4k page. */
980 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
981 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
982 *page_size = 0x1000;
983 break;
984 case 3: /* 1k page. */
985 if (type == 1) {
986 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
987 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
988 } else {
989 /* Page translation fault. */
990 code = 7;
991 goto do_fault;
992 }
993 } else {
994 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
995 }
996 ap = (desc >> 4) & 3;
997 *page_size = 0x400;
998 break;
999 default:
1000 /* Never happens, but compiler isn't smart enough to tell. */
1001 abort();
1002 }
1003 code = 15;
1004 }
1005 *prot = check_ap(env, ap, domain, access_type, is_user);
1006 if (!*prot) {
1007 /* Access permission fault. */
1008 goto do_fault;
1009 }
1010 *prot |= PAGE_EXEC;
1011 *phys_ptr = phys_addr;
1012 return 0;
1013 do_fault:
1014 return code | (domain << 4);
1015 }
1016
1017 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1018 int is_user, uint32_t *phys_ptr, int *prot,
1019 target_ulong *page_size)
1020 {
1021 int code;
1022 uint32_t table;
1023 uint32_t desc;
1024 uint32_t xn;
1025 int type;
1026 int ap;
1027 int domain;
1028 uint32_t phys_addr;
1029
1030 /* Pagetable walk. */
1031 /* Lookup l1 descriptor. */
1032 table = get_level1_table_address(env, address);
1033 desc = ldl_phys(table);
1034 type = (desc & 3);
1035 if (type == 0) {
1036 /* Section translation fault. */
1037 code = 5;
1038 domain = 0;
1039 goto do_fault;
1040 } else if (type == 2 && (desc & (1 << 18))) {
1041 /* Supersection. */
1042 domain = 0;
1043 } else {
1044 /* Section or page. */
1045 domain = (desc >> 4) & 0x1e;
1046 }
1047 domain = (env->cp15.c3 >> domain) & 3;
1048 if (domain == 0 || domain == 2) {
1049 if (type == 2)
1050 code = 9; /* Section domain fault. */
1051 else
1052 code = 11; /* Page domain fault. */
1053 goto do_fault;
1054 }
1055 if (type == 2) {
1056 if (desc & (1 << 18)) {
1057 /* Supersection. */
1058 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1059 *page_size = 0x1000000;
1060 } else {
1061 /* Section. */
1062 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1063 *page_size = 0x100000;
1064 }
1065 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1066 xn = desc & (1 << 4);
1067 code = 13;
1068 } else {
1069 /* Lookup l2 entry. */
1070 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1071 desc = ldl_phys(table);
1072 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1073 switch (desc & 3) {
1074 case 0: /* Page translation fault. */
1075 code = 7;
1076 goto do_fault;
1077 case 1: /* 64k page. */
1078 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1079 xn = desc & (1 << 15);
1080 *page_size = 0x10000;
1081 break;
1082 case 2: case 3: /* 4k page. */
1083 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1084 xn = desc & 1;
1085 *page_size = 0x1000;
1086 break;
1087 default:
1088 /* Never happens, but compiler isn't smart enough to tell. */
1089 abort();
1090 }
1091 code = 15;
1092 }
1093 if (domain == 3) {
1094 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1095 } else {
1096 if (xn && access_type == 2)
1097 goto do_fault;
1098
1099 /* The simplified model uses AP[0] as an access control bit. */
1100 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1101 /* Access flag fault. */
1102 code = (code == 15) ? 6 : 3;
1103 goto do_fault;
1104 }
1105 *prot = check_ap(env, ap, domain, access_type, is_user);
1106 if (!*prot) {
1107 /* Access permission fault. */
1108 goto do_fault;
1109 }
1110 if (!xn) {
1111 *prot |= PAGE_EXEC;
1112 }
1113 }
1114 *phys_ptr = phys_addr;
1115 return 0;
1116 do_fault:
1117 return code | (domain << 4);
1118 }
1119
1120 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1121 int is_user, uint32_t *phys_ptr, int *prot)
1122 {
1123 int n;
1124 uint32_t mask;
1125 uint32_t base;
1126
1127 *phys_ptr = address;
1128 for (n = 7; n >= 0; n--) {
1129 base = env->cp15.c6_region[n];
1130 if ((base & 1) == 0)
1131 continue;
1132 mask = 1 << ((base >> 1) & 0x1f);
1133 /* Keep this shift separate from the above to avoid an
1134 (undefined) << 32. */
1135 mask = (mask << 1) - 1;
1136 if (((base ^ address) & ~mask) == 0)
1137 break;
1138 }
1139 if (n < 0)
1140 return 2;
1141
1142 if (access_type == 2) {
1143 mask = env->cp15.c5_insn;
1144 } else {
1145 mask = env->cp15.c5_data;
1146 }
1147 mask = (mask >> (n * 4)) & 0xf;
1148 switch (mask) {
1149 case 0:
1150 return 1;
1151 case 1:
1152 if (is_user)
1153 return 1;
1154 *prot = PAGE_READ | PAGE_WRITE;
1155 break;
1156 case 2:
1157 *prot = PAGE_READ;
1158 if (!is_user)
1159 *prot |= PAGE_WRITE;
1160 break;
1161 case 3:
1162 *prot = PAGE_READ | PAGE_WRITE;
1163 break;
1164 case 5:
1165 if (is_user)
1166 return 1;
1167 *prot = PAGE_READ;
1168 break;
1169 case 6:
1170 *prot = PAGE_READ;
1171 break;
1172 default:
1173 /* Bad permission. */
1174 return 1;
1175 }
1176 *prot |= PAGE_EXEC;
1177 return 0;
1178 }
1179
1180 static inline int get_phys_addr(CPUState *env, uint32_t address,
1181 int access_type, int is_user,
1182 uint32_t *phys_ptr, int *prot,
1183 target_ulong *page_size)
1184 {
1185 /* Fast Context Switch Extension. */
1186 if (address < 0x02000000)
1187 address += env->cp15.c13_fcse;
1188
