]> git.proxmox.com Git - qemu.git/blob - target-arm/op_helper.c
Convert remaining __builtin_expect to likely/unlikely, by Jan Kiszka.
[qemu.git] / target-arm / op_helper.c
1 /*
2 * ARM helper routines
3 *
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21 #include "helpers.h"
22
23 #define SIGNBIT (uint32_t)0x80000000
24 #define SIGNBIT64 ((uint64_t)1 << 63)
25
26 void raise_exception(int tt)
27 {
28 env->exception_index = tt;
29 cpu_loop_exit();
30 }
31
32 /* thread support */
33
34 spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
35
36 void cpu_lock(void)
37 {
38 spin_lock(&global_cpu_lock);
39 }
40
41 void cpu_unlock(void)
42 {
43 spin_unlock(&global_cpu_lock);
44 }
45
46 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def,
47 uint32_t rn, uint32_t maxindex)
48 {
49 uint32_t val;
50 uint32_t tmp;
51 int index;
52 int shift;
53 uint64_t *table;
54 table = (uint64_t *)&env->vfp.regs[rn];
55 val = 0;
56 for (shift = 0; shift < 32; shift += 8) {
57 index = (ireg >> shift) & 0xff;
58 if (index < maxindex) {
59 tmp = (table[index >> 3] >> (index & 7)) & 0xff;
60 val |= tmp << shift;
61 } else {
62 val |= def & (0xff << shift);
63 }
64 }
65 return val;
66 }
67
68 #if !defined(CONFIG_USER_ONLY)
69
70 #define MMUSUFFIX _mmu
71
72 #define SHIFT 0
73 #include "softmmu_template.h"
74
75 #define SHIFT 1
76 #include "softmmu_template.h"
77
78 #define SHIFT 2
79 #include "softmmu_template.h"
80
81 #define SHIFT 3
82 #include "softmmu_template.h"
83
84 /* try to fill the TLB and return an exception if error. If retaddr is
85 NULL, it means that the function was called in C code (i.e. not
86 from generated code or from helper.c) */
87 /* XXX: fix it to restore all registers */
88 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
89 {
90 TranslationBlock *tb;
91 CPUState *saved_env;
92 unsigned long pc;
93 int ret;
94
95 /* XXX: hack to restore env in all cases, even if not called from
96 generated code */
97 saved_env = env;
98 env = cpu_single_env;
99 ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
100 if (unlikely(ret)) {
101 if (retaddr) {
102 /* now we have a real cpu fault */
103 pc = (unsigned long)retaddr;
104 tb = tb_find_pc(pc);
105 if (tb) {
106 /* the PC is inside the translated code. It means that we have
107 a virtual CPU fault */
108 cpu_restore_state(tb, env, pc, NULL);
109 }
110 }
111 raise_exception(env->exception_index);
112 }
113 env = saved_env;
114 }
115 #endif
116
117 /* FIXME: Pass an axplicit pointer to QF to CPUState, and move saturating
118 instructions into helper.c */
119 uint32_t HELPER(add_setq)(uint32_t a, uint32_t b)
120 {
121 uint32_t res = a + b;
122 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
123 env->QF = 1;
124 return res;
125 }
126
127 uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b)
128 {
129 uint32_t res = a + b;
130 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
131 env->QF = 1;
132 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
133 }
134 return res;
135 }
136
137 uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b)
138 {
139 uint32_t res = a - b;
