]> git.proxmox.com Git - qemu.git/blob - target-arm/kvm.c
target-arm: Convert TCG to using (index,value) list for cp migration
[qemu.git] / target-arm / kvm.c
1 /*
2 * ARM implementation of KVM hooks
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
15
16 #include <linux/kvm.h>
17
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
22 #include "kvm_arm.h"
23 #include "cpu.h"
24 #include "hw/arm/arm.h"
25
26 /* Check that cpu.h's idea of coprocessor fields matches KVM's */
27 #if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
28 (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
29 (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
30 (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
31 (CP_REG_ARM != KVM_REG_ARM)
32 #error mismatch between cpu.h and KVM header definitions
33 #endif
34
35 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
36 KVM_CAP_LAST_INFO
37 };
38
39 int kvm_arch_init(KVMState *s)
40 {
41 /* For ARM interrupt delivery is always asynchronous,
42 * whether we are using an in-kernel VGIC or not.
43 */
44 kvm_async_interrupts_allowed = true;
45 return 0;
46 }
47
48 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
49 {
50 return cpu->cpu_index;
51 }
52
53 int kvm_arch_init_vcpu(CPUState *cs)
54 {
55 struct kvm_vcpu_init init;
56 int ret;
57 uint64_t v;
58 struct kvm_one_reg r;
59
60 init.target = KVM_ARM_TARGET_CORTEX_A15;
61 memset(init.features, 0, sizeof(init.features));
62 ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
63 if (ret) {
64 return ret;
65 }
66 /* Query the kernel to make sure it supports 32 VFP
67 * registers: QEMU's "cortex-a15" CPU is always a
68 * VFP-D32 core. The simplest way to do this is just
69 * to attempt to read register d31.
70 */
71 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
72 r.addr = (uintptr_t)(&v);
73 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
74 if (ret == -ENOENT) {
75 return -EINVAL;
76 }
77 return ret;
78 }
79
80 /* We track all the KVM devices which need their memory addresses
81 * passing to the kernel in a list of these structures.
82 * When board init is complete we run through the list and
83 * tell the kernel the base addresses of the memory regions.
84 * We use a MemoryListener to track mapping and unmapping of
85 * the regions during board creation, so the board models don't
86 * need to do anything special for the KVM case.
87 */
88 typedef struct KVMDevice {
89 struct kvm_arm_device_addr kda;
90 MemoryRegion *mr;
91 QSLIST_ENTRY(KVMDevice) entries;
92 } KVMDevice;
93
94 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
95
96 static void kvm_arm_devlistener_add(MemoryListener *listener,
97 MemoryRegionSection *section)
98 {
99 KVMDevice *kd;
100
101 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
102 if (section->mr == kd->mr) {
103 kd->kda.addr = section->offset_within_address_space;
104 }
105 }
106 }
107
108 static void kvm_arm_devlistener_del(MemoryListener *listener,
109 MemoryRegionSection *section)
110 {
111 KVMDevice *kd;
112
113 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
114 if (section->mr == kd->mr) {
115 kd->kda.addr = -1;
116 }
117 }
118 }
119
120 static MemoryListener devlistener = {
121 .region_add = kvm_arm_devlistener_add,
122 .region_del = kvm_arm_devlistener_del,
123 };
124
125 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
126 {
127 KVMDevice *kd, *tkd;
128
129 memory_listener_unregister(&devlistener);
130 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
131 if (kd->kda.addr != -1) {
132 if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
133 &kd->kda) < 0) {
134 fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
135 strerror(errno));
136 abort();
137 }
138 }
139 g_free(kd);
140 }
141 }
142
143 static Notifier notify = {
144 .notify = kvm_arm_machine_init_done,
145 };
146
147 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
148 {
149 KVMDevice *kd;
150
151 if (!kvm_irqchip_in_kernel()) {
152 return;
153 }
154
155 if (QSLIST_EMPTY(&kvm_devices_head)) {
156 memory_listener_register(&devlistener, NULL);
157 qemu_add_machine_init_done_notifier(&notify);
158 }
159 kd = g_new0(KVMDevice, 1);
160 kd->mr = mr;
161 kd->kda.id = devid;
162 kd->kda.addr = -1;
163 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
164 }
165
166 typedef struct Reg {
167 uint64_t id;
168 int offset;
169 } Reg;
170
171 #define COREREG(KERNELNAME, QEMUFIELD) \
172 { \
173 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
174 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
175 offsetof(CPUARMState, QEMUFIELD) \
176 }
177
178 #define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
179 { \
180 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
181 (15 << KVM_REG_ARM_COPROC_SHIFT) | \
182 ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
