]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
target-arm/helper.c: tb_flush() on CPU reset
[qemu.git] / target-arm / helper.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 #include "cpu.h"
6 #include "gdbstub.h"
7 #include "helper.h"
8 #include "qemu-common.h"
9 #include "host-utils.h"
10 #if !defined(CONFIG_USER_ONLY)
11 #include "hw/loader.h"
12 #endif
13 #include "sysemu.h"
14
15 static uint32_t cortexa15_cp15_c0_c1[8] = {
16 0x00001131, 0x00011011, 0x02010555, 0x00000000,
17 0x10201105, 0x20000000, 0x01240000, 0x02102211
18 };
19
20 static uint32_t cortexa15_cp15_c0_c2[8] = {
21 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
22 };
23
24 static uint32_t cortexa9_cp15_c0_c1[8] =
25 { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
26
27 static uint32_t cortexa9_cp15_c0_c2[8] =
28 { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
29
30 static uint32_t cortexa8_cp15_c0_c1[8] =
31 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
32
33 static uint32_t cortexa8_cp15_c0_c2[8] =
34 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
35
36 static uint32_t mpcore_cp15_c0_c1[8] =
37 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
38
39 static uint32_t mpcore_cp15_c0_c2[8] =
40 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
41
42 static uint32_t arm1136_cp15_c0_c1[8] =
43 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
44
45 static uint32_t arm1136_cp15_c0_c2[8] =
46 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
47
48 static uint32_t arm1176_cp15_c0_c1[8] =
49 { 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
50
51 static uint32_t arm1176_cp15_c0_c2[8] =
52 { 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
53
54 static uint32_t cpu_arm_find_by_name(const char *name);
55
56 static inline void set_feature(CPUARMState *env, int feature)
57 {
58 env->features |= 1u << feature;
59 }
60
61 static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
62 {
63 env->cp15.c0_cpuid = id;
64 switch (id) {
65 case ARM_CPUID_ARM926:
66 set_feature(env, ARM_FEATURE_V5);
67 set_feature(env, ARM_FEATURE_VFP);
68 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
69 env->cp15.c0_cachetype = 0x1dd20d2;
70 env->cp15.c1_sys = 0x00090078;
71 break;
72 case ARM_CPUID_ARM946:
73 set_feature(env, ARM_FEATURE_V5);
74 set_feature(env, ARM_FEATURE_MPU);
75 env->cp15.c0_cachetype = 0x0f004006;
76 env->cp15.c1_sys = 0x00000078;
77 break;
78 case ARM_CPUID_ARM1026:
79 set_feature(env, ARM_FEATURE_V5);
80 set_feature(env, ARM_FEATURE_VFP);
81 set_feature(env, ARM_FEATURE_AUXCR);
82 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
83 env->cp15.c0_cachetype = 0x1dd20d2;
84 env->cp15.c1_sys = 0x00090078;
85 break;
86 case ARM_CPUID_ARM1136:
87 /* This is the 1136 r1, which is a v6K core */
88 set_feature(env, ARM_FEATURE_V6K);
89 /* Fall through */
90 case ARM_CPUID_ARM1136_R2:
91 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
92 * older core than plain "arm1136". In particular this does not
93 * have the v6K features.
94 */
95 set_feature(env, ARM_FEATURE_V6);
96 set_feature(env, ARM_FEATURE_VFP);
97 /* These ID register values are correct for 1136 but may be wrong
98 * for 1136_r2 (in particular r0p2 does not actually implement most
99 * of the ID registers).
100 */
101 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
102 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
103 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
104 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
105 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
106 env->cp15.c0_cachetype = 0x1dd20d2;
107 env->cp15.c1_sys = 0x00050078;
108 break;
109 case ARM_CPUID_ARM1176:
110 set_feature(env, ARM_FEATURE_V6K);
111 set_feature(env, ARM_FEATURE_VFP);
112 set_feature(env, ARM_FEATURE_VAPA);
113 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
114 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
115 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
116 memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
117 memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
118 env->cp15.c0_cachetype = 0x1dd20d2;
119 env->cp15.c1_sys = 0x00050078;
120 break;
121 case ARM_CPUID_ARM11MPCORE:
122 set_feature(env, ARM_FEATURE_V6K);
123 set_feature(env, ARM_FEATURE_VFP);
124 set_feature(env, ARM_FEATURE_VAPA);
125 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
126 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
127 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
128 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
129 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
130 env->cp15.c0_cachetype = 0x1dd20d2;
131 break;
132 case ARM_CPUID_CORTEXA8:
133 set_feature(env, ARM_FEATURE_V7);
134 set_feature(env, ARM_FEATURE_VFP3);
135 set_feature(env, ARM_FEATURE_NEON);
136 set_feature(env, ARM_FEATURE_THUMB2EE);
137 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
138 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
139 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
140 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
141 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
142 env->cp15.c0_cachetype = 0x82048004;
143 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
144 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
145 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
146 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
147 env->cp15.c1_sys = 0x00c50078;
148 break;
149 case ARM_CPUID_CORTEXA9:
150 set_feature(env, ARM_FEATURE_V7);
151 set_feature(env, ARM_FEATURE_VFP3);
152 set_feature(env, ARM_FEATURE_VFP_FP16);
153 set_feature(env, ARM_FEATURE_NEON);
154 set_feature(env, ARM_FEATURE_THUMB2EE);
155 /* Note that A9 supports the MP extensions even for
156 * A9UP and single-core A9MP (which are both different
157 * and valid configurations; we don't model A9UP).
158 */
159 set_feature(env, ARM_FEATURE_V7MP);
160 env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
161 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
162 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
163 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
164 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
165 env->cp15.c0_cachetype = 0x80038003;
166 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
167 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
168 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
169 env->cp15.c1_sys = 0x00c50078;
170 break;
171 case ARM_CPUID_CORTEXA15:
172 set_feature(env, ARM_FEATURE_V7);
173 set_feature(env, ARM_FEATURE_VFP4);
174 set_feature(env, ARM_FEATURE_VFP_FP16);
175 set_feature(env, ARM_FEATURE_NEON);
176 set_feature(env, ARM_FEATURE_THUMB2EE);
177 set_feature(env, ARM_FEATURE_ARM_DIV);
178 set_feature(env, ARM_FEATURE_V7MP);
179 set_feature(env, ARM_FEATURE_GENERIC_TIMER);
180 env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
181 env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
182 env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
183 memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
184 memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
185 env->cp15.c0_cachetype = 0x8444c004;
186 env->cp15.c0_clid = 0x0a200023;
187 env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
188 env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
189 env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
190 env->cp15.c1_sys = 0x00c50078;
191 break;
192 case ARM_CPUID_CORTEXM3:
193 set_feature(env, ARM_FEATURE_V7);
194 set_feature(env, ARM_FEATURE_M);
195 break;
196 case ARM_CPUID_ANY: /* For userspace emulation. */
197 set_feature(env, ARM_FEATURE_V7);
198 set_feature(env, ARM_FEATURE_VFP4);
199 set_feature(env, ARM_FEATURE_VFP_FP16);
200 set_feature(env, ARM_FEATURE_NEON);
201 set_feature(env, ARM_FEATURE_THUMB2EE);
202 set_feature(env, ARM_FEATURE_ARM_DIV);
203 set_feature(env, ARM_FEATURE_V7MP);
204 break;
205 case ARM_CPUID_TI915T:
206 case ARM_CPUID_TI925T:
207 set_feature(env, ARM_FEATURE_V4T);
208 set_feature(env, ARM_FEATURE_OMAPCP);
209 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
210 env->cp15.c0_cachetype = 0x5109149;
211 env->cp15.c1_sys = 0x00000070;
212 env->cp15.c15_i_max = 0x000;
213 env->cp15.c15_i_min = 0xff0;
214 break;
215 case ARM_CPUID_PXA250:
216 case ARM_CPUID_PXA255:
217 case ARM_CPUID_PXA260:
218 case ARM_CPUID_PXA261:
219 case ARM_CPUID_PXA262:
220 set_feature(env, ARM_FEATURE_V5);
221 set_feature(env, ARM_FEATURE_XSCALE);
222 /* JTAG_ID is ((id << 28) | 0x09265013) */
223 env->cp15.c0_cachetype = 0xd172172;
224 env->cp15.c1_sys = 0x00000078;
225 break;
226 case ARM_CPUID_PXA270_A0:
227 case ARM_CPUID_PXA270_A1:
228 case ARM_CPUID_PXA270_B0:
229 case ARM_CPUID_PXA270_B1:
230 case ARM_CPUID_PXA270_C0:
231 case ARM_CPUID_PXA270_C5:
232 set_feature(env, ARM_FEATURE_V5);
233 set_feature(env, ARM_FEATURE_XSCALE);
234 /* JTAG_ID is ((id << 28) | 0x09265013) */
235 set_feature(env, ARM_FEATURE_IWMMXT);
236 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
237 env->cp15.c0_cachetype = 0xd172172;
238 env->cp15.c1_sys = 0x00000078;
239 break;
240 case ARM_CPUID_SA1100:
241 case ARM_CPUID_SA1110:
242 set_feature(env, ARM_FEATURE_STRONGARM);
243 env->cp15.c1_sys = 0x00000070;
244 break;
245 default:
246 cpu_abort(env, "Bad CPU ID: %x\n", id);
247 break;
248 }
249
250 /* Some features automatically imply others: */
251 if (arm_feature(env, ARM_FEATURE_V7)) {
252 set_feature(env, ARM_FEATURE_VAPA);
253 set_feature(env, ARM_FEATURE_THUMB2);
254 if (!arm_feature(env, ARM_FEATURE_M)) {
255 set_feature(env, ARM_FEATURE_V6K);
256 } else {
257 set_feature(env, ARM_FEATURE_V6);
258 }
259 }
260 if (arm_feature(env, ARM_FEATURE_V6K)) {
261 set_feature(env, ARM_FEATURE_V6);
262 }
263 if (arm_feature(env, ARM_FEATURE_V6)) {
264 set_feature(env, ARM_FEATURE_V5);
265 if (!arm_feature(env, ARM_FEATURE_M)) {
266 set_feature(env, ARM_FEATURE_AUXCR);
267 }
268 }
269 if (arm_feature(env, ARM_FEATURE_V5)) {
270 set_feature(env, ARM_FEATURE_V4T);
271 }
272 if (arm_feature(env, ARM_FEATURE_M)) {
273 set_feature(env, ARM_FEATURE_THUMB_DIV);
274 }
275 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
276 set_feature(env, ARM_FEATURE_THUMB_DIV);
277 }
278 if (arm_feature(env, ARM_FEATURE_VFP4)) {
279 set_feature(env, ARM_FEATURE_VFP3);
280 }
281 if (arm_feature(env, ARM_FEATURE_VFP3)) {
282 set_feature(env, ARM_FEATURE_VFP);
283 }
284 }
285
286 void cpu_reset(CPUARMState *env)
287 {
288 uint32_t id;
289 uint32_t tmp = 0;
290
291 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
292 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
293 log_cpu_state(env, 0);
294 }
295
296 id = env->cp15.c0_cpuid;
297 tmp = env->cp15.c15_config_base_address;
298 memset(env, 0, offsetof(CPUARMState, breakpoints));
299 if (id)
300 cpu_reset_model_id(env, id);
301 env->cp15.c15_config_base_address = tmp;
302 #if defined (CONFIG_USER_ONLY)
303 env->uncached_cpsr = ARM_CPU_MODE_USR;
304 /* For user mode we must enable access to coprocessors */
305 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
306 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
307 env->cp15.c15_cpar = 3;
308 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
309 env->cp15.c15_cpar = 1;
310 }
311 #else
312 /* SVC mode with interrupts disabled. */
313 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
314 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
315 clear at reset. Initial SP and PC are loaded from ROM. */
316 if (IS_M(env)) {
317 uint32_t pc;
318 uint8_t *rom;
319 env->uncached_cpsr &= ~CPSR_I;
320 rom = rom_ptr(0);
321 if (rom) {
322 /* We should really use ldl_phys here, in case the guest
323 modified flash and reset itself. However images
324 loaded via -kernel have not been copied yet, so load the
325 values directly from there. */
326 env->regs[13] = ldl_p(rom);
327 pc = ldl_p(rom + 4);
328 env->thumb = pc & 1;
329 env->regs[15] = pc & ~1;
330 }
331 }
332 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
333 env->cp15.c2_base_mask = 0xffffc000u;
334 /* v7 performance monitor control register: same implementor
335 * field as main ID register, and we implement no event counters.
