]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
Merge remote-tracking branch 'afaerber/qom-cpu' into staging
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
7
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
14
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 {
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40 }
41
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 {
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 }
64 return 0;
65 }
66
67 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
68 {
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
72 }
73
74 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 {
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
79 */
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
82 }
83 return 0;
84 }
85 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
87 {
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
92 */
93 tlb_flush(env, 1);
94 }
95 env->cp15.c13_context = value;
96 return 0;
97 }
98
99 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
101 {
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
105 }
106
107 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
109 {
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
113 }
114
115 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
117 {
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
121 }
122
123 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
125 {
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
129 }
130
131 static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
135 */
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 */
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 */
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
169 REGINFO_SENTINEL
170 };
171
172 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
175 */
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
179 };
180
181 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 */
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
190 */
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
200 REGINFO_SENTINEL
201 };
202
203 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204 {
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
209 }
210 return 0;
211 }
212
213 static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
221 .access = PL0_W, .type = ARM_CP_NOP },
222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
223 .access = PL0_W, .type = ARM_CP_NOP },
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
229 */
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
235 REGINFO_SENTINEL
236 };
237
238 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
240 {
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
243 */
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
246 }
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
249 }
250
251 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
253 {
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
256 }
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
261 }
262
263 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
265 {
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
268 }
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
272 }
273
274 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
276 {
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
279 }
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
283 }
284
285 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
287 {
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
290 }
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
293 }
294
295 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297 {
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
300 }
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
303 }
304
305 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
307 {
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
310 }
311
312 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
314 {
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
319 }
320
321 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
323 {
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
327 }
328
329 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
331 {
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
335 }
336
337 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
339 {
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
342 }
343
344 static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
347 */
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
358 *
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 */
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
378 */
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 */
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
421 */
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
424 REGINFO_SENTINEL
425 };
426
427 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
428 {
429 value &= 1;
430 env->teecr = value;
431 return 0;
432 }
433
434 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
436 {
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
439 */
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
442 }
443 *value = env->teehbr;
444 return 0;
445 }
446
447 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
449 {
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
452 }
453 env->teehbr = value;
454 return 0;
455 }
456
457 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
467 };
468
469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
483 };
484
485 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
491 };
492
493 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494 {
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
501 }
502 return 0;
503 }
504
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
507
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
511 */
512 static inline bool extended_addresses_enabled(CPUARMState *env)
513 {
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
516 }
517
518 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520 hwaddr phys_addr;
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
525
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
529 }
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
536 */
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
541 } else {
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
547 */
548 }
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
551 } else {
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
555 */
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
563 }
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
568 }
569 env->cp15.c7_par_hi = 0;
570 }
571 return 0;
572 }
573 #endif
574
575 static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580 #ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583 #endif
584 REGINFO_SENTINEL
585 };
586
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val)
589 {
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
598 }
599 return ret;
600 }
601
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val)
604 {
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
613 }
614 return ret;
615 }
616
617 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
622 }
623
624 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
626 {
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
629 }
630
631 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
636 }
637
638 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
640 {
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
643 }
644
645 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
647 {
648 if (ri->crm >= 8) {
649 return EXCP_UDEF;
650 }
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
653 }
654
655 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 if (ri->crm >= 8) {
659 return EXCP_UDEF;
660 }
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
663 }
664
665 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
690 REGINFO_SENTINEL
691 };
692
693 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
695 {
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
700 */
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
704 }
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
709 */
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
714 }
715
716 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
717 {
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
721 }
722
723 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
743 REGINFO_SENTINEL
744 };
745
746 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
748 {
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
754 }
755
756 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
758 {
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
761 }
762
763 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
765 {
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env, CPU_INTERRUPT_HALT);
768 return 0;
769 }
770
771 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
773 {
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
776 */
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
780 }
781
782 static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
809 */
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
816 REGINFO_SENTINEL
817 };
818
819 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
821 {
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
827 }
828 return 0;
829 }
830
831 static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
840 REGINFO_SENTINEL
841 };
842
843 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
848 */
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
852 REGINFO_SENTINEL
853 };
854
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
860 };
861
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
879 REGINFO_SENTINEL
880 };
881
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
885 */
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
891 };
892
893 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
900 };
901
902 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
904 {
905 CPUState *cs = CPU(arm_env_get_cpu(env));
906 uint32_t mpidr = cs->cpu_index;
907 /* We don't support setting cluster ID ([8..11])
908 * so these bits always RAZ.
909 */
910 if (arm_feature(env, ARM_FEATURE_V7MP)) {
911 mpidr |= (1 << 31);
912 /* Cores which are uniprocessor (non-coherent)
913 * but still implement the MP extensions set
914 * bit 30. (For instance, A9UP.) However we do
915 * not currently model any of those cores.
916 */
917 }
918 *value = mpidr;
919 return 0;
920 }
921
922 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
923 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
924 .access = PL1_R, .readfn = mpidr_read },
925 REGINFO_SENTINEL
926 };
927
928 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
929 {
930 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
931 return 0;
932 }
933
934 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
935 {
936 env->cp15.c7_par_hi = value >> 32;
937 env->cp15.c7_par = value;
938 return 0;
939 }
940
941 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
942 {
943 env->cp15.c7_par_hi = 0;
944 env->cp15.c7_par = 0;
945 }
946
947 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
948 uint64_t *value)
949 {
950 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
951 return 0;
952 }
953
954 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value)
956 {
957 env->cp15.c2_base0_hi = value >> 32;
958 env->cp15.c2_base0 = value;
959 /* Writes to the 64 bit format TTBRs may change the ASID */
960 tlb_flush(env, 1);
961 return 0;
962 }
963
964 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
965 {
966 env->cp15.c2_base0_hi = 0;
967 env->cp15.c2_base0 = 0;
968 }
969
970 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
971 uint64_t *value)
972 {
973 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
974 return 0;
975 }
976
977 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
979 {
980 env->cp15.c2_base1_hi = value >> 32;
981 env->cp15.c2_base1 = value;
982 return 0;
983 }
984
985 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
986 {
987 env->cp15.c2_base1_hi = 0;
988 env->cp15.c2_base1 = 0;
989 }
990
991 static const ARMCPRegInfo lpae_cp_reginfo[] = {
992 /* NOP AMAIR0/1: the override is because these clash with the rather
993 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
994 */
995 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
996 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
997 .resetvalue = 0 },
998 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
999 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1000 .resetvalue = 0 },
1001 /* 64 bit access versions of the (dummy) debug registers */
1002 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1003 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1004 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1005 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1006 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1007 .access = PL1_RW, .type = ARM_CP_64BIT,
1008 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1009 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1010 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1011 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1012 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1013 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1014 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1015 REGINFO_SENTINEL
1016 };
1017
1018 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1019 {
1020 env->cp15.c1_sys = value;
1021 /* ??? Lots of these bits are not implemented. */
1022 /* This may enable/disable the MMU, so do a TLB flush. */
1023 tlb_flush(env, 1);
1024 return 0;
1025 }
1026
1027 void register_cp_regs_for_features(ARMCPU *cpu)
1028 {
1029 /* Register all the coprocessor registers based on feature bits */
1030 CPUARMState *env = &cpu->env;
1031 if (arm_feature(env, ARM_FEATURE_M)) {
1032 /* M profile has no coprocessor registers */
1033 return;
1034 }
1035
1036 define_arm_cp_regs(cpu, cp_reginfo);
1037 if (arm_feature(env, ARM_FEATURE_V6)) {
1038 /* The ID registers all have impdef reset values */
1039 ARMCPRegInfo v6_idregs[] = {
1040 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1041 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1042 .resetvalue = cpu->id_pfr0 },
1043 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1044 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1045 .resetvalue = cpu->id_pfr1 },
1046 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1047 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1048 .resetvalue = cpu->id_dfr0 },
1049 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1050 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1051 .resetvalue = cpu->id_afr0 },
1052 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1053 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1054 .resetvalue = cpu->id_mmfr0 },
1055 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1056 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1057 .resetvalue = cpu->id_mmfr1 },
1058 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1059 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1060 .resetvalue = cpu->id_mmfr2 },
1061 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1062 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1063 .resetvalue = cpu->id_mmfr3 },
1064 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1065 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1066 .resetvalue = cpu->id_isar0 },
1067 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1068 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1069 .resetvalue = cpu->id_isar1 },
1070 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1071 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1072 .resetvalue = cpu->id_isar2 },
1073 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1074 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1075 .resetvalue = cpu->id_isar3 },
1076 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1077 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1078 .resetvalue = cpu->id_isar4 },
1079 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1080 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1081 .resetvalue = cpu->id_isar5 },
1082 /* 6..7 are as yet unallocated and must RAZ */
1083 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1084 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1085 .resetvalue = 0 },
1086 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1087 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1088 .resetvalue = 0 },
1089 REGINFO_SENTINEL
1090 };
1091 define_arm_cp_regs(cpu, v6_idregs);
1092 define_arm_cp_regs(cpu, v6_cp_reginfo);
1093 } else {
1094 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1095 }
1096 if (arm_feature(env, ARM_FEATURE_V6K)) {
1097 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1098 }
1099 if (arm_feature(env, ARM_FEATURE_V7)) {
1100 /* v7 performance monitor control register: same implementor
1101 * field as main ID register, and we implement no event counters.
1102 */
1103 ARMCPRegInfo pmcr = {
1104 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1105 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1107 .readfn = pmreg_read, .writefn = pmcr_write
1108 };
1109 ARMCPRegInfo clidr = {
1110 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1112 };
1113 define_one_arm_cp_reg(cpu, &pmcr);
1114 define_one_arm_cp_reg(cpu, &clidr);
1115 define_arm_cp_regs(cpu, v7_cp_reginfo);
1116 } else {
1117 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1118 }
1119 if (arm_feature(env, ARM_FEATURE_MPU)) {
1120 /* These are the MPU registers prior to PMSAv6. Any new
1121 * PMSA core later than the ARM946 will require that we
1122 * implement the PMSAv6 or PMSAv7 registers, which are
1123 * completely different.
