]> git.proxmox.com Git - qemu.git/blob - target-arm/neon_helper.c
target-arm: Fix rounding constant addition for Neon shifts
[qemu.git] / target-arm / neon_helper.c
1 /*
2 * ARM NEON vector operations.
3 *
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licenced under the GNU GPL v2.
8 */
9 #include <stdlib.h>
10 #include <stdio.h>
11
12 #include "cpu.h"
13 #include "exec-all.h"
14 #include "helpers.h"
15
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
18
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
20
21 static float_status neon_float_status;
22 #define NFS &neon_float_status
23
24 /* Helper routines to perform bitwise copies between float and int. */
25 static inline float32 vfp_itos(uint32_t i)
26 {
27 union {
28 uint32_t i;
29 float32 s;
30 } v;
31
32 v.i = i;
33 return v.s;
34 }
35
36 static inline uint32_t vfp_stoi(float32 s)
37 {
38 union {
39 uint32_t i;
40 float32 s;
41 } v;
42
43 v.s = s;
44 return v.i;
45 }
46
47 #define NEON_TYPE1(name, type) \
48 typedef struct \
49 { \
50 type v1; \
51 } neon_##name;
52 #ifdef HOST_WORDS_BIGENDIAN
53 #define NEON_TYPE2(name, type) \
54 typedef struct \
55 { \
56 type v2; \
57 type v1; \
58 } neon_##name;
59 #define NEON_TYPE4(name, type) \
60 typedef struct \
61 { \
62 type v4; \
63 type v3; \
64 type v2; \
65 type v1; \
66 } neon_##name;
67 #else
68 #define NEON_TYPE2(name, type) \
69 typedef struct \
70 { \
71 type v1; \
72 type v2; \
73 } neon_##name;
74 #define NEON_TYPE4(name, type) \
75 typedef struct \
76 { \
77 type v1; \
78 type v2; \
79 type v3; \
80 type v4; \
81 } neon_##name;
82 #endif
83
84 NEON_TYPE4(s8, int8_t)
85 NEON_TYPE4(u8, uint8_t)
86 NEON_TYPE2(s16, int16_t)
87 NEON_TYPE2(u16, uint16_t)
88 NEON_TYPE1(s32, int32_t)
89 NEON_TYPE1(u32, uint32_t)
90 #undef NEON_TYPE4
91 #undef NEON_TYPE2
92 #undef NEON_TYPE1
93
94 /* Copy from a uint32_t to a vector structure type. */
95 #define NEON_UNPACK(vtype, dest, val) do { \
96 union { \
97 vtype v; \
98 uint32_t i; \
99 } conv_u; \
100 conv_u.i = (val); \
101 dest = conv_u.v; \
102 } while(0)
103
104 /* Copy from a vector structure type to a uint32_t. */
105 #define NEON_PACK(vtype, dest, val) do { \
106 union { \
107 vtype v; \
108 uint32_t i; \
109 } conv_u; \
110 conv_u.v = (val); \
111 dest = conv_u.i; \
112 } while(0)
113
114 #define NEON_DO1 \
115 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
116 #define NEON_DO2 \
117 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
118 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
119 #define NEON_DO4 \
120 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
121 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
122 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
123 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
124
125 #define NEON_VOP_BODY(vtype, n) \
126 { \
127 uint32_t res; \
128 vtype vsrc1; \
129 vtype vsrc2; \
130 vtype vdest; \
131 NEON_UNPACK(vtype, vsrc1, arg1); \
132 NEON_UNPACK(vtype, vsrc2, arg2); \
133 NEON_DO##n; \
134 NEON_PACK(vtype, res, vdest); \
135 return res; \
136 }
137
138 #define NEON_VOP(name, vtype, n) \
139 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
140 NEON_VOP_BODY(vtype, n)
141
142 #define NEON_VOP_ENV(name, vtype, n) \
143 uint32_t HELPER(glue(neon_,name))(CPUState *env, uint32_t arg1, uint32_t arg2) \
144 NEON_VOP_BODY(vtype, n)
145
146 /* Pairwise operations. */
147 /* For 32-bit elements each segment only contains a single element, so
148 the elementwise and pairwise operations are the same. */
149 #define NEON_PDO2 \
150 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
151 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
152 #define NEON_PDO4 \
153 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
154 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
155 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
156 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
157
158 #define NEON_POP(name, vtype, n) \
159 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
160 { \
161 uint32_t res; \
162 vtype vsrc1; \
163 vtype vsrc2; \
164 vtype vdest; \
165 NEON_UNPACK(vtype, vsrc1, arg1); \
166 NEON_UNPACK(vtype, vsrc2, arg2); \
167 NEON_PDO##n; \
168 NEON_PACK(vtype, res, vdest); \
169 return res; \
170 }
171
172 /* Unary operators. */
173 #define NEON_VOP1(name, vtype, n) \
174 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
175 { \
176 vtype vsrc1; \
177 vtype vdest; \
178 NEON_UNPACK(vtype, vsrc1, arg); \
179 NEON_DO##n; \
180 NEON_PACK(vtype, arg, vdest); \
181 return arg; \
182 }
183
184
185 #define NEON_USAT(dest, src1, src2, type) do { \
186 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
187 if (tmp != (type)tmp) { \
188 SET_QC(); \
189 dest = ~0; \
190 } else { \
191 dest = tmp; \
192 }} while(0)
193 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
194 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
195 #undef NEON_FN
196 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
197 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
198 #undef NEON_FN
199 #undef NEON_USAT
200
201 uint32_t HELPER(neon_qadd_u32)(CPUState *env, uint32_t a, uint32_t b)
202 {
203 uint32_t res = a + b;
204 if (res < a) {
205 SET_QC();
206 res = ~0;
207 }
208 return res;
209 }
210
211 uint64_t HELPER(neon_qadd_u64)(CPUState *env, uint64_t src1, uint64_t src2)
212 {
213 uint64_t res;
214
215 res = src1 + src2;
216 if (res < src1) {
217 SET_QC();
218 res = ~(uint64_t)0;
219 }
220 return res;
221 }
222
223 #define NEON_SSAT(dest, src1, src2, type) do { \
224 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
225 if (tmp != (type)tmp) { \
226 SET_QC(); \
227 if (src2 > 0) { \
228 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
229 } else { \
230 tmp = 1 << (sizeof(type) * 8 - 1); \
231 } \
232 } \
233 dest = tmp; \
234 } while(0)
235 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
236 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
237 #undef NEON_FN
238 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
239 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
240 #undef NEON_FN
241 #undef NEON_SSAT
242
243 uint32_t HELPER(neon_qadd_s32)(CPUState *env, uint32_t a, uint32_t b)
244 {
245 uint32_t res = a + b;
246 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
247 SET_QC();
248 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
249 }
250 return res;
251 }
252
253 uint64_t HELPER(neon_qadd_s64)(CPUState *env, uint64_t src1, uint64_t src2)
254 {
255 uint64_t res;
256
257 res = src1 + src2;
258 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
259 SET_QC();
260 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
261 }
262 return res;
263 }
264
265 #define NEON_USAT(dest, src1, src2, type) do { \
266 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
267 if (tmp != (type)tmp) { \
268 SET_QC(); \
269 dest = 0; \
270 } else { \
271 dest = tmp; \