140 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
141 env->QF = 1;
142 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
143 }
144 return res;
145 }
146
147 uint32_t HELPER(double_saturate)(int32_t val)
148 {
149 uint32_t res;
150 if (val >= 0x40000000) {
151 res = ~SIGNBIT;
152 env->QF = 1;
153 } else if (val <= (int32_t)0xc0000000) {
154 res = SIGNBIT;
155 env->QF = 1;
156 } else {
157 res = val << 1;
158 }
159 return res;
160 }
161
162 uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b)
163 {
164 uint32_t res = a + b;
165 if (res < a) {
166 env->QF = 1;
167 res = ~0;
168 }
169 return res;
170 }
171
172 uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b)
173 {
174 uint32_t res = a - b;
175 if (res > a) {
176 env->QF = 1;
177 res = 0;
178 }
179 return res;
180 }
181
182 /* Signed saturation. */
183 static inline uint32_t do_ssat(int32_t val, int shift)
184 {
185 int32_t top;
186 uint32_t mask;
187
188 shift = PARAM1;
189 top = val >> shift;
190 mask = (1u << shift) - 1;
191 if (top > 0) {
192 env->QF = 1;
193 return mask;
194 } else if (top < -1) {
195 env->QF = 1;
196 return ~mask;
197 }
198 return val;
199 }
200
201 /* Unsigned saturation. */
202 static inline uint32_t do_usat(int32_t val, int shift)
203 {
204 uint32_t max;
205
206 shift = PARAM1;
207 max = (1u << shift) - 1;
208 if (val < 0) {
209 env->QF = 1;
210 return 0;
211 } else if (val > max) {
212 env->QF = 1;
213 return max;
214 }
215 return val;
216 }
217
218 /* Signed saturate. */
219 uint32_t HELPER(ssat)(uint32_t x, uint32_t shift)
220 {
221 return do_ssat(x, shift);
222 }
223
224 /* Dual halfword signed saturate. */
225 uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift)
226 {
227 uint32_t res;
228
229 res = (uint16_t)do_ssat((int16_t)x, shift);
230 res |= do_ssat(((int32_t)x) >> 16, shift) << 16;
231 return res;
232 }
233
234 /* Unsigned saturate. */
235 uint32_t HELPER(usat)(uint32_t x, uint32_t shift)
236 {
237 return do_usat(x, shift);
238 }
239
240 /* Dual halfword unsigned saturate. */
241 uint32_t HELPER(usat16)(uint32_t x, uint32_t shift)
242 {
243 uint32_t res;
244
245 res = (uint16_t)do_usat((int16_t)x, shift);
246 res |= do_usat(((int32_t)x) >> 16, shift) << 16;
247 return res;
248 }
249
250 void HELPER(wfi)(void)
251 {
252 env->exception_index = EXCP_HLT;
253 env->halted = 1;
254 cpu_loop_exit();
255 }
256
257 void HELPER(exception)(uint32_t excp)
258 {
259 env->exception_index = excp;
260 cpu_loop_exit();
261 }
262
263 uint32_t HELPER(cpsr_read)(void)
264 {
265 return cpsr_read(env) & ~CPSR_EXEC;
266 }
267
268 void HELPER(cpsr_write)(uint32_t val, uint32_t mask)
269 {
270 cpsr_write(env, val, mask);
271 }
272
273 /* Access to user mode registers from privileged modes. */
274 uint32_t HELPER(get_user_reg)(uint32_t regno)
275 {
276 uint32_t val;
277
278 if (regno == 13) {
279 val = env->banked_r13[0];
280 } else if (regno == 14) {
281 val = env->banked_r14[0];
282 } else if (regno >= 8
283 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
284 val = env->usr_regs[regno - 8];
285 } else {
286 val = env->regs[regno];
287 }
288 return val;