183 ((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
184 ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
185 ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
186 offsetof(CPUARMState, QEMUFIELD) \
187 }
188
189 #define VFPSYSREG(R) \
190 { \
191 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
192 KVM_REG_ARM_VFP_##R, \
193 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
194 }
195
196 static const Reg regs[] = {
197 /* R0_usr .. R14_usr */
198 COREREG(usr_regs.uregs[0], regs[0]),
199 COREREG(usr_regs.uregs[1], regs[1]),
200 COREREG(usr_regs.uregs[2], regs[2]),
201 COREREG(usr_regs.uregs[3], regs[3]),
202 COREREG(usr_regs.uregs[4], regs[4]),
203 COREREG(usr_regs.uregs[5], regs[5]),
204 COREREG(usr_regs.uregs[6], regs[6]),
205 COREREG(usr_regs.uregs[7], regs[7]),
206 COREREG(usr_regs.uregs[8], usr_regs[0]),
207 COREREG(usr_regs.uregs[9], usr_regs[1]),
208 COREREG(usr_regs.uregs[10], usr_regs[2]),
209 COREREG(usr_regs.uregs[11], usr_regs[3]),
210 COREREG(usr_regs.uregs[12], usr_regs[4]),
211 COREREG(usr_regs.uregs[13], banked_r13[0]),
212 COREREG(usr_regs.uregs[14], banked_r14[0]),
213 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
214 COREREG(svc_regs[0], banked_r13[1]),
215 COREREG(svc_regs[1], banked_r14[1]),
216 COREREG(svc_regs[2], banked_spsr[1]),
217 COREREG(abt_regs[0], banked_r13[2]),
218 COREREG(abt_regs[1], banked_r14[2]),
219 COREREG(abt_regs[2], banked_spsr[2]),
220 COREREG(und_regs[0], banked_r13[3]),
221 COREREG(und_regs[1], banked_r14[3]),
222 COREREG(und_regs[2], banked_spsr[3]),
223 COREREG(irq_regs[0], banked_r13[4]),
224 COREREG(irq_regs[1], banked_r14[4]),
225 COREREG(irq_regs[2], banked_spsr[4]),
226 /* R8_fiq .. R14_fiq and SPSR_fiq */
227 COREREG(fiq_regs[0], fiq_regs[0]),
228 COREREG(fiq_regs[1], fiq_regs[1]),
229 COREREG(fiq_regs[2], fiq_regs[2]),
230 COREREG(fiq_regs[3], fiq_regs[3]),
231 COREREG(fiq_regs[4], fiq_regs[4]),
232 COREREG(fiq_regs[5], banked_r13[5]),
233 COREREG(fiq_regs[6], banked_r14[5]),
234 COREREG(fiq_regs[7], banked_spsr[5]),
235 /* R15 */
236 COREREG(usr_regs.uregs[15], regs[15]),
237 /* A non-comprehensive set of cp15 registers.
238 * TODO: drive this from the cp_regs hashtable instead.
239 */
240 CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
241 CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
242 CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
243 /* VFP system registers */
244 VFPSYSREG(FPSID),
245 VFPSYSREG(MVFR1),
246 VFPSYSREG(MVFR0),
247 VFPSYSREG(FPEXC),
248 VFPSYSREG(FPINST),
249 VFPSYSREG(FPINST2),
250 };
251
252 int kvm_arch_put_registers(CPUState *cs, int level)
253 {
254 ARMCPU *cpu = ARM_CPU(cs);
255 CPUARMState *env = &cpu->env;
256 struct kvm_one_reg r;
257 int mode, bn;
258 int ret, i;
259 uint32_t cpsr, fpscr;
260 uint64_t ttbr;
261
262 /* Make sure the banked regs are properly set */
263 mode = env->uncached_cpsr & CPSR_M;
264 bn = bank_number(mode);
265 if (mode == ARM_CPU_MODE_FIQ) {
266 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
267 } else {
268 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
269 }
270 env->banked_r13[bn] = env->regs[13];
271 env->banked_r14[bn] = env->regs[14];
272 env->banked_spsr[bn] = env->spsr;
273
274 /* Now we can safely copy stuff down to the kernel */
275 for (i = 0; i < ARRAY_SIZE(regs); i++) {
276 r.id = regs[i].id;
277 r.addr = (uintptr_t)(env) + regs[i].offset;
278 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
279 if (ret) {
280 return ret;
281 }
282 }
283
284 /* Special cases which aren't a single CPUARMState field */
285 cpsr = cpsr_read(env);
286 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
287 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
288 r.addr = (uintptr_t)(&cpsr);
289 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
290 if (ret) {
291 return ret;
292 }
293
294 /* TTBR0: cp15 crm=2 opc1=0 */
295 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
296 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
297 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
298 r.addr = (uintptr_t)(&ttbr);
299 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
300 if (ret) {
301 return ret;
302 }
303
304 /* TTBR1: cp15 crm=2 opc1=1 */
305 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
306 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
307 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
308 r.addr = (uintptr_t)(&ttbr);
309 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
310 if (ret) {
311 return ret;
312 }
313
314 /* VFP registers */
315 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
316 for (i = 0; i < 32; i++) {
317 r.addr = (uintptr_t)(&env->vfp.regs[i]);
318 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
319 if (ret) {
320 return ret;
321 }
322 r.id++;
323 }
324