272 }} while(0)
273 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
274 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
275 #undef NEON_FN
276 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
277 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
278 #undef NEON_FN
279 #undef NEON_USAT
280
281 uint32_t HELPER(neon_qsub_u32)(CPUState *env, uint32_t a, uint32_t b)
282 {
283 uint32_t res = a - b;
284 if (res > a) {
285 SET_QC();
286 res = 0;
287 }
288 return res;
289 }
290
291 uint64_t HELPER(neon_qsub_u64)(CPUState *env, uint64_t src1, uint64_t src2)
292 {
293 uint64_t res;
294
295 if (src1 < src2) {
296 SET_QC();
297 res = 0;
298 } else {
299 res = src1 - src2;
300 }
301 return res;
302 }
303
304 #define NEON_SSAT(dest, src1, src2, type) do { \
305 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
306 if (tmp != (type)tmp) { \
307 SET_QC(); \
308 if (src2 < 0) { \
309 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
310 } else { \
311 tmp = 1 << (sizeof(type) * 8 - 1); \
312 } \
313 } \
314 dest = tmp; \
315 } while(0)
316 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
317 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
318 #undef NEON_FN
319 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
320 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
321 #undef NEON_FN
322 #undef NEON_SSAT
323
324 uint32_t HELPER(neon_qsub_s32)(CPUState *env, uint32_t a, uint32_t b)
325 {
326 uint32_t res = a - b;
327 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
328 SET_QC();
329 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
330 }
331 return res;
332 }
333
334 uint64_t HELPER(neon_qsub_s64)(CPUState *env, uint64_t src1, uint64_t src2)
335 {
336 uint64_t res;
337
338 res = src1 - src2;
339 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
340 SET_QC();
341 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
342 }
343 return res;
344 }
345
346 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
347 NEON_VOP(hadd_s8, neon_s8, 4)
348 NEON_VOP(hadd_u8, neon_u8, 4)
349 NEON_VOP(hadd_s16, neon_s16, 2)
350 NEON_VOP(hadd_u16, neon_u16, 2)
351 #undef NEON_FN
352
353 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
354 {
355 int32_t dest;
356
357 dest = (src1 >> 1) + (src2 >> 1);
358 if (src1 & src2 & 1)
359 dest++;
360 return dest;
361 }
362
363 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
364 {
365 uint32_t dest;
366
367 dest = (src1 >> 1) + (src2 >> 1);
368 if (src1 & src2 & 1)
369 dest++;
370 return dest;
371 }
372
373 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
374 NEON_VOP(rhadd_s8, neon_s8, 4)
375 NEON_VOP(rhadd_u8, neon_u8, 4)
376 NEON_VOP(rhadd_s16, neon_s16, 2)
377 NEON_VOP(rhadd_u16, neon_u16, 2)
378 #undef NEON_FN
379
380 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
381 {
382 int32_t dest;
383
384 dest = (src1 >> 1) + (src2 >> 1);
385 if ((src1 | src2) & 1)
386 dest++;
387 return dest;
388 }
389
390 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
391 {
392 uint32_t dest;
393
394 dest = (src1 >> 1) + (src2 >> 1);
395 if ((src1 | src2) & 1)
396 dest++;
397 return dest;
398 }
399
400 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
401 NEON_VOP(hsub_s8, neon_s8, 4)
402 NEON_VOP(hsub_u8, neon_u8, 4)
403 NEON_VOP(hsub_s16, neon_s16, 2)
404 NEON_VOP(hsub_u16, neon_u16, 2)
405 #undef NEON_FN
406
407 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
408 {
409 int32_t dest;
410
411 dest = (src1 >> 1) - (src2 >> 1);
412 if ((~src1) & src2 & 1)
413 dest--;
414 return dest;
415 }
416
417 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
418 {
419 uint32_t dest;
420
421 dest = (src1 >> 1) - (src2 >> 1);
422 if ((~src1) & src2 & 1)
423 dest--;
424 return dest;
425 }
426
427 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
428 NEON_VOP(cgt_s8, neon_s8, 4)
429 NEON_VOP(cgt_u8, neon_u8, 4)
430 NEON_VOP(cgt_s16, neon_s16, 2)
431 NEON_VOP(cgt_u16, neon_u16, 2)
432 NEON_VOP(cgt_s32, neon_s32, 1)
433 NEON_VOP(cgt_u32, neon_u32, 1)
434 #undef NEON_FN
435
436 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
437 NEON_VOP(cge_s8, neon_s8, 4)
438 NEON_VOP(cge_u8, neon_u8, 4)
439 NEON_VOP(cge_s16, neon_s16, 2)
440 NEON_VOP(cge_u16, neon_u16, 2)
441 NEON_VOP(cge_s32, neon_s32, 1)
442 NEON_VOP(cge_u32, neon_u32, 1)
443 #undef NEON_FN
444
445 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
446 NEON_VOP(min_s8, neon_s8, 4)
447 NEON_VOP(min_u8, neon_u8, 4)
448 NEON_VOP(min_s16, neon_s16, 2)
449 NEON_VOP(min_u16, neon_u16, 2)
450 NEON_VOP(min_s32, neon_s32, 1)
451 NEON_VOP(min_u32, neon_u32, 1)
452 NEON_POP(pmin_s8, neon_s8, 4)
453 NEON_POP(pmin_u8, neon_u8, 4)
454 NEON_POP(pmin_s16, neon_s16, 2)
455 NEON_POP(pmin_u16, neon_u16, 2)
456 #undef NEON_FN
457
458 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
459 NEON_VOP(max_s8, neon_s8, 4)
460 NEON_VOP(max_u8, neon_u8, 4)
461 NEON_VOP(max_s16, neon_s16, 2)
462 NEON_VOP(max_u16, neon_u16, 2)
463 NEON_VOP(max_s32, neon_s32, 1)
464 NEON_VOP(max_u32, neon_u32, 1)
465 NEON_POP(pmax_s8, neon_s8, 4)
466 NEON_POP(pmax_u8, neon_u8, 4)
467 NEON_POP(pmax_s16, neon_s16, 2)
468 NEON_POP(pmax_u16, neon_u16, 2)
469 #undef NEON_FN
470
471 #define NEON_FN(dest, src1, src2) \
472 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
473 NEON_VOP(abd_s8, neon_s8, 4)
474 NEON_VOP(abd_u8, neon_u8, 4)
475 NEON_VOP(abd_s16, neon_s16, 2)
476 NEON_VOP(abd_u16, neon_u16, 2)
477 NEON_VOP(abd_s32, neon_s32, 1)
478 NEON_VOP(abd_u32, neon_u32, 1)
479 #undef NEON_FN
480
481 #define NEON_FN(dest, src1, src2) do { \
482 int8_t tmp; \
483 tmp = (int8_t)src2; \
484 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
485 tmp <= -(ssize_t)sizeof(src1) * 8) { \
486 dest = 0; \
487 } else if (tmp < 0) { \
488 dest = src1 >> -tmp; \
489 } else { \
490 dest = src1 << tmp; \
491 }} while (0)
492 NEON_VOP(shl_u8, neon_u8, 4)
493 NEON_VOP(shl_u16, neon_u16, 2)
494 NEON_VOP(shl_u32, neon_u32, 1)
495 #undef NEON_FN
496
497 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
498 {
499 int8_t shift = (int8_t)shiftop;
500 if (shift >= 64 || shift <= -64) {
501 val = 0;
502 } else if (shift < 0) {
503 val >>= -shift;
504 } else {
505 val <<= shift;
506 }
507 return val;
508 }
509
510 #define NEON_FN(dest, src1, src2) do { \
511 int8_t tmp; \
512 tmp = (int8_t)src2; \
513 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
514 dest = 0; \
515 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
516 dest = src1 >> (sizeof(src1) * 8 - 1); \
517 } else if (tmp < 0) { \
518 dest = src1 >> -tmp; \
519 } else { \
520 dest = src1 << tmp; \
521 }} while (0)
522 NEON_VOP(shl_s8, neon_s8, 4)
523 NEON_VOP(shl_s16, neon_s16, 2)
524 NEON_VOP(shl_s32, neon_s32, 1)
525 #undef NEON_FN
526
527 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
528 {
529 int8_t shift = (int8_t)shiftop;
530 int64_t val = valop;
531 if (shift >= 64) {
532 val = 0;
533 } else if (shift <= -64) {