1124 */
1125 assert(!arm_feature(env, ARM_FEATURE_V6));
1126 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1127 } else {
1128 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1129 }
1130 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1131 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1132 }
1133 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1134 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1135 }
1136 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1137 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1138 }
1139 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1140 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1141 }
1142 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1143 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1144 }
1145 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1146 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1147 }
1148 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1149 define_arm_cp_regs(cpu, omap_cp_reginfo);
1150 }
1151 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1152 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1153 }
1154 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1155 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1156 }
1157 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1158 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1159 }
1160 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1161 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1162 }
1163 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1164 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1165 }
1166 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1167 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1168 * be read-only (ie write causes UNDEF exception).
1169 */
1170 {
1171 ARMCPRegInfo id_cp_reginfo[] = {
1172 /* Note that the MIDR isn't a simple constant register because
1173 * of the TI925 behaviour where writes to another register can
1174 * cause the MIDR value to change.
1175 */
1176 { .name = "MIDR",
1177 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1178 .access = PL1_R, .resetvalue = cpu->midr,
1179 .writefn = arm_cp_write_ignore,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1181 { .name = "CTR",
1182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1184 { .name = "TCMTR",
1185 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1187 { .name = "TLBTR",
1188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1190 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1191 { .name = "DUMMY",
1192 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1193 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1194 { .name = "DUMMY",
1195 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1197 { .name = "DUMMY",
1198 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1200 { .name = "DUMMY",
1201 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1202 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1203 { .name = "DUMMY",
1204 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1205 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1206 REGINFO_SENTINEL
1207 };
1208 ARMCPRegInfo crn0_wi_reginfo = {
1209 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1210 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1211 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1212 };
1213 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1214 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1215 ARMCPRegInfo *r;
1216 /* Register the blanket "writes ignored" value first to cover the
1217 * whole space. Then define the specific ID registers, but update
1218 * their access field to allow write access, so that they ignore
1219 * writes rather than causing them to UNDEF.
1220 */
1221 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1222 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1223 r->access = PL1_RW;
1224 define_one_arm_cp_reg(cpu, r);
1225 }
1226 } else {
1227 /* Just register the standard ID registers (read-only, meaning
1228 * that writes will UNDEF).
1229 */
1230 define_arm_cp_regs(cpu, id_cp_reginfo);
1231 }
1232 }
1233
1234 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1235 ARMCPRegInfo auxcr = {
1236 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1237 .access = PL1_RW, .type = ARM_CP_CONST,
1238 .resetvalue = cpu->reset_auxcr
1239 };
1240 define_one_arm_cp_reg(cpu, &auxcr);
1241 }
1242
1243 /* Generic registers whose values depend on the implementation */
1244 {
1245 ARMCPRegInfo sctlr = {
1246 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1248 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1249 };
1250 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1251 /* Normally we would always end the TB on an SCTLR write, but Linux
1252 * arch/arm/mach-pxa/sleep.S expects two instructions following
1253 * an MMU enable to execute from cache. Imitate this behaviour.
1254 */
1255 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1256 }
1257 define_one_arm_cp_reg(cpu, &sctlr);
1258 }
1259 }
1260
1261 ARMCPU *cpu_arm_init(const char *cpu_model)
1262 {
1263 ARMCPU *cpu;
1264 CPUARMState *env;
1265 ObjectClass *oc;
1266 static int inited = 0;
1267
1268 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1269 if (!oc) {
1270 return NULL;
1271 }
1272 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1273 env = &cpu->env;
1274 env->cpu_model_str = cpu_model;
1275 arm_cpu_realize(cpu);
1276
1277 if (tcg_enabled() && !inited) {
1278 inited = 1;
1279 arm_translate_init();
1280 }
1281
1282 cpu_reset(CPU(cpu));
1283 if (arm_feature(env, ARM_FEATURE_NEON)) {
1284 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1285 51, "arm-neon.xml", 0);
1286 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1287 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1288 35, "arm-vfp3.xml", 0);
1289 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1290 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1291 19, "arm-vfp.xml", 0);
1292 }
1293 qemu_init_vcpu(env);
1294 return cpu;
1295 }
1296
1297 /* Sort alphabetically by type name, except for "any". */
1298 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1299 {
1300 ObjectClass *class_a = (ObjectClass *)a;
1301 ObjectClass *class_b = (ObjectClass *)b;
1302 const char *name_a, *name_b;
1303
1304 name_a = object_class_get_name(class_a);
1305 name_b = object_class_get_name(class_b);
1306 if (strcmp(name_a, "any") == 0) {
1307 return 1;
1308 } else if (strcmp(name_b, "any") == 0) {
1309 return -1;
1310 } else {
1311 return strcmp(name_a, name_b);
1312 }
1313 }
1314
1315 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1316 {
1317 ObjectClass *oc = data;
1318 CPUListState *s = user_data;
1319
1320 (*s->cpu_fprintf)(s->file, " %s\n",
1321 object_class_get_name(oc));
1322 }
1323
1324 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1325 {
1326 CPUListState s = {
1327 .file = f,
1328 .cpu_fprintf = cpu_fprintf,
1329 };
1330 GSList *list;
1331
1332 list = object_class_get_list(TYPE_ARM_CPU, false);
1333 list = g_slist_sort(list, arm_cpu_list_compare);
1334 (*cpu_fprintf)(f, "Available CPUs:\n");
1335 g_slist_foreach(list, arm_cpu_list_entry, &s);
1336 g_slist_free(list);
1337 }
1338
1339 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1340 const ARMCPRegInfo *r, void *opaque)
1341 {
1342 /* Define implementations of coprocessor registers.
1343 * We store these in a hashtable because typically
1344 * there are less than 150 registers in a space which
1345 * is 16*16*16*8*8 = 262144 in size.
1346 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1347 * If a register is defined twice then the second definition is
1348 * used, so this can be used to define some generic registers and
1349 * then override them with implementation specific variations.
1350 * At least one of the original and the second definition should
1351 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1352 * against accidental use.
1353 */
1354 int crm, opc1, opc2;
1355 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1356 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1357 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1358 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1359 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1360 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1361 /* 64 bit registers have only CRm and Opc1 fields */
1362 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1363 /* Check that the register definition has enough info to handle
1364 * reads and writes if they are permitted.
1365 */
1366 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1367 if (r->access & PL3_R) {
1368 assert(r->fieldoffset || r->readfn);
1369 }
1370 if (r->access & PL3_W) {
1371 assert(r->fieldoffset || r->writefn);
1372 }
1373 }
1374 /* Bad type field probably means missing sentinel at end of reg list */
1375 assert(cptype_valid(r->type));
1376 for (crm = crmmin; crm <= crmmax; crm++) {
1377 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1378 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1379 uint32_t *key = g_new(uint32_t, 1);
1380 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1381 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1382 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1383 r2->opaque = opaque;
1384 /* Make sure reginfo passed to helpers for wildcarded regs
1385 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1386 */
1387 r2->crm = crm;
1388 r2->opc1 = opc1;
1389 r2->opc2 = opc2;
1390 /* Overriding of an existing definition must be explicitly
1391 * requested.
1392 */
1393 if (!(r->type & ARM_CP_OVERRIDE)) {
1394 ARMCPRegInfo *oldreg;
1395 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1396 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1397 fprintf(stderr, "Register redefined: cp=%d %d bit "
1398 "crn=%d crm=%d opc1=%d opc2=%d, "
1399 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1400 r2->crn, r2->crm, r2->opc1, r2->opc2,
1401 oldreg->name, r2->name);
1402 assert(0);
1403 }
1404 }
1405 g_hash_table_insert(cpu->cp_regs, key, r2);
1406 }
1407 }
1408 }
1409 }
1410
1411 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1412 const ARMCPRegInfo *regs, void *opaque)
1413 {
1414 /* Define a whole list of registers */
1415 const ARMCPRegInfo *r;
1416 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1417 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1418 }
1419 }
1420
1421 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1422 {
1423 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1424 }
1425
1426 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1427 uint64_t value)
1428 {
1429 /* Helper coprocessor write function for write-ignore registers */
1430 return 0;
1431 }
1432
1433 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1434 {
1435 /* Helper coprocessor write function for read-as-zero registers */
1436 *value = 0;
1437 return 0;
1438 }
1439
1440 static int bad_mode_switch(CPUARMState *env, int mode)
1441 {
1442 /* Return true if it is not valid for us to switch to
1443 * this CPU mode (ie all the UNPREDICTABLE cases in
1444 * the ARM ARM CPSRWriteByInstr pseudocode).
1445 */
1446 switch (mode) {
1447 case ARM_CPU_MODE_USR:
1448 case ARM_CPU_MODE_SYS:
1449 case ARM_CPU_MODE_SVC:
1450 case ARM_CPU_MODE_ABT:
1451 case ARM_CPU_MODE_UND:
1452 case ARM_CPU_MODE_IRQ:
1453 case ARM_CPU_MODE_FIQ:
1454 return 0;
1455 default:
1456 return 1;
1457 }
1458 }
1459
1460 uint32_t cpsr_read(CPUARMState *env)
1461 {
1462 int ZF;
1463 ZF = (env->ZF == 0);
1464 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1465 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1466 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1467 | ((env->condexec_bits & 0xfc) << 8)
1468 | (env->GE << 16);
1469 }
1470
1471 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1472 {
1473 if (mask & CPSR_NZCV) {
1474 env->ZF = (~val) & CPSR_Z;
1475 env->NF = val;
1476 env->CF = (val >> 29) & 1;
1477 env->VF = (val << 3) & 0x80000000;
1478 }
1479 if (mask & CPSR_Q)
1480 env->QF = ((val & CPSR_Q) != 0);
1481 if (mask & CPSR_T)
1482 env->thumb = ((val & CPSR_T) != 0);
1483 if (mask & CPSR_IT_0_1) {
1484 env->condexec_bits &= ~3;
1485 env->condexec_bits |= (val >> 25) & 3;
1486 }
1487 if (mask & CPSR_IT_2_7) {
1488 env->condexec_bits &= 3;
1489 env->condexec_bits |= (val >> 8) & 0xfc;
1490 }
1491 if (mask & CPSR_GE) {
1492 env->GE = (val >> 16) & 0xf;
1493 }
1494
1495 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1496 if (bad_mode_switch(env, val & CPSR_M)) {
1497 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1498 * We choose to ignore the attempt and leave the CPSR M field
1499 * untouched.