1189 if ((env->cp15.c1_sys & 1) == 0) {
1190 /* MMU/MPU disabled. */
1191 *phys_ptr = address;
1192 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1193 *page_size = TARGET_PAGE_SIZE;
1194 return 0;
1195 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1196 *page_size = TARGET_PAGE_SIZE;
1197 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1198 prot);
1199 } else if (env->cp15.c1_sys & (1 << 23)) {
1200 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1201 prot, page_size);
1202 } else {
1203 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1204 prot, page_size);
1205 }
1206 }
1207
1208 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1209 int access_type, int mmu_idx, int is_softmmu)
1210 {
1211 uint32_t phys_addr;
1212 target_ulong page_size;
1213 int prot;
1214 int ret, is_user;
1215
1216 is_user = mmu_idx == MMU_USER_IDX;
1217 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1218 &page_size);
1219 if (ret == 0) {
1220 /* Map a single [sub]page. */
1221 phys_addr &= ~(uint32_t)0x3ff;
1222 address &= ~(uint32_t)0x3ff;
1223 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1224 return 0;
1225 }
1226
1227 if (access_type == 2) {
1228 env->cp15.c5_insn = ret;
1229 env->cp15.c6_insn = address;
1230 env->exception_index = EXCP_PREFETCH_ABORT;
1231 } else {
1232 env->cp15.c5_data = ret;
1233 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1234 env->cp15.c5_data |= (1 << 11);
1235 env->cp15.c6_data = address;
1236 env->exception_index = EXCP_DATA_ABORT;
1237 }
1238 return 1;
1239 }
1240
1241 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1242 {
1243 uint32_t phys_addr;
1244 target_ulong page_size;
1245 int prot;
1246 int ret;
1247
1248 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1249
1250 if (ret != 0)
1251 return -1;
1252
1253 return phys_addr;
1254 }
1255
1256 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1257 {
1258 int cp_num = (insn >> 8) & 0xf;
1259 int cp_info = (insn >> 5) & 7;
1260 int src = (insn >> 16) & 0xf;
1261 int operand = insn & 0xf;
1262
1263 if (env->cp[cp_num].cp_write)
1264 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1265 cp_info, src, operand, val);
1266 }
1267
1268 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1269 {
1270 int cp_num = (insn >> 8) & 0xf;
1271 int cp_info = (insn >> 5) & 7;
1272 int dest = (insn >> 16) & 0xf;
1273 int operand = insn & 0xf;
1274
1275 if (env->cp[cp_num].cp_read)
1276 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1277 cp_info, dest, operand);
1278 return 0;
1279 }
1280
1281 /* Return basic MPU access permission bits. */
1282 static uint32_t simple_mpu_ap_bits(uint32_t val)
1283 {
1284 uint32_t ret;
1285 uint32_t mask;
1286 int i;
1287 ret = 0;
1288 mask = 3;
1289 for (i = 0; i < 16; i += 2) {
1290 ret |= (val >> i) & mask;
1291 mask <<= 2;
1292 }
1293 return ret;
1294 }
1295
1296 /* Pad basic MPU access permission bits to extended format. */
1297 static uint32_t extended_mpu_ap_bits(uint32_t val)
1298 {
1299 uint32_t ret;
1300 uint32_t mask;
1301 int i;
1302 ret = 0;
1303 mask = 3;
1304 for (i = 0; i < 16; i += 2) {
1305 ret |= (val & mask) << i;
1306 mask <<= 2;
1307 }
1308 return ret;
1309 }
1310
1311 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1312 {
1313 int op1;
1314 int op2;
1315 int crm;
1316
1317 op1 = (insn >> 21) & 7;
1318 op2 = (insn >> 5) & 7;
1319 crm = insn & 0xf;
1320 switch ((insn >> 16) & 0xf) {
1321 case 0:
1322 /* ID codes. */
1323 if (arm_feature(env, ARM_FEATURE_XSCALE))
1324 break;
1325 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1326 break;
1327 if (arm_feature(env, ARM_FEATURE_V7)
1328 && op1 == 2 && crm == 0 && op2 == 0) {
1329 env->cp15.c0_cssel = val & 0xf;
1330 break;
1331 }
1332 goto bad_reg;
1333 case 1: /* System configuration. */
1334 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1335 op2 = 0;
1336 switch (op2) {
1337 case 0:
1338 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1339 env->cp15.c1_sys = val;
1340 /* ??? Lots of these bits are not implemented. */
1341 /* This may enable/disable the MMU, so do a TLB flush. */
1342 tlb_flush(env, 1);
1343 break;
1344 case 1: /* Auxiliary cotrol register. */
1345 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1346 env->cp15.c1_xscaleauxcr = val;
1347 break;
1348 }
1349 /* Not implemented. */
1350 break;
1351 case 2:
1352 if (arm_feature(env, ARM_FEATURE_XSCALE))
1353 goto bad_reg;
1354 if (env->cp15.c1_coproc != val) {
1355 env->cp15.c1_coproc = val;
1356 /* ??? Is this safe when called from within a TB? */
1357 tb_flush(env);
1358 }
1359 break;
1360 default:
1361 goto bad_reg;
1362 }
1363 break;
1364 case 2: /* MMU Page table control / MPU cache control. */
1365 if (arm_feature(env, ARM_FEATURE_MPU)) {
1366 switch (op2) {
1367 case 0:
1368 env->cp15.c2_data = val;
1369 break;
1370 case 1:
1371 env->cp15.c2_insn = val;
1372 break;
1373 default:
1374 goto bad_reg;
1375 }
1376 } else {
1377 switch (op2) {
1378 case 0:
1379 env->cp15.c2_base0 = val;
1380 break;
1381 case 1:
1382 env->cp15.c2_base1 = val;
1383 break;
1384 case 2:
1385 val &= 7;
1386 env->cp15.c2_control = val;
1387 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1388 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1389 break;
1390 default:
1391 goto bad_reg;