336 */
337 env->cp15.c9_pmcr = (id & 0xff000000);
338 #endif
339 set_flush_to_zero(1, &env->vfp.standard_fp_status);
340 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
341 set_default_nan_mode(1, &env->vfp.standard_fp_status);
342 set_float_detect_tininess(float_tininess_before_rounding,
343 &env->vfp.fp_status);
344 set_float_detect_tininess(float_tininess_before_rounding,
345 &env->vfp.standard_fp_status);
346 tlb_flush(env, 1);
347 /* Reset is a state change for some CPUState fields which we
348 * bake assumptions about into translated code, so we need to
349 * tb_flush().
350 */
351 tb_flush(env);
352 }
353
354 static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
355 {
356 int nregs;
357
358 /* VFP data registers are always little-endian. */
359 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
360 if (reg < nregs) {
361 stfq_le_p(buf, env->vfp.regs[reg]);
362 return 8;
363 }
364 if (arm_feature(env, ARM_FEATURE_NEON)) {
365 /* Aliases for Q regs. */
366 nregs += 16;
367 if (reg < nregs) {
368 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
369 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
370 return 16;
371 }
372 }
373 switch (reg - nregs) {
374 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
375 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
376 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
377 }
378 return 0;
379 }
380
381 static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
382 {
383 int nregs;
384
385 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
386 if (reg < nregs) {
387 env->vfp.regs[reg] = ldfq_le_p(buf);
388 return 8;
389 }
390 if (arm_feature(env, ARM_FEATURE_NEON)) {
391 nregs += 16;
392 if (reg < nregs) {
393 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
394 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
395 return 16;
396 }
397 }
398 switch (reg - nregs) {
399 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
400 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
401 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
402 }
403 return 0;
404 }
405
406 CPUARMState *cpu_arm_init(const char *cpu_model)
407 {
408 CPUARMState *env;
409 uint32_t id;
410 static int inited = 0;
411
412 id = cpu_arm_find_by_name(cpu_model);
413 if (id == 0)
414 return NULL;
415 env = g_malloc0(sizeof(CPUARMState));
416 cpu_exec_init(env);
417 if (tcg_enabled() && !inited) {
418 inited = 1;
419 arm_translate_init();
420 }
421
422 env->cpu_model_str = cpu_model;
423 env->cp15.c0_cpuid = id;
424 cpu_reset(env);
425 if (arm_feature(env, ARM_FEATURE_NEON)) {
426 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
427 51, "arm-neon.xml", 0);
428 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
429 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
430 35, "arm-vfp3.xml", 0);
431 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
432 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
433 19, "arm-vfp.xml", 0);
434 }
435 qemu_init_vcpu(env);
436 return env;
437 }
438
439 struct arm_cpu_t {
440 uint32_t id;
441 const char *name;
442 };
443
444 static const struct arm_cpu_t arm_cpu_names[] = {
445 { ARM_CPUID_ARM926, "arm926"},
446 { ARM_CPUID_ARM946, "arm946"},
447 { ARM_CPUID_ARM1026, "arm1026"},
448 { ARM_CPUID_ARM1136, "arm1136"},
449 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
450 { ARM_CPUID_ARM1176, "arm1176"},
451 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
452 { ARM_CPUID_CORTEXM3, "cortex-m3"},
453 { ARM_CPUID_CORTEXA8, "cortex-a8"},
454 { ARM_CPUID_CORTEXA9, "cortex-a9"},
455 { ARM_CPUID_CORTEXA15, "cortex-a15" },
456 { ARM_CPUID_TI925T, "ti925t" },
457 { ARM_CPUID_PXA250, "pxa250" },
458 { ARM_CPUID_SA1100, "sa1100" },
459 { ARM_CPUID_SA1110, "sa1110" },
460 { ARM_CPUID_PXA255, "pxa255" },
461 { ARM_CPUID_PXA260, "pxa260" },
462 { ARM_CPUID_PXA261, "pxa261" },
463 { ARM_CPUID_PXA262, "pxa262" },
464 { ARM_CPUID_PXA270, "pxa270" },
465 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
466 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
467 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
468 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
469 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
470 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
471 { ARM_CPUID_ANY, "any"},
472 { 0, NULL}
473 };
474
475 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
476 {
477 int i;
478
479 (*cpu_fprintf)(f, "Available CPUs:\n");
480 for (i = 0; arm_cpu_names[i].name; i++) {
481 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
482 }
483 }
484
485 /* return 0 if not found */
486 static uint32_t cpu_arm_find_by_name(const char *name)
487 {
488 int i;
489 uint32_t id;
490
491 id = 0;
492 for (i = 0; arm_cpu_names[i].name; i++) {
493 if (strcmp(name, arm_cpu_names[i].name) == 0) {
494 id = arm_cpu_names[i].id;
495 break;
496 }
497 }
498 return id;
499 }
500
501 void cpu_arm_close(CPUARMState *env)
502 {
503 g_free(env);
504 }
505
506 static int bad_mode_switch(CPUState *env, int mode)
507 {
508 /* Return true if it is not valid for us to switch to
509 * this CPU mode (ie all the UNPREDICTABLE cases in
510 * the ARM ARM CPSRWriteByInstr pseudocode).
511 */
512 switch (mode) {
513 case ARM_CPU_MODE_USR:
514 case ARM_CPU_MODE_SYS:
515 case ARM_CPU_MODE_SVC:
516 case ARM_CPU_MODE_ABT:
517 case ARM_CPU_MODE_UND:
518 case ARM_CPU_MODE_IRQ:
519 case ARM_CPU_MODE_FIQ:
520 return 0;
521 default:
522 return 1;
523 }
524 }
525
526 uint32_t cpsr_read(CPUARMState *env)
527 {
528 int ZF;
529 ZF = (env->ZF == 0);
530 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
531 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
532 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
533 | ((env->condexec_bits & 0xfc) << 8)
534 | (env->GE << 16);
535 }
536
537 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
538 {
539 if (mask & CPSR_NZCV) {
540 env->ZF = (~val) & CPSR_Z;
541 env->NF = val;
542 env->CF = (val >> 29) & 1;
543 env->VF = (val << 3) & 0x80000000;
544 }
545 if (mask & CPSR_Q)
546 env->QF = ((val & CPSR_Q) != 0);
547 if (mask & CPSR_T)
548 env->thumb = ((val & CPSR_T) != 0);
549 if (mask & CPSR_IT_0_1) {
550 env->condexec_bits &= ~3;
551 env->condexec_bits |= (val >> 25) & 3;
552 }
553 if (mask & CPSR_IT_2_7) {
554 env->condexec_bits &= 3;
555 env->condexec_bits |= (val >> 8) & 0xfc;
556 }
557 if (mask & CPSR_GE) {
558 env->GE = (val >> 16) & 0xf;
559 }
560
561 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
562 if (bad_mode_switch(env, val & CPSR_M)) {
563 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
564 * We choose to ignore the attempt and leave the CPSR M field
565 * untouched.
566 */
567 mask &= ~CPSR_M;
568 } else {
569 switch_mode(env, val & CPSR_M);
570 }
571 }
572 mask &= ~CACHED_CPSR_BITS;
573 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
574 }
575
576 /* Sign/zero extend */
577 uint32_t HELPER(sxtb16)(uint32_t x)
578 {
579 uint32_t res;
580 res = (uint16_t)(int8_t)x;
581 res |= (uint32_t)(int8_t)(x >> 16) << 16;
582 return res;
583 }
584
585 uint32_t HELPER(uxtb16)(uint32_t x)
586 {
587 uint32_t res;
588 res = (uint16_t)(uint8_t)x;
589 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
590 return res;
591 }
592
593 uint32_t HELPER(clz)(uint32_t x)
594 {
595 return clz32(x);
596 }
597
598 int32_t HELPER(sdiv)(int32_t num, int32_t den)
599 {
600 if (den == 0)
601 return 0;
602 if (num == INT_MIN && den == -1)
603 return INT_MIN;
604 return num / den;
605 }
606
607 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
608 {
609 if (den == 0)
610 return 0;
611 return num / den;
612 }
613
614 uint32_t HELPER(rbit)(uint32_t x)
615 {
616 x = ((x & 0xff000000) >> 24)
617 | ((x & 0x00ff0000) >> 8)
618 | ((x & 0x0000ff00) << 8)
619 | ((x & 0x000000ff) << 24);
620 x = ((x & 0xf0f0f0f0) >> 4)
621 | ((x & 0x0f0f0f0f) << 4);
622 x = ((x & 0x88888888) >> 3)
623 | ((x & 0x44444444) >> 1)
624 | ((x & 0x22222222) << 1)
625 | ((x & 0x11111111) << 3);
626 return x;
627 }
628
629 uint32_t HELPER(abs)(uint32_t x)
630 {
631 return ((int32_t)x < 0) ? -x : x;
632 }
633
634 #if defined(CONFIG_USER_ONLY)
635
636 void do_interrupt (CPUState *env)
637 {
638 env->exception_index = -1;
639 }
640
641 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
642 int mmu_idx)
643 {
644 if (rw == 2) {
645 env->exception_index = EXCP_PREFETCH_ABORT;
646 env->cp15.c6_insn = address;
647 } else {
648 env->exception_index = EXCP_DATA_ABORT;
649 env->cp15.c6_data = address;
650 }
651 return 1;
652 }
653
654 /* These should probably raise undefined insn exceptions. */
655 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
656 {
657 int op1 = (insn >> 8) & 0xf;
658 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
659 return;
660 }
661
662 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
663 {
664 int op1 = (insn >> 8) & 0xf;
665 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
666 return 0;
667 }
668
669 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
670 {
671 cpu_abort(env, "cp15 insn %08x\n", insn);
672 }
673
674 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
675 {
676 cpu_abort(env, "cp15 insn %08x\n", insn);
677 }
678
679 /* These should probably raise undefined insn exceptions. */
680 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
681 {
682 cpu_abort(env, "v7m_mrs %d\n", reg);
683 }
684
685 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
686 {
687 cpu_abort(env, "v7m_mrs %d\n", reg);
688 return 0;
689 }
690
691 void switch_mode(CPUState *env, int mode)
692 {
693 if (mode != ARM_CPU_MODE_USR)
694 cpu_abort(env, "Tried to switch out of user mode\n");
695 }
696
697 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
698 {
699 cpu_abort(env, "banked r13 write\n");
700 }
701
702 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
703 {
704 cpu_abort(env, "banked r13 read\n");
705 return 0;
706 }
707
708 #else
709
710 /* Map CPU modes onto saved register banks. */
711 static inline int bank_number(CPUState *env, int mode)
712 {
713 switch (mode) {
714 case ARM_CPU_MODE_USR:
715 case ARM_CPU_MODE_SYS:
716 return 0;
717 case ARM_CPU_MODE_SVC:
718 return 1;
719 case ARM_CPU_MODE_ABT:
720 return 2;
721 case ARM_CPU_MODE_UND:
722 return 3;
723 case ARM_CPU_MODE_IRQ:
724 return 4;
725 case ARM_CPU_MODE_FIQ:
726 return 5;
727 }
728 cpu_abort(env, "Bad mode %x\n", mode);
729 return -1;
730 }
731
732 void switch_mode(CPUState *env, int mode)
733 {
734 int old_mode;
735 int i;
736
737 old_mode = env->uncached_cpsr & CPSR_M;
738 if (mode == old_mode)
739 return;
740
741 if (old_mode == ARM_CPU_MODE_FIQ) {
742 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
743 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
744 } else if (mode == ARM_CPU_MODE_FIQ) {
745 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
746 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
747 }
748
749 i = bank_number(env, old_mode);
750 env->banked_r13[i] = env->regs[13];
751 env->banked_r14[i] = env->regs[14];
752 env->banked_spsr[i] = env->spsr;
753
754 i = bank_number(env, mode);
755 env->regs[13] = env->banked_r13[i];
756 env->regs[14] = env->banked_r14[i];
757 env->spsr = env->banked_spsr[i];
758 }
759
760 static void v7m_push(CPUARMState *env, uint32_t val)
761 {
762 env->regs[13] -= 4;
763 stl_phys(env->regs[13], val);
764 }
765
766 static uint32_t v7m_pop(CPUARMState *env)
767 {
768 uint32_t val;
769 val = ldl_phys(env->regs[13]);
770 env->regs[13] += 4;
771 return val;
772 }
773
774 /* Switch to V7M main or process stack pointer. */
775 static void switch_v7m_sp(CPUARMState *env, int process)
776 {
777 uint32_t tmp;
778 if (env->v7m.current_sp != process) {
779 tmp = env->v7m.other_sp;
780 env->v7m.other_sp = env->regs[13];
781 env->regs[13] = tmp;
782 env->v7m.current_sp = process;
783 }
784 }
785
786 static void do_v7m_exception_exit(CPUARMState *env)
787 {
788 uint32_t type;
789 uint32_t xpsr;
790
791 type = env->regs[15];
792 if (env->v7m.exception != 0)
793 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
794
795 /* Switch to the target stack. */
796 switch_v7m_sp(env, (type & 4) != 0);
797 /* Pop registers. */
798 env->regs[0] = v7m_pop(env);
799 env->regs[1] = v7m_pop(env);
800 env->regs[2] = v7m_pop(env);
801 env->regs[3] = v7m_pop(env);
802 env->regs[12] = v7m_pop(env);