1500 */
1501 mask &= ~CPSR_M;
1502 } else {
1503 switch_mode(env, val & CPSR_M);
1504 }
1505 }
1506 mask &= ~CACHED_CPSR_BITS;
1507 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1508 }
1509
1510 /* Sign/zero extend */
1511 uint32_t HELPER(sxtb16)(uint32_t x)
1512 {
1513 uint32_t res;
1514 res = (uint16_t)(int8_t)x;
1515 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1516 return res;
1517 }
1518
1519 uint32_t HELPER(uxtb16)(uint32_t x)
1520 {
1521 uint32_t res;
1522 res = (uint16_t)(uint8_t)x;
1523 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1524 return res;
1525 }
1526
1527 uint32_t HELPER(clz)(uint32_t x)
1528 {
1529 return clz32(x);
1530 }
1531
1532 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1533 {
1534 if (den == 0)
1535 return 0;
1536 if (num == INT_MIN && den == -1)
1537 return INT_MIN;
1538 return num / den;
1539 }
1540
1541 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1542 {
1543 if (den == 0)
1544 return 0;
1545 return num / den;
1546 }
1547
1548 uint32_t HELPER(rbit)(uint32_t x)
1549 {
1550 x = ((x & 0xff000000) >> 24)
1551 | ((x & 0x00ff0000) >> 8)
1552 | ((x & 0x0000ff00) << 8)
1553 | ((x & 0x000000ff) << 24);
1554 x = ((x & 0xf0f0f0f0) >> 4)
1555 | ((x & 0x0f0f0f0f) << 4);
1556 x = ((x & 0x88888888) >> 3)
1557 | ((x & 0x44444444) >> 1)
1558 | ((x & 0x22222222) << 1)
1559 | ((x & 0x11111111) << 3);
1560 return x;
1561 }
1562
1563 #if defined(CONFIG_USER_ONLY)
1564
1565 void do_interrupt (CPUARMState *env)
1566 {
1567 env->exception_index = -1;
1568 }
1569
1570 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1571 int mmu_idx)
1572 {
1573 if (rw == 2) {
1574 env->exception_index = EXCP_PREFETCH_ABORT;
1575 env->cp15.c6_insn = address;
1576 } else {
1577 env->exception_index = EXCP_DATA_ABORT;
1578 env->cp15.c6_data = address;
1579 }
1580 return 1;
1581 }
1582
1583 /* These should probably raise undefined insn exceptions. */
1584 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1585 {
1586 cpu_abort(env, "v7m_mrs %d\n", reg);
1587 }
1588
1589 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1590 {
1591 cpu_abort(env, "v7m_mrs %d\n", reg);
1592 return 0;
1593 }
1594
1595 void switch_mode(CPUARMState *env, int mode)
1596 {
1597 if (mode != ARM_CPU_MODE_USR)
1598 cpu_abort(env, "Tried to switch out of user mode\n");
1599 }
1600
1601 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1602 {
1603 cpu_abort(env, "banked r13 write\n");
1604 }
1605
1606 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1607 {
1608 cpu_abort(env, "banked r13 read\n");
1609 return 0;
1610 }
1611
1612 #else
1613
1614 /* Map CPU modes onto saved register banks. */
1615 static inline int bank_number(CPUARMState *env, int mode)
1616 {
1617 switch (mode) {
1618 case ARM_CPU_MODE_USR:
1619 case ARM_CPU_MODE_SYS:
1620 return 0;
1621 case ARM_CPU_MODE_SVC:
1622 return 1;
1623 case ARM_CPU_MODE_ABT:
1624 return 2;
1625 case ARM_CPU_MODE_UND:
1626 return 3;
1627 case ARM_CPU_MODE_IRQ:
1628 return 4;
1629 case ARM_CPU_MODE_FIQ:
1630 return 5;
1631 }
1632 cpu_abort(env, "Bad mode %x\n", mode);
1633 return -1;
1634 }
1635
1636 void switch_mode(CPUARMState *env, int mode)
1637 {
1638 int old_mode;
1639 int i;
1640
1641 old_mode = env->uncached_cpsr & CPSR_M;
1642 if (mode == old_mode)
1643 return;
1644
1645 if (old_mode == ARM_CPU_MODE_FIQ) {
1646 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1647 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1648 } else if (mode == ARM_CPU_MODE_FIQ) {
1649 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1650 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1651 }
1652
1653 i = bank_number(env, old_mode);
1654 env->banked_r13[i] = env->regs[13];
1655 env->banked_r14[i] = env->regs[14];
1656 env->banked_spsr[i] = env->spsr;
1657
1658 i = bank_number(env, mode);
1659 env->regs[13] = env->banked_r13[i];
1660 env->regs[14] = env->banked_r14[i];
1661 env->spsr = env->banked_spsr[i];
1662 }
1663
1664 static void v7m_push(CPUARMState *env, uint32_t val)
1665 {
1666 env->regs[13] -= 4;
1667 stl_phys(env->regs[13], val);
1668 }
1669
1670 static uint32_t v7m_pop(CPUARMState *env)
1671 {
1672 uint32_t val;
1673 val = ldl_phys(env->regs[13]);
1674 env->regs[13] += 4;
1675 return val;
1676 }
1677
1678 /* Switch to V7M main or process stack pointer. */
1679 static void switch_v7m_sp(CPUARMState *env, int process)
1680 {
1681 uint32_t tmp;
1682 if (env->v7m.current_sp != process) {
1683 tmp = env->v7m.other_sp;
1684 env->v7m.other_sp = env->regs[13];
1685 env->regs[13] = tmp;
1686 env->v7m.current_sp = process;
1687 }
1688 }
1689
1690 static void do_v7m_exception_exit(CPUARMState *env)
1691 {
1692 uint32_t type;
1693 uint32_t xpsr;
1694
1695 type = env->regs[15];
1696 if (env->v7m.exception != 0)
1697 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1698
1699 /* Switch to the target stack. */
1700 switch_v7m_sp(env, (type & 4) != 0);
1701 /* Pop registers. */
1702 env->regs[0] = v7m_pop(env);
1703 env->regs[1] = v7m_pop(env);
1704 env->regs[2] = v7m_pop(env);
1705 env->regs[3] = v7m_pop(env);
1706 env->regs[12] = v7m_pop(env);
1707 env->regs[14] = v7m_pop(env);
1708 env->regs[15] = v7m_pop(env);
1709 xpsr = v7m_pop(env);
1710 xpsr_write(env, xpsr, 0xfffffdff);
1711 /* Undo stack alignment. */
1712 if (xpsr & 0x200)
1713 env->regs[13] |= 4;
1714 /* ??? The exception return type specifies Thread/Handler mode. However
1715 this is also implied by the xPSR value. Not sure what to do
1716 if there is a mismatch. */
1717 /* ??? Likewise for mismatches between the CONTROL register and the stack
1718 pointer. */
1719 }
1720
1721 static void do_interrupt_v7m(CPUARMState *env)
1722 {
1723 uint32_t xpsr = xpsr_read(env);
1724 uint32_t lr;
1725 uint32_t addr;
1726
1727 lr = 0xfffffff1;
1728 if (env->v7m.current_sp)
1729 lr |= 4;
1730 if (env->v7m.exception == 0)
1731 lr |= 8;
1732
1733 /* For exceptions we just mark as pending on the NVIC, and let that
1734 handle it. */
1735 /* TODO: Need to escalate if the current priority is higher than the
1736 one we're raising. */
1737 switch (env->exception_index) {
1738 case EXCP_UDEF:
1739 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1740 return;
1741 case EXCP_SWI:
1742 /* The PC already points to the next instruction. */
1743 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1744 return;
1745 case EXCP_PREFETCH_ABORT:
1746 case EXCP_DATA_ABORT:
1747 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1748 return;
1749 case EXCP_BKPT:
1750 if (semihosting_enabled) {
1751 int nr;
1752 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1753 if (nr == 0xab) {
1754 env->regs[15] += 2;
1755 env->regs[0] = do_arm_semihosting(env);
1756 return;
1757 }
1758 }
1759 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1760 return;
1761 case EXCP_IRQ:
1762 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1763 break;
1764 case EXCP_EXCEPTION_EXIT:
1765 do_v7m_exception_exit(env);
1766 return;
1767 default:
1768 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1769 return; /* Never happens. Keep compiler happy. */
1770 }
1771
1772 /* Align stack pointer. */
1773 /* ??? Should only do this if Configuration Control Register
1774 STACKALIGN bit is set. */
1775 if (env->regs[13] & 4) {
1776 env->regs[13] -= 4;
1777 xpsr |= 0x200;
1778 }
1779 /* Switch to the handler mode. */
1780 v7m_push(env, xpsr);
1781 v7m_push(env, env->regs[15]);
1782 v7m_push(env, env->regs[14]);
1783 v7m_push(env, env->regs[12]);
1784 v7m_push(env, env->regs[3]);
1785 v7m_push(env, env->regs[2]);
1786 v7m_push(env, env->regs[1]);
1787 v7m_push(env, env->regs[0]);
1788 switch_v7m_sp(env, 0);
1789 /* Clear IT bits */
1790 env->condexec_bits = 0;
1791 env->regs[14] = lr;
1792 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1793 env->regs[15] = addr & 0xfffffffe;
1794 env->thumb = addr & 1;
1795 }
1796
1797 /* Handle a CPU exception. */