1392 }
1393 }
1394 break;
1395 case 3: /* MMU Domain access control / MPU write buffer control. */
1396 env->cp15.c3 = val;
1397 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1398 break;
1399 case 4: /* Reserved. */
1400 goto bad_reg;
1401 case 5: /* MMU Fault status / MPU access permission. */
1402 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1403 op2 = 0;
1404 switch (op2) {
1405 case 0:
1406 if (arm_feature(env, ARM_FEATURE_MPU))
1407 val = extended_mpu_ap_bits(val);
1408 env->cp15.c5_data = val;
1409 break;
1410 case 1:
1411 if (arm_feature(env, ARM_FEATURE_MPU))
1412 val = extended_mpu_ap_bits(val);
1413 env->cp15.c5_insn = val;
1414 break;
1415 case 2:
1416 if (!arm_feature(env, ARM_FEATURE_MPU))
1417 goto bad_reg;
1418 env->cp15.c5_data = val;
1419 break;
1420 case 3:
1421 if (!arm_feature(env, ARM_FEATURE_MPU))
1422 goto bad_reg;
1423 env->cp15.c5_insn = val;
1424 break;
1425 default:
1426 goto bad_reg;
1427 }
1428 break;
1429 case 6: /* MMU Fault address / MPU base/size. */
1430 if (arm_feature(env, ARM_FEATURE_MPU)) {
1431 if (crm >= 8)
1432 goto bad_reg;
1433 env->cp15.c6_region[crm] = val;
1434 } else {
1435 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1436 op2 = 0;
1437 switch (op2) {
1438 case 0:
1439 env->cp15.c6_data = val;
1440 break;
1441 case 1: /* ??? This is WFAR on armv6 */
1442 case 2:
1443 env->cp15.c6_insn = val;
1444 break;
1445 default:
1446 goto bad_reg;
1447 }
1448 }
1449 break;
1450 case 7: /* Cache control. */
1451 env->cp15.c15_i_max = 0x000;
1452 env->cp15.c15_i_min = 0xff0;
1453 /* No cache, so nothing to do. */
1454 /* ??? MPCore has VA to PA translation functions. */
1455 break;
1456 case 8: /* MMU TLB control. */
1457 switch (op2) {
1458 case 0: /* Invalidate all. */
1459 tlb_flush(env, 0);
1460 break;
1461 case 1: /* Invalidate single TLB entry. */
1462 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1463 break;
1464 case 2: /* Invalidate on ASID. */
1465 tlb_flush(env, val == 0);
1466 break;
1467 case 3: /* Invalidate single entry on MVA. */
1468 /* ??? This is like case 1, but ignores ASID. */
1469 tlb_flush(env, 1);
1470 break;
1471 default:
1472 goto bad_reg;
1473 }
1474 break;
1475 case 9:
1476 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1477 break;
1478 switch (crm) {
1479 case 0: /* Cache lockdown. */
1480 switch (op1) {
1481 case 0: /* L1 cache. */
1482 switch (op2) {
1483 case 0:
1484 env->cp15.c9_data = val;
1485 break;
1486 case 1:
1487 env->cp15.c9_insn = val;
1488 break;
1489 default:
1490 goto bad_reg;
1491 }
1492 break;
1493 case 1: /* L2 cache. */
1494 /* Ignore writes to L2 lockdown/auxiliary registers. */
1495 break;
1496 default:
1497 goto bad_reg;
1498 }
1499 break;
1500 case 1: /* TCM memory region registers. */
1501 /* Not implemented. */
1502 goto bad_reg;
1503 default:
1504 goto bad_reg;
1505 }
1506 break;
1507 case 10: /* MMU TLB lockdown. */
1508 /* ??? TLB lockdown not implemented. */
1509 break;
1510 case 12: /* Reserved. */
1511 goto bad_reg;
1512 case 13: /* Process ID. */
1513 switch (op2) {
1514 case 0:
1515 /* Unlike real hardware the qemu TLB uses virtual addresses,
1516 not modified virtual addresses, so this causes a TLB flush.
1517 */
1518 if (env->cp15.c13_fcse != val)
1519 tlb_flush(env, 1);
1520 env->cp15.c13_fcse = val;
1521 break;
1522 case 1:
1523 /* This changes the ASID, so do a TLB flush. */
1524 if (env->cp15.c13_context != val
1525 && !arm_feature(env, ARM_FEATURE_MPU))
1526 tlb_flush(env, 0);
1527 env->cp15.c13_context = val;
1528 break;
1529 default:
1530 goto bad_reg;
1531 }
1532 break;
1533 case 14: /* Reserved. */
1534 goto bad_reg;
1535 case 15: /* Implementation specific. */
1536 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1537 if (op2 == 0 && crm == 1) {
1538 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1539 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1540 tb_flush(env);
1541 env->cp15.c15_cpar = val & 0x3fff;
1542 }
1543 break;
1544 }
1545 goto bad_reg;
1546 }
1547 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1548 switch (crm) {
1549 case 0:
1550 break;
1551 case 1: /* Set TI925T configuration. */
1552 env->cp15.c15_ticonfig = val & 0xe7;
1553 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1554 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1555 break;
1556 case 2: /* Set I_max. */
1557 env->cp15.c15_i_max = val;
1558 break;
1559 case 3: /* Set I_min. */
1560 env->cp15.c15_i_min = val;
1561 break;
1562 case 4: /* Set thread-ID. */
1563 env->cp15.c15_threadid = val & 0xffff;
1564 break;
1565 case 8: /* Wait-for-interrupt (deprecated). */
1566 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1567 break;
1568 default:
1569 goto bad_reg;
1570 }
1571 }
1572 break;
1573 }
1574 return;
1575 bad_reg:
1576 /* ??? For debugging only. Should raise illegal instruction exception. */
1577 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1578 (insn >> 16) & 0xf, crm, op1, op2);
1579 }
1580
1581 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1582 {
1583 int op1;
1584 int op2;
1585 int crm;
1586
1587 op1 = (insn >> 21) & 7;
1588 op2 = (insn >> 5) & 7;
1589 crm = insn & 0xf;
1590 switch ((insn >> 16) & 0xf) {
1591 case 0: /* ID codes. */
1592 switch (op1) {
1593 case 0:
1594 switch (crm) {