534 val >>= 63;
535 } else if (shift < 0) {
536 val >>= -shift;
537 } else {
538 val <<= shift;
539 }
540 return val;
541 }
542
543 #define NEON_FN(dest, src1, src2) do { \
544 int8_t tmp; \
545 tmp = (int8_t)src2; \
546 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
547 dest = 0; \
548 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
549 dest = src1 >> (sizeof(src1) * 8 - 1); \
550 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
551 dest = src1 >> (tmp - 1); \
552 dest++; \
553 dest >>= 1; \
554 } else if (tmp < 0) { \
555 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
556 } else { \
557 dest = src1 << tmp; \
558 }} while (0)
559 NEON_VOP(rshl_s8, neon_s8, 4)
560 NEON_VOP(rshl_s16, neon_s16, 2)
561 #undef NEON_FN
562
563 /* The addition of the rounding constant may overflow, so we use an
564 * intermediate 64 bits accumulator. */
565 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
566 {
567 int32_t dest;
568 int32_t val = (int32_t)valop;
569 int8_t shift = (int8_t)shiftop;
570 if ((shift >= 32) || (shift <= -32)) {
571 dest = 0;
572 } else if (shift < 0) {
573 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
574 dest = big_dest >> -shift;
575 } else {
576 dest = val << shift;
577 }
578 return dest;
579 }
580
581 /* Handling addition overflow with 64 bits inputs values is more
582 * tricky than with 32 bits values. */
583 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
584 {
585 int8_t shift = (int8_t)shiftop;
586 int64_t val = valop;
587 if (shift >= 64) {
588 val = 0;
589 } else if (shift < -64) {
590 val >>= 63;
591 } else if (shift == -63) {
592 val >>= 63;
593 val++;
594 val >>= 1;
595 } else if (shift < 0) {
596 val >>= (-shift - 1);
597 if (val == INT64_MAX) {
598 /* In this case, it means that the rounding constant is 1,
599 * and the addition would overflow. Return the actual
600 * result directly. */
601 val = 0x4000000000000000LL;
602 } else {
603 val++;
604 val >>= 1;
605 }
606 } else {
607 val <<= shift;
608 }
609 return val;
610 }
611
612 #define NEON_FN(dest, src1, src2) do { \
613 int8_t tmp; \
614 tmp = (int8_t)src2; \
615 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
616 tmp < -(ssize_t)sizeof(src1) * 8) { \
617 dest = 0; \
618 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
619 dest = src1 >> (tmp - 1); \
620 } else if (tmp < 0) { \
621 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
622 } else { \
623 dest = src1 << tmp; \
624 }} while (0)
625 NEON_VOP(rshl_u8, neon_u8, 4)
626 NEON_VOP(rshl_u16, neon_u16, 2)
627 #undef NEON_FN
628
629 /* The addition of the rounding constant may overflow, so we use an
630 * intermediate 64 bits accumulator. */
631 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
632 {
633 uint32_t dest;
634 int8_t shift = (int8_t)shiftop;
635 if (shift >= 32 || shift < -32) {
636 dest = 0;
637 } else if (shift == -32) {
638 dest = val >> 31;
639 } else if (shift < 0) {
640 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
641 dest = big_dest >> -shift;
642 } else {
643 dest = val << shift;
644 }
645 return dest;
646 }
647
648 /* Handling addition overflow with 64 bits inputs values is more
649 * tricky than with 32 bits values. */
650 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
651 {
652 int8_t shift = (uint8_t)shiftop;
653 if (shift >= 64 || shift < 64) {
654 val = 0;
655 } else if (shift == -64) {
656 /* Rounding a 1-bit result just preserves that bit. */
657 val >>= 63;
658 } else if (shift < 0) {
659 val >>= (-shift - 1);
660 if (val == UINT64_MAX) {
661 /* In this case, it means that the rounding constant is 1,
662 * and the addition would overflow. Return the actual
663 * result directly. */
664 val = 0x8000000000000000ULL;
665 } else {
666 val++;
667 val >>= 1;
668 }
669 } else {
670 val <<= shift;
671 }
672 return val;
673 }
674
675 #define NEON_FN(dest, src1, src2) do { \
676 int8_t tmp; \
677 tmp = (int8_t)src2; \
678 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
679 if (src1) { \
680 SET_QC(); \
681 dest = ~0; \
682 } else { \
683 dest = 0; \
684 } \
685 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
686 dest = 0; \
687 } else if (tmp < 0) { \
688 dest = src1 >> -tmp; \
689 } else { \
690 dest = src1 << tmp; \
691 if ((dest >> tmp) != src1) { \
692 SET_QC(); \
693 dest = ~0; \
694 } \
695 }} while (0)
696 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
697 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
698 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
699 #undef NEON_FN
700
701 uint64_t HELPER(neon_qshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
702 {
703 int8_t shift = (int8_t)shiftop;
704 if (shift >= 64) {
705 if (val) {
706 val = ~(uint64_t)0;
707 SET_QC();
708 }
709 } else if (shift <= -64) {
710 val = 0;
711 } else if (shift < 0) {
712 val >>= -shift;
713 } else {
714 uint64_t tmp = val;
715 val <<= shift;
716 if ((val >> shift) != tmp) {
717 SET_QC();
718 val = ~(uint64_t)0;
719 }
720 }
721 return val;
722 }
723
724 #define NEON_FN(dest, src1, src2) do { \
725 int8_t tmp; \
726 tmp = (int8_t)src2; \
727 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
728 if (src1) { \
729 SET_QC(); \
730 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
731 if (src1 > 0) { \
732 dest--; \
733 } \
734 } else { \
735 dest = src1; \
736 } \
737 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
738 dest = src1 >> 31; \
739 } else if (tmp < 0) { \
740 dest = src1 >> -tmp; \
741 } else { \
742 dest = src1 << tmp; \
743 if ((dest >> tmp) != src1) { \
744 SET_QC(); \
745 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
746 if (src1 > 0) { \
747 dest--; \
748 } \
749 } \
750 }} while (0)
751 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
752 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
753 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
754 #undef NEON_FN
755
756 uint64_t HELPER(neon_qshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
757 {
758 int8_t shift = (uint8_t)shiftop;
759 int64_t val = valop;
760 if (shift >= 64) {
761 if (val) {
762 SET_QC();
763 val = (val >> 63) ^ ~SIGNBIT64;
764 }
765 } else if (shift <= -64) {
766 val >>= 63;
767 } else if (shift < 0) {
768 val >>= -shift;
769 } else {
770 int64_t tmp = val;
771 val <<= shift;
772 if ((val >> shift) != tmp) {
773 SET_QC();
774 val = (tmp >> 63) ^ ~SIGNBIT64;
775 }
776 }
777 return val;
778 }
779
780 #define NEON_FN(dest, src1, src2) do { \
781 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
782 SET_QC(); \
783 dest = 0; \
784 } else { \
785 int8_t tmp; \
786 tmp = (int8_t)src2; \
787 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
788 if (src1) { \
789 SET_QC(); \
790 dest = ~0; \
791 } else { \
792 dest = 0; \
793 } \
794 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
795 dest = 0; \
796 } else if (tmp < 0) { \
797 dest = src1 >> -tmp; \
798 } else { \
799 dest = src1 << tmp; \