803 env->regs[14] = v7m_pop(env);
804 env->regs[15] = v7m_pop(env);
805 xpsr = v7m_pop(env);
806 xpsr_write(env, xpsr, 0xfffffdff);
807 /* Undo stack alignment. */
808 if (xpsr & 0x200)
809 env->regs[13] |= 4;
810 /* ??? The exception return type specifies Thread/Handler mode. However
811 this is also implied by the xPSR value. Not sure what to do
812 if there is a mismatch. */
813 /* ??? Likewise for mismatches between the CONTROL register and the stack
814 pointer. */
815 }
816
817 static void do_interrupt_v7m(CPUARMState *env)
818 {
819 uint32_t xpsr = xpsr_read(env);
820 uint32_t lr;
821 uint32_t addr;
822
823 lr = 0xfffffff1;
824 if (env->v7m.current_sp)
825 lr |= 4;
826 if (env->v7m.exception == 0)
827 lr |= 8;
828
829 /* For exceptions we just mark as pending on the NVIC, and let that
830 handle it. */
831 /* TODO: Need to escalate if the current priority is higher than the
832 one we're raising. */
833 switch (env->exception_index) {
834 case EXCP_UDEF:
835 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
836 return;
837 case EXCP_SWI:
838 env->regs[15] += 2;
839 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
840 return;
841 case EXCP_PREFETCH_ABORT:
842 case EXCP_DATA_ABORT:
843 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
844 return;
845 case EXCP_BKPT:
846 if (semihosting_enabled) {
847 int nr;
848 nr = lduw_code(env->regs[15]) & 0xff;
849 if (nr == 0xab) {
850 env->regs[15] += 2;
851 env->regs[0] = do_arm_semihosting(env);
852 return;
853 }
854 }
855 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
856 return;
857 case EXCP_IRQ:
858 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
859 break;
860 case EXCP_EXCEPTION_EXIT:
861 do_v7m_exception_exit(env);
862 return;
863 default:
864 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
865 return; /* Never happens. Keep compiler happy. */
866 }
867
868 /* Align stack pointer. */
869 /* ??? Should only do this if Configuration Control Register
870 STACKALIGN bit is set. */
871 if (env->regs[13] & 4) {
872 env->regs[13] -= 4;
873 xpsr |= 0x200;
874 }
875 /* Switch to the handler mode. */
876 v7m_push(env, xpsr);
877 v7m_push(env, env->regs[15]);
878 v7m_push(env, env->regs[14]);
879 v7m_push(env, env->regs[12]);
880 v7m_push(env, env->regs[3]);
881 v7m_push(env, env->regs[2]);
882 v7m_push(env, env->regs[1]);
883 v7m_push(env, env->regs[0]);
884 switch_v7m_sp(env, 0);
885 env->uncached_cpsr &= ~CPSR_IT;
886 env->regs[14] = lr;
887 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
888 env->regs[15] = addr & 0xfffffffe;
889 env->thumb = addr & 1;
890 }
891
892 /* Handle a CPU exception. */
893 void do_interrupt(CPUARMState *env)
894 {
895 uint32_t addr;
896 uint32_t mask;
897 int new_mode;
898 uint32_t offset;
899
900 if (IS_M(env)) {
901 do_interrupt_v7m(env);
902 return;
903 }
904 /* TODO: Vectored interrupt controller. */
905 switch (env->exception_index) {
906 case EXCP_UDEF:
907 new_mode = ARM_CPU_MODE_UND;
908 addr = 0x04;
909 mask = CPSR_I;
910 if (env->thumb)
911 offset = 2;
912 else
913 offset = 4;
914 break;
915 case EXCP_SWI:
916 if (semihosting_enabled) {
917 /* Check for semihosting interrupt. */
918 if (env->thumb) {
919 mask = lduw_code(env->regs[15] - 2) & 0xff;
920 } else {
921 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
922 }
923 /* Only intercept calls from privileged modes, to provide some
924 semblance of security. */
925 if (((mask == 0x123456 && !env->thumb)
926 || (mask == 0xab && env->thumb))
927 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
928 env->regs[0] = do_arm_semihosting(env);
929 return;
930 }
931 }
932 new_mode = ARM_CPU_MODE_SVC;
933 addr = 0x08;
934 mask = CPSR_I;
935 /* The PC already points to the next instruction. */
936 offset = 0;
937 break;
938 case EXCP_BKPT:
939 /* See if this is a semihosting syscall. */
940 if (env->thumb && semihosting_enabled) {
941 mask = lduw_code(env->regs[15]) & 0xff;
942 if (mask == 0xab
943 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
944 env->regs[15] += 2;
945 env->regs[0] = do_arm_semihosting(env);
946 return;
947 }
948 }
949 env->cp15.c5_insn = 2;
950 /* Fall through to prefetch abort. */
951 case EXCP_PREFETCH_ABORT:
952 new_mode = ARM_CPU_MODE_ABT;
953 addr = 0x0c;
954 mask = CPSR_A | CPSR_I;
955 offset = 4;
956 break;
957 case EXCP_DATA_ABORT:
958 new_mode = ARM_CPU_MODE_ABT;
959 addr = 0x10;
960 mask = CPSR_A | CPSR_I;
961 offset = 8;
962 break;
963 case EXCP_IRQ:
964 new_mode = ARM_CPU_MODE_IRQ;
965 addr = 0x18;
966 /* Disable IRQ and imprecise data aborts. */
967 mask = CPSR_A | CPSR_I;
968 offset = 4;
969 break;
970 case EXCP_FIQ:
971 new_mode = ARM_CPU_MODE_FIQ;
972 addr = 0x1c;
973 /* Disable FIQ, IRQ and imprecise data aborts. */
974 mask = CPSR_A | CPSR_I | CPSR_F;
975 offset = 4;
976 break;
977 default:
978 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
979 return; /* Never happens. Keep compiler happy. */
980 }
981 /* High vectors. */
982 if (env->cp15.c1_sys & (1 << 13)) {
983 addr += 0xffff0000;
984 }
985 switch_mode (env, new_mode);
986 env->spsr = cpsr_read(env);
987 /* Clear IT bits. */
988 env->condexec_bits = 0;
989 /* Switch to the new mode, and to the correct instruction set. */
990 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
991 env->uncached_cpsr |= mask;
992 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
993 * and we should just guard the thumb mode on V4 */
994 if (arm_feature(env, ARM_FEATURE_V4T)) {
995 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
996 }
997 env->regs[14] = env->regs[15] + offset;
998 env->regs[15] = addr;
999 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1000 }
1001
1002 /* Check section/page access permissions.
1003 Returns the page protection flags, or zero if the access is not
1004 permitted. */
1005 static inline int check_ap(CPUState *env, int ap, int domain_prot,
1006 int access_type, int is_user)
1007 {
1008 int prot_ro;
1009
1010 if (domain_prot == 3) {
1011 return PAGE_READ | PAGE_WRITE;
1012 }
1013
1014 if (access_type == 1)
1015 prot_ro = 0;
1016 else
1017 prot_ro = PAGE_READ;
1018
1019 switch (ap) {
1020 case 0:
1021 if (access_type == 1)
1022 return 0;
1023 switch ((env->cp15.c1_sys >> 8) & 3) {
1024 case 1:
1025 return is_user ? 0 : PAGE_READ;
1026 case 2:
1027 return PAGE_READ;
1028 default:
1029 return 0;
1030 }
1031 case 1:
1032 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1033 case 2:
1034 if (is_user)
1035 return prot_ro;
1036 else
1037 return PAGE_READ | PAGE_WRITE;
1038 case 3:
1039 return PAGE_READ | PAGE_WRITE;
1040 case 4: /* Reserved. */
1041 return 0;
1042 case 5:
1043 return is_user ? 0 : prot_ro;
1044 case 6:
1045 return prot_ro;
1046 case 7:
1047 if (!arm_feature (env, ARM_FEATURE_V6K))
1048 return 0;
1049 return prot_ro;
1050 default:
1051 abort();
1052 }
1053 }
1054
1055 static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
1056 {
1057 uint32_t table;
1058
1059 if (address & env->cp15.c2_mask)
1060 table = env->cp15.c2_base1 & 0xffffc000;
1061 else
1062 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1063
1064 table |= (address >> 18) & 0x3ffc;
1065 return table;
1066 }
1067
1068 static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
1069 int is_user, uint32_t *phys_ptr, int *prot,
1070 target_ulong *page_size)
1071 {
1072 int code;
1073 uint32_t table;
1074 uint32_t desc;
1075 int type;
1076 int ap;
1077 int domain;
1078 int domain_prot;
1079 uint32_t phys_addr;
1080
1081 /* Pagetable walk. */
1082 /* Lookup l1 descriptor. */
1083 table = get_level1_table_address(env, address);
1084 desc = ldl_phys(table);
1085 type = (desc & 3);
1086 domain = (desc >> 5) & 0x0f;
1087 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1088 if (type == 0) {
1089 /* Section translation fault. */
1090 code = 5;
1091 goto do_fault;
1092 }
1093 if (domain_prot == 0 || domain_prot == 2) {
1094 if (type == 2)
1095 code = 9; /* Section domain fault. */
1096 else
1097 code = 11; /* Page domain fault. */
1098 goto do_fault;
1099 }
1100 if (type == 2) {
1101 /* 1Mb section. */
1102 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1103 ap = (desc >> 10) & 3;
1104 code = 13;
1105 *page_size = 1024 * 1024;
1106 } else {
1107 /* Lookup l2 entry. */
1108 if (type == 1) {
1109 /* Coarse pagetable. */
1110 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1111 } else {
1112 /* Fine pagetable. */
1113 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1114 }
1115 desc = ldl_phys(table);
1116 switch (desc & 3) {
1117 case 0: /* Page translation fault. */
1118 code = 7;
1119 goto do_fault;
1120 case 1: /* 64k page. */
1121 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1122 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1123 *page_size = 0x10000;
1124 break;
1125 case 2: /* 4k page. */
1126 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1127 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1128 *page_size = 0x1000;
1129 break;
1130 case 3: /* 1k page. */
1131 if (type == 1) {
1132 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1133 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1134 } else {
1135 /* Page translation fault. */
1136 code = 7;
1137 goto do_fault;
1138 }
1139 } else {
1140 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1141 }
1142 ap = (desc >> 4) & 3;
1143 *page_size = 0x400;
1144 break;
1145 default:
1146 /* Never happens, but compiler isn't smart enough to tell. */
1147 abort();
1148 }
1149 code = 15;
1150 }
1151 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1152 if (!*prot) {
1153 /* Access permission fault. */
1154 goto do_fault;
1155 }
1156 *prot |= PAGE_EXEC;
1157 *phys_ptr = phys_addr;
1158 return 0;
1159 do_fault:
1160 return code | (domain << 4);
1161 }
1162
1163 static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1164 int is_user, uint32_t *phys_ptr, int *prot,
1165 target_ulong *page_size)
1166 {
1167 int code;
1168 uint32_t table;
1169 uint32_t desc;
1170 uint32_t xn;
1171 int type;
1172 int ap;
1173 int domain;
1174 int domain_prot;
1175 uint32_t phys_addr;
1176
1177 /* Pagetable walk. */
1178 /* Lookup l1 descriptor. */
1179 table = get_level1_table_address(env, address);
1180 desc = ldl_phys(table);
1181 type = (desc & 3);
1182 if (type == 0) {
1183 /* Section translation fault. */
1184 code = 5;
1185 domain = 0;
1186 goto do_fault;
1187 } else if (type == 2 && (desc & (1 << 18))) {
1188 /* Supersection. */
1189 domain = 0;
1190 } else {
1191 /* Section or page. */
1192 domain = (desc >> 5) & 0x0f;
1193 }
1194 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1195 if (domain_prot == 0 || domain_prot == 2) {
1196 if (type == 2)
1197 code = 9; /* Section domain fault. */
1198 else
1199 code = 11; /* Page domain fault. */
1200 goto do_fault;
1201 }
1202 if (type == 2) {
1203 if (desc & (1 << 18)) {
1204 /* Supersection. */
1205 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1206 *page_size = 0x1000000;
1207 } else {
1208 /* Section. */
1209 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1210 *page_size = 0x100000;
1211 }
1212 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1213 xn = desc & (1 << 4);
1214 code = 13;
1215 } else {
1216 /* Lookup l2 entry. */
1217 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1218 desc = ldl_phys(table);
1219 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1220 switch (desc & 3) {
1221 case 0: /* Page translation fault. */
1222 code = 7;
1223 goto do_fault;
1224 case 1: /* 64k page. */
1225 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1226 xn = desc & (1 << 15);
1227 *page_size = 0x10000;
1228 break;
1229 case 2: case 3: /* 4k page. */
1230 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1231 xn = desc & 1;
1232 *page_size = 0x1000;
1233 break;
1234 default:
1235 /* Never happens, but compiler isn't smart enough to tell. */
1236 abort();
1237 }
1238 code = 15;
1239 }
1240 if (domain_prot == 3) {
1241 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1242 } else {
1243 if (xn && access_type == 2)
1244 goto do_fault;
1245
1246 /* The simplified model uses AP[0] as an access control bit. */
1247 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1248 /* Access flag fault. */
1249 code = (code == 15) ? 6 : 3;
1250 goto do_fault;
1251 }
1252 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
1253 if (!*prot) {