1595 case 0:
1596 switch (op2) {
1597 case 0: /* Device ID. */
1598 return env->cp15.c0_cpuid;
1599 case 1: /* Cache Type. */
1600 return env->cp15.c0_cachetype;
1601 case 2: /* TCM status. */
1602 return 0;
1603 case 3: /* TLB type register. */
1604 return 0; /* No lockable TLB entries. */
1605 case 5: /* CPU ID */
1606 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1607 return env->cpu_index | 0x80000900;
1608 } else {
1609 return env->cpu_index;
1610 }
1611 default:
1612 goto bad_reg;
1613 }
1614 case 1:
1615 if (!arm_feature(env, ARM_FEATURE_V6))
1616 goto bad_reg;
1617 return env->cp15.c0_c1[op2];
1618 case 2:
1619 if (!arm_feature(env, ARM_FEATURE_V6))
1620 goto bad_reg;
1621 return env->cp15.c0_c2[op2];
1622 case 3: case 4: case 5: case 6: case 7:
1623 return 0;
1624 default:
1625 goto bad_reg;
1626 }
1627 case 1:
1628 /* These registers aren't documented on arm11 cores. However
1629 Linux looks at them anyway. */
1630 if (!arm_feature(env, ARM_FEATURE_V6))
1631 goto bad_reg;
1632 if (crm != 0)
1633 goto bad_reg;
1634 if (!arm_feature(env, ARM_FEATURE_V7))
1635 return 0;
1636
1637 switch (op2) {
1638 case 0:
1639 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1640 case 1:
1641 return env->cp15.c0_clid;
1642 case 7:
1643 return 0;
1644 }
1645 goto bad_reg;
1646 case 2:
1647 if (op2 != 0 || crm != 0)
1648 goto bad_reg;
1649 return env->cp15.c0_cssel;
1650 default:
1651 goto bad_reg;
1652 }
1653 case 1: /* System configuration. */
1654 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1655 op2 = 0;
1656 switch (op2) {
1657 case 0: /* Control register. */
1658 return env->cp15.c1_sys;
1659 case 1: /* Auxiliary control register. */
1660 if (arm_feature(env, ARM_FEATURE_XSCALE))
1661 return env->cp15.c1_xscaleauxcr;
1662 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1663 goto bad_reg;
1664 switch (ARM_CPUID(env)) {
1665 case ARM_CPUID_ARM1026:
1666 return 1;
1667 case ARM_CPUID_ARM1136:
1668 case ARM_CPUID_ARM1136_R2:
1669 return 7;
1670 case ARM_CPUID_ARM11MPCORE:
1671 return 1;
1672 case ARM_CPUID_CORTEXA8:
1673 return 2;
1674 case ARM_CPUID_CORTEXA9:
1675 return 0;
1676 default:
1677 goto bad_reg;
1678 }
1679 case 2: /* Coprocessor access register. */
1680 if (arm_feature(env, ARM_FEATURE_XSCALE))
1681 goto bad_reg;
1682 return env->cp15.c1_coproc;
1683 default:
1684 goto bad_reg;
1685 }
1686 case 2: /* MMU Page table control / MPU cache control. */
1687 if (arm_feature(env, ARM_FEATURE_MPU)) {
1688 switch (op2) {
1689 case 0:
1690 return env->cp15.c2_data;
1691 break;
1692 case 1:
1693 return env->cp15.c2_insn;
1694 break;
1695 default:
1696 goto bad_reg;
1697 }
1698 } else {
1699 switch (op2) {
1700 case 0:
1701 return env->cp15.c2_base0;
1702 case 1:
1703 return env->cp15.c2_base1;
1704 case 2:
1705 return env->cp15.c2_control;
1706 default:
1707 goto bad_reg;
1708 }
1709 }
1710 case 3: /* MMU Domain access control / MPU write buffer control. */
1711 return env->cp15.c3;
1712 case 4: /* Reserved. */
1713 goto bad_reg;
1714 case 5: /* MMU Fault status / MPU access permission. */
1715 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1716 op2 = 0;
1717 switch (op2) {
1718 case 0:
1719 if (arm_feature(env, ARM_FEATURE_MPU))
1720 return simple_mpu_ap_bits(env->cp15.c5_data);
1721 return env->cp15.c5_data;
1722 case 1:
1723 if (arm_feature(env, ARM_FEATURE_MPU))
1724 return simple_mpu_ap_bits(env->cp15.c5_data);
1725 return env->cp15.c5_insn;
1726 case 2:
1727 if (!arm_feature(env, ARM_FEATURE_MPU))
1728 goto bad_reg;
1729 return env->cp15.c5_data;
1730 case 3:
1731 if (!arm_feature(env, ARM_FEATURE_MPU))
1732 goto bad_reg;
1733 return env->cp15.c5_insn;
1734 default:
1735 goto bad_reg;
1736 }
1737 case 6: /* MMU Fault address. */
1738 if (arm_feature(env, ARM_FEATURE_MPU)) {
1739 if (crm >= 8)
1740 goto bad_reg;
1741 return env->cp15.c6_region[crm];
1742 } else {
1743 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1744 op2 = 0;
1745 switch (op2) {
1746 case 0:
1747 return env->cp15.c6_data;
1748 case 1:
1749 if (arm_feature(env, ARM_FEATURE_V6)) {
1750 /* Watchpoint Fault Adrress. */
1751 return 0; /* Not implemented. */
1752 } else {
1753 /* Instruction Fault Adrress. */
1754 /* Arm9 doesn't have an IFAR, but implementing it anyway
1755 shouldn't do any harm. */
1756 return env->cp15.c6_insn;
1757 }
1758 case 2:
1759 if (arm_feature(env, ARM_FEATURE_V6)) {
1760 /* Instruction Fault Adrress. */
1761 return env->cp15.c6_insn;
1762 } else {
1763 goto bad_reg;
1764 }
1765 default:
1766 goto bad_reg;
1767 }
1768 }
1769 case 7: /* Cache control. */
1770 /* FIXME: Should only clear Z flag if destination is r15. */
1771 env->ZF = 0;
1772 return 0;
1773 case 8: /* MMU TLB control. */
1774 goto bad_reg;
1775 case 9: /* Cache lockdown. */
1776 switch (op1) {
1777 case 0: /* L1 cache. */
1778 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1779 return 0;
1780 switch (op2) {
1781 case 0:
1782 return env->cp15.c9_data;
1783 case 1:
1784 return env->cp15.c9_insn;
1785 default:
1786 goto bad_reg;
1787 }
1788 case 1: /* L2 cache */
1789 if (crm != 0)
1790 goto bad_reg;
1791 /* L2 Lockdown and Auxiliary control. */
1792 return 0;
1793 default:
1794 goto bad_reg;
1795 }
1796 case 10: /* MMU TLB lockdown. */
1797 /* ??? TLB lockdown not implemented. */