325 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
326 KVM_REG_ARM_VFP_FPSCR;
327 fpscr = vfp_get_fpscr(env);
328 r.addr = (uintptr_t)&fpscr;
329 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
330
331 return ret;
332 }
333
334 int kvm_arch_get_registers(CPUState *cs)
335 {
336 ARMCPU *cpu = ARM_CPU(cs);
337 CPUARMState *env = &cpu->env;
338 struct kvm_one_reg r;
339 int mode, bn;
340 int ret, i;
341 uint32_t cpsr, fpscr;
342 uint64_t ttbr;
343
344 for (i = 0; i < ARRAY_SIZE(regs); i++) {
345 r.id = regs[i].id;
346 r.addr = (uintptr_t)(env) + regs[i].offset;
347 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
348 if (ret) {
349 return ret;
350 }
351 }
352
353 /* Special cases which aren't a single CPUARMState field */
354 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
355 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
356 r.addr = (uintptr_t)(&cpsr);
357 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
358 if (ret) {
359 return ret;
360 }
361 cpsr_write(env, cpsr, 0xffffffff);
362
363 /* TTBR0: cp15 crm=2 opc1=0 */
364 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
365 (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
366 r.addr = (uintptr_t)(&ttbr);
367 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
368 if (ret) {
369 return ret;
370 }
371 env->cp15.c2_base0_hi = ttbr >> 32;
372 env->cp15.c2_base0 = ttbr;
373
374 /* TTBR1: cp15 crm=2 opc1=1 */
375 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
376 (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
377 r.addr = (uintptr_t)(&ttbr);
378 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
379 if (ret) {
380 return ret;
381 }
382 env->cp15.c2_base1_hi = ttbr >> 32;
383 env->cp15.c2_base1 = ttbr;
384
385 /* Make sure the current mode regs are properly set */
386 mode = env->uncached_cpsr & CPSR_M;
387 bn = bank_number(mode);
388 if (mode == ARM_CPU_MODE_FIQ) {
389 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
390 } else {
391 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
392 }
393 env->regs[13] = env->banked_r13[bn];
394 env->regs[14] = env->banked_r14[bn];
395 env->spsr = env->banked_spsr[bn];
396
397 /* The main GET_ONE_REG loop above set c2_control, but we need to
398 * update some extra cached precomputed values too.
399 * When this is driven from the cp_regs hashtable then this ugliness
400 * can disappear because we'll use the access function which sets
401 * these values automatically.
402 */
403 env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
404 env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
405
406 /* VFP registers */
407 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
408 for (i = 0; i < 32; i++) {
409 r.addr = (uintptr_t)(&env->vfp.regs[i]);
410 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
411 if (ret) {
412 return ret;
413 }
414 r.id++;
415 }
416
417 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
418 KVM_REG_ARM_VFP_FPSCR;
419 r.addr = (uintptr_t)&fpscr;
420 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
421 if (ret) {
422 return ret;
423 }
424 vfp_set_fpscr(env, fpscr);
425
426 return 0;
427 }
428
429 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
430 {
431 }
432
433 void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
434 {
435 }
436
437 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
438 {
439 return 0;
440 }
441
442 void kvm_arch_reset_vcpu(CPUState *cs)
443 {
444 }
445
446 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
447 {
448 return true;
449 }
450
451 int kvm_arch_process_async_events(CPUState *cs)
452 {
453 return 0;
454 }
455
456 int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
457 {
458 return 1;
459 }
460
461 int kvm_arch_on_sigbus(int code, void *addr)
462 {
463 return 1;
464 }
465
466 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
467 {
468 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
469 }
470
471 int kvm_arch_insert_sw_breakpoint(CPUState *cs,
472 struct kvm_sw_breakpoint *bp)
473 {
474 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
475 return -EINVAL;
476 }
477
478 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
479 target_ulong len, int type)
480 {
481 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
482 return -EINVAL;
483 }
484
485 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
486 target_ulong len, int type)
487 {
488 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
489 return -EINVAL;
490 }
491
492 int kvm_arch_remove_sw_breakpoint(CPUState *cs,
493 struct kvm_sw_breakpoint *bp)
494 {
495 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
496 return -EINVAL;
497 }
498
499 void kvm_arch_remove_all_hw_breakpoints(void)
500 {
501 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
502 }
503
504 void kvm_arch_init_irq_routing(KVMState *s)
505 {
506 }