1254 /* Access permission fault. */
1255 goto do_fault;
1256 }
1257 if (!xn) {
1258 *prot |= PAGE_EXEC;
1259 }
1260 }
1261 *phys_ptr = phys_addr;
1262 return 0;
1263 do_fault:
1264 return code | (domain << 4);
1265 }
1266
1267 static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1268 int is_user, uint32_t *phys_ptr, int *prot)
1269 {
1270 int n;
1271 uint32_t mask;
1272 uint32_t base;
1273
1274 *phys_ptr = address;
1275 for (n = 7; n >= 0; n--) {
1276 base = env->cp15.c6_region[n];
1277 if ((base & 1) == 0)
1278 continue;
1279 mask = 1 << ((base >> 1) & 0x1f);
1280 /* Keep this shift separate from the above to avoid an
1281 (undefined) << 32. */
1282 mask = (mask << 1) - 1;
1283 if (((base ^ address) & ~mask) == 0)
1284 break;
1285 }
1286 if (n < 0)
1287 return 2;
1288
1289 if (access_type == 2) {
1290 mask = env->cp15.c5_insn;
1291 } else {
1292 mask = env->cp15.c5_data;
1293 }
1294 mask = (mask >> (n * 4)) & 0xf;
1295 switch (mask) {
1296 case 0:
1297 return 1;
1298 case 1:
1299 if (is_user)
1300 return 1;
1301 *prot = PAGE_READ | PAGE_WRITE;
1302 break;
1303 case 2:
1304 *prot = PAGE_READ;
1305 if (!is_user)
1306 *prot |= PAGE_WRITE;
1307 break;
1308 case 3:
1309 *prot = PAGE_READ | PAGE_WRITE;
1310 break;
1311 case 5:
1312 if (is_user)
1313 return 1;
1314 *prot = PAGE_READ;
1315 break;
1316 case 6:
1317 *prot = PAGE_READ;
1318 break;
1319 default:
1320 /* Bad permission. */
1321 return 1;
1322 }
1323 *prot |= PAGE_EXEC;
1324 return 0;
1325 }
1326
1327 static inline int get_phys_addr(CPUState *env, uint32_t address,
1328 int access_type, int is_user,
1329 uint32_t *phys_ptr, int *prot,
1330 target_ulong *page_size)
1331 {
1332 /* Fast Context Switch Extension. */
1333 if (address < 0x02000000)
1334 address += env->cp15.c13_fcse;
1335
1336 if ((env->cp15.c1_sys & 1) == 0) {
1337 /* MMU/MPU disabled. */
1338 *phys_ptr = address;
1339 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1340 *page_size = TARGET_PAGE_SIZE;
1341 return 0;
1342 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1343 *page_size = TARGET_PAGE_SIZE;
1344 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1345 prot);
1346 } else if (env->cp15.c1_sys & (1 << 23)) {
1347 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1348 prot, page_size);
1349 } else {
1350 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1351 prot, page_size);
1352 }
1353 }
1354
1355 int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1356 int access_type, int mmu_idx)
1357 {
1358 uint32_t phys_addr;
1359 target_ulong page_size;
1360 int prot;
1361 int ret, is_user;
1362
1363 is_user = mmu_idx == MMU_USER_IDX;
1364 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1365 &page_size);
1366 if (ret == 0) {
1367 /* Map a single [sub]page. */
1368 phys_addr &= ~(uint32_t)0x3ff;
1369 address &= ~(uint32_t)0x3ff;
1370 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
1371 return 0;
1372 }
1373
1374 if (access_type == 2) {
1375 env->cp15.c5_insn = ret;
1376 env->cp15.c6_insn = address;
1377 env->exception_index = EXCP_PREFETCH_ABORT;
1378 } else {
1379 env->cp15.c5_data = ret;
1380 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1381 env->cp15.c5_data |= (1 << 11);
1382 env->cp15.c6_data = address;
1383 env->exception_index = EXCP_DATA_ABORT;
1384 }
1385 return 1;
1386 }
1387
1388 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1389 {
1390 uint32_t phys_addr;
1391 target_ulong page_size;
1392 int prot;
1393 int ret;
1394
1395 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
1396
1397 if (ret != 0)
1398 return -1;
1399
1400 return phys_addr;
1401 }
1402
1403 void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1404 {
1405 int cp_num = (insn >> 8) & 0xf;
1406 int cp_info = (insn >> 5) & 7;
1407 int src = (insn >> 16) & 0xf;
1408 int operand = insn & 0xf;
1409
1410 if (env->cp[cp_num].cp_write)
1411 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1412 cp_info, src, operand, val);
1413 }
1414
1415 uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1416 {
1417 int cp_num = (insn >> 8) & 0xf;
1418 int cp_info = (insn >> 5) & 7;
1419 int dest = (insn >> 16) & 0xf;
1420 int operand = insn & 0xf;
1421
1422 if (env->cp[cp_num].cp_read)
1423 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1424 cp_info, dest, operand);
1425 return 0;
1426 }
1427
1428 /* Return basic MPU access permission bits. */
1429 static uint32_t simple_mpu_ap_bits(uint32_t val)
1430 {
1431 uint32_t ret;
1432 uint32_t mask;
1433 int i;
1434 ret = 0;
1435 mask = 3;
1436 for (i = 0; i < 16; i += 2) {
1437 ret |= (val >> i) & mask;
1438 mask <<= 2;
1439 }
1440 return ret;
1441 }
1442
1443 /* Pad basic MPU access permission bits to extended format. */
1444 static uint32_t extended_mpu_ap_bits(uint32_t val)
1445 {
1446 uint32_t ret;
1447 uint32_t mask;
1448 int i;
1449 ret = 0;
1450 mask = 3;
1451 for (i = 0; i < 16; i += 2) {
1452 ret |= (val & mask) << i;
1453 mask <<= 2;
1454 }
1455 return ret;
1456 }
1457
1458 void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1459 {
1460 int op1;
1461 int op2;
1462 int crm;
1463
1464 op1 = (insn >> 21) & 7;
1465 op2 = (insn >> 5) & 7;
1466 crm = insn & 0xf;
1467 switch ((insn >> 16) & 0xf) {
1468 case 0:
1469 /* ID codes. */
1470 if (arm_feature(env, ARM_FEATURE_XSCALE))
1471 break;
1472 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1473 break;
1474 if (arm_feature(env, ARM_FEATURE_V7)
1475 && op1 == 2 && crm == 0 && op2 == 0) {
1476 env->cp15.c0_cssel = val & 0xf;
1477 break;
1478 }
1479 goto bad_reg;
1480 case 1: /* System configuration. */
1481 if (arm_feature(env, ARM_FEATURE_V7)
1482 && op1 == 0 && crm == 1 && op2 == 0) {
1483 env->cp15.c1_scr = val;
1484 break;
1485 }
1486 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1487 op2 = 0;
1488 switch (op2) {
1489 case 0:
1490 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1491 env->cp15.c1_sys = val;
1492 /* ??? Lots of these bits are not implemented. */
1493 /* This may enable/disable the MMU, so do a TLB flush. */
1494 tlb_flush(env, 1);
1495 break;
1496 case 1: /* Auxiliary control register. */
1497 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1498 env->cp15.c1_xscaleauxcr = val;
1499 break;
1500 }
1501 /* Not implemented. */
1502 break;
1503 case 2:
1504 if (arm_feature(env, ARM_FEATURE_XSCALE))
1505 goto bad_reg;
1506 if (env->cp15.c1_coproc != val) {
1507 env->cp15.c1_coproc = val;
1508 /* ??? Is this safe when called from within a TB? */
1509 tb_flush(env);
1510 }
1511 break;
1512 default:
1513 goto bad_reg;
1514 }
1515 break;
1516 case 2: /* MMU Page table control / MPU cache control. */
1517 if (arm_feature(env, ARM_FEATURE_MPU)) {
1518 switch (op2) {
1519 case 0:
1520 env->cp15.c2_data = val;
1521 break;
1522 case 1:
1523 env->cp15.c2_insn = val;
1524 break;
1525 default:
1526 goto bad_reg;
1527 }
1528 } else {
1529 switch (op2) {
1530 case 0:
1531 env->cp15.c2_base0 = val;
1532 break;
1533 case 1:
1534 env->cp15.c2_base1 = val;
1535 break;
1536 case 2:
1537 val &= 7;
1538 env->cp15.c2_control = val;
1539 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1540 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1541 break;
1542 default:
1543 goto bad_reg;
1544 }
1545 }
1546 break;
1547 case 3: /* MMU Domain access control / MPU write buffer control. */
1548 env->cp15.c3 = val;
1549 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1550 break;
1551 case 4: /* Reserved. */
1552 goto bad_reg;
1553 case 5: /* MMU Fault status / MPU access permission. */
1554 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1555 op2 = 0;
1556 switch (op2) {
1557 case 0:
1558 if (arm_feature(env, ARM_FEATURE_MPU))
1559 val = extended_mpu_ap_bits(val);
1560 env->cp15.c5_data = val;
1561 break;
1562 case 1:
1563 if (arm_feature(env, ARM_FEATURE_MPU))
1564 val = extended_mpu_ap_bits(val);
1565 env->cp15.c5_insn = val;
1566 break;
1567 case 2:
1568 if (!arm_feature(env, ARM_FEATURE_MPU))
1569 goto bad_reg;
1570 env->cp15.c5_data = val;
1571 break;
1572 case 3:
1573 if (!arm_feature(env, ARM_FEATURE_MPU))
1574 goto bad_reg;
1575 env->cp15.c5_insn = val;
1576 break;
1577 default:
1578 goto bad_reg;
1579 }
1580 break;
1581 case 6: /* MMU Fault address / MPU base/size. */
1582 if (arm_feature(env, ARM_FEATURE_MPU)) {
1583 if (crm >= 8)
1584 goto bad_reg;
1585 env->cp15.c6_region[crm] = val;
1586 } else {
1587 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1588 op2 = 0;
1589 switch (op2) {
1590 case 0:
1591 env->cp15.c6_data = val;
1592 break;
1593 case 1: /* ??? This is WFAR on armv6 */
1594 case 2:
1595 env->cp15.c6_insn = val;
1596 break;
1597 default:
1598 goto bad_reg;
1599 }
1600 }
1601 break;
1602 case 7: /* Cache control. */
1603 env->cp15.c15_i_max = 0x000;
1604 env->cp15.c15_i_min = 0xff0;
1605 if (op1 != 0) {
1606 goto bad_reg;
1607 }
1608 /* No cache, so nothing to do except VA->PA translations. */
1609 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1610 switch (crm) {
1611 case 4:
1612 if (arm_feature(env, ARM_FEATURE_V7)) {
1613 env->cp15.c7_par = val & 0xfffff6ff;
1614 } else {
1615 env->cp15.c7_par = val & 0xfffff1ff;
1616 }
1617 break;
1618 case 8: {
1619 uint32_t phys_addr;
1620 target_ulong page_size;
1621 int prot;
1622 int ret, is_user = op2 & 2;
1623 int access_type = op2 & 1;
1624
1625 if (op2 & 4) {
1626 /* Other states are only available with TrustZone */
1627 goto bad_reg;
1628 }
1629 ret = get_phys_addr(env, val, access_type, is_user,
1630 &phys_addr, &prot, &page_size);
1631 if (ret == 0) {
1632 /* We do not set any attribute bits in the PAR */
1633 if (page_size == (1 << 24)
1634 && arm_feature(env, ARM_FEATURE_V7)) {
1635 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1636 } else {
1637 env->cp15.c7_par = phys_addr & 0xfffff000;
1638 }
1639 } else {
1640 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1641 ((ret & (12 << 1)) >> 6) |
1642 ((ret & 0xf) << 1) | 1;
1643 }
1644 break;
1645 }
1646 }
1647 }
1648 break;
1649 case 8: /* MMU TLB control. */
1650 switch (op2) {
1651 case 0: /* Invalidate all (TLBIALL) */
1652 tlb_flush(env, 1);
1653 break;
1654 case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
1655 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1656 break;
1657 case 2: /* Invalidate by ASID (TLBIASID) */
1658 tlb_flush(env, val == 0);
1659 break;
1660 case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
1661 tlb_flush_page(env, val & TARGET_PAGE_MASK);
1662 break;
1663 default:
1664 goto bad_reg;
1665 }
1666 break;
1667 case 9:
1668 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1669 break;
1670 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1671 break; /* Ignore ReadBuffer access */
1672 switch (crm) {
1673 case 0: /* Cache lockdown. */
1674 switch (op1) {
1675 case 0: /* L1 cache. */
1676 switch (op2) {
1677 case 0:
1678 env->cp15.c9_data = val;
1679 break;
1680 case 1:
1681 env->cp15.c9_insn = val;
1682 break;
1683 default:
1684 goto bad_reg;
1685 }
1686 break;
1687 case 1: /* L2 cache. */
1688 /* Ignore writes to L2 lockdown/auxiliary registers. */
1689 break;
1690 default:
1691 goto bad_reg;
1692 }
1693 break;
1694 case 1: /* TCM memory region registers. */
1695 /* Not implemented. */
1696 goto bad_reg;
1697 case 12: /* Performance monitor control */
1698 /* Performance monitors are implementation defined in v7,
1699 * but with an ARM recommended set of registers, which we
1700 * follow (although we don't actually implement any counters)
1701 */
1702 if (!arm_feature(env, ARM_FEATURE_V7)) {
1703 goto bad_reg;
1704 }
1705 switch (op2) {
1706 case 0: /* performance monitor control register */
1707 /* only the DP, X, D and E bits are writable */
1708 env->cp15.c9_pmcr &= ~0x39;
1709 env->cp15.c9_pmcr |= (val & 0x39);
1710 break;
1711 case 1: /* Count enable set register */
1712 val &= (1 << 31);
1713 env->cp15.c9_pmcnten |= val;
1714 break;
1715 case 2: /* Count enable clear */
1716 val &= (1 << 31);
1717 env->cp15.c9_pmcnten &= ~val;
1718 break;
1719 case 3: /* Overflow flag status */
1720 env->cp15.c9_pmovsr &= ~val;
1721 break;
1722 case 4: /* Software increment */
1723 /* RAZ/WI since we don't implement the software-count event */
1724 break;
1725 case 5: /* Event counter selection register */
1726 /* Since we don't implement any events, writing to this register
1727 * is actually UNPREDICTABLE. So we choose to RAZ/WI.