800 if ((dest >> tmp) != src1) { \
801 SET_QC(); \
802 dest = ~0; \
803 } \
804 } \
805 }} while (0)
806 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
807 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
808 #undef NEON_FN
809
810 uint32_t HELPER(neon_qshlu_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
811 {
812 if ((int32_t)valop < 0) {
813 SET_QC();
814 return 0;
815 }
816 return helper_neon_qshl_u32(env, valop, shiftop);
817 }
818
819 uint64_t HELPER(neon_qshlu_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
820 {
821 if ((int64_t)valop < 0) {
822 SET_QC();
823 return 0;
824 }
825 return helper_neon_qshl_u64(env, valop, shiftop);
826 }
827
828 /* FIXME: This is wrong. */
829 #define NEON_FN(dest, src1, src2) do { \
830 int8_t tmp; \
831 tmp = (int8_t)src2; \
832 if (tmp < 0) { \
833 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
834 } else { \
835 dest = src1 << tmp; \
836 if ((dest >> tmp) != src1) { \
837 SET_QC(); \
838 dest = ~0; \
839 } \
840 }} while (0)
841 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
842 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
843 #undef NEON_FN
844
845 /* The addition of the rounding constant may overflow, so we use an
846 * intermediate 64 bits accumulator. */
847 uint32_t HELPER(neon_qrshl_u32)(CPUState *env, uint32_t val, uint32_t shiftop)
848 {
849 uint32_t dest;
850 int8_t shift = (int8_t)shiftop;
851 if (shift < 0) {
852 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
853 dest = big_dest >> -shift;
854 } else {
855 dest = val << shift;
856 if ((dest >> shift) != val) {
857 SET_QC();
858 dest = ~0;
859 }
860 }
861 return dest;
862 }
863
864 /* Handling addition overflow with 64 bits inputs values is more
865 * tricky than with 32 bits values. */
866 uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
867 {
868 int8_t shift = (int8_t)shiftop;
869 if (shift < 0) {
870 val >>= (-shift - 1);
871 if (val == UINT64_MAX) {
872 /* In this case, it means that the rounding constant is 1,
873 * and the addition would overflow. Return the actual
874 * result directly. */
875 val = 0x8000000000000000ULL;
876 } else {
877 val++;
878 val >>= 1;
879 }
880 } else { \
881 uint64_t tmp = val;
882 val <<= shift;
883 if ((val >> shift) != tmp) {
884 SET_QC();
885 val = ~0;
886 }
887 }
888 return val;
889 }
890
891 #define NEON_FN(dest, src1, src2) do { \
892 int8_t tmp; \
893 tmp = (int8_t)src2; \
894 if (tmp < 0) { \
895 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
896 } else { \
897 dest = src1 << tmp; \
898 if ((dest >> tmp) != src1) { \
899 SET_QC(); \
900 dest = src1 >> 31; \
901 } \
902 }} while (0)
903 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
904 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
905 #undef NEON_FN
906
907 /* The addition of the rounding constant may overflow, so we use an
908 * intermediate 64 bits accumulator. */
909 uint32_t HELPER(neon_qrshl_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
910 {
911 int32_t dest;
912 int32_t val = (int32_t)valop;
913 int8_t shift = (int8_t)shiftop;
914 if (shift < 0) {
915 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
916 dest = big_dest >> -shift;
917 } else {
918 dest = val << shift;
919 if ((dest >> shift) != val) {
920 SET_QC();
921 dest = (val >> 31) ^ ~SIGNBIT;
922 }
923 }
924 return dest;
925 }
926
927 /* Handling addition overflow with 64 bits inputs values is more
928 * tricky than with 32 bits values. */
929 uint64_t HELPER(neon_qrshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
930 {
931 int8_t shift = (uint8_t)shiftop;
932 int64_t val = valop;
933
934 if (shift < 0) {
935 val >>= (-shift - 1);
936 if (val == INT64_MAX) {
937 /* In this case, it means that the rounding constant is 1,
938 * and the addition would overflow. Return the actual
939 * result directly. */
940 val = 0x4000000000000000ULL;
941 } else {
942 val++;
943 val >>= 1;
944 }
945 } else {
946 int64_t tmp = val;
947 val <<= shift;
948 if ((val >> shift) != tmp) {
949 SET_QC();
950 val = (tmp >> 63) ^ ~SIGNBIT64;
951 }
952 }
953 return val;
954 }
955
956 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
957 {
958 uint32_t mask;
959 mask = (a ^ b) & 0x80808080u;
960 a &= ~0x80808080u;
961 b &= ~0x80808080u;
962 return (a + b) ^ mask;
963 }
964
965 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
966 {
967 uint32_t mask;
968 mask = (a ^ b) & 0x80008000u;
969 a &= ~0x80008000u;
970 b &= ~0x80008000u;
971 return (a + b) ^ mask;
972 }
973
974 #define NEON_FN(dest, src1, src2) dest = src1 + src2
975 NEON_POP(padd_u8, neon_u8, 4)
976 NEON_POP(padd_u16, neon_u16, 2)
977 #undef NEON_FN
978
979 #define NEON_FN(dest, src1, src2) dest = src1 - src2
980 NEON_VOP(sub_u8, neon_u8, 4)
981 NEON_VOP(sub_u16, neon_u16, 2)
982 #undef NEON_FN
983
984 #define NEON_FN(dest, src1, src2) dest = src1 * src2
985 NEON_VOP(mul_u8, neon_u8, 4)
986 NEON_VOP(mul_u16, neon_u16, 2)
987 #undef NEON_FN
988
989 /* Polynomial multiplication is like integer multiplication except the
990 partial products are XORed, not added. */
991 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
992 {
993 uint32_t mask;
994 uint32_t result;
995 result = 0;
996 while (op1) {
997 mask = 0;
998 if (op1 & 1)
999 mask |= 0xff;
1000 if (op1 & (1 << 8))
1001 mask |= (0xff << 8);
1002 if (op1 & (1 << 16))
1003 mask |= (0xff << 16);
1004 if (op1 & (1 << 24))
1005 mask |= (0xff << 24);
1006 result ^= op2 & mask;
1007 op1 = (op1 >> 1) & 0x7f7f7f7f;
1008 op2 = (op2 << 1) & 0xfefefefe;
1009 }
1010 return result;
1011 }
1012
1013 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1014 {
1015 uint64_t result = 0;
1016 uint64_t mask;
1017 uint64_t op2ex = op2;
1018 op2ex = (op2ex & 0xff) |
1019 ((op2ex & 0xff00) << 8) |
1020 ((op2ex & 0xff0000) << 16) |
1021 ((op2ex & 0xff000000) << 24);
1022 while (op1) {
1023 mask = 0;
1024 if (op1 & 1) {
1025 mask |= 0xffff;
1026 }
1027 if (op1 & (1 << 8)) {
1028 mask |= (0xffffU << 16);
1029 }
1030 if (op1 & (1 << 16)) {
1031 mask |= (0xffffULL << 32);
1032 }
1033 if (op1 & (1 << 24)) {
1034 mask |= (0xffffULL << 48);
1035 }
1036 result ^= op2ex & mask;
1037 op1 = (op1 >> 1) & 0x7f7f7f7f;
1038 op2ex <<= 1;
1039 }
1040 return result;
1041 }
1042
1043 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1044 NEON_VOP(tst_u8, neon_u8, 4)
1045 NEON_VOP(tst_u16, neon_u16, 2)
1046 NEON_VOP(tst_u32, neon_u32, 1)
1047 #undef NEON_FN
1048
1049 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1050 NEON_VOP(ceq_u8, neon_u8, 4)
1051 NEON_VOP(ceq_u16, neon_u16, 2)
1052 NEON_VOP(ceq_u32, neon_u32, 1)
1053 #undef NEON_FN
1054
1055 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1056 NEON_VOP1(abs_s8, neon_s8, 4)
1057 NEON_VOP1(abs_s16, neon_s16, 2)
1058 #undef NEON_FN
1059
1060 /* Count Leading Sign/Zero Bits. */
1061 static inline int do_clz8(uint8_t x)
1062 {
1063 int n;
1064 for (n = 8; x; n--)
1065 x >>= 1;
1066 return n;