1798 void do_interrupt(CPUARMState *env)
1799 {
1800 uint32_t addr;
1801 uint32_t mask;
1802 int new_mode;
1803 uint32_t offset;
1804
1805 if (IS_M(env)) {
1806 do_interrupt_v7m(env);
1807 return;
1808 }
1809 /* TODO: Vectored interrupt controller. */
1810 switch (env->exception_index) {
1811 case EXCP_UDEF:
1812 new_mode = ARM_CPU_MODE_UND;
1813 addr = 0x04;
1814 mask = CPSR_I;
1815 if (env->thumb)
1816 offset = 2;
1817 else
1818 offset = 4;
1819 break;
1820 case EXCP_SWI:
1821 if (semihosting_enabled) {
1822 /* Check for semihosting interrupt. */
1823 if (env->thumb) {
1824 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
1825 & 0xff;
1826 } else {
1827 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
1828 & 0xffffff;
1829 }
1830 /* Only intercept calls from privileged modes, to provide some
1831 semblance of security. */
1832 if (((mask == 0x123456 && !env->thumb)
1833 || (mask == 0xab && env->thumb))
1834 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1835 env->regs[0] = do_arm_semihosting(env);
1836 return;
1837 }
1838 }
1839 new_mode = ARM_CPU_MODE_SVC;
1840 addr = 0x08;
1841 mask = CPSR_I;
1842 /* The PC already points to the next instruction. */
1843 offset = 0;
1844 break;
1845 case EXCP_BKPT:
1846 /* See if this is a semihosting syscall. */
1847 if (env->thumb && semihosting_enabled) {
1848 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1849 if (mask == 0xab
1850 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1851 env->regs[15] += 2;
1852 env->regs[0] = do_arm_semihosting(env);
1853 return;
1854 }
1855 }
1856 env->cp15.c5_insn = 2;
1857 /* Fall through to prefetch abort. */
1858 case EXCP_PREFETCH_ABORT:
1859 new_mode = ARM_CPU_MODE_ABT;
1860 addr = 0x0c;
1861 mask = CPSR_A | CPSR_I;
1862 offset = 4;
1863 break;
1864 case EXCP_DATA_ABORT:
1865 new_mode = ARM_CPU_MODE_ABT;
1866 addr = 0x10;
1867 mask = CPSR_A | CPSR_I;
1868 offset = 8;
1869 break;
1870 case EXCP_IRQ:
1871 new_mode = ARM_CPU_MODE_IRQ;
1872 addr = 0x18;
1873 /* Disable IRQ and imprecise data aborts. */
1874 mask = CPSR_A | CPSR_I;
1875 offset = 4;
1876 break;
1877 case EXCP_FIQ:
1878 new_mode = ARM_CPU_MODE_FIQ;
1879 addr = 0x1c;
1880 /* Disable FIQ, IRQ and imprecise data aborts. */
1881 mask = CPSR_A | CPSR_I | CPSR_F;
1882 offset = 4;
1883 break;
1884 default:
1885 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1886 return; /* Never happens. Keep compiler happy. */
1887 }
1888 /* High vectors. */
1889 if (env->cp15.c1_sys & (1 << 13)) {
1890 addr += 0xffff0000;
1891 }
1892 switch_mode (env, new_mode);
1893 env->spsr = cpsr_read(env);
1894 /* Clear IT bits. */
1895 env->condexec_bits = 0;
1896 /* Switch to the new mode, and to the correct instruction set. */
1897 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1898 env->uncached_cpsr |= mask;
1899 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1900 * and we should just guard the thumb mode on V4 */
1901 if (arm_feature(env, ARM_FEATURE_V4T)) {
1902 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1903 }
1904 env->regs[14] = env->regs[15] + offset;
1905 env->regs[15] = addr;
1906 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1907 }
1908
1909 /* Check section/page access permissions.
1910 Returns the page protection flags, or zero if the access is not
1911 permitted. */
1912 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1913 int access_type, int is_user)
1914 {
1915 int prot_ro;
1916
1917 if (domain_prot == 3) {
1918 return PAGE_READ | PAGE_WRITE;
1919 }
1920
1921 if (access_type == 1)
1922 prot_ro = 0;
1923 else
1924 prot_ro = PAGE_READ;
1925
1926 switch (ap) {
1927 case 0:
1928 if (access_type == 1)
1929 return 0;
1930 switch ((env->cp15.c1_sys >> 8) & 3) {
1931 case 1:
1932 return is_user ? 0 : PAGE_READ;
1933 case 2:
1934 return PAGE_READ;
1935 default:
1936 return 0;
1937 }
1938 case 1:
1939 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1940 case 2:
1941 if (is_user)
1942 return prot_ro;
1943 else
1944 return PAGE_READ | PAGE_WRITE;
1945 case 3:
1946 return PAGE_READ | PAGE_WRITE;
1947 case 4: /* Reserved. */
1948 return 0;
1949 case 5:
1950 return is_user ? 0 : prot_ro;
1951 case 6:
1952 return prot_ro;
1953 case 7:
1954 if (!arm_feature (env, ARM_FEATURE_V6K))
1955 return 0;
1956 return prot_ro;
1957 default:
1958 abort();
1959 }
1960 }
1961
1962 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1963 {
1964 uint32_t table;
1965
1966 if (address & env->cp15.c2_mask)
1967 table = env->cp15.c2_base1 & 0xffffc000;
1968 else
1969 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1970
1971 table |= (address >> 18) & 0x3ffc;
1972 return table;
1973 }
1974
1975 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1976 int is_user, hwaddr *phys_ptr,
1977 int *prot, target_ulong *page_size)
1978 {
1979 int code;
1980 uint32_t table;
1981 uint32_t desc;
1982 int type;
1983 int ap;
1984 int domain;
1985 int domain_prot;
1986 hwaddr phys_addr;
1987
1988 /* Pagetable walk. */
1989 /* Lookup l1 descriptor. */
1990 table = get_level1_table_address(env, address);
1991 desc = ldl_phys(table);
1992 type = (desc & 3);
1993 domain = (desc >> 5) & 0x0f;
1994 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
1995 if (type == 0) {
1996 /* Section translation fault. */
1997 code = 5;
1998 goto do_fault;
1999 }
2000 if (domain_prot == 0 || domain_prot == 2) {
2001 if (type == 2)
2002 code = 9; /* Section domain fault. */
2003 else
2004 code = 11; /* Page domain fault. */
2005 goto do_fault;
2006 }
2007 if (type == 2) {
2008 /* 1Mb section. */
2009 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2010 ap = (desc >> 10) & 3;
2011 code = 13;
2012 *page_size = 1024 * 1024;
2013 } else {
2014 /* Lookup l2 entry. */
2015 if (type == 1) {
2016 /* Coarse pagetable. */
2017 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2018 } else {
2019 /* Fine pagetable. */
2020 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2021 }
2022 desc = ldl_phys(table);
2023 switch (desc & 3) {
2024 case 0: /* Page translation fault. */
2025 code = 7;
2026 goto do_fault;
2027 case 1: /* 64k page. */
2028 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2029 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2030 *page_size = 0x10000;
2031 break;
2032 case 2: /* 4k page. */
2033 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2034 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2035 *page_size = 0x1000;
2036 break;
2037 case 3: /* 1k page. */
2038 if (type == 1) {
2039 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2040 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2041 } else {
2042 /* Page translation fault. */
2043 code = 7;
2044 goto do_fault;
2045 }
2046 } else {
2047 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2048 }
2049 ap = (desc >> 4) & 3;
2050 *page_size = 0x400;
2051 break;
2052 default:
2053 /* Never happens, but compiler isn't smart enough to tell. */
2054 abort();
2055 }
2056 code = 15;
2057 }
2058 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2059 if (!*prot) {
2060 /* Access permission fault. */
2061 goto do_fault;
2062 }
2063 *prot |= PAGE_EXEC;
2064 *phys_ptr = phys_addr;
2065 return 0;
2066 do_fault:
2067 return code | (domain << 4);
2068 }
2069
2070 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2071 int is_user, hwaddr *phys_ptr,
2072 int *prot, target_ulong *page_size)
2073 {
2074 int code;
2075 uint32_t table;
2076 uint32_t desc;
2077 uint32_t xn;
2078 uint32_t pxn = 0;
2079 int type;
2080 int ap;
2081 int domain = 0;
2082 int domain_prot;
2083 hwaddr phys_addr;
2084
2085 /* Pagetable walk. */
2086 /* Lookup l1 descriptor. */
2087 table = get_level1_table_address(env, address);
2088 desc = ldl_phys(table);
2089 type = (desc & 3);
2090 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2091 /* Section translation fault, or attempt to use the encoding
2092 * which is Reserved on implementations without PXN.