1798 return 0;
1799 case 11: /* TCM DMA control. */
1800 case 12: /* Reserved. */
1801 goto bad_reg;
1802 case 13: /* Process ID. */
1803 switch (op2) {
1804 case 0:
1805 return env->cp15.c13_fcse;
1806 case 1:
1807 return env->cp15.c13_context;
1808 default:
1809 goto bad_reg;
1810 }
1811 case 14: /* Reserved. */
1812 goto bad_reg;
1813 case 15: /* Implementation specific. */
1814 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1815 if (op2 == 0 && crm == 1)
1816 return env->cp15.c15_cpar;
1817
1818 goto bad_reg;
1819 }
1820 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1821 switch (crm) {
1822 case 0:
1823 return 0;
1824 case 1: /* Read TI925T configuration. */
1825 return env->cp15.c15_ticonfig;
1826 case 2: /* Read I_max. */
1827 return env->cp15.c15_i_max;
1828 case 3: /* Read I_min. */
1829 return env->cp15.c15_i_min;
1830 case 4: /* Read thread-ID. */
1831 return env->cp15.c15_threadid;
1832 case 8: /* TI925T_status */
1833 return 0;
1834 }
1835 /* TODO: Peripheral port remap register:
1836 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1837 * controller base address at $rn & ~0xfff and map size of
1838 * 0x200 << ($rn & 0xfff), when MMU is off. */
1839 goto bad_reg;
1840 }
1841 return 0;
1842 }
1843 bad_reg:
1844 /* ??? For debugging only. Should raise illegal instruction exception. */
1845 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1846 (insn >> 16) & 0xf, crm, op1, op2);
1847 return 0;
1848 }
1849
1850 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1851 {
1852 if ((env->uncached_cpsr & CPSR_M) == mode) {
1853 env->regs[13] = val;
1854 } else {
1855 env->banked_r13[bank_number(mode)] = val;
1856 }
1857 }
1858
1859 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1860 {
1861 if ((env->uncached_cpsr & CPSR_M) == mode) {
1862 return env->regs[13];
1863 } else {
1864 return env->banked_r13[bank_number(mode)];
1865 }
1866 }
1867
1868 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1869 {
1870 switch (reg) {
1871 case 0: /* APSR */
1872 return xpsr_read(env) & 0xf8000000;
1873 case 1: /* IAPSR */
1874 return xpsr_read(env) & 0xf80001ff;
1875 case 2: /* EAPSR */
1876 return xpsr_read(env) & 0xff00fc00;
1877 case 3: /* xPSR */
1878 return xpsr_read(env) & 0xff00fdff;
1879 case 5: /* IPSR */
1880 return xpsr_read(env) & 0x000001ff;
1881 case 6: /* EPSR */
1882 return xpsr_read(env) & 0x0700fc00;
1883 case 7: /* IEPSR */
1884 return xpsr_read(env) & 0x0700edff;
1885 case 8: /* MSP */
1886 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1887 case 9: /* PSP */
1888 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1889 case 16: /* PRIMASK */
1890 return (env->uncached_cpsr & CPSR_I) != 0;
1891 case 17: /* FAULTMASK */
1892 return (env->uncached_cpsr & CPSR_F) != 0;
1893 case 18: /* BASEPRI */
1894 case 19: /* BASEPRI_MAX */
1895 return env->v7m.basepri;
1896 case 20: /* CONTROL */
1897 return env->v7m.control;
1898 default:
1899 /* ??? For debugging only. */
1900 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1901 return 0;
1902 }
1903 }
1904
1905 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1906 {
1907 switch (reg) {
1908 case 0: /* APSR */
1909 xpsr_write(env, val, 0xf8000000);
1910 break;
1911 case 1: /* IAPSR */
1912 xpsr_write(env, val, 0xf8000000);
1913 break;
1914 case 2: /* EAPSR */
1915 xpsr_write(env, val, 0xfe00fc00);
1916 break;
1917 case 3: /* xPSR */
1918 xpsr_write(env, val, 0xfe00fc00);
1919 break;
1920 case 5: /* IPSR */
1921 /* IPSR bits are readonly. */
1922 break;
1923 case 6: /* EPSR */
1924 xpsr_write(env, val, 0x0600fc00);
1925 break;
1926 case 7: /* IEPSR */
1927 xpsr_write(env, val, 0x0600fc00);
1928 break;
1929 case 8: /* MSP */
1930 if (env->v7m.current_sp)
1931 env->v7m.other_sp = val;
1932 else
1933 env->regs[13] = val;
1934 break;
1935 case 9: /* PSP */
1936 if (env->v7m.current_sp)
1937 env->regs[13] = val;
1938 else
1939 env->v7m.other_sp = val;
1940 break;
1941 case 16: /* PRIMASK */
1942 if (val & 1)
1943 env->uncached_cpsr |= CPSR_I;
1944 else
1945 env->uncached_cpsr &= ~CPSR_I;
1946 break;
1947 case 17: /* FAULTMASK */
1948 if (val & 1)
1949 env->uncached_cpsr |= CPSR_F;
1950 else
1951 env->uncached_cpsr &= ~CPSR_F;
1952 break;
1953 case 18: /* BASEPRI */
1954 env->v7m.basepri = val & 0xff;
1955 break;
1956 case 19: /* BASEPRI_MAX */
1957 val &= 0xff;
1958 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1959 env->v7m.basepri = val;
1960 break;
1961 case 20: /* CONTROL */
1962 env->v7m.control = val & 3;
1963 switch_v7m_sp(env, (val & 2) != 0);
1964 break;
1965 default:
1966 /* ??? For debugging only. */
1967 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1968 return;
1969 }
1970 }
1971
1972 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1973 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1974 void *opaque)
1975 {
1976 if (cpnum < 0 || cpnum > 14) {
1977 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1978 return;
1979 }
1980
1981 env->cp[cpnum].cp_read = cp_read;
1982 env->cp[cpnum].cp_write = cp_write;
1983 env->cp[cpnum].opaque = opaque;
1984 }
1985
1986 #endif
1987
1988 /* Note that signed overflow is undefined in C. The following routines are
1989 careful to use unsigned types where modulo arithmetic is required.
