]> git.proxmox.com Git - qemu.git/blob - target-cris/op.c
CRIS: Improve TLB management and handle delayslots at page boundaries.
[qemu.git] / target-cris / op.c
1 /*
2 * CRIS emulation micro-operations for qemu.
3 *
4 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec.h"
21 #include "host-utils.h"
22
23 #define REGNAME r0
24 #define REG (env->regs[0])
25 #include "op_template.h"
26
27 #define REGNAME r1
28 #define REG (env->regs[1])
29 #include "op_template.h"
30
31 #define REGNAME r2
32 #define REG (env->regs[2])
33 #include "op_template.h"
34
35 #define REGNAME r3
36 #define REG (env->regs[3])
37 #include "op_template.h"
38
39 #define REGNAME r4
40 #define REG (env->regs[4])
41 #include "op_template.h"
42
43 #define REGNAME r5
44 #define REG (env->regs[5])
45 #include "op_template.h"
46
47 #define REGNAME r6
48 #define REG (env->regs[6])
49 #include "op_template.h"
50
51 #define REGNAME r7
52 #define REG (env->regs[7])
53 #include "op_template.h"
54
55 #define REGNAME r8
56 #define REG (env->regs[8])
57 #include "op_template.h"
58
59 #define REGNAME r9
60 #define REG (env->regs[9])
61 #include "op_template.h"
62
63 #define REGNAME r10
64 #define REG (env->regs[10])
65 #include "op_template.h"
66
67 #define REGNAME r11
68 #define REG (env->regs[11])
69 #include "op_template.h"
70
71 #define REGNAME r12
72 #define REG (env->regs[12])
73 #include "op_template.h"
74
75 #define REGNAME r13
76 #define REG (env->regs[13])
77 #include "op_template.h"
78
79 #define REGNAME r14
80 #define REG (env->regs[14])
81 #include "op_template.h"
82
83 #define REGNAME r15
84 #define REG (env->regs[15])
85 #include "op_template.h"
86
87
88 #define REGNAME p0
89 #define REG (env->pregs[0])
90 #include "op_template.h"
91
92 #define REGNAME p1
93 #define REG (env->pregs[1])
94 #include "op_template.h"
95
96 #define REGNAME p2
97 #define REG (env->pregs[2])
98 #include "op_template.h"
99
100 #define REGNAME p3
101 #define REG (env->pregs[3])
102 #include "op_template.h"
103
104 #define REGNAME p4
105 #define REG (env->pregs[4])
106 #include "op_template.h"
107
108 #define REGNAME p5
109 #define REG (env->pregs[5])
110 #include "op_template.h"
111
112 #define REGNAME p6
113 #define REG (env->pregs[6])
114 #include "op_template.h"
115
116 #define REGNAME p7
117 #define REG (env->pregs[7])
118 #include "op_template.h"
119
120 #define REGNAME p8
121 #define REG (env->pregs[8])
122 #include "op_template.h"
123
124 #define REGNAME p9
125 #define REG (env->pregs[9])
126 #include "op_template.h"
127
128 #define REGNAME p10
129 #define REG (env->pregs[10])
130 #include "op_template.h"
131
132 #define REGNAME p11
133 #define REG (env->pregs[11])
134 #include "op_template.h"
135
136 #define REGNAME p12
137 #define REG (env->pregs[12])
138 #include "op_template.h"
139
140 #define REGNAME p13
141 #define REG (env->pregs[13])
142 #include "op_template.h"
143
144 #define REGNAME p14
145 #define REG (env->pregs[14])
146 #include "op_template.h"