2093 */
2094 code = 5;
2095 goto do_fault;
2096 }
2097 if ((type == 1) || !(desc & (1 << 18))) {
2098 /* Page or Section. */
2099 domain = (desc >> 5) & 0x0f;
2100 }
2101 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2102 if (domain_prot == 0 || domain_prot == 2) {
2103 if (type != 1) {
2104 code = 9; /* Section domain fault. */
2105 } else {
2106 code = 11; /* Page domain fault. */
2107 }
2108 goto do_fault;
2109 }
2110 if (type != 1) {
2111 if (desc & (1 << 18)) {
2112 /* Supersection. */
2113 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2114 *page_size = 0x1000000;
2115 } else {
2116 /* Section. */
2117 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2118 *page_size = 0x100000;
2119 }
2120 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2121 xn = desc & (1 << 4);
2122 pxn = desc & 1;
2123 code = 13;
2124 } else {
2125 if (arm_feature(env, ARM_FEATURE_PXN)) {
2126 pxn = (desc >> 2) & 1;
2127 }
2128 /* Lookup l2 entry. */
2129 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2130 desc = ldl_phys(table);
2131 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2132 switch (desc & 3) {
2133 case 0: /* Page translation fault. */
2134 code = 7;
2135 goto do_fault;
2136 case 1: /* 64k page. */
2137 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2138 xn = desc & (1 << 15);
2139 *page_size = 0x10000;
2140 break;
2141 case 2: case 3: /* 4k page. */
2142 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2143 xn = desc & 1;
2144 *page_size = 0x1000;
2145 break;
2146 default:
2147 /* Never happens, but compiler isn't smart enough to tell. */
2148 abort();
2149 }
2150 code = 15;
2151 }
2152 if (domain_prot == 3) {
2153 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2154 } else {
2155 if (pxn && !is_user) {
2156 xn = 1;
2157 }
2158 if (xn && access_type == 2)
2159 goto do_fault;
2160
2161 /* The simplified model uses AP[0] as an access control bit. */
2162 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2163 /* Access flag fault. */
2164 code = (code == 15) ? 6 : 3;
2165 goto do_fault;
2166 }
2167 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2168 if (!*prot) {
2169 /* Access permission fault. */
2170 goto do_fault;
2171 }
2172 if (!xn) {
2173 *prot |= PAGE_EXEC;
2174 }
2175 }
2176 *phys_ptr = phys_addr;
2177 return 0;
2178 do_fault:
2179 return code | (domain << 4);
2180 }
2181
2182 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2183 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2184 */
2185 typedef enum {
2186 translation_fault = 1,
2187 access_fault = 2,
2188 permission_fault = 3,
2189 } MMUFaultType;
2190
2191 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2192 int access_type, int is_user,
2193 hwaddr *phys_ptr, int *prot,
2194 target_ulong *page_size_ptr)
2195 {
2196 /* Read an LPAE long-descriptor translation table. */
2197 MMUFaultType fault_type = translation_fault;
2198 uint32_t level = 1;
2199 uint32_t epd;
2200 uint32_t tsz;
2201 uint64_t ttbr;
2202 int ttbr_select;
2203 int n;
2204 hwaddr descaddr;
2205 uint32_t tableattrs;
2206 target_ulong page_size;
2207 uint32_t attrs;
2208
2209 /* Determine whether this address is in the region controlled by
2210 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2211 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2212 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2213 */
2214 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2215 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2216 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2217 /* there is a ttbr0 region and we are in it (high bits all zero) */
2218 ttbr_select = 0;
2219 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2220 /* there is a ttbr1 region and we are in it (high bits all one) */
2221 ttbr_select = 1;
2222 } else if (!t0sz) {
2223 /* ttbr0 region is "everything not in the ttbr1 region" */
2224 ttbr_select = 0;
2225 } else if (!t1sz) {
2226 /* ttbr1 region is "everything not in the ttbr0 region" */
2227 ttbr_select = 1;
2228 } else {
2229 /* in the gap between the two regions, this is a Translation fault */
2230 fault_type = translation_fault;
2231 goto do_fault;
2232 }
2233
2234 /* Note that QEMU ignores shareability and cacheability attributes,
2235 * so we don't need to do anything with the SH, ORGN, IRGN fields
2236 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2237 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2238 * implement any ASID-like capability so we can ignore it (instead
2239 * we will always flush the TLB any time the ASID is changed).
2240 */
2241 if (ttbr_select == 0) {
2242 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2243 epd = extract32(env->cp15.c2_control, 7, 1);
2244 tsz = t0sz;
2245 } else {
2246 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2247 epd = extract32(env->cp15.c2_control, 23, 1);
2248 tsz = t1sz;
2249 }
2250
2251 if (epd) {
2252 /* Translation table walk disabled => Translation fault on TLB miss */
2253 goto do_fault;
2254 }
2255
2256 /* If the region is small enough we will skip straight to a 2nd level
2257 * lookup. This affects the number of bits of the address used in
2258 * combination with the TTBR to find the first descriptor. ('n' here
2259 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2260 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2261 */
2262 if (tsz > 1) {
2263 level = 2;
2264 n = 14 - tsz;
2265 } else {
2266 n = 5 - tsz;
2267 }
2268
2269 /* Clear the vaddr bits which aren't part of the within-region address,
2270 * so that we don't have to special case things when calculating the
2271 * first descriptor address.
2272 */
2273 address &= (0xffffffffU >> tsz);
2274
2275 /* Now we can extract the actual base address from the TTBR */
2276 descaddr = extract64(ttbr, 0, 40);
2277 descaddr &= ~((1ULL << n) - 1);
2278
2279 tableattrs = 0;
2280 for (;;) {
2281 uint64_t descriptor;
2282
2283 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2284 descriptor = ldq_phys(descaddr);
2285 if (!(descriptor & 1) ||
2286 (!(descriptor & 2) && (level == 3))) {
2287 /* Invalid, or the Reserved level 3 encoding */
2288 goto do_fault;
2289 }
2290 descaddr = descriptor & 0xfffffff000ULL;
2291
2292 if ((descriptor & 2) && (level < 3)) {
2293 /* Table entry. The top five bits are attributes which may
2294 * propagate down through lower levels of the table (and
2295 * which are all arranged so that 0 means "no effect", so
2296 * we can gather them up by ORing in the bits at each level).
2297 */
2298 tableattrs |= extract64(descriptor, 59, 5);
2299 level++;
2300 continue;
2301 }
2302 /* Block entry at level 1 or 2, or page entry at level 3.
2303 * These are basically the same thing, although the number
2304 * of bits we pull in from the vaddr varies.
2305 */
2306 page_size = (1 << (39 - (9 * level)));
2307 descaddr |= (address & (page_size - 1));
2308 /* Extract attributes from the descriptor and merge with table attrs */
2309 attrs = extract64(descriptor, 2, 10)
2310 | (extract64(descriptor, 52, 12) << 10);
2311 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2312 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2313 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2314 * means "force PL1 access only", which means forcing AP[1] to 0.
2315 */
2316 if (extract32(tableattrs, 2, 1)) {
2317 attrs &= ~(1 << 4);
2318 }
2319 /* Since we're always in the Non-secure state, NSTable is ignored. */
2320 break;
2321 }
2322 /* Here descaddr is the final physical address, and attributes
2323 * are all in attrs.
2324 */
2325 fault_type = access_fault;
2326 if ((attrs & (1 << 8)) == 0) {
2327 /* Access flag */
2328 goto do_fault;
2329 }
2330 fault_type = permission_fault;
2331 if (is_user && !(attrs & (1 << 4))) {
2332 /* Unprivileged access not enabled */
2333 goto do_fault;
2334 }
2335 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2336 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2337 /* XN or PXN */
2338 if (access_type == 2) {
2339 goto do_fault;
2340 }
2341 *prot &= ~PAGE_EXEC;
2342 }
2343 if (attrs & (1 << 5)) {
2344 /* Write access forbidden */
2345 if (access_type == 1) {
2346 goto do_fault;
2347 }
2348 *prot &= ~PAGE_WRITE;
2349 }
2350
2351 *phys_ptr = descaddr;
2352 *page_size_ptr = page_size;
2353 return 0;
2354
2355 do_fault:
2356 /* Long-descriptor format IFSR/DFSR value */
2357 return (1 << 9) | (fault_type << 2) | level;
2358 }
2359
2360 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2361 int access_type, int is_user,
2362 hwaddr *phys_ptr, int *prot)
2363 {
2364 int n;
2365 uint32_t mask;
2366 uint32_t base;
2367
2368 *phys_ptr = address;
2369 for (n = 7; n >= 0; n--) {
2370 base = env->cp15.c6_region[n];
2371 if ((base & 1) == 0)
2372 continue;
2373 mask = 1 << ((base >> 1) & 0x1f);
2374 /* Keep this shift separate from the above to avoid an
2375 (undefined) << 32. */
2376 mask = (mask << 1) - 1;
2377 if (((base ^ address) & ~mask) == 0)
2378 break;
2379 }
2380 if (n < 0)
2381 return 2;
2382
2383 if (access_type == 2) {
2384 mask = env->cp15.c5_insn;
2385 } else {
2386 mask = env->cp15.c5_data;
2387 }
2388 mask = (mask >> (n * 4)) & 0xf;
2389 switch (mask) {
2390 case 0:
2391 return 1;
2392 case 1:
2393 if (is_user)
2394 return 1;
2395 *prot = PAGE_READ | PAGE_WRITE;
2396 break;
2397 case 2:
2398 *prot = PAGE_READ;
2399 if (!is_user)
2400 *prot |= PAGE_WRITE;
2401 break;
2402 case 3:
2403 *prot = PAGE_READ | PAGE_WRITE;
2404 break;
2405 case 5:
2406 if (is_user)
2407 return 1;
2408 *prot = PAGE_READ;
2409 break;
2410 case 6:
2411 *prot = PAGE_READ;
2412 break;
2413 default:
2414 /* Bad permission. */
2415 return 1;
2416 }
2417 *prot |= PAGE_EXEC;
2418 return 0;
2419 }
2420
2421 /* get_phys_addr - get the physical address for this virtual address
2422 *
2423 * Find the physical address corresponding to the given virtual address,
2424 * by doing a translation table walk on MMU based systems or using the
2425 * MPU state on MPU based systems.
2426 *
2427 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2428 * prot and page_size are not filled in, and the return value provides
2429 * information on why the translation aborted, in the format of a
2430 * DFSR/IFSR fault register, with the following caveats:
2431 * * we honour the short vs long DFSR format differences.
2432 * * the WnR bit is never set (the caller must do this).
2433 * * for MPU based systems we don't bother to return a full FSR format
2434 * value.