1728 */
1729 break;
1730 default:
1731 goto bad_reg;
1732 }
1733 break;
1734 case 13: /* Performance counters */
1735 if (!arm_feature(env, ARM_FEATURE_V7)) {
1736 goto bad_reg;
1737 }
1738 switch (op2) {
1739 case 0: /* Cycle count register: not implemented, so RAZ/WI */
1740 break;
1741 case 1: /* Event type select */
1742 env->cp15.c9_pmxevtyper = val & 0xff;
1743 break;
1744 case 2: /* Event count register */
1745 /* Unimplemented (we have no events), RAZ/WI */
1746 break;
1747 default:
1748 goto bad_reg;
1749 }
1750 break;
1751 case 14: /* Performance monitor control */
1752 if (!arm_feature(env, ARM_FEATURE_V7)) {
1753 goto bad_reg;
1754 }
1755 switch (op2) {
1756 case 0: /* user enable */
1757 env->cp15.c9_pmuserenr = val & 1;
1758 /* changes access rights for cp registers, so flush tbs */
1759 tb_flush(env);
1760 break;
1761 case 1: /* interrupt enable set */
1762 /* We have no event counters so only the C bit can be changed */
1763 val &= (1 << 31);
1764 env->cp15.c9_pminten |= val;
1765 break;
1766 case 2: /* interrupt enable clear */
1767 val &= (1 << 31);
1768 env->cp15.c9_pminten &= ~val;
1769 break;
1770 }
1771 break;
1772 default:
1773 goto bad_reg;
1774 }
1775 break;
1776 case 10: /* MMU TLB lockdown. */
1777 /* ??? TLB lockdown not implemented. */
1778 break;
1779 case 12: /* Reserved. */
1780 goto bad_reg;
1781 case 13: /* Process ID. */
1782 switch (op2) {
1783 case 0:
1784 /* Unlike real hardware the qemu TLB uses virtual addresses,
1785 not modified virtual addresses, so this causes a TLB flush.
1786 */
1787 if (env->cp15.c13_fcse != val)
1788 tlb_flush(env, 1);
1789 env->cp15.c13_fcse = val;
1790 break;
1791 case 1:
1792 /* This changes the ASID, so do a TLB flush. */
1793 if (env->cp15.c13_context != val
1794 && !arm_feature(env, ARM_FEATURE_MPU))
1795 tlb_flush(env, 0);
1796 env->cp15.c13_context = val;
1797 break;
1798 default:
1799 goto bad_reg;
1800 }
1801 break;
1802 case 14: /* Generic timer */
1803 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1804 /* Dummy implementation: RAZ/WI for all */
1805 break;
1806 }
1807 goto bad_reg;
1808 case 15: /* Implementation specific. */
1809 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1810 if (op2 == 0 && crm == 1) {
1811 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1812 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1813 tb_flush(env);
1814 env->cp15.c15_cpar = val & 0x3fff;
1815 }
1816 break;
1817 }
1818 goto bad_reg;
1819 }
1820 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1821 switch (crm) {
1822 case 0:
1823 break;
1824 case 1: /* Set TI925T configuration. */
1825 env->cp15.c15_ticonfig = val & 0xe7;
1826 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1827 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1828 break;
1829 case 2: /* Set I_max. */
1830 env->cp15.c15_i_max = val;
1831 break;
1832 case 3: /* Set I_min. */
1833 env->cp15.c15_i_min = val;
1834 break;
1835 case 4: /* Set thread-ID. */
1836 env->cp15.c15_threadid = val & 0xffff;
1837 break;
1838 case 8: /* Wait-for-interrupt (deprecated). */
1839 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1840 break;
1841 default:
1842 goto bad_reg;
1843 }
1844 }
1845 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1846 switch (crm) {
1847 case 0:
1848 if ((op1 == 0) && (op2 == 0)) {
1849 env->cp15.c15_power_control = val;
1850 } else if ((op1 == 0) && (op2 == 1)) {
1851 env->cp15.c15_diagnostic = val;
1852 } else if ((op1 == 0) && (op2 == 2)) {
1853 env->cp15.c15_power_diagnostic = val;
1854 }
1855 default:
1856 break;
1857 }
1858 }
1859 break;
1860 }
1861 return;
1862 bad_reg:
1863 /* ??? For debugging only. Should raise illegal instruction exception. */
1864 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1865 (insn >> 16) & 0xf, crm, op1, op2);
1866 }
1867
1868 uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1869 {
1870 int op1;
1871 int op2;
1872 int crm;
1873
1874 op1 = (insn >> 21) & 7;
1875 op2 = (insn >> 5) & 7;
1876 crm = insn & 0xf;
1877 switch ((insn >> 16) & 0xf) {
1878 case 0: /* ID codes. */
1879 switch (op1) {
1880 case 0:
1881 switch (crm) {
1882 case 0:
1883 switch (op2) {
1884 case 0: /* Device ID. */
1885 return env->cp15.c0_cpuid;
1886 case 1: /* Cache Type. */
1887 return env->cp15.c0_cachetype;
1888 case 2: /* TCM status. */
1889 return 0;
1890 case 3: /* TLB type register. */
1891 return 0; /* No lockable TLB entries. */
1892 case 5: /* MPIDR */
1893 /* The MPIDR was standardised in v7; prior to
1894 * this it was implemented only in the 11MPCore.
1895 * For all other pre-v7 cores it does not exist.
1896 */
1897 if (arm_feature(env, ARM_FEATURE_V7) ||
1898 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1899 int mpidr = env->cpu_index;
1900 /* We don't support setting cluster ID ([8..11])
1901 * so these bits always RAZ.
1902 */
1903 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1904 mpidr |= (1 << 31);
1905 /* Cores which are uniprocessor (non-coherent)
1906 * but still implement the MP extensions set
1907 * bit 30. (For instance, A9UP.) However we do
1908 * not currently model any of those cores.