1990 Failure to do so _will_ break on newer gcc. */
1991
1992 /* Signed saturating arithmetic. */
1993
1994 /* Perform 16-bit signed saturating addition. */
1995 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1996 {
1997 uint16_t res;
1998
1999 res = a + b;
2000 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2001 if (a & 0x8000)
2002 res = 0x8000;
2003 else
2004 res = 0x7fff;
2005 }
2006 return res;
2007 }
2008
2009 /* Perform 8-bit signed saturating addition. */
2010 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2011 {
2012 uint8_t res;
2013
2014 res = a + b;
2015 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2016 if (a & 0x80)
2017 res = 0x80;
2018 else
2019 res = 0x7f;
2020 }
2021 return res;
2022 }
2023
2024 /* Perform 16-bit signed saturating subtraction. */
2025 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2026 {
2027 uint16_t res;
2028
2029 res = a - b;
2030 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2031 if (a & 0x8000)
2032 res = 0x8000;
2033 else
2034 res = 0x7fff;
2035 }
2036 return res;
2037 }
2038
2039 /* Perform 8-bit signed saturating subtraction. */
2040 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2041 {
2042 uint8_t res;
2043
2044 res = a - b;
2045 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2046 if (a & 0x80)
2047 res = 0x80;
2048 else
2049 res = 0x7f;
2050 }
2051 return res;
2052 }
2053
2054 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2055 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2056 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2057 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2058 #define PFX q
2059
2060 #include "op_addsub.h"
2061
2062 /* Unsigned saturating arithmetic. */
2063 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2064 {
2065 uint16_t res;
2066 res = a + b;
2067 if (res < a)
2068 res = 0xffff;
2069 return res;
2070 }
2071
2072 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2073 {
2074 if (a > b)
2075 return a - b;
2076 else
2077 return 0;
2078 }
2079
2080 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2081 {
2082 uint8_t res;
2083 res = a + b;
2084 if (res < a)
2085 res = 0xff;
2086 return res;
2087 }
2088
2089 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2090 {
2091 if (a > b)
2092 return a - b;
2093 else
2094 return 0;
2095 }
2096
2097 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2098 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2099 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2100 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2101 #define PFX uq
2102
2103 #include "op_addsub.h"
2104
2105 /* Signed modulo arithmetic. */
2106 #define SARITH16(a, b, n, op) do { \
2107 int32_t sum; \
2108 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2109 RESULT(sum, n, 16); \
2110 if (sum >= 0) \
2111 ge |= 3 << (n * 2); \
2112 } while(0)
2113
2114 #define SARITH8(a, b, n, op) do { \
2115 int32_t sum; \
2116 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2117 RESULT(sum, n, 8); \
2118 if (sum >= 0) \
2119 ge |= 1 << n; \
2120 } while(0)
2121
2122
2123 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2124 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2125 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2126 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2127 #define PFX s
2128 #define ARITH_GE
2129
2130 #include "op_addsub.h"
2131
2132 /* Unsigned modulo arithmetic. */
2133 #define ADD16(a, b, n) do { \
2134 uint32_t sum; \
2135 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2136 RESULT(sum, n, 16); \
2137 if ((sum >> 16) == 1) \
2138 ge |= 3 << (n * 2); \
2139 } while(0)
2140
2141 #define ADD8(a, b, n) do { \
2142 uint32_t sum; \
2143 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2144 RESULT(sum, n, 8); \
2145 if ((sum >> 8) == 1) \
2146 ge |= 1 << n; \
2147 } while(0)
2148
2149 #define SUB16(a, b, n) do { \
2150 uint32_t sum; \
2151 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2152 RESULT(sum, n, 16); \
2153 if ((sum >> 16) == 0) \
2154 ge |= 3 << (n * 2); \
2155 } while(0)
2156
2157 #define SUB8(a, b, n) do { \
2158 uint32_t sum; \
2159 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2160 RESULT(sum, n, 8); \
2161 if ((sum >> 8) == 0) \
2162 ge |= 1 << n; \
2163 } while(0)
2164
2165 #define PFX u
2166 #define ARITH_GE
2167
2168 #include "op_addsub.h"
2169
2170 /* Halved signed arithmetic. */
2171 #define ADD16(a, b, n) \
2172 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2173 #define SUB16(a, b, n) \
2174 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2175 #define ADD8(a, b, n) \
2176 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2177 #define SUB8(a, b, n) \
2178 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2179 #define PFX sh
2180
2181 #include "op_addsub.h"
2182
2183 /* Halved unsigned arithmetic. */
2184 #define ADD16(a, b, n) \
2185 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2186 #define SUB16(a, b, n) \
2187 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2188 #define ADD8(a, b, n) \
2189 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2190 #define SUB8(a, b, n) \
2191 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2192 #define PFX uh
2193
2194 #include "op_addsub.h"
2195
2196 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2197 {
2198 if (a > b)
2199 return a - b;
2200 else
2201 return b - a;
2202 }
2203
2204 /* Unsigned sum of absolute byte differences. */
2205 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2206 {
2207 uint32_t sum;
2208 sum = do_usad(a, b);
2209 sum += do_usad(a >> 8, b >> 8);
2210 sum += do_usad(a >> 16, b >>16);
2211 sum += do_usad(a >> 24, b >> 24);
2212 return sum;
2213 }
2214
2215 /* For ARMv6 SEL instruction. */
2216 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2217 {
2218 uint32_t mask;
2219
2220 mask = 0;
2221 if (flags & 1)
2222 mask |= 0xff;
2223 if (flags & 2)
2224 mask |= 0xff00;
2225 if (flags & 4)
2226 mask |= 0xff0000;
2227 if (flags & 8)
2228 mask |= 0xff000000;
2229 return (a & mask) | (b & ~mask);
2230 }
2231
2232 uint32_t HELPER(logicq_cc)(uint64_t val)
2233 {
2234 return (val >> 32) | (val != 0);
2235 }
2236
2237 /* VFP support. We follow the convention used for VFP instrunctions:
2238 Single precition routines have a "s" suffix, double precision a
2239 "d" suffix. */
2240
2241 /* Convert host exception flags to vfp form. */
2242 static inline int vfp_exceptbits_from_host(int host_bits)
2243 {
2244 int target_bits = 0;
2245
2246 if (host_bits & float_flag_invalid)
2247 target_bits |= 1;
2248 if (host_bits & float_flag_divbyzero)
2249 target_bits |= 2;
2250 if (host_bits & float_flag_overflow)
2251 target_bits |= 4;
2252 if (host_bits & float_flag_underflow)
2253 target_bits |= 8;
2254 if (host_bits & float_flag_inexact)
2255 target_bits |= 0x10;
2256 if (host_bits & float_flag_input_denormal)
2257 target_bits |= 0x80;
2258 return target_bits;
2259 }
2260
2261 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2262 {
2263 int i;
2264 uint32_t fpscr;
2265
2266 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2267 | (env->vfp.vec_len << 16)
2268 | (env->vfp.vec_stride << 20);
2269 i = get_float_exception_flags(&env->vfp.fp_status);
2270 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2271 fpscr |= vfp_exceptbits_from_host(i);
2272 return fpscr;
2273 }
2274
2275 uint32_t vfp_get_fpscr(CPUState *env)
2276 {
2277 return HELPER(vfp_get_fpscr)(env);
2278 }
2279
2280 /* Convert vfp exception flags to target form. */
2281 static inline int vfp_exceptbits_to_host(int target_bits)
2282 {
2283 int host_bits = 0;
2284
2285 if (target_bits & 1)
2286 host_bits |= float_flag_invalid;
2287 if (target_bits & 2)
2288 host_bits |= float_flag_divbyzero;
2289 if (target_bits & 4)
2290 host_bits |= float_flag_overflow;
2291 if (target_bits & 8)
2292 host_bits |= float_flag_underflow;
2293 if (target_bits & 0x10)
2294 host_bits |= float_flag_inexact;
2295 if (target_bits & 0x80)
2296 host_bits |= float_flag_input_denormal;
2297 return host_bits;
2298 }
2299
2300 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2301 {
2302 int i;
2303 uint32_t changed;
2304
2305 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2306 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2307 env->vfp.vec_len = (val >> 16) & 7;
2308 env->vfp.vec_stride = (val >> 20) & 3;
2309
2310 changed ^= val;
2311 if (changed & (3 << 22)) {
2312 i = (val >> 22) & 3;
2313 switch (i) {
2314 case 0:
2315 i = float_round_nearest_even;
2316 break;
2317 case 1:
2318 i = float_round_up;
2319 break;
2320 case 2:
2321 i = float_round_down;
2322 break;
2323 case 3:
2324 i = float_round_to_zero;
2325 break;
2326 }
2327 set_float_rounding_mode(i, &env->vfp.fp_status);
2328 }
2329 if (changed & (1 << 24)) {
2330 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2331 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2332 }
2333 if (changed & (1 << 25))
2334 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2335
2336 i = vfp_exceptbits_to_host(val);
2337 set_float_exception_flags(i, &env->vfp.fp_status);
2338 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2339 }
2340
2341 void vfp_set_fpscr(CPUState *env, uint32_t val)
2342 {
2343 HELPER(vfp_set_fpscr)(env, val);
2344 }
2345
2346 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2347
2348 #define VFP_BINOP(name) \
2349 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2350 { \
2351 return float32_ ## name (a, b, &env->vfp.fp_status); \
2352 } \
2353 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2354 { \
2355 return float64_ ## name (a, b, &env->vfp.fp_status); \
2356 }
2357 VFP_BINOP(add)
2358 VFP_BINOP(sub)
2359 VFP_BINOP(mul)
2360 VFP_BINOP(div)
2361 #undef VFP_BINOP
2362
2363 float32 VFP_HELPER(neg, s)(float32 a)
2364 {
2365 return float32_chs(a);
2366 }
2367
2368 float64 VFP_HELPER(neg, d)(float64 a)
2369 {
2370 return float64_chs(a);
2371 }
2372
2373 float32 VFP_HELPER(abs, s)(float32 a)
2374 {
2375 return float32_abs(a);
2376 }
2377
2378 float64 VFP_HELPER(abs, d)(float64 a)
2379 {
2380 return float64_abs(a);
2381 }
2382
2383 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2384 {
2385 return float32_sqrt(a, &env->vfp.fp_status);
2386 }
2387
2388 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2389 {
2390 return float64_sqrt(a, &env->vfp.fp_status);
2391 }
2392
2393 /* XXX: check quiet/signaling case */
2394 #define DO_VFP_cmp(p, type) \
2395 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2396 { \
2397 uint32_t flags; \
2398 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2399 case 0: flags = 0x6; break; \
2400 case -1: flags = 0x8; break; \
2401 case 1: flags = 0x2; break; \
2402 default: case 2: flags = 0x3; break; \
2403 } \
2404 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2405 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2406 } \
2407 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2408 { \
2409 uint32_t flags; \
2410 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2411 case 0: flags = 0x6; break; \
2412 case -1: flags = 0x8; break; \
2413 case 1: flags = 0x2; break; \
2414 default: case 2: flags = 0x3; break; \
2415 } \
2416 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2417 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2418 }
2419 DO_VFP_cmp(s, float32)
2420 DO_VFP_cmp(d, float64)
2421 #undef DO_VFP_cmp
2422
2423 /* Helper routines to perform bitwise copies between float and int. */
2424 static inline float32 vfp_itos(uint32_t i)
2425 {
2426 union {
2427 uint32_t i;
2428 float32 s;
2429 } v;
2430
2431 v.i = i;
2432 return v.s;
2433 }
2434
2435 static inline uint32_t vfp_stoi(float32 s)
2436 {
2437 union {
2438 uint32_t i;
2439 float32 s;
2440 } v;
2441
2442 v.s = s;
2443 return v.i;
2444 }
2445
2446 static inline float64 vfp_itod(uint64_t i)
2447 {
2448 union {
2449 uint64_t i;
2450 float64 d;
2451 } v;
2452
2453 v.i = i;
2454 return v.d;
2455 }
2456
2457 static inline uint64_t vfp_dtoi(float64 d)
2458 {
2459 union {
2460 uint64_t i;
2461 float64 d;
2462 } v;
2463
2464 v.d = d;
2465 return v.i;
2466 }
2467
2468 /* Integer to float conversion. */
2469 float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2470 {
2471 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2472 }
2473
2474 float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2475 {
2476 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2477 }
2478
2479 float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2480 {