2435 *
2436 * @env: CPUARMState
2437 * @address: virtual address to get physical address for
2438 * @access_type: 0 for read, 1 for write, 2 for execute
2439 * @is_user: 0 for privileged access, 1 for user
2440 * @phys_ptr: set to the physical address corresponding to the virtual address
2441 * @prot: set to the permissions for the page containing phys_ptr
2442 * @page_size: set to the size of the page containing phys_ptr
2443 */
2444 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2445 int access_type, int is_user,
2446 hwaddr *phys_ptr, int *prot,
2447 target_ulong *page_size)
2448 {
2449 /* Fast Context Switch Extension. */
2450 if (address < 0x02000000)
2451 address += env->cp15.c13_fcse;
2452
2453 if ((env->cp15.c1_sys & 1) == 0) {
2454 /* MMU/MPU disabled. */
2455 *phys_ptr = address;
2456 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2457 *page_size = TARGET_PAGE_SIZE;
2458 return 0;
2459 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2460 *page_size = TARGET_PAGE_SIZE;
2461 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2462 prot);
2463 } else if (extended_addresses_enabled(env)) {
2464 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2465 prot, page_size);
2466 } else if (env->cp15.c1_sys & (1 << 23)) {
2467 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2468 prot, page_size);
2469 } else {
2470 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2471 prot, page_size);
2472 }
2473 }
2474
2475 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2476 int access_type, int mmu_idx)
2477 {
2478 hwaddr phys_addr;
2479 target_ulong page_size;
2480 int prot;
2481 int ret, is_user;
2482
2483 is_user = mmu_idx == MMU_USER_IDX;
2484 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2485 &page_size);
2486 if (ret == 0) {
2487 /* Map a single [sub]page. */
2488 phys_addr &= ~(hwaddr)0x3ff;
2489 address &= ~(uint32_t)0x3ff;
2490 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2491 return 0;
2492 }
2493
2494 if (access_type == 2) {
2495 env->cp15.c5_insn = ret;
2496 env->cp15.c6_insn = address;
2497 env->exception_index = EXCP_PREFETCH_ABORT;
2498 } else {
2499 env->cp15.c5_data = ret;
2500 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2501 env->cp15.c5_data |= (1 << 11);
2502 env->cp15.c6_data = address;
2503 env->exception_index = EXCP_DATA_ABORT;
2504 }
2505 return 1;
2506 }
2507
2508 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2509 {
2510 hwaddr phys_addr;
2511 target_ulong page_size;
2512 int prot;
2513 int ret;
2514
2515 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2516
2517 if (ret != 0)
2518 return -1;
2519
2520 return phys_addr;
2521 }
2522
2523 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2524 {
2525 if ((env->uncached_cpsr & CPSR_M) == mode) {
2526 env->regs[13] = val;
2527 } else {
2528 env->banked_r13[bank_number(env, mode)] = val;
2529 }
2530 }
2531
2532 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2533 {
2534 if ((env->uncached_cpsr & CPSR_M) == mode) {
2535 return env->regs[13];
2536 } else {
2537 return env->banked_r13[bank_number(env, mode)];
2538 }
2539 }
2540
2541 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2542 {
2543 switch (reg) {
2544 case 0: /* APSR */
2545 return xpsr_read(env) & 0xf8000000;
2546 case 1: /* IAPSR */
2547 return xpsr_read(env) & 0xf80001ff;
2548 case 2: /* EAPSR */
2549 return xpsr_read(env) & 0xff00fc00;
2550 case 3: /* xPSR */
2551 return xpsr_read(env) & 0xff00fdff;
2552 case 5: /* IPSR */
2553 return xpsr_read(env) & 0x000001ff;
2554 case 6: /* EPSR */
2555 return xpsr_read(env) & 0x0700fc00;
2556 case 7: /* IEPSR */
2557 return xpsr_read(env) & 0x0700edff;
2558 case 8: /* MSP */
2559 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2560 case 9: /* PSP */
2561 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2562 case 16: /* PRIMASK */
2563 return (env->uncached_cpsr & CPSR_I) != 0;
2564 case 17: /* BASEPRI */
2565 case 18: /* BASEPRI_MAX */
2566 return env->v7m.basepri;
2567 case 19: /* FAULTMASK */
2568 return (env->uncached_cpsr & CPSR_F) != 0;
2569 case 20: /* CONTROL */
2570 return env->v7m.control;
2571 default:
2572 /* ??? For debugging only. */
2573 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2574 return 0;
2575 }
2576 }
2577
2578 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2579 {
2580 switch (reg) {
2581 case 0: /* APSR */
2582 xpsr_write(env, val, 0xf8000000);
2583 break;
2584 case 1: /* IAPSR */
2585 xpsr_write(env, val, 0xf8000000);
2586 break;
2587 case 2: /* EAPSR */
2588 xpsr_write(env, val, 0xfe00fc00);
2589 break;
2590 case 3: /* xPSR */
2591 xpsr_write(env, val, 0xfe00fc00);
2592 break;
2593 case 5: /* IPSR */
2594 /* IPSR bits are readonly. */
2595 break;
2596 case 6: /* EPSR */
2597 xpsr_write(env, val, 0x0600fc00);
2598 break;
2599 case 7: /* IEPSR */
2600 xpsr_write(env, val, 0x0600fc00);
2601 break;
2602 case 8: /* MSP */
2603 if (env->v7m.current_sp)
2604 env->v7m.other_sp = val;
2605 else
2606 env->regs[13] = val;
2607 break;
2608 case 9: /* PSP */
2609 if (env->v7m.current_sp)
2610 env->regs[13] = val;
2611 else
2612 env->v7m.other_sp = val;
2613 break;
2614 case 16: /* PRIMASK */
2615 if (val & 1)
2616 env->uncached_cpsr |= CPSR_I;
2617 else
2618 env->uncached_cpsr &= ~CPSR_I;
2619 break;
2620 case 17: /* BASEPRI */
2621 env->v7m.basepri = val & 0xff;
2622 break;
2623 case 18: /* BASEPRI_MAX */
2624 val &= 0xff;
2625 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2626 env->v7m.basepri = val;
2627 break;
2628 case 19: /* FAULTMASK */
2629 if (val & 1)
2630 env->uncached_cpsr |= CPSR_F;
2631 else
2632 env->uncached_cpsr &= ~CPSR_F;
2633 break;
2634 case 20: /* CONTROL */
2635 env->v7m.control = val & 3;
2636 switch_v7m_sp(env, (val & 2) != 0);
2637 break;
2638 default:
2639 /* ??? For debugging only. */
2640 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2641 return;
2642 }
2643 }
2644
2645 #endif
2646
2647 /* Note that signed overflow is undefined in C. The following routines are
2648 careful to use unsigned types where modulo arithmetic is required.
2649 Failure to do so _will_ break on newer gcc. */
2650
2651 /* Signed saturating arithmetic. */
2652
2653 /* Perform 16-bit signed saturating addition. */
2654 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2655 {
2656 uint16_t res;
2657
2658 res = a + b;
2659 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2660 if (a & 0x8000)
2661 res = 0x8000;
2662 else
2663 res = 0x7fff;
2664 }
2665 return res;
2666 }
2667
2668 /* Perform 8-bit signed saturating addition. */
2669 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2670 {
2671 uint8_t res;
2672
2673 res = a + b;
2674 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2675 if (a & 0x80)
2676 res = 0x80;
2677 else
2678 res = 0x7f;
2679 }
2680 return res;
2681 }
2682
2683 /* Perform 16-bit signed saturating subtraction. */
2684 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2685 {
2686 uint16_t res;
2687
2688 res = a - b;
2689 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2690 if (a & 0x8000)
2691 res = 0x8000;
2692 else
2693 res = 0x7fff;
2694 }
2695 return res;
2696 }
2697
2698 /* Perform 8-bit signed saturating subtraction. */
2699 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2700 {
2701 uint8_t res;
2702
2703 res = a - b;
2704 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2705 if (a & 0x80)
2706 res = 0x80;
2707 else
2708 res = 0x7f;
2709 }
2710 return res;
2711 }
2712
2713 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2714 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2715 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2716 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2717 #define PFX q
2718
2719 #include "op_addsub.h"
2720
2721 /* Unsigned saturating arithmetic. */
2722 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2723 {
2724 uint16_t res;
2725 res = a + b;
2726 if (res < a)
2727 res = 0xffff;
2728 return res;
2729 }
2730
2731 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2732 {
2733 if (a > b)
2734 return a - b;
2735 else
2736 return 0;
2737 }
2738
2739 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2740 {
2741 uint8_t res;
2742 res = a + b;
2743 if (res < a)
2744 res = 0xff;
2745 return res;
2746 }
2747
2748 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2749 {
2750 if (a > b)
2751 return a - b;
2752 else
2753 return 0;
2754 }
2755
2756 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2757 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2758 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2759 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2760 #define PFX uq
2761
2762 #include "op_addsub.h"
2763
2764 /* Signed modulo arithmetic. */
2765 #define SARITH16(a, b, n, op) do { \
2766 int32_t sum; \
2767 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2768 RESULT(sum, n, 16); \
2769 if (sum >= 0) \
2770 ge |= 3 << (n * 2); \
2771 } while(0)
2772
2773 #define SARITH8(a, b, n, op) do { \
2774 int32_t sum; \
2775 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2776 RESULT(sum, n, 8); \
2777 if (sum >= 0) \
2778 ge |= 1 << n; \
2779 } while(0)
2780
2781
2782 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2783 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2784 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2785 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2786 #define PFX s
2787 #define ARITH_GE
2788
2789 #include "op_addsub.h"
2790
2791 /* Unsigned modulo arithmetic. */
2792 #define ADD16(a, b, n) do { \
2793 uint32_t sum; \