1067 }
1068
1069 static inline int do_clz16(uint16_t x)
1070 {
1071 int n;
1072 for (n = 16; x; n--)
1073 x >>= 1;
1074 return n;
1075 }
1076
1077 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1078 NEON_VOP1(clz_u8, neon_u8, 4)
1079 #undef NEON_FN
1080
1081 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1082 NEON_VOP1(clz_u16, neon_u16, 2)
1083 #undef NEON_FN
1084
1085 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1086 NEON_VOP1(cls_s8, neon_s8, 4)
1087 #undef NEON_FN
1088
1089 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1090 NEON_VOP1(cls_s16, neon_s16, 2)
1091 #undef NEON_FN
1092
1093 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1094 {
1095 int count;
1096 if ((int32_t)x < 0)
1097 x = ~x;
1098 for (count = 32; x; count--)
1099 x = x >> 1;
1100 return count - 1;
1101 }
1102
1103 /* Bit count. */
1104 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1105 {
1106 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1107 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1108 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1109 return x;
1110 }
1111
1112 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1113 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1114 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1115 SET_QC(); \
1116 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1117 } else { \
1118 tmp <<= 1; \
1119 } \
1120 if (round) { \
1121 int32_t old = tmp; \
1122 tmp += 1 << 15; \
1123 if ((int32_t)tmp < old) { \
1124 SET_QC(); \
1125 tmp = SIGNBIT - 1; \
1126 } \
1127 } \
1128 dest = tmp >> 16; \
1129 } while(0)
1130 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1131 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1132 #undef NEON_FN
1133 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1134 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1135 #undef NEON_FN
1136 #undef NEON_QDMULH16
1137
1138 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1139 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1140 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1141 SET_QC(); \
1142 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1143 } else { \
1144 tmp <<= 1; \
1145 } \
1146 if (round) { \
1147 int64_t old = tmp; \
1148 tmp += (int64_t)1 << 31; \
1149 if ((int64_t)tmp < old) { \
1150 SET_QC(); \
1151 tmp = SIGNBIT64 - 1; \
1152 } \
1153 } \
1154 dest = tmp >> 32; \
1155 } while(0)
1156 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1157 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1158 #undef NEON_FN
1159 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1160 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1161 #undef NEON_FN
1162 #undef NEON_QDMULH32
1163
1164 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1165 {
1166 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1167 | ((x >> 24) & 0xff000000u);
1168 }
1169
1170 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1171 {
1172 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1173 }
1174
1175 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1176 {
1177 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1178 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1179 }
1180
1181 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1182 {
1183 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1184 }
1185
1186 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1187 {
1188 x &= 0xff80ff80ff80ff80ull;
1189 x += 0x0080008000800080ull;
1190 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1191 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1192 }
1193
1194 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1195 {
1196 x &= 0xffff8000ffff8000ull;
1197 x += 0x0000800000008000ull;
1198 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1199 }
1200
1201 uint32_t HELPER(neon_unarrow_sat8)(CPUState *env, uint64_t x)
1202 {
1203 uint16_t s;
1204 uint8_t d;
1205 uint32_t res = 0;
1206 #define SAT8(n) \
1207 s = x >> n; \
1208 if (s & 0x8000) { \
1209 SET_QC(); \
1210 } else { \
1211 if (s > 0xff) { \
1212 d = 0xff; \
1213 SET_QC(); \
1214 } else { \
1215 d = s; \
1216 } \
1217 res |= (uint32_t)d << (n / 2); \
1218 }
1219
1220 SAT8(0);
1221 SAT8(16);
1222 SAT8(32);
1223 SAT8(48);
1224 #undef SAT8
1225 return res;
1226 }
1227
1228 uint32_t HELPER(neon_narrow_sat_u8)(CPUState *env, uint64_t x)
1229 {
1230 uint16_t s;
1231 uint8_t d;
1232 uint32_t res = 0;
1233 #define SAT8(n) \
1234 s = x >> n; \
1235 if (s > 0xff) { \
1236 d = 0xff; \
1237 SET_QC(); \
1238 } else { \
1239 d = s; \
1240 } \
1241 res |= (uint32_t)d << (n / 2);
1242
1243 SAT8(0);
1244 SAT8(16);
1245 SAT8(32);
1246 SAT8(48);
1247 #undef SAT8
1248 return res;
1249 }
1250
1251 uint32_t HELPER(neon_narrow_sat_s8)(CPUState *env, uint64_t x)
1252 {
1253 int16_t s;
1254 uint8_t d;
1255 uint32_t res = 0;
1256 #define SAT8(n) \
1257 s = x >> n; \
1258 if (s != (int8_t)s) { \
1259 d = (s >> 15) ^ 0x7f; \
1260 SET_QC(); \
1261 } else { \
1262 d = s; \
1263 } \
1264 res |= (uint32_t)d << (n / 2);
1265
1266 SAT8(0);
1267 SAT8(16);
1268 SAT8(32);
1269 SAT8(48);
1270 #undef SAT8
1271 return res;
1272 }
1273
1274 uint32_t HELPER(neon_unarrow_sat16)(CPUState *env, uint64_t x)
1275 {
1276 uint32_t high;
1277 uint32_t low;
1278 low = x;
1279 if (low & 0x80000000) {
1280 low = 0;
1281 SET_QC();
1282 } else if (low > 0xffff) {
1283 low = 0xffff;
1284 SET_QC();
1285 }
1286 high = x >> 32;
1287 if (high & 0x80000000) {
1288 high = 0;
1289 SET_QC();
1290 } else if (high > 0xffff) {
1291 high = 0xffff;
1292 SET_QC();
1293 }
1294 return low | (high << 16);
1295 }
1296
1297 uint32_t HELPER(neon_narrow_sat_u16)(CPUState *env, uint64_t x)
1298 {
1299 uint32_t high;
1300 uint32_t low;
1301 low = x;
1302 if (low > 0xffff) {
1303 low = 0xffff;
1304 SET_QC();
1305 }
1306 high = x >> 32;
1307 if (high > 0xffff) {
1308 high = 0xffff;
1309 SET_QC();
1310 }
1311 return low | (high << 16);
1312 }
1313
1314 uint32_t HELPER(neon_narrow_sat_s16)(CPUState *env, uint64_t x)
1315 {
1316 int32_t low;
1317 int32_t high;
1318 low = x;
1319 if (low != (int16_t)low) {
1320 low = (low >> 31) ^ 0x7fff;
1321 SET_QC();
1322 }
1323 high = x >> 32;
1324 if (high != (int16_t)high) {
1325 high = (high >> 31) ^ 0x7fff;
1326 SET_QC();
1327 }
1328 return (uint16_t)low | (high << 16);
1329 }
1330
1331 uint32_t HELPER(neon_unarrow_sat32)(CPUState *env, uint64_t x)
1332 {
1333 if (x & 0x8000000000000000ull) {
1334 SET_QC();
1335 return 0;
1336 }
1337 if (x > 0xffffffffu) {
1338 SET_QC();
1339 return 0xffffffffu;
1340 }
1341 return x;
1342 }
1343
1344 uint32_t HELPER(neon_narrow_sat_u32)(CPUState *env, uint64_t x)
1345 {
1346 if (x > 0xffffffffu) {
1347 SET_QC();
1348 return 0xffffffffu;
1349 }
1350 return x;
1351 }
1352
1353 uint32_t HELPER(neon_narrow_sat_s32)(CPUState *env, uint64_t x)
1354 {
1355 if ((int64_t)x != (int32_t)x) {
1356 SET_QC();