289 }
290
291 void HELPER(set_user_reg)(uint32_t regno, uint32_t val)
292 {
293 if (regno == 13) {
294 env->banked_r13[0] = val;
295 } else if (regno == 14) {
296 env->banked_r14[0] = val;
297 } else if (regno >= 8
298 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
299 env->usr_regs[regno - 8] = val;
300 } else {
301 env->regs[regno] = val;
302 }
303 }
304
305 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
306 The only way to do that in TCG is a conditional branch, which clobbers
307 all our temporaries. For now implement these as helper functions. */
308
309 uint32_t HELPER (add_cc)(uint32_t a, uint32_t b)
310 {
311 uint32_t result;
312 result = T0 + T1;
313 env->NF = env->ZF = result;
314 env->CF = result < a;
315 env->VF = (a ^ b ^ -1) & (a ^ result);
316 return result;
317 }
318
319 uint32_t HELPER(adc_cc)(uint32_t a, uint32_t b)
320 {
321 uint32_t result;
322 if (!env->CF) {
323 result = a + b;
324 env->CF = result < a;
325 } else {
326 result = a + b + 1;
327 env->CF = result <= a;
328 }
329 env->VF = (a ^ b ^ -1) & (a ^ result);
330 env->NF = env->ZF = result;
331 return result;
332 }
333
334 uint32_t HELPER(sub_cc)(uint32_t a, uint32_t b)
335 {
336 uint32_t result;
337 result = a - b;
338 env->NF = env->ZF = result;
339 env->CF = a >= b;
340 env->VF = (a ^ b) & (a ^ result);
341 return result;
342 }
343
344 uint32_t HELPER(sbc_cc)(uint32_t a, uint32_t b)
345 {
346 uint32_t result;
347 if (!env->CF) {
348 result = a - b - 1;
349 env->CF = a > b;
350 } else {
351 result = a - b;
352 env->CF = a >= b;
353 }
354 env->VF = (a ^ b) & (a ^ result);
355 env->NF = env->ZF = result;
356 return result;
357 }
358
359 /* Similarly for variable shift instructions. */
360
361 uint32_t HELPER(shl)(uint32_t x, uint32_t i)
362 {
363 int shift = i & 0xff;
364 if (shift >= 32)
365 return 0;
366 return x << shift;
367 }
368
369 uint32_t HELPER(shr)(uint32_t x, uint32_t i)
370 {
371 int shift = i & 0xff;
372 if (shift >= 32)
373 return 0;
374 return (uint32_t)x >> shift;
375 }
376
377 uint32_t HELPER(sar)(uint32_t x, uint32_t i)
378 {
379 int shift = i & 0xff;
380 if (shift >= 32)
381 shift = 31;
382 return (int32_t)x >> shift;
383 }
384
385 uint32_t HELPER(ror)(uint32_t x, uint32_t i)
386 {
387 int shift = i & 0xff;
388 if (shift == 0)
389 return x;
390 return (x >> shift) | (x << (32 - shift));
391 }
392
393 uint32_t HELPER(shl_cc)(uint32_t x, uint32_t i)
394 {
395 int shift = i & 0xff;
396 if (shift >= 32) {
397 if (shift == 32)
398 env->CF = x & 1;
399 else
400 env->CF = 0;
401 return 0;
402 } else if (shift != 0) {
403 env->CF = (x >> (32 - shift)) & 1;
404 return x << shift;
405 }
406 return x;
407 }
408
409 uint32_t HELPER(shr_cc)(uint32_t x, uint32_t i)
410 {
411 int shift = i & 0xff;
412 if (shift >= 32) {
413 if (shift == 32)
414 env->CF = (x >> 31) & 1;
415 else
416 env->CF = 0;
417 return 0;
418 } else if (shift != 0) {
419 env->CF = (x >> (shift - 1)) & 1;
420 return x >> shift;
421 }
422 return x;
423 }
424
425 uint32_t HELPER(sar_cc)(uint32_t x, uint32_t i)
426 {
427 int shift = i & 0xff;
428 if (shift >= 32) {
429 env->CF = (x >> 31) & 1;