1909 */
1910 }
1911 return mpidr;
1912 }
1913 /* otherwise fall through to the unimplemented-reg case */
1914 default:
1915 goto bad_reg;
1916 }
1917 case 1:
1918 if (!arm_feature(env, ARM_FEATURE_V6))
1919 goto bad_reg;
1920 return env->cp15.c0_c1[op2];
1921 case 2:
1922 if (!arm_feature(env, ARM_FEATURE_V6))
1923 goto bad_reg;
1924 return env->cp15.c0_c2[op2];
1925 case 3: case 4: case 5: case 6: case 7:
1926 return 0;
1927 default:
1928 goto bad_reg;
1929 }
1930 case 1:
1931 /* These registers aren't documented on arm11 cores. However
1932 Linux looks at them anyway. */
1933 if (!arm_feature(env, ARM_FEATURE_V6))
1934 goto bad_reg;
1935 if (crm != 0)
1936 goto bad_reg;
1937 if (!arm_feature(env, ARM_FEATURE_V7))
1938 return 0;
1939
1940 switch (op2) {
1941 case 0:
1942 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1943 case 1:
1944 return env->cp15.c0_clid;
1945 case 7:
1946 return 0;
1947 }
1948 goto bad_reg;
1949 case 2:
1950 if (op2 != 0 || crm != 0)
1951 goto bad_reg;
1952 return env->cp15.c0_cssel;
1953 default:
1954 goto bad_reg;
1955 }
1956 case 1: /* System configuration. */
1957 if (arm_feature(env, ARM_FEATURE_V7)
1958 && op1 == 0 && crm == 1 && op2 == 0) {
1959 return env->cp15.c1_scr;
1960 }
1961 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1962 op2 = 0;
1963 switch (op2) {
1964 case 0: /* Control register. */
1965 return env->cp15.c1_sys;
1966 case 1: /* Auxiliary control register. */
1967 if (arm_feature(env, ARM_FEATURE_XSCALE))
1968 return env->cp15.c1_xscaleauxcr;
1969 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1970 goto bad_reg;
1971 switch (ARM_CPUID(env)) {
1972 case ARM_CPUID_ARM1026:
1973 return 1;
1974 case ARM_CPUID_ARM1136:
1975 case ARM_CPUID_ARM1136_R2:
1976 case ARM_CPUID_ARM1176:
1977 return 7;
1978 case ARM_CPUID_ARM11MPCORE:
1979 return 1;
1980 case ARM_CPUID_CORTEXA8:
1981 return 2;
1982 case ARM_CPUID_CORTEXA9:
1983 case ARM_CPUID_CORTEXA15:
1984 return 0;
1985 default:
1986 goto bad_reg;
1987 }
1988 case 2: /* Coprocessor access register. */
1989 if (arm_feature(env, ARM_FEATURE_XSCALE))
1990 goto bad_reg;
1991 return env->cp15.c1_coproc;
1992 default:
1993 goto bad_reg;
1994 }
1995 case 2: /* MMU Page table control / MPU cache control. */
1996 if (arm_feature(env, ARM_FEATURE_MPU)) {
1997 switch (op2) {
1998 case 0:
1999 return env->cp15.c2_data;
2000 break;
2001 case 1:
2002 return env->cp15.c2_insn;
2003 break;
2004 default:
2005 goto bad_reg;
2006 }
2007 } else {
2008 switch (op2) {
2009 case 0:
2010 return env->cp15.c2_base0;
2011 case 1:
2012 return env->cp15.c2_base1;
2013 case 2:
2014 return env->cp15.c2_control;
2015 default:
2016 goto bad_reg;
2017 }
2018 }
2019 case 3: /* MMU Domain access control / MPU write buffer control. */
2020 return env->cp15.c3;
2021 case 4: /* Reserved. */
2022 goto bad_reg;
2023 case 5: /* MMU Fault status / MPU access permission. */
2024 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2025 op2 = 0;
2026 switch (op2) {
2027 case 0:
2028 if (arm_feature(env, ARM_FEATURE_MPU))
2029 return simple_mpu_ap_bits(env->cp15.c5_data);
2030 return env->cp15.c5_data;
2031 case 1:
2032 if (arm_feature(env, ARM_FEATURE_MPU))
2033 return simple_mpu_ap_bits(env->cp15.c5_data);
2034 return env->cp15.c5_insn;
2035 case 2:
2036 if (!arm_feature(env, ARM_FEATURE_MPU))
2037 goto bad_reg;
2038 return env->cp15.c5_data;
2039 case 3:
2040 if (!arm_feature(env, ARM_FEATURE_MPU))
2041 goto bad_reg;
2042 return env->cp15.c5_insn;
2043 default:
2044 goto bad_reg;
2045 }
2046 case 6: /* MMU Fault address. */
2047 if (arm_feature(env, ARM_FEATURE_MPU)) {
2048 if (crm >= 8)
2049 goto bad_reg;
2050 return env->cp15.c6_region[crm];
2051 } else {
2052 if (arm_feature(env, ARM_FEATURE_OMAPCP))
2053 op2 = 0;
2054 switch (op2) {
2055 case 0:
2056 return env->cp15.c6_data;
2057 case 1:
2058 if (arm_feature(env, ARM_FEATURE_V6)) {
2059 /* Watchpoint Fault Adrress. */
2060 return 0; /* Not implemented. */
2061 } else {
2062 /* Instruction Fault Adrress. */
2063 /* Arm9 doesn't have an IFAR, but implementing it anyway
2064 shouldn't do any harm. */
2065 return env->cp15.c6_insn;
2066 }
2067 case 2:
2068 if (arm_feature(env, ARM_FEATURE_V6)) {
2069 /* Instruction Fault Adrress. */
2070 return env->cp15.c6_insn;
2071 } else {
2072 goto bad_reg;
2073 }
2074 default:
2075 goto bad_reg;
2076 }
2077 }
2078 case 7: /* Cache control. */
2079 if (crm == 4 && op1 == 0 && op2 == 0) {
2080 return env->cp15.c7_par;
2081 }
2082 /* FIXME: Should only clear Z flag if destination is r15. */
2083 env->ZF = 0;
2084 return 0;
2085 case 8: /* MMU TLB control. */
2086 goto bad_reg;
2087 case 9:
2088 switch (crm) {
2089 case 0: /* Cache lockdown */
2090 switch (op1) {
2091 case 0: /* L1 cache. */
2092 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2093 return 0;
2094 }
2095 switch (op2) {
2096 case 0:
2097 return env->cp15.c9_data;
2098 case 1:
2099 return env->cp15.c9_insn;
2100 default:
2101 goto bad_reg;
2102 }
2103 case 1: /* L2 cache */
2104 /* L2 Lockdown and Auxiliary control. */
2105 switch (op2) {
2106 case 0:
2107 /* L2 cache lockdown (A8 only) */
2108 return 0;
2109 case 2:
2110 /* L2 cache auxiliary control (A8) or control (A15) */
2111 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
2112 /* Linux wants the number of processors from here.
2113 * Might as well set the interrupt-controller bit too.
2114 */
2115 return ((smp_cpus - 1) << 24) | (1 << 23);
2116 }
2117 return 0;
2118 case 3:
2119 /* L2 cache extended control (A15) */
2120 return 0;
2121 default:
2122 goto bad_reg;
2123 }
2124 default:
2125 goto bad_reg;
2126 }
2127 break;
2128 case 12: /* Performance monitor control */
2129 if (!arm_feature(env, ARM_FEATURE_V7)) {
2130 goto bad_reg;
2131 }
2132 switch (op2) {
2133 case 0: /* performance monitor control register */
2134 return env->cp15.c9_pmcr;
2135 case 1: /* count enable set */
2136 case 2: /* count enable clear */
2137 return env->cp15.c9_pmcnten;
2138 case 3: /* overflow flag status */
2139 return env->cp15.c9_pmovsr;
2140 case 4: /* software increment */
2141 case 5: /* event counter selection register */
2142 return 0; /* Unimplemented, RAZ/WI */
2143 default:
2144 goto bad_reg;
2145 }
2146 case 13: /* Performance counters */
2147 if (!arm_feature(env, ARM_FEATURE_V7)) {
2148 goto bad_reg;
2149 }
2150 switch (op2) {
2151 case 1: /* Event type select */
2152 return env->cp15.c9_pmxevtyper;
2153 case 0: /* Cycle count register */
2154 case 2: /* Event count register */
2155 /* Unimplemented, so RAZ/WI */
2156 return 0;
2157 default:
2158 goto bad_reg;
2159 }
2160 case 14: /* Performance monitor control */
2161 if (!arm_feature(env, ARM_FEATURE_V7)) {
2162 goto bad_reg;
2163 }
2164 switch (op2) {
2165 case 0: /* user enable */
2166 return env->cp15.c9_pmuserenr;
2167 case 1: /* interrupt enable set */
2168 case 2: /* interrupt enable clear */
2169 return env->cp15.c9_pminten;
2170 default:
2171 goto bad_reg;
2172 }
2173 default:
2174 goto bad_reg;
2175 }
2176 break;
2177 case 10: /* MMU TLB lockdown. */
2178 /* ??? TLB lockdown not implemented. */
2179 return 0;
2180 case 11: /* TCM DMA control. */
2181 case 12: /* Reserved. */
2182 goto bad_reg;
2183 case 13: /* Process ID. */
2184 switch (op2) {
2185 case 0:
2186 return env->cp15.c13_fcse;
2187 case 1:
2188 return env->cp15.c13_context;
2189 default:
2190 goto bad_reg;
2191 }
2192 case 14: /* Generic timer */
2193 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2194 /* Dummy implementation: RAZ/WI for all */
2195 return 0;
2196 }
2197 goto bad_reg;
2198 case 15: /* Implementation specific. */
2199 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2200 if (op2 == 0 && crm == 1)
2201 return env->cp15.c15_cpar;
2202
2203 goto bad_reg;
2204 }
2205 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2206 switch (crm) {
2207 case 0:
2208 return 0;
2209 case 1: /* Read TI925T configuration. */
2210 return env->cp15.c15_ticonfig;
2211 case 2: /* Read I_max. */
2212 return env->cp15.c15_i_max;
2213 case 3: /* Read I_min. */
2214 return env->cp15.c15_i_min;
2215 case 4: /* Read thread-ID. */
2216 return env->cp15.c15_threadid;
2217 case 8: /* TI925T_status */
2218 return 0;
2219 }
2220 /* TODO: Peripheral port remap register:
2221 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
2222 * controller base address at $rn & ~0xfff and map size of
2223 * 0x200 << ($rn & 0xfff), when MMU is off. */
2224 goto bad_reg;
2225 }
2226 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
2227 switch (crm) {
2228 case 0:
2229 if ((op1 == 4) && (op2 == 0)) {
2230 /* The config_base_address should hold the value of
2231 * the peripheral base. ARM should get this from a CPU
2232 * object property, but that support isn't available in
2233 * December 2011. Default to 0 for now and board models
2234 * that care can set it by a private hook */
2235 return env->cp15.c15_config_base_address;
2236 } else if ((op1 == 0) && (op2 == 0)) {
2237 /* power_control should be set to maximum latency. Again,
2238 default to 0 and set by private hook */
2239 return env->cp15.c15_power_control;
2240 } else if ((op1 == 0) && (op2 == 1)) {
2241 return env->cp15.c15_diagnostic;
2242 } else if ((op1 == 0) && (op2 == 2)) {
2243 return env->cp15.c15_power_diagnostic;
2244 }
2245 break;
2246 case 1: /* NEON Busy */
2247 return 0;
2248 case 5: /* tlb lockdown */
2249 case 6:
2250 case 7:
2251 if ((op1 == 5) && (op2 == 2)) {
2252 return 0;
2253 }
2254 break;
2255 default:
2256 break;
2257 }
2258 goto bad_reg;
2259 }
2260 return 0;
2261 }
2262 bad_reg:
2263 /* ??? For debugging only. Should raise illegal instruction exception. */
2264 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
2265 (insn >> 16) & 0xf, crm, op1, op2);
2266 return 0;
2267 }
2268
2269 void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
2270 {
2271 if ((env->uncached_cpsr & CPSR_M) == mode) {
2272 env->regs[13] = val;
2273 } else {
2274 env->banked_r13[bank_number(env, mode)] = val;
2275 }
2276 }
2277
2278 uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
2279 {
2280 if ((env->uncached_cpsr & CPSR_M) == mode) {
2281 return env->regs[13];
2282 } else {
2283 return env->banked_r13[bank_number(env, mode)];
2284 }
2285 }
2286
2287 uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
2288 {
2289 switch (reg) {
2290 case 0: /* APSR */
2291 return xpsr_read(env) & 0xf8000000;
2292 case 1: /* IAPSR */
2293 return xpsr_read(env) & 0xf80001ff;
2294 case 2: /* EAPSR */
2295 return xpsr_read(env) & 0xff00fc00;
2296 case 3: /* xPSR */
2297 return xpsr_read(env) & 0xff00fdff;
2298 case 5: /* IPSR */
2299 return xpsr_read(env) & 0x000001ff;
2300 case 6: /* EPSR */
2301 return xpsr_read(env) & 0x0700fc00;
2302 case 7: /* IEPSR */
2303 return xpsr_read(env) & 0x0700edff;
2304 case 8: /* MSP */
2305 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2306 case 9: /* PSP */
2307 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2308 case 16: /* PRIMASK */
2309 return (env->uncached_cpsr & CPSR_I) != 0;
2310 case 17: /* BASEPRI */
2311 case 18: /* BASEPRI_MAX */
2312 return env->v7m.basepri;
2313 case 19: /* FAULTMASK */
2314 return (env->uncached_cpsr & CPSR_F) != 0;
2315 case 20: /* CONTROL */
2316 return env->v7m.control;
2317 default:
2318 /* ??? For debugging only. */
2319 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2320 return 0;
2321 }
2322 }
2323
2324 void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
2325 {
2326 switch (reg) {
2327 case 0: /* APSR */
2328 xpsr_write(env, val, 0xf8000000);
2329 break;
2330 case 1: /* IAPSR */
2331 xpsr_write(env, val, 0xf8000000);
2332 break;
2333 case 2: /* EAPSR */
2334 xpsr_write(env, val, 0xfe00fc00);
2335 break;
2336 case 3: /* xPSR */
2337 xpsr_write(env, val, 0xfe00fc00);
2338 break;
2339 case 5: /* IPSR */
2340 /* IPSR bits are readonly. */
2341 break;
2342 case 6: /* EPSR */
2343 xpsr_write(env, val, 0x0600fc00);
2344 break;
2345 case 7: /* IEPSR */
2346 xpsr_write(env, val, 0x0600fc00);
2347 break;
2348 case 8: /* MSP */
2349 if (env->v7m.current_sp)
2350 env->v7m.other_sp = val;
2351 else
2352 env->regs[13] = val;
2353 break;
2354 case 9: /* PSP */
2355 if (env->v7m.current_sp)
2356 env->regs[13] = val;
2357 else
2358 env->v7m.other_sp = val;
2359 break;
2360 case 16: /* PRIMASK */
2361 if (val & 1)
2362 env->uncached_cpsr |= CPSR_I;
2363 else
2364 env->uncached_cpsr &= ~CPSR_I;
2365 break;
2366 case 17: /* BASEPRI */
2367 env->v7m.basepri = val & 0xff;
2368 break;
2369 case 18: /* BASEPRI_MAX */
2370 val &= 0xff;
2371 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2372 env->v7m.basepri = val;
2373 break;
2374 case 19: /* FAULTMASK */
2375 if (val & 1)
2376 env->uncached_cpsr |= CPSR_F;
2377 else
2378 env->uncached_cpsr &= ~CPSR_F;
2379 break;
2380 case 20: /* CONTROL */
2381 env->v7m.control = val & 3;
2382 switch_v7m_sp(env, (val & 2) != 0);
2383 break;
2384 default:
2385 /* ??? For debugging only. */
2386 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2387 return;
2388 }
2389 }
2390
2391 void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2392 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2393 void *opaque)
2394 {
2395 if (cpnum < 0 || cpnum > 14) {
2396 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2397 return;
2398 }
2399
2400 env->cp[cpnum].cp_read = cp_read;
2401 env->cp[cpnum].cp_write = cp_write;
2402 env->cp[cpnum].opaque = opaque;
2403 }
2404
2405 #endif
2406
2407 /* Note that signed overflow is undefined in C. The following routines are
2408 careful to use unsigned types where modulo arithmetic is required.