1357 return ((int64_t)x >> 63) ^ 0x7fffffff;
1358 }
1359 return x;
1360 }
1361
1362 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1363 {
1364 uint64_t tmp;
1365 uint64_t ret;
1366 ret = (uint8_t)x;
1367 tmp = (uint8_t)(x >> 8);
1368 ret |= tmp << 16;
1369 tmp = (uint8_t)(x >> 16);
1370 ret |= tmp << 32;
1371 tmp = (uint8_t)(x >> 24);
1372 ret |= tmp << 48;
1373 return ret;
1374 }
1375
1376 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1377 {
1378 uint64_t tmp;
1379 uint64_t ret;
1380 ret = (uint16_t)(int8_t)x;
1381 tmp = (uint16_t)(int8_t)(x >> 8);
1382 ret |= tmp << 16;
1383 tmp = (uint16_t)(int8_t)(x >> 16);
1384 ret |= tmp << 32;
1385 tmp = (uint16_t)(int8_t)(x >> 24);
1386 ret |= tmp << 48;
1387 return ret;
1388 }
1389
1390 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1391 {
1392 uint64_t high = (uint16_t)(x >> 16);
1393 return ((uint16_t)x) | (high << 32);
1394 }
1395
1396 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1397 {
1398 uint64_t high = (int16_t)(x >> 16);
1399 return ((uint32_t)(int16_t)x) | (high << 32);
1400 }
1401
1402 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1403 {
1404 uint64_t mask;
1405 mask = (a ^ b) & 0x8000800080008000ull;
1406 a &= ~0x8000800080008000ull;
1407 b &= ~0x8000800080008000ull;
1408 return (a + b) ^ mask;
1409 }
1410
1411 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1412 {
1413 uint64_t mask;
1414 mask = (a ^ b) & 0x8000000080000000ull;
1415 a &= ~0x8000000080000000ull;
1416 b &= ~0x8000000080000000ull;
1417 return (a + b) ^ mask;
1418 }
1419
1420 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1421 {
1422 uint64_t tmp;
1423 uint64_t tmp2;
1424
1425 tmp = a & 0x0000ffff0000ffffull;
1426 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1427 tmp2 = b & 0xffff0000ffff0000ull;
1428 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1429 return ( tmp & 0xffff)
1430 | ((tmp >> 16) & 0xffff0000ull)
1431 | ((tmp2 << 16) & 0xffff00000000ull)
1432 | ( tmp2 & 0xffff000000000000ull);
1433 }
1434
1435 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1436 {
1437 uint32_t low = a + (a >> 32);
1438 uint32_t high = b + (b >> 32);
1439 return low + ((uint64_t)high << 32);
1440 }
1441
1442 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1443 {
1444 uint64_t mask;
1445 mask = (a ^ ~b) & 0x8000800080008000ull;
1446 a |= 0x8000800080008000ull;
1447 b &= ~0x8000800080008000ull;
1448 return (a - b) ^ mask;
1449 }
1450
1451 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1452 {
1453 uint64_t mask;
1454 mask = (a ^ ~b) & 0x8000000080000000ull;
1455 a |= 0x8000000080000000ull;
1456 b &= ~0x8000000080000000ull;
1457 return (a - b) ^ mask;
1458 }
1459
1460 uint64_t HELPER(neon_addl_saturate_s32)(CPUState *env, uint64_t a, uint64_t b)
1461 {
1462 uint32_t x, y;
1463 uint32_t low, high;
1464
1465 x = a;
1466 y = b;
1467 low = x + y;
1468 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1469 SET_QC();
1470 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1471 }
1472 x = a >> 32;
1473 y = b >> 32;
1474 high = x + y;
1475 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1476 SET_QC();
1477 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1478 }
1479 return low | ((uint64_t)high << 32);
1480 }
1481
1482 uint64_t HELPER(neon_addl_saturate_s64)(CPUState *env, uint64_t a, uint64_t b)
1483 {
1484 uint64_t result;
1485
1486 result = a + b;
1487 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1488 SET_QC();
1489 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1490 }
1491 return result;
1492 }
1493
1494 #define DO_ABD(dest, x, y, type) do { \
1495 type tmp_x = x; \
1496 type tmp_y = y; \
1497 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1498 } while(0)
1499
1500 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1501 {
1502 uint64_t tmp;
1503 uint64_t result;
1504 DO_ABD(result, a, b, uint8_t);
1505 DO_ABD(tmp, a >> 8, b >> 8, uint8_t);
1506 result |= tmp << 16;
1507 DO_ABD(tmp, a >> 16, b >> 16, uint8_t);
1508 result |= tmp << 32;
1509 DO_ABD(tmp, a >> 24, b >> 24, uint8_t);
1510 result |= tmp << 48;
1511 return result;
1512 }
1513
1514 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1515 {
1516 uint64_t tmp;
1517 uint64_t result;
1518 DO_ABD(result, a, b, int8_t);
1519 DO_ABD(tmp, a >> 8, b >> 8, int8_t);
1520 result |= tmp << 16;
1521 DO_ABD(tmp, a >> 16, b >> 16, int8_t);
1522 result |= tmp << 32;
1523 DO_ABD(tmp, a >> 24, b >> 24, int8_t);
1524 result |= tmp << 48;
1525 return result;
1526 }
1527
1528 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1529 {
1530 uint64_t tmp;
1531 uint64_t result;
1532 DO_ABD(result, a, b, uint16_t);
1533 DO_ABD(tmp, a >> 16, b >> 16, uint16_t);
1534 return result | (tmp << 32);
1535 }
1536
1537 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1538 {
1539 uint64_t tmp;
1540 uint64_t result;
1541 DO_ABD(result, a, b, int16_t);
1542 DO_ABD(tmp, a >> 16, b >> 16, int16_t);
1543 return result | (tmp << 32);
1544 }
1545
1546 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1547 {
1548 uint64_t result;
1549 DO_ABD(result, a, b, uint32_t);
1550 return result;
1551 }
1552
1553 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1554 {
1555 uint64_t result;
1556 DO_ABD(result, a, b, int32_t);
1557 return result;
1558 }
1559 #undef DO_ABD
1560
1561 /* Widening multiply. Named type is the source type. */
1562 #define DO_MULL(dest, x, y, type1, type2) do { \
1563 type1 tmp_x = x; \
1564 type1 tmp_y = y; \
1565 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1566 } while(0)
1567
1568 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1569 {
1570 uint64_t tmp;
1571 uint64_t result;
1572
1573 DO_MULL(result, a, b, uint8_t, uint16_t);
1574 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1575 result |= tmp << 16;
1576 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1577 result |= tmp << 32;
1578 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1579 result |= tmp << 48;
1580 return result;
1581 }
1582
1583 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1584 {
1585 uint64_t tmp;
1586 uint64_t result;
1587
1588 DO_MULL(result, a, b, int8_t, uint16_t);
1589 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1590 result |= tmp << 16;
1591 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1592 result |= tmp << 32;
1593 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1594 result |= tmp << 48;
1595 return result;
1596 }
1597
1598 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1599 {
1600 uint64_t tmp;
1601 uint64_t result;
1602
1603 DO_MULL(result, a, b, uint16_t, uint32_t);
1604 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1605 return result | (tmp << 32);
1606 }
1607
1608 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1609 {
1610 uint64_t tmp;
1611 uint64_t result;
1612
1613 DO_MULL(result, a, b, int16_t, uint32_t);
1614 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1615 return result | (tmp << 32);