430 return (int32_t)x >> 31;
431 } else if (shift != 0) {
432 env->CF = (x >> (shift - 1)) & 1;
433 return (int32_t)x >> shift;
434 }
435 return x;
436 }
437
438 uint32_t HELPER(ror_cc)(uint32_t x, uint32_t i)
439 {
440 int shift1, shift;
441 shift1 = i & 0xff;
442 shift = shift1 & 0x1f;
443 if (shift == 0) {
444 if (shift1 != 0)
445 env->CF = (x >> 31) & 1;
446 return x;
447 } else {
448 env->CF = (x >> (shift - 1)) & 1;
449 return ((uint32_t)x >> shift) | (x << (32 - shift));
450 }
451 }
452
453 uint64_t HELPER(neon_add_saturate_s64)(uint64_t src1, uint64_t src2)
454 {
455 uint64_t res;
456
457 res = src1 + src2;
458 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
459 env->QF = 1;
460 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
461 }
462 return res;
463 }
464
465 uint64_t HELPER(neon_add_saturate_u64)(uint64_t src1, uint64_t src2)
466 {
467 uint64_t res;
468
469 res = src1 + src2;
470 if (res < src1) {
471 env->QF = 1;
472 res = ~(uint64_t)0;
473 }
474 return res;
475 }
476
477 uint64_t HELPER(neon_sub_saturate_s64)(uint64_t src1, uint64_t src2)
478 {
479 uint64_t res;
480
481 res = src1 - src2;
482 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
483 env->QF = 1;
484 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
485 }
486 return res;
487 }
488
489 uint64_t HELPER(neon_sub_saturate_u64)(uint64_t src1, uint64_t src2)
490 {
491 uint64_t res;
492
493 if (src1 < src2) {
494 env->QF = 1;
495 res = 0;
496 } else {
497 res = src1 - src2;
498 }
499 return res;
500 }
501
502 /* These need to return a pair of value, so still use T0/T1. */
503 /* Transpose. Argument order is rather strange to avoid special casing
504 the tranlation code.
505 On input T0 = rm, T1 = rd. On output T0 = rd, T1 = rm */
506 void HELPER(neon_trn_u8)(void)
507 {
508 uint32_t rd;
509 uint32_t rm;
510 rd = ((T0 & 0x00ff00ff) << 8) | (T1 & 0x00ff00ff);
511 rm = ((T1 & 0xff00ff00) >> 8) | (T0 & 0xff00ff00);
512 T0 = rd;
513 T1 = rm;
514 FORCE_RET();
515 }
516
517 void HELPER(neon_trn_u16)(void)
518 {
519 uint32_t rd;
520 uint32_t rm;
521 rd = (T0 << 16) | (T1 & 0xffff);
522 rm = (T1 >> 16) | (T0 & 0xffff0000);
523 T0 = rd;
524 T1 = rm;
525 FORCE_RET();
526 }
527
528 /* Worker routines for zip and unzip. */
529 void HELPER(neon_unzip_u8)(void)
530 {
531 uint32_t rd;
532 uint32_t rm;
533 rd = (T0 & 0xff) | ((T0 >> 8) & 0xff00)
534 | ((T1 << 16) & 0xff0000) | ((T1 << 8) & 0xff000000);
535 rm = ((T0 >> 8) & 0xff) | ((T0 >> 16) & 0xff00)
536 | ((T1 << 8) & 0xff0000) | (T1 & 0xff000000);
537 T0 = rd;
538 T1 = rm;
539 FORCE_RET();
540 }
541
542 void HELPER(neon_zip_u8)(void)
543 {
544 uint32_t rd;
545 uint32_t rm;
546 rd = (T0 & 0xff) | ((T1 << 8) & 0xff00)
547 | ((T0 << 16) & 0xff0000) | ((T1 << 24) & 0xff000000);
548 rm = ((T0 >> 16) & 0xff) | ((T1 >> 8) & 0xff00)
549 | ((T0 >> 8) & 0xff0000) | (T1 & 0xff000000);
550 T0 = rd;
551 T1 = rm;
552 FORCE_RET();
553 }
554
555 void HELPER(neon_zip_u16)(void)
556 {
557 uint32_t tmp;
558
559 tmp = (T0 & 0xffff) | (T1 << 16);
560 T1 = (T1 & 0xffff0000) | (T0 >> 16);
561 T0 = tmp;
562 FORCE_RET();
563 }