2409 Failure to do so _will_ break on newer gcc. */
2410
2411 /* Signed saturating arithmetic. */
2412
2413 /* Perform 16-bit signed saturating addition. */
2414 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2415 {
2416 uint16_t res;
2417
2418 res = a + b;
2419 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2420 if (a & 0x8000)
2421 res = 0x8000;
2422 else
2423 res = 0x7fff;
2424 }
2425 return res;
2426 }
2427
2428 /* Perform 8-bit signed saturating addition. */
2429 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2430 {
2431 uint8_t res;
2432
2433 res = a + b;
2434 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2435 if (a & 0x80)
2436 res = 0x80;
2437 else
2438 res = 0x7f;
2439 }
2440 return res;
2441 }
2442
2443 /* Perform 16-bit signed saturating subtraction. */
2444 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2445 {
2446 uint16_t res;
2447
2448 res = a - b;
2449 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2450 if (a & 0x8000)
2451 res = 0x8000;
2452 else
2453 res = 0x7fff;
2454 }
2455 return res;
2456 }
2457
2458 /* Perform 8-bit signed saturating subtraction. */
2459 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2460 {
2461 uint8_t res;
2462
2463 res = a - b;
2464 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2465 if (a & 0x80)
2466 res = 0x80;
2467 else
2468 res = 0x7f;
2469 }
2470 return res;
2471 }
2472
2473 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2474 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2475 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2476 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2477 #define PFX q
2478
2479 #include "op_addsub.h"
2480
2481 /* Unsigned saturating arithmetic. */
2482 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2483 {
2484 uint16_t res;
2485 res = a + b;
2486 if (res < a)
2487 res = 0xffff;
2488 return res;
2489 }
2490
2491 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2492 {
2493 if (a > b)
2494 return a - b;
2495 else
2496 return 0;
2497 }
2498
2499 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2500 {
2501 uint8_t res;
2502 res = a + b;
2503 if (res < a)
2504 res = 0xff;
2505 return res;
2506 }
2507
2508 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2509 {
2510 if (a > b)
2511 return a - b;
2512 else
2513 return 0;
2514 }
2515
2516 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2517 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2518 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2519 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2520 #define PFX uq
2521
2522 #include "op_addsub.h"
2523
2524 /* Signed modulo arithmetic. */
2525 #define SARITH16(a, b, n, op) do { \
2526 int32_t sum; \
2527 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2528 RESULT(sum, n, 16); \
2529 if (sum >= 0) \
2530 ge |= 3 << (n * 2); \
2531 } while(0)
2532
2533 #define SARITH8(a, b, n, op) do { \
2534 int32_t sum; \
2535 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2536 RESULT(sum, n, 8); \
2537 if (sum >= 0) \
2538 ge |= 1 << n; \
2539 } while(0)
2540
2541
2542 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2543 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2544 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2545 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2546 #define PFX s
2547 #define ARITH_GE
2548
2549 #include "op_addsub.h"
2550
2551 /* Unsigned modulo arithmetic. */
2552 #define ADD16(a, b, n) do { \
2553 uint32_t sum; \
2554 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2555 RESULT(sum, n, 16); \
2556 if ((sum >> 16) == 1) \
2557 ge |= 3 << (n * 2); \
2558 } while(0)
2559
2560 #define ADD8(a, b, n) do { \
2561 uint32_t sum; \
2562 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2563 RESULT(sum, n, 8); \
2564 if ((sum >> 8) == 1) \
2565 ge |= 1 << n; \
2566 } while(0)
2567
2568 #define SUB16(a, b, n) do { \
2569 uint32_t sum; \
2570 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2571 RESULT(sum, n, 16); \
2572 if ((sum >> 16) == 0) \
2573 ge |= 3 << (n * 2); \
2574 } while(0)
2575
2576 #define SUB8(a, b, n) do { \
2577 uint32_t sum; \
2578 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2579 RESULT(sum, n, 8); \
2580 if ((sum >> 8) == 0) \
2581 ge |= 1 << n; \
2582 } while(0)
2583
2584 #define PFX u
2585 #define ARITH_GE
2586
2587 #include "op_addsub.h"
2588
2589 /* Halved signed arithmetic. */
2590 #define ADD16(a, b, n) \
2591 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2592 #define SUB16(a, b, n) \
2593 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2594 #define ADD8(a, b, n) \
2595 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2596 #define SUB8(a, b, n) \
2597 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2598 #define PFX sh
2599
2600 #include "op_addsub.h"
2601
2602 /* Halved unsigned arithmetic. */
2603 #define ADD16(a, b, n) \
2604 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2605 #define SUB16(a, b, n) \
2606 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2607 #define ADD8(a, b, n) \
2608 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2609 #define SUB8(a, b, n) \
2610 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2611 #define PFX uh
2612
2613 #include "op_addsub.h"
2614
2615 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2616 {
2617 if (a > b)
2618 return a - b;
2619 else
2620 return b - a;
2621 }
2622
2623 /* Unsigned sum of absolute byte differences. */
2624 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2625 {
2626 uint32_t sum;
2627 sum = do_usad(a, b);
2628 sum += do_usad(a >> 8, b >> 8);
2629 sum += do_usad(a >> 16, b >>16);
2630 sum += do_usad(a >> 24, b >> 24);
2631 return sum;
2632 }
2633
2634 /* For ARMv6 SEL instruction. */
2635 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2636 {
2637 uint32_t mask;
2638
2639 mask = 0;
2640 if (flags & 1)
2641 mask |= 0xff;
2642 if (flags & 2)
2643 mask |= 0xff00;
2644 if (flags & 4)
2645 mask |= 0xff0000;
2646 if (flags & 8)
2647 mask |= 0xff000000;
2648 return (a & mask) | (b & ~mask);
2649 }
2650
2651 uint32_t HELPER(logicq_cc)(uint64_t val)
2652 {
2653 return (val >> 32) | (val != 0);
2654 }
2655
2656 /* VFP support. We follow the convention used for VFP instrunctions:
2657 Single precition routines have a "s" suffix, double precision a
2658 "d" suffix. */
2659
2660 /* Convert host exception flags to vfp form. */
2661 static inline int vfp_exceptbits_from_host(int host_bits)
2662 {
2663 int target_bits = 0;
2664
2665 if (host_bits & float_flag_invalid)
2666 target_bits |= 1;
2667 if (host_bits & float_flag_divbyzero)
2668 target_bits |= 2;
2669 if (host_bits & float_flag_overflow)
2670 target_bits |= 4;
2671 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2672 target_bits |= 8;
2673 if (host_bits & float_flag_inexact)
2674 target_bits |= 0x10;
2675 if (host_bits & float_flag_input_denormal)
2676 target_bits |= 0x80;
2677 return target_bits;
2678 }
2679
2680 uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2681 {
2682 int i;
2683 uint32_t fpscr;
2684
2685 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2686 | (env->vfp.vec_len << 16)
2687 | (env->vfp.vec_stride << 20);
2688 i = get_float_exception_flags(&env->vfp.fp_status);
2689 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2690 fpscr |= vfp_exceptbits_from_host(i);
2691 return fpscr;
2692 }
2693
2694 uint32_t vfp_get_fpscr(CPUState *env)
2695 {
2696 return HELPER(vfp_get_fpscr)(env);
2697 }
2698
2699 /* Convert vfp exception flags to target form. */
2700 static inline int vfp_exceptbits_to_host(int target_bits)
2701 {
2702 int host_bits = 0;
2703
2704 if (target_bits & 1)
2705 host_bits |= float_flag_invalid;
2706 if (target_bits & 2)
2707 host_bits |= float_flag_divbyzero;
2708 if (target_bits & 4)
2709 host_bits |= float_flag_overflow;
2710 if (target_bits & 8)
2711 host_bits |= float_flag_underflow;
2712 if (target_bits & 0x10)
2713 host_bits |= float_flag_inexact;
2714 if (target_bits & 0x80)
2715 host_bits |= float_flag_input_denormal;
2716 return host_bits;
2717 }
2718
2719 void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2720 {
2721 int i;
2722 uint32_t changed;
2723
2724 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2725 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2726 env->vfp.vec_len = (val >> 16) & 7;
2727 env->vfp.vec_stride = (val >> 20) & 3;
2728
2729 changed ^= val;
2730 if (changed & (3 << 22)) {
2731 i = (val >> 22) & 3;
2732 switch (i) {
2733 case 0:
2734 i = float_round_nearest_even;
2735 break;
2736 case 1:
2737 i = float_round_up;
2738 break;
2739 case 2:
2740 i = float_round_down;
2741 break;
2742 case 3:
2743 i = float_round_to_zero;
2744 break;
2745 }
2746 set_float_rounding_mode(i, &env->vfp.fp_status);
2747 }
2748 if (changed & (1 << 24)) {
2749 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2750 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2751 }
2752 if (changed & (1 << 25))
2753 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2754
2755 i = vfp_exceptbits_to_host(val);
2756 set_float_exception_flags(i, &env->vfp.fp_status);
2757 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2758 }
2759
2760 void vfp_set_fpscr(CPUState *env, uint32_t val)
2761 {
2762 HELPER(vfp_set_fpscr)(env, val);
2763 }
2764
2765 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2766
2767 #define VFP_BINOP(name) \
2768 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
2769 { \
2770 float_status *fpst = fpstp; \
2771 return float32_ ## name(a, b, fpst); \
2772 } \
2773 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
2774 { \
2775 float_status *fpst = fpstp; \
2776 return float64_ ## name(a, b, fpst); \
2777 }
2778 VFP_BINOP(add)
2779 VFP_BINOP(sub)
2780 VFP_BINOP(mul)
2781 VFP_BINOP(div)
2782 #undef VFP_BINOP
2783
2784 float32 VFP_HELPER(neg, s)(float32 a)
2785 {
2786 return float32_chs(a);
2787 }
2788
2789 float64 VFP_HELPER(neg, d)(float64 a)
2790 {
2791 return float64_chs(a);
2792 }
2793
2794 float32 VFP_HELPER(abs, s)(float32 a)
2795 {
2796 return float32_abs(a);
2797 }
2798
2799 float64 VFP_HELPER(abs, d)(float64 a)
2800 {
2801 return float64_abs(a);
2802 }
2803
2804 float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2805 {
2806 return float32_sqrt(a, &env->vfp.fp_status);
2807 }
2808
2809 float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2810 {
2811 return float64_sqrt(a, &env->vfp.fp_status);
2812 }
2813
2814 /* XXX: check quiet/signaling case */
2815 #define DO_VFP_cmp(p, type) \
2816 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2817 { \
2818 uint32_t flags; \
2819 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2820 case 0: flags = 0x6; break; \
2821 case -1: flags = 0x8; break; \
2822 case 1: flags = 0x2; break; \
2823 default: case 2: flags = 0x3; break; \
2824 } \
2825 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2826 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2827 } \
2828 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2829 { \
2830 uint32_t flags; \
2831 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2832 case 0: flags = 0x6; break; \
2833 case -1: flags = 0x8; break; \
2834 case 1: flags = 0x2; break; \
2835 default: case 2: flags = 0x3; break; \
2836 } \
2837 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2838 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2839 }
2840 DO_VFP_cmp(s, float32)
2841 DO_VFP_cmp(d, float64)
2842 #undef DO_VFP_cmp
2843
2844 /* Integer to float and float to integer conversions */
2845
2846 #define CONV_ITOF(name, fsz, sign) \
2847 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
2848 { \
2849 float_status *fpst = fpstp; \
2850 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
2851 }
2852
2853 #define CONV_FTOI(name, fsz, sign, round) \
2854 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
2855 { \
2856 float_status *fpst = fpstp; \
2857 if (float##fsz##_is_any_nan(x)) { \
2858 float_raise(float_flag_invalid, fpst); \
2859 return 0; \
2860 } \
2861 return float##fsz##_to_##sign##int32##round(x, fpst); \
2862 }
2863
2864 #define FLOAT_CONVS(name, p, fsz, sign) \
2865 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
2866 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
2867 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
2868
2869 FLOAT_CONVS(si, s, 32, )
2870 FLOAT_CONVS(si, d, 64, )
2871 FLOAT_CONVS(ui, s, 32, u)
2872 FLOAT_CONVS(ui, d, 64, u)
2873
2874 #undef CONV_ITOF
2875 #undef CONV_FTOI
2876 #undef FLOAT_CONVS
2877
2878 /* floating point conversion */
2879 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2880 {
2881 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2882 /* ARM requires that S<->D conversion of any kind of NaN generates
2883 * a quiet NaN by forcing the most significant frac bit to 1.