1616 }
1617
1618 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1619 {
1620 uint16_t tmp;
1621 uint64_t result;
1622 result = (uint16_t)-x;
1623 tmp = -(x >> 16);
1624 result |= (uint64_t)tmp << 16;
1625 tmp = -(x >> 32);
1626 result |= (uint64_t)tmp << 32;
1627 tmp = -(x >> 48);
1628 result |= (uint64_t)tmp << 48;
1629 return result;
1630 }
1631
1632 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1633 {
1634 uint32_t low = -x;
1635 uint32_t high = -(x >> 32);
1636 return low | ((uint64_t)high << 32);
1637 }
1638
1639 /* FIXME: There should be a native op for this. */
1640 uint64_t HELPER(neon_negl_u64)(uint64_t x)
1641 {
1642 return -x;
1643 }
1644
1645 /* Saturnating sign manuipulation. */
1646 /* ??? Make these use NEON_VOP1 */
1647 #define DO_QABS8(x) do { \
1648 if (x == (int8_t)0x80) { \
1649 x = 0x7f; \
1650 SET_QC(); \
1651 } else if (x < 0) { \
1652 x = -x; \
1653 }} while (0)
1654 uint32_t HELPER(neon_qabs_s8)(CPUState *env, uint32_t x)
1655 {
1656 neon_s8 vec;
1657 NEON_UNPACK(neon_s8, vec, x);
1658 DO_QABS8(vec.v1);
1659 DO_QABS8(vec.v2);
1660 DO_QABS8(vec.v3);
1661 DO_QABS8(vec.v4);
1662 NEON_PACK(neon_s8, x, vec);
1663 return x;
1664 }
1665 #undef DO_QABS8
1666
1667 #define DO_QNEG8(x) do { \
1668 if (x == (int8_t)0x80) { \
1669 x = 0x7f; \
1670 SET_QC(); \
1671 } else { \
1672 x = -x; \
1673 }} while (0)
1674 uint32_t HELPER(neon_qneg_s8)(CPUState *env, uint32_t x)
1675 {
1676 neon_s8 vec;
1677 NEON_UNPACK(neon_s8, vec, x);
1678 DO_QNEG8(vec.v1);
1679 DO_QNEG8(vec.v2);
1680 DO_QNEG8(vec.v3);
1681 DO_QNEG8(vec.v4);
1682 NEON_PACK(neon_s8, x, vec);
1683 return x;
1684 }
1685 #undef DO_QNEG8
1686
1687 #define DO_QABS16(x) do { \
1688 if (x == (int16_t)0x8000) { \
1689 x = 0x7fff; \
1690 SET_QC(); \
1691 } else if (x < 0) { \
1692 x = -x; \
1693 }} while (0)
1694 uint32_t HELPER(neon_qabs_s16)(CPUState *env, uint32_t x)
1695 {
1696 neon_s16 vec;
1697 NEON_UNPACK(neon_s16, vec, x);
1698 DO_QABS16(vec.v1);
1699 DO_QABS16(vec.v2);
1700 NEON_PACK(neon_s16, x, vec);
1701 return x;
1702 }
1703 #undef DO_QABS16
1704
1705 #define DO_QNEG16(x) do { \
1706 if (x == (int16_t)0x8000) { \
1707 x = 0x7fff; \
1708 SET_QC(); \
1709 } else { \
1710 x = -x; \
1711 }} while (0)
1712 uint32_t HELPER(neon_qneg_s16)(CPUState *env, uint32_t x)
1713 {
1714 neon_s16 vec;
1715 NEON_UNPACK(neon_s16, vec, x);
1716 DO_QNEG16(vec.v1);
1717 DO_QNEG16(vec.v2);
1718 NEON_PACK(neon_s16, x, vec);
1719 return x;
1720 }
1721 #undef DO_QNEG16
1722
1723 uint32_t HELPER(neon_qabs_s32)(CPUState *env, uint32_t x)
1724 {
1725 if (x == SIGNBIT) {
1726 SET_QC();
1727 x = ~SIGNBIT;
1728 } else if ((int32_t)x < 0) {
1729 x = -x;
1730 }
1731 return x;
1732 }
1733
1734 uint32_t HELPER(neon_qneg_s32)(CPUState *env, uint32_t x)
1735 {
1736 if (x == SIGNBIT) {
1737 SET_QC();
1738 x = ~SIGNBIT;
1739 } else {
1740 x = -x;
1741 }
1742 return x;
1743 }
1744
1745 /* NEON Float helpers. */
1746 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b)
1747 {
1748 float32 f0 = vfp_itos(a);
1749 float32 f1 = vfp_itos(b);
1750 return (float32_compare_quiet(f0, f1, NFS) == -1) ? a : b;
1751 }
1752
1753 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
1754 {
1755 float32 f0 = vfp_itos(a);
1756 float32 f1 = vfp_itos(b);
1757 return (float32_compare_quiet(f0, f1, NFS) == 1) ? a : b;
1758 }
1759
1760 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b)
1761 {
1762 float32 f0 = vfp_itos(a);
1763 float32 f1 = vfp_itos(b);
1764 return vfp_stoi((float32_compare_quiet(f0, f1, NFS) == 1)
1765 ? float32_sub(f0, f1, NFS)
1766 : float32_sub(f1, f0, NFS));
1767 }
1768
1769 uint32_t HELPER(neon_add_f32)(uint32_t a, uint32_t b)
1770 {
1771 return vfp_stoi(float32_add(vfp_itos(a), vfp_itos(b), NFS));
1772 }
1773
1774 uint32_t HELPER(neon_sub_f32)(uint32_t a, uint32_t b)
1775 {
1776 return vfp_stoi(float32_sub(vfp_itos(a), vfp_itos(b), NFS));
1777 }
1778
1779 uint32_t HELPER(neon_mul_f32)(uint32_t a, uint32_t b)
1780 {
1781 return vfp_stoi(float32_mul(vfp_itos(a), vfp_itos(b), NFS));
1782 }
1783
1784 /* Floating point comparisons produce an integer result. */
1785 #define NEON_VOP_FCMP(name, cmp) \
1786 uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1787 { \
1788 if (float32_compare_quiet(vfp_itos(a), vfp_itos(b), NFS) cmp 0) \
1789 return ~0; \
1790 else \
1791 return 0; \
1792 }
1793
1794 NEON_VOP_FCMP(ceq_f32, ==)
1795 NEON_VOP_FCMP(cge_f32, >=)
1796 NEON_VOP_FCMP(cgt_f32, >)
1797
1798 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b)
1799 {
1800 float32 f0 = float32_abs(vfp_itos(a));
1801 float32 f1 = float32_abs(vfp_itos(b));
1802 return (float32_compare_quiet(f0, f1,NFS) >= 0) ? ~0 : 0;
1803 }
1804
1805 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b)
1806 {
1807 float32 f0 = float32_abs(vfp_itos(a));
1808 float32 f1 = float32_abs(vfp_itos(b));
1809 return (float32_compare_quiet(f0, f1, NFS) > 0) ? ~0 : 0;
1810 }
1811
1812 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1813
1814 void HELPER(neon_qunzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1815 {
1816 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1817 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1818 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1819 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1820 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1821 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1822 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1823 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1824 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1825 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1826 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1827 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1828 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1829 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1830 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1831 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1832 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1833 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1834 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1835 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1836 env->vfp.regs[rm] = make_float64(m0);
1837 env->vfp.regs[rm + 1] = make_float64(m1);
1838 env->vfp.regs[rd] = make_float64(d0);
1839 env->vfp.regs[rd + 1] = make_float64(d1);
1840 }
1841
1842 void HELPER(neon_qunzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1843 {
1844 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1845 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1846 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1847 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1848 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1849 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1850 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1851 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1852 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1853 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1854 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1855 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1856 env->vfp.regs[rm] = make_float64(m0);