2794 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2795 RESULT(sum, n, 16); \
2796 if ((sum >> 16) == 1) \
2797 ge |= 3 << (n * 2); \
2798 } while(0)
2799
2800 #define ADD8(a, b, n) do { \
2801 uint32_t sum; \
2802 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2803 RESULT(sum, n, 8); \
2804 if ((sum >> 8) == 1) \
2805 ge |= 1 << n; \
2806 } while(0)
2807
2808 #define SUB16(a, b, n) do { \
2809 uint32_t sum; \
2810 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2811 RESULT(sum, n, 16); \
2812 if ((sum >> 16) == 0) \
2813 ge |= 3 << (n * 2); \
2814 } while(0)
2815
2816 #define SUB8(a, b, n) do { \
2817 uint32_t sum; \
2818 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2819 RESULT(sum, n, 8); \
2820 if ((sum >> 8) == 0) \
2821 ge |= 1 << n; \
2822 } while(0)
2823
2824 #define PFX u
2825 #define ARITH_GE
2826
2827 #include "op_addsub.h"
2828
2829 /* Halved signed arithmetic. */
2830 #define ADD16(a, b, n) \
2831 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2832 #define SUB16(a, b, n) \
2833 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2834 #define ADD8(a, b, n) \
2835 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2836 #define SUB8(a, b, n) \
2837 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2838 #define PFX sh
2839
2840 #include "op_addsub.h"
2841
2842 /* Halved unsigned arithmetic. */
2843 #define ADD16(a, b, n) \
2844 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2845 #define SUB16(a, b, n) \
2846 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2847 #define ADD8(a, b, n) \
2848 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2849 #define SUB8(a, b, n) \
2850 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2851 #define PFX uh
2852
2853 #include "op_addsub.h"
2854
2855 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2856 {
2857 if (a > b)
2858 return a - b;
2859 else
2860 return b - a;
2861 }
2862
2863 /* Unsigned sum of absolute byte differences. */
2864 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2865 {
2866 uint32_t sum;
2867 sum = do_usad(a, b);
2868 sum += do_usad(a >> 8, b >> 8);
2869 sum += do_usad(a >> 16, b >>16);
2870 sum += do_usad(a >> 24, b >> 24);
2871 return sum;
2872 }
2873
2874 /* For ARMv6 SEL instruction. */
2875 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2876 {
2877 uint32_t mask;
2878
2879 mask = 0;
2880 if (flags & 1)
2881 mask |= 0xff;
2882 if (flags & 2)
2883 mask |= 0xff00;
2884 if (flags & 4)
2885 mask |= 0xff0000;
2886 if (flags & 8)
2887 mask |= 0xff000000;
2888 return (a & mask) | (b & ~mask);
2889 }
2890
2891 uint32_t HELPER(logicq_cc)(uint64_t val)
2892 {
2893 return (val >> 32) | (val != 0);
2894 }
2895
2896 /* VFP support. We follow the convention used for VFP instructions:
2897 Single precision routines have a "s" suffix, double precision a
2898 "d" suffix. */
2899
2900 /* Convert host exception flags to vfp form. */
2901 static inline int vfp_exceptbits_from_host(int host_bits)
2902 {
2903 int target_bits = 0;
2904
2905 if (host_bits & float_flag_invalid)
2906 target_bits |= 1;
2907 if (host_bits & float_flag_divbyzero)
2908 target_bits |= 2;
2909 if (host_bits & float_flag_overflow)
2910 target_bits |= 4;
2911 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2912 target_bits |= 8;
2913 if (host_bits & float_flag_inexact)
2914 target_bits |= 0x10;
2915 if (host_bits & float_flag_input_denormal)
2916 target_bits |= 0x80;
2917 return target_bits;
2918 }
2919
2920 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2921 {
2922 int i;
2923 uint32_t fpscr;
2924
2925 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2926 | (env->vfp.vec_len << 16)
2927 | (env->vfp.vec_stride << 20);
2928 i = get_float_exception_flags(&env->vfp.fp_status);
2929 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2930 fpscr |= vfp_exceptbits_from_host(i);
2931 return fpscr;
2932 }
2933
2934 uint32_t vfp_get_fpscr(CPUARMState *env)
2935 {
2936 return HELPER(vfp_get_fpscr)(env);
2937 }
2938
2939 /* Convert vfp exception flags to target form. */
2940 static inline int vfp_exceptbits_to_host(int target_bits)
2941 {
2942 int host_bits = 0;
2943
2944 if (target_bits & 1)
2945 host_bits |= float_flag_invalid;
2946 if (target_bits & 2)
2947 host_bits |= float_flag_divbyzero;
2948 if (target_bits & 4)
2949 host_bits |= float_flag_overflow;
2950 if (target_bits & 8)
2951 host_bits |= float_flag_underflow;
2952 if (target_bits & 0x10)
2953 host_bits |= float_flag_inexact;
2954 if (target_bits & 0x80)
2955 host_bits |= float_flag_input_denormal;
2956 return host_bits;
2957 }
2958
2959 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2960 {
2961 int i;
2962 uint32_t changed;
2963
2964 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2965 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2966 env->vfp.vec_len = (val >> 16) & 7;
2967 env->vfp.vec_stride = (val >> 20) & 3;
2968
2969 changed ^= val;
2970 if (changed & (3 << 22)) {
2971 i = (val >> 22) & 3;
2972 switch (i) {
2973 case 0:
2974 i = float_round_nearest_even;
2975 break;
2976 case 1:
2977 i = float_round_up;
2978 break;
2979 case 2:
2980 i = float_round_down;
2981 break;
2982 case 3:
2983 i = float_round_to_zero;
2984 break;
2985 }
2986 set_float_rounding_mode(i, &env->vfp.fp_status);
2987 }
2988 if (changed & (1 << 24)) {
2989 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2990 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2991 }
2992 if (changed & (1 << 25))
2993 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2994
2995 i = vfp_exceptbits_to_host(val);
2996 set_float_exception_flags(i, &env->vfp.fp_status);
2997 set_float_exception_flags(0, &env->vfp.standard_fp_status);
2998 }
2999
3000 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3001 {
3002 HELPER(vfp_set_fpscr)(env, val);
3003 }
3004
3005 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3006
3007 #define VFP_BINOP(name) \
3008 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3009 { \
3010 float_status *fpst = fpstp; \
3011 return float32_ ## name(a, b, fpst); \
3012 } \
3013 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3014 { \
3015 float_status *fpst = fpstp; \
3016 return float64_ ## name(a, b, fpst); \
3017 }
3018 VFP_BINOP(add)
3019 VFP_BINOP(sub)
3020 VFP_BINOP(mul)
3021 VFP_BINOP(div)
3022 #undef VFP_BINOP
3023
3024 float32 VFP_HELPER(neg, s)(float32 a)
3025 {
3026 return float32_chs(a);
3027 }
3028
3029 float64 VFP_HELPER(neg, d)(float64 a)
3030 {
3031 return float64_chs(a);
3032 }
3033
3034 float32 VFP_HELPER(abs, s)(float32 a)
3035 {
3036 return float32_abs(a);
3037 }
3038
3039 float64 VFP_HELPER(abs, d)(float64 a)
3040 {
3041 return float64_abs(a);
3042 }
3043
3044 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3045 {
3046 return float32_sqrt(a, &env->vfp.fp_status);
3047 }
3048
3049 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3050 {
3051 return float64_sqrt(a, &env->vfp.fp_status);
3052 }
3053
3054 /* XXX: check quiet/signaling case */
3055 #define DO_VFP_cmp(p, type) \
3056 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3057 { \
3058 uint32_t flags; \
3059 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3060 case 0: flags = 0x6; break; \
3061 case -1: flags = 0x8; break; \
3062 case 1: flags = 0x2; break; \
3063 default: case 2: flags = 0x3; break; \
3064 } \
3065 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3066 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3067 } \
3068 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3069 { \
3070 uint32_t flags; \
3071 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3072 case 0: flags = 0x6; break; \
3073 case -1: flags = 0x8; break; \
3074 case 1: flags = 0x2; break; \
3075 default: case 2: flags = 0x3; break; \
3076 } \
3077 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3078 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3079 }
3080 DO_VFP_cmp(s, float32)
3081 DO_VFP_cmp(d, float64)
3082 #undef DO_VFP_cmp
3083
3084 /* Integer to float and float to integer conversions */
3085
3086 #define CONV_ITOF(name, fsz, sign) \
3087 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3088 { \
3089 float_status *fpst = fpstp; \
3090 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3091 }
3092
3093 #define CONV_FTOI(name, fsz, sign, round) \
3094 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3095 { \
3096 float_status *fpst = fpstp; \
3097 if (float##fsz##_is_any_nan(x)) { \
3098 float_raise(float_flag_invalid, fpst); \
3099 return 0; \
3100 } \
3101 return float##fsz##_to_##sign##int32##round(x, fpst); \
3102 }
3103
3104 #define FLOAT_CONVS(name, p, fsz, sign) \
3105 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3106 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3107 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3108
3109 FLOAT_CONVS(si, s, 32, )
3110 FLOAT_CONVS(si, d, 64, )
3111 FLOAT_CONVS(ui, s, 32, u)
3112 FLOAT_CONVS(ui, d, 64, u)
3113
3114 #undef CONV_ITOF
3115 #undef CONV_FTOI
3116 #undef FLOAT_CONVS
3117
3118 /* floating point conversion */
3119 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3120 {
3121 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3122 /* ARM requires that S<->D conversion of any kind of NaN generates
3123 * a quiet NaN by forcing the most significant frac bit to 1.
3124 */
3125 return float64_maybe_silence_nan(r);
3126 }
3127
3128 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3129 {
3130 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3131 /* ARM requires that S<->D conversion of any kind of NaN generates
3132 * a quiet NaN by forcing the most significant frac bit to 1.