2481 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2482 }
2483
2484 float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2485 {
2486 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2487 }
2488
2489 /* Float to integer conversion. */
2490 float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2491 {
2492 if (float32_is_any_nan(x)) {
2493 return float32_zero;
2494 }
2495 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2496 }
2497
2498 float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2499 {
2500 if (float64_is_any_nan(x)) {
2501 return float32_zero;
2502 }
2503 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2504 }
2505
2506 float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2507 {
2508 if (float32_is_any_nan(x)) {
2509 return float32_zero;
2510 }
2511 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2512 }
2513
2514 float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2515 {
2516 if (float64_is_any_nan(x)) {
2517 return float32_zero;
2518 }
2519 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2520 }
2521
2522 float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2523 {
2524 if (float32_is_any_nan(x)) {
2525 return float32_zero;
2526 }
2527 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2528 }
2529
2530 float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2531 {
2532 if (float64_is_any_nan(x)) {
2533 return float32_zero;
2534 }
2535 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2536 }
2537
2538 float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2539 {
2540 if (float32_is_any_nan(x)) {
2541 return float32_zero;
2542 }
2543 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2544 }
2545
2546 float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2547 {
2548 if (float64_is_any_nan(x)) {
2549 return float32_zero;
2550 }
2551 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2552 }
2553
2554 /* floating point conversion */
2555 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2556 {
2557 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2558 /* ARM requires that S<->D conversion of any kind of NaN generates
2559 * a quiet NaN by forcing the most significant frac bit to 1.
2560 */
2561 return float64_maybe_silence_nan(r);
2562 }
2563
2564 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2565 {
2566 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2567 /* ARM requires that S<->D conversion of any kind of NaN generates
2568 * a quiet NaN by forcing the most significant frac bit to 1.
2569 */
2570 return float32_maybe_silence_nan(r);
2571 }
2572
2573 /* VFP3 fixed point conversion. */
2574 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2575 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2576 { \
2577 ftype tmp; \
2578 tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \
2579 &env->vfp.fp_status); \
2580 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2581 } \
2582 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2583 { \
2584 ftype tmp; \
2585 if (ftype##_is_any_nan(x)) { \
2586 return ftype##_zero; \
2587 } \
2588 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2589 return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \
2590 &env->vfp.fp_status)); \
2591 }
2592
2593 VFP_CONV_FIX(sh, d, float64, int16, )
2594 VFP_CONV_FIX(sl, d, float64, int32, )
2595 VFP_CONV_FIX(uh, d, float64, uint16, u)
2596 VFP_CONV_FIX(ul, d, float64, uint32, u)
2597 VFP_CONV_FIX(sh, s, float32, int16, )
2598 VFP_CONV_FIX(sl, s, float32, int32, )
2599 VFP_CONV_FIX(uh, s, float32, uint16, u)
2600 VFP_CONV_FIX(ul, s, float32, uint32, u)
2601 #undef VFP_CONV_FIX
2602
2603 /* Half precision conversions. */
2604 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2605 {
2606 float_status *s = &env->vfp.fp_status;
2607 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2608 return float16_to_float32(a, ieee, s);
2609 }
2610
2611 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2612 {
2613 float_status *s = &env->vfp.fp_status;
2614 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2615 return float32_to_float16(a, ieee, s);
2616 }
2617
2618 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2619 {
2620 float_status *s = &env->vfp.fp_status;
2621 float32 two = int32_to_float32(2, s);
2622 return float32_sub(two, float32_mul(a, b, s), s);
2623 }
2624
2625 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2626 {
2627 float_status *s = &env->vfp.standard_fp_status;
2628 float32 two = int32_to_float32(2, s);
2629 float32 three = int32_to_float32(3, s);
2630 float32 product;
2631 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2632 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2633 product = float32_zero;
2634 } else {
2635 product = float32_mul(a, b, s);
2636 }
2637 return float32_div(float32_sub(three, product, s), two, s);
2638 }
2639
2640 /* NEON helpers. */
2641
2642 /* TODO: The architecture specifies the value that the estimate functions
2643 should return. We return the exact reciprocal/root instead. */
2644 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2645 {
2646 float_status *s = &env->vfp.fp_status;
2647 float32 one = int32_to_float32(1, s);
2648 return float32_div(one, a, s);
2649 }
2650
2651 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2652 {
2653 float_status *s = &env->vfp.fp_status;
2654 float32 one = int32_to_float32(1, s);
2655 return float32_div(one, float32_sqrt(a, s), s);
2656 }
2657
2658 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2659 {
2660 float_status *s = &env->vfp.fp_status;
2661 float32 tmp;
2662 tmp = int32_to_float32(a, s);
2663 tmp = float32_scalbn(tmp, -32, s);
2664 tmp = helper_recpe_f32(tmp, env);
2665 tmp = float32_scalbn(tmp, 31, s);
2666 return float32_to_int32(tmp, s);
2667 }
2668
2669 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2670 {
2671 float_status *s = &env->vfp.fp_status;
2672 float32 tmp;
2673 tmp = int32_to_float32(a, s);
2674 tmp = float32_scalbn(tmp, -32, s);
2675 tmp = helper_rsqrte_f32(tmp, env);
2676 tmp = float32_scalbn(tmp, 31, s);
2677 return float32_to_int32(tmp, s);
2678 }
2679
2680 void HELPER(set_teecr)(CPUState *env, uint32_t val)
2681 {
2682 val &= 1;
2683 if (env->teecr != val) {
2684 env->teecr = val;
2685 tb_flush(env);
2686 }
2687 }