1857 env->vfp.regs[rm + 1] = make_float64(m1);
1858 env->vfp.regs[rd] = make_float64(d0);
1859 env->vfp.regs[rd + 1] = make_float64(d1);
1860 }
1861
1862 void HELPER(neon_qunzip32)(CPUState *env, uint32_t rd, uint32_t rm)
1863 {
1864 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1865 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1866 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1867 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1868 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1869 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1870 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1871 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1872 env->vfp.regs[rm] = make_float64(m0);
1873 env->vfp.regs[rm + 1] = make_float64(m1);
1874 env->vfp.regs[rd] = make_float64(d0);
1875 env->vfp.regs[rd + 1] = make_float64(d1);
1876 }
1877
1878 void HELPER(neon_unzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1879 {
1880 uint64_t zm = float64_val(env->vfp.regs[rm]);
1881 uint64_t zd = float64_val(env->vfp.regs[rd]);
1882 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1883 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1884 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1885 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1886 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1887 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1888 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1889 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1890 env->vfp.regs[rm] = make_float64(m0);
1891 env->vfp.regs[rd] = make_float64(d0);
1892 }
1893
1894 void HELPER(neon_unzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1895 {
1896 uint64_t zm = float64_val(env->vfp.regs[rm]);
1897 uint64_t zd = float64_val(env->vfp.regs[rd]);
1898 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1899 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1900 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1901 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1902 env->vfp.regs[rm] = make_float64(m0);
1903 env->vfp.regs[rd] = make_float64(d0);
1904 }
1905
1906 void HELPER(neon_qzip8)(CPUState *env, uint32_t rd, uint32_t rm)
1907 {
1908 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1909 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1910 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1911 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1912 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1913 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1914 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1915 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1916 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1917 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1918 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1919 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1920 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1921 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1922 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1923 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1924 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1925 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1926 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1927 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1928 env->vfp.regs[rm] = make_float64(m0);
1929 env->vfp.regs[rm + 1] = make_float64(m1);
1930 env->vfp.regs[rd] = make_float64(d0);
1931 env->vfp.regs[rd + 1] = make_float64(d1);
1932 }
1933
1934 void HELPER(neon_qzip16)(CPUState *env, uint32_t rd, uint32_t rm)
1935 {
1936 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1937 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1938 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1939 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1940 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1941 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1942 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1943 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1944 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1945 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1946 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1947 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1948 env->vfp.regs[rm] = make_float64(m0);
1949 env->vfp.regs[rm + 1] = make_float64(m1);
1950 env->vfp.regs[rd] = make_float64(d0);
1951 env->vfp.regs[rd + 1] = make_float64(d1);
1952 }
1953
1954 void HELPER(neon_qzip32)(CPUState *env, uint32_t rd, uint32_t rm)
1955 {
1956 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1957 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1958 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1959 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1960 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1961 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1962 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1963 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1964 env->vfp.regs[rm] = make_float64(m0);
1965 env->vfp.regs[rm + 1] = make_float64(m1);
1966 env->vfp.regs[rd] = make_float64(d0);
1967 env->vfp.regs[rd + 1] = make_float64(d1);
1968 }
1969
1970 void HELPER(neon_zip8)(CPUState *env, uint32_t rd, uint32_t rm)
1971 {
1972 uint64_t zm = float64_val(env->vfp.regs[rm]);
1973 uint64_t zd = float64_val(env->vfp.regs[rd]);
1974 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1975 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1976 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1977 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1978 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
1979 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
1980 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
1981 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1982 env->vfp.regs[rm] = make_float64(m0);
1983 env->vfp.regs[rd] = make_float64(d0);
1984 }
1985
1986 void HELPER(neon_zip16)(CPUState *env, uint32_t rd, uint32_t rm)
1987 {
1988 uint64_t zm = float64_val(env->vfp.regs[rm]);
1989 uint64_t zd = float64_val(env->vfp.regs[rd]);
1990 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
1991 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
1992 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
1993 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1994 env->vfp.regs[rm] = make_float64(m0);
1995 env->vfp.regs[rd] = make_float64(d0);
1996 }