3133 */
3134 return float32_maybe_silence_nan(r);
3135 }
3136
3137 /* VFP3 fixed point conversion. */
3138 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3139 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3140 void *fpstp) \
3141 { \
3142 float_status *fpst = fpstp; \
3143 float##fsz tmp; \
3144 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3145 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3146 } \
3147 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3148 void *fpstp) \
3149 { \
3150 float_status *fpst = fpstp; \
3151 float##fsz tmp; \
3152 if (float##fsz##_is_any_nan(x)) { \
3153 float_raise(float_flag_invalid, fpst); \
3154 return 0; \
3155 } \
3156 tmp = float##fsz##_scalbn(x, shift, fpst); \
3157 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3158 }
3159
3160 VFP_CONV_FIX(sh, d, 64, int16, )
3161 VFP_CONV_FIX(sl, d, 64, int32, )
3162 VFP_CONV_FIX(uh, d, 64, uint16, u)
3163 VFP_CONV_FIX(ul, d, 64, uint32, u)
3164 VFP_CONV_FIX(sh, s, 32, int16, )
3165 VFP_CONV_FIX(sl, s, 32, int32, )
3166 VFP_CONV_FIX(uh, s, 32, uint16, u)
3167 VFP_CONV_FIX(ul, s, 32, uint32, u)
3168 #undef VFP_CONV_FIX
3169
3170 /* Half precision conversions. */
3171 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3172 {
3173 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3174 float32 r = float16_to_float32(make_float16(a), ieee, s);
3175 if (ieee) {
3176 return float32_maybe_silence_nan(r);
3177 }
3178 return r;
3179 }
3180
3181 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3182 {
3183 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3184 float16 r = float32_to_float16(a, ieee, s);
3185 if (ieee) {
3186 r = float16_maybe_silence_nan(r);
3187 }
3188 return float16_val(r);
3189 }
3190
3191 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3192 {
3193 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3194 }
3195
3196 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3197 {
3198 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3199 }
3200
3201 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3202 {
3203 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3204 }
3205
3206 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3207 {
3208 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3209 }
3210
3211 #define float32_two make_float32(0x40000000)
3212 #define float32_three make_float32(0x40400000)
3213 #define float32_one_point_five make_float32(0x3fc00000)
3214
3215 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3216 {
3217 float_status *s = &env->vfp.standard_fp_status;
3218 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3219 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3220 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3221 float_raise(float_flag_input_denormal, s);
3222 }
3223 return float32_two;
3224 }
3225 return float32_sub(float32_two, float32_mul(a, b, s), s);
3226 }
3227
3228 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3229 {
3230 float_status *s = &env->vfp.standard_fp_status;
3231 float32 product;
3232 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3233 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3234 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3235 float_raise(float_flag_input_denormal, s);
3236 }
3237 return float32_one_point_five;
3238 }
3239 product = float32_mul(a, b, s);
3240 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3241 }
3242
3243 /* NEON helpers. */
3244
3245 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3246 * int->float conversions at run-time. */
3247 #define float64_256 make_float64(0x4070000000000000LL)
3248 #define float64_512 make_float64(0x4080000000000000LL)
3249
3250 /* The algorithm that must be used to calculate the estimate
3251 * is specified by the ARM ARM.
3252 */
3253 static float64 recip_estimate(float64 a, CPUARMState *env)
3254 {
3255 /* These calculations mustn't set any fp exception flags,
3256 * so we use a local copy of the fp_status.
3257 */
3258 float_status dummy_status = env->vfp.standard_fp_status;
3259 float_status *s = &dummy_status;
3260 /* q = (int)(a * 512.0) */
3261 float64 q = float64_mul(float64_512, a, s);
3262 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3263
3264 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3265 q = int64_to_float64(q_int, s);
3266 q = float64_add(q, float64_half, s);
3267 q = float64_div(q, float64_512, s);
3268 q = float64_div(float64_one, q, s);
3269
3270 /* s = (int)(256.0 * r + 0.5) */
3271 q = float64_mul(q, float64_256, s);
3272 q = float64_add(q, float64_half, s);
3273 q_int = float64_to_int64_round_to_zero(q, s);
3274
3275 /* return (double)s / 256.0 */
3276 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3277 }
3278
3279 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3280 {
3281 float_status *s = &env->vfp.standard_fp_status;
3282 float64 f64;
3283 uint32_t val32 = float32_val(a);
3284
3285 int result_exp;
3286 int a_exp = (val32 & 0x7f800000) >> 23;
3287 int sign = val32 & 0x80000000;
3288
3289 if (float32_is_any_nan(a)) {
3290 if (float32_is_signaling_nan(a)) {
3291 float_raise(float_flag_invalid, s);
3292 }
3293 return float32_default_nan;
3294 } else if (float32_is_infinity(a)) {
3295 return float32_set_sign(float32_zero, float32_is_neg(a));
3296 } else if (float32_is_zero_or_denormal(a)) {
3297 if (!float32_is_zero(a)) {
3298 float_raise(float_flag_input_denormal, s);
3299 }
3300 float_raise(float_flag_divbyzero, s);
3301 return float32_set_sign(float32_infinity, float32_is_neg(a));
3302 } else if (a_exp >= 253) {
3303 float_raise(float_flag_underflow, s);
3304 return float32_set_sign(float32_zero, float32_is_neg(a));
3305 }
3306
3307 f64 = make_float64((0x3feULL << 52)
3308 | ((int64_t)(val32 & 0x7fffff) << 29));
3309
3310 result_exp = 253 - a_exp;
3311
3312 f64 = recip_estimate(f64, env);
3313
3314 val32 = sign
3315 | ((result_exp & 0xff) << 23)
3316 | ((float64_val(f64) >> 29) & 0x7fffff);
3317 return make_float32(val32);
3318 }
3319
3320 /* The algorithm that must be used to calculate the estimate
3321 * is specified by the ARM ARM.
3322 */
3323 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3324 {
3325 /* These calculations mustn't set any fp exception flags,
3326 * so we use a local copy of the fp_status.
3327 */
3328 float_status dummy_status = env->vfp.standard_fp_status;
3329 float_status *s = &dummy_status;
3330 float64 q;
3331 int64_t q_int;
3332
3333 if (float64_lt(a, float64_half, s)) {
3334 /* range 0.25 <= a < 0.5 */
3335
3336 /* a in units of 1/512 rounded down */
3337 /* q0 = (int)(a * 512.0); */
3338 q = float64_mul(float64_512, a, s);
3339 q_int = float64_to_int64_round_to_zero(q, s);
3340
3341 /* reciprocal root r */
3342 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3343 q = int64_to_float64(q_int, s);
3344 q = float64_add(q, float64_half, s);
3345 q = float64_div(q, float64_512, s);
3346 q = float64_sqrt(q, s);
3347 q = float64_div(float64_one, q, s);
3348 } else {
3349 /* range 0.5 <= a < 1.0 */
3350
3351 /* a in units of 1/256 rounded down */
3352 /* q1 = (int)(a * 256.0); */
3353 q = float64_mul(float64_256, a, s);
3354 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3355
3356 /* reciprocal root r */
3357 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3358 q = int64_to_float64(q_int, s);
3359 q = float64_add(q, float64_half, s);
3360 q = float64_div(q, float64_256, s);
3361 q = float64_sqrt(q, s);
3362 q = float64_div(float64_one, q, s);
3363 }
3364 /* r in units of 1/256 rounded to nearest */
3365 /* s = (int)(256.0 * r + 0.5); */
3366
3367 q = float64_mul(q, float64_256,s );
3368 q = float64_add(q, float64_half, s);
3369 q_int = float64_to_int64_round_to_zero(q, s);
3370
3371 /* return (double)s / 256.0;*/
3372 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3373 }
3374
3375 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3376 {
3377 float_status *s = &env->vfp.standard_fp_status;
3378 int result_exp;
3379 float64 f64;
3380 uint32_t val;
3381 uint64_t val64;
3382
3383 val = float32_val(a);
3384
3385 if (float32_is_any_nan(a)) {
3386 if (float32_is_signaling_nan(a)) {
3387 float_raise(float_flag_invalid, s);
3388 }
3389 return float32_default_nan;
3390 } else if (float32_is_zero_or_denormal(a)) {
3391 if (!float32_is_zero(a)) {
3392 float_raise(float_flag_input_denormal, s);
3393 }
3394 float_raise(float_flag_divbyzero, s);
3395 return float32_set_sign(float32_infinity, float32_is_neg(a));
3396 } else if (float32_is_neg(a)) {
3397 float_raise(float_flag_invalid, s);
3398 return float32_default_nan;
3399 } else if (float32_is_infinity(a)) {
3400 return float32_zero;
3401 }
3402
3403 /* Normalize to a double-precision value between 0.25 and 1.0,
3404 * preserving the parity of the exponent. */
3405 if ((val & 0x800000) == 0) {
3406 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3407 | (0x3feULL << 52)
3408 | ((uint64_t)(val & 0x7fffff) << 29));
3409 } else {
3410 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3411 | (0x3fdULL << 52)
3412 | ((uint64_t)(val & 0x7fffff) << 29));
3413 }
3414
3415 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3416
3417 f64 = recip_sqrt_estimate(f64, env);
3418
3419 val64 = float64_val(f64);
3420
3421 val = ((result_exp & 0xff) << 23)
3422 | ((val64 >> 29) & 0x7fffff);
3423 return make_float32(val);
3424 }
3425
3426 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3427 {
3428 float64 f64;
3429
3430 if ((a & 0x80000000) == 0) {
3431 return 0xffffffff;
3432 }
3433
3434 f64 = make_float64((0x3feULL << 52)
3435 | ((int64_t)(a & 0x7fffffff) << 21));
3436
3437 f64 = recip_estimate (f64, env);
3438
3439 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3440 }
3441
3442 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3443 {
3444 float64 f64;
3445
3446 if ((a & 0xc0000000) == 0) {
3447 return 0xffffffff;
3448 }
3449
3450 if (a & 0x80000000) {
3451 f64 = make_float64((0x3feULL << 52)
3452 | ((uint64_t)(a & 0x7fffffff) << 21));
3453 } else { /* bits 31-30 == '01' */
3454 f64 = make_float64((0x3fdULL << 52)
3455 | ((uint64_t)(a & 0x3fffffff) << 22));
3456 }
3457
3458 f64 = recip_sqrt_estimate(f64, env);
3459
3460 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3461 }
3462
3463 /* VFPv4 fused multiply-accumulate */
3464 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3465 {
3466 float_status *fpst = fpstp;
3467 return float32_muladd(a, b, c, 0, fpst);
3468 }
3469
3470 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3471 {
3472 float_status *fpst = fpstp;
3473 return float64_muladd(a, b, c, 0, fpst);
3474 }