2884 */
2885 return float64_maybe_silence_nan(r);
2886 }
2887
2888 float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2889 {
2890 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2891 /* ARM requires that S<->D conversion of any kind of NaN generates
2892 * a quiet NaN by forcing the most significant frac bit to 1.
2893 */
2894 return float32_maybe_silence_nan(r);
2895 }
2896
2897 /* VFP3 fixed point conversion. */
2898 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2899 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
2900 void *fpstp) \
2901 { \
2902 float_status *fpst = fpstp; \
2903 float##fsz tmp; \
2904 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
2905 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
2906 } \
2907 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
2908 void *fpstp) \
2909 { \
2910 float_status *fpst = fpstp; \
2911 float##fsz tmp; \
2912 if (float##fsz##_is_any_nan(x)) { \
2913 float_raise(float_flag_invalid, fpst); \
2914 return 0; \
2915 } \
2916 tmp = float##fsz##_scalbn(x, shift, fpst); \
2917 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
2918 }
2919
2920 VFP_CONV_FIX(sh, d, 64, int16, )
2921 VFP_CONV_FIX(sl, d, 64, int32, )
2922 VFP_CONV_FIX(uh, d, 64, uint16, u)
2923 VFP_CONV_FIX(ul, d, 64, uint32, u)
2924 VFP_CONV_FIX(sh, s, 32, int16, )
2925 VFP_CONV_FIX(sl, s, 32, int32, )
2926 VFP_CONV_FIX(uh, s, 32, uint16, u)
2927 VFP_CONV_FIX(ul, s, 32, uint32, u)
2928 #undef VFP_CONV_FIX
2929
2930 /* Half precision conversions. */
2931 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
2932 {
2933 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2934 float32 r = float16_to_float32(make_float16(a), ieee, s);
2935 if (ieee) {
2936 return float32_maybe_silence_nan(r);
2937 }
2938 return r;
2939 }
2940
2941 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
2942 {
2943 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2944 float16 r = float32_to_float16(a, ieee, s);
2945 if (ieee) {
2946 r = float16_maybe_silence_nan(r);
2947 }
2948 return float16_val(r);
2949 }
2950
2951 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2952 {
2953 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2954 }
2955
2956 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2957 {
2958 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2959 }
2960
2961 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2962 {
2963 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2964 }
2965
2966 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2967 {
2968 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2969 }
2970
2971 #define float32_two make_float32(0x40000000)
2972 #define float32_three make_float32(0x40400000)
2973 #define float32_one_point_five make_float32(0x3fc00000)
2974
2975 float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2976 {
2977 float_status *s = &env->vfp.standard_fp_status;
2978 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2979 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2980 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2981 float_raise(float_flag_input_denormal, s);
2982 }
2983 return float32_two;
2984 }
2985 return float32_sub(float32_two, float32_mul(a, b, s), s);
2986 }
2987
2988 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2989 {
2990 float_status *s = &env->vfp.standard_fp_status;
2991 float32 product;
2992 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2993 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2994 if (!(float32_is_zero(a) || float32_is_zero(b))) {
2995 float_raise(float_flag_input_denormal, s);
2996 }
2997 return float32_one_point_five;
2998 }
2999 product = float32_mul(a, b, s);
3000 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3001 }
3002
3003 /* NEON helpers. */
3004
3005 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3006 * int->float conversions at run-time. */
3007 #define float64_256 make_float64(0x4070000000000000LL)
3008 #define float64_512 make_float64(0x4080000000000000LL)
3009
3010 /* The algorithm that must be used to calculate the estimate
3011 * is specified by the ARM ARM.
3012 */
3013 static float64 recip_estimate(float64 a, CPUState *env)
3014 {
3015 /* These calculations mustn't set any fp exception flags,
3016 * so we use a local copy of the fp_status.
3017 */
3018 float_status dummy_status = env->vfp.standard_fp_status;
3019 float_status *s = &dummy_status;
3020 /* q = (int)(a * 512.0) */
3021 float64 q = float64_mul(float64_512, a, s);
3022 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3023
3024 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3025 q = int64_to_float64(q_int, s);
3026 q = float64_add(q, float64_half, s);
3027 q = float64_div(q, float64_512, s);
3028 q = float64_div(float64_one, q, s);
3029
3030 /* s = (int)(256.0 * r + 0.5) */
3031 q = float64_mul(q, float64_256, s);
3032 q = float64_add(q, float64_half, s);
3033 q_int = float64_to_int64_round_to_zero(q, s);
3034
3035 /* return (double)s / 256.0 */
3036 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3037 }
3038
3039 float32 HELPER(recpe_f32)(float32 a, CPUState *env)
3040 {
3041 float_status *s = &env->vfp.standard_fp_status;
3042 float64 f64;
3043 uint32_t val32 = float32_val(a);
3044
3045 int result_exp;
3046 int a_exp = (val32 & 0x7f800000) >> 23;
3047 int sign = val32 & 0x80000000;
3048
3049 if (float32_is_any_nan(a)) {
3050 if (float32_is_signaling_nan(a)) {
3051 float_raise(float_flag_invalid, s);
3052 }
3053 return float32_default_nan;
3054 } else if (float32_is_infinity(a)) {
3055 return float32_set_sign(float32_zero, float32_is_neg(a));
3056 } else if (float32_is_zero_or_denormal(a)) {
3057 if (!float32_is_zero(a)) {
3058 float_raise(float_flag_input_denormal, s);
3059 }
3060 float_raise(float_flag_divbyzero, s);
3061 return float32_set_sign(float32_infinity, float32_is_neg(a));
3062 } else if (a_exp >= 253) {
3063 float_raise(float_flag_underflow, s);
3064 return float32_set_sign(float32_zero, float32_is_neg(a));
3065 }
3066
3067 f64 = make_float64((0x3feULL << 52)
3068 | ((int64_t)(val32 & 0x7fffff) << 29));
3069
3070 result_exp = 253 - a_exp;
3071
3072 f64 = recip_estimate(f64, env);
3073
3074 val32 = sign
3075 | ((result_exp & 0xff) << 23)
3076 | ((float64_val(f64) >> 29) & 0x7fffff);
3077 return make_float32(val32);
3078 }
3079
3080 /* The algorithm that must be used to calculate the estimate
3081 * is specified by the ARM ARM.
3082 */
3083 static float64 recip_sqrt_estimate(float64 a, CPUState *env)
3084 {
3085 /* These calculations mustn't set any fp exception flags,
3086 * so we use a local copy of the fp_status.
3087 */
3088 float_status dummy_status = env->vfp.standard_fp_status;
3089 float_status *s = &dummy_status;
3090 float64 q;
3091 int64_t q_int;
3092
3093 if (float64_lt(a, float64_half, s)) {
3094 /* range 0.25 <= a < 0.5 */
3095
3096 /* a in units of 1/512 rounded down */
3097 /* q0 = (int)(a * 512.0); */
3098 q = float64_mul(float64_512, a, s);
3099 q_int = float64_to_int64_round_to_zero(q, s);
3100
3101 /* reciprocal root r */
3102 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3103 q = int64_to_float64(q_int, s);
3104 q = float64_add(q, float64_half, s);
3105 q = float64_div(q, float64_512, s);
3106 q = float64_sqrt(q, s);
3107 q = float64_div(float64_one, q, s);
3108 } else {
3109 /* range 0.5 <= a < 1.0 */
3110
3111 /* a in units of 1/256 rounded down */
3112 /* q1 = (int)(a * 256.0); */
3113 q = float64_mul(float64_256, a, s);
3114 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3115
3116 /* reciprocal root r */
3117 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3118 q = int64_to_float64(q_int, s);
3119 q = float64_add(q, float64_half, s);
3120 q = float64_div(q, float64_256, s);
3121 q = float64_sqrt(q, s);
3122 q = float64_div(float64_one, q, s);
3123 }
3124 /* r in units of 1/256 rounded to nearest */
3125 /* s = (int)(256.0 * r + 0.5); */
3126
3127 q = float64_mul(q, float64_256,s );
3128 q = float64_add(q, float64_half, s);
3129 q_int = float64_to_int64_round_to_zero(q, s);
3130
3131 /* return (double)s / 256.0;*/
3132 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3133 }
3134
3135 float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
3136 {
3137 float_status *s = &env->vfp.standard_fp_status;
3138 int result_exp;
3139 float64 f64;
3140 uint32_t val;
3141 uint64_t val64;
3142
3143 val = float32_val(a);
3144
3145 if (float32_is_any_nan(a)) {
3146 if (float32_is_signaling_nan(a)) {
3147 float_raise(float_flag_invalid, s);
3148 }
3149 return float32_default_nan;
3150 } else if (float32_is_zero_or_denormal(a)) {
3151 if (!float32_is_zero(a)) {
3152 float_raise(float_flag_input_denormal, s);
3153 }
3154 float_raise(float_flag_divbyzero, s);
3155 return float32_set_sign(float32_infinity, float32_is_neg(a));
3156 } else if (float32_is_neg(a)) {
3157 float_raise(float_flag_invalid, s);
3158 return float32_default_nan;
3159 } else if (float32_is_infinity(a)) {
3160 return float32_zero;
3161 }
3162
3163 /* Normalize to a double-precision value between 0.25 and 1.0,
3164 * preserving the parity of the exponent. */
3165 if ((val & 0x800000) == 0) {
3166 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3167 | (0x3feULL << 52)
3168 | ((uint64_t)(val & 0x7fffff) << 29));
3169 } else {
3170 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3171 | (0x3fdULL << 52)
3172 | ((uint64_t)(val & 0x7fffff) << 29));
3173 }
3174
3175 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3176
3177 f64 = recip_sqrt_estimate(f64, env);
3178
3179 val64 = float64_val(f64);
3180
3181 val = ((result_exp & 0xff) << 23)
3182 | ((val64 >> 29) & 0x7fffff);
3183 return make_float32(val);
3184 }
3185
3186 uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
3187 {
3188 float64 f64;
3189
3190 if ((a & 0x80000000) == 0) {
3191 return 0xffffffff;
3192 }
3193
3194 f64 = make_float64((0x3feULL << 52)
3195 | ((int64_t)(a & 0x7fffffff) << 21));
3196
3197 f64 = recip_estimate (f64, env);
3198
3199 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3200 }
3201
3202 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
3203 {
3204 float64 f64;
3205
3206 if ((a & 0xc0000000) == 0) {
3207 return 0xffffffff;
3208 }
3209
3210 if (a & 0x80000000) {
3211 f64 = make_float64((0x3feULL << 52)
3212 | ((uint64_t)(a & 0x7fffffff) << 21));
3213 } else { /* bits 31-30 == '01' */
3214 f64 = make_float64((0x3fdULL << 52)
3215 | ((uint64_t)(a & 0x3fffffff) << 22));
3216 }
3217
3218 f64 = recip_sqrt_estimate(f64, env);
3219
3220 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3221 }
3222
3223 /* VFPv4 fused multiply-accumulate */
3224 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3225 {
3226 float_status *fpst = fpstp;
3227 return float32_muladd(a, b, c, 0, fpst);
3228 }
3229
3230 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3231 {
3232 float_status *fpst = fpstp;
3233 return float64_muladd(a, b, c, 0, fpst);
3234 }
3235
3236 void HELPER(set_teecr)(CPUState *env, uint32_t val)
3237 {
3238 val &= 1;
3239 if (env->teecr != val) {
3240 env->teecr = val;
3241 tb_flush(env);
3242 }
3243 }