147
148 #define REGNAME p15
149 #define REG (env->pregs[15])
150 #include "op_template.h"
151
152 /* Microcode. */
153
154 void OPPROTO op_break_im(void)
155 {
156 env->trap_vector = PARAM1;
157 env->exception_index = EXCP_BREAK;
158 cpu_loop_exit();
159 }
160
161 void OPPROTO op_debug(void)
162 {
163 env->exception_index = EXCP_DEBUG;
164 cpu_loop_exit();
165 }
166
167 void OPPROTO op_exec_insn(void)
168 {
169 env->stats.exec_insns++;
170 RETURN();
171 }
172 void OPPROTO op_exec_load(void)
173 {
174 env->stats.exec_loads++;
175 RETURN();
176 }
177 void OPPROTO op_exec_store(void)
178 {
179 env->stats.exec_stores++;
180 RETURN();
181 }
182
183 void OPPROTO op_ccs_lshift (void)
184 {
185 uint32_t ccs;
186
187 /* Apply the ccs shift. */
188 ccs = env->pregs[PR_CCS];
189 ccs = (ccs & 0xc0000000) | ((ccs << 12) >> 2);
190 env->pregs[PR_CCS] = ccs;
191 RETURN();
192 }
193 void OPPROTO op_ccs_rshift (void)
194 {
195 register uint32_t ccs;
196
197 /* Apply the ccs shift. */
198 ccs = env->pregs[PR_CCS];
199 ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
200 if (ccs & U_FLAG)
201 {
202 /* Enter user mode. */
203 env->ksp = env->regs[R_SP];
204 env->regs[R_SP] = env->pregs[PR_USP];
205 }
206
207 env->pregs[PR_CCS] = ccs;
208
209 RETURN();
210 }
211
212 void OPPROTO op_setf (void)
213 {
214 if (!(env->pregs[PR_CCS] & U_FLAG) && (PARAM1 & U_FLAG))
215 {
216 /* Enter user mode. */
217 env->ksp = env->regs[R_SP];
218 env->regs[R_SP] = env->pregs[PR_USP];
219 }
220
221 env->pregs[PR_CCS] |= PARAM1;
222 RETURN();
223 }
224
225 void OPPROTO op_clrf (void)
226 {
227 env->pregs[PR_CCS] &= ~PARAM1;
228 RETURN();
229 }
230
231 void OPPROTO op_movl_debug1_T0 (void)
232 {
233 env->debug1 = T0;
234 RETURN();
235 }
236
237 void OPPROTO op_movl_debug2_T0 (void)
238 {
239 env->debug2 = T0;
240 RETURN();
241 }
242
243 void OPPROTO op_movl_debug3_T0 (void)
244 {
245 env->debug3 = T0;
246 RETURN();
247 }
248 void OPPROTO op_movl_debug1_T1 (void)
249 {
250 env->debug1 = T1;
251 RETURN();
252 }
253
254 void OPPROTO op_movl_debug2_T1 (void)
255 {
256 env->debug2 = T1;
257 RETURN();
258 }
259
260 void OPPROTO op_movl_debug3_T1 (void)
261 {
262 env->debug3 = T1;
263 RETURN();
264 }
265 void OPPROTO op_movl_debug3_im (void)
266 {
267 env->debug3 = PARAM1;
268 RETURN();
269 }
270 void OPPROTO op_movl_T0_flags (void)
271 {
272 T0 = env->pregs[PR_CCS];
273 RETURN();
274 }
275 void OPPROTO op_movl_flags_T0 (void)
276 {
277 env->pregs[PR_CCS] = T0;
278 RETURN();
279 }
280
281 void OPPROTO op_movl_sreg_T0 (void)
282 {
283 uint32_t srs;
284 srs = env->pregs[PR_SRS];
285 srs &= 3;
286
287 env->sregs[srs][PARAM1] = T0;
288 RETURN();
289 }
290
291 void OPPROTO op_movl_tlb_hi_T0 (void)
292 {
293 uint32_t srs;
294 srs = env->pregs[PR_SRS];
295 if (srs == 1 || srs == 2)
296 {
297 /* Writes to tlb-hi write to mm_cause as a side effect. */
298 env->sregs[SFR_RW_MM_TLB_HI] = T0;
299 env->sregs[SFR_R_MM_CAUSE] = T0;
300 }
301 RETURN();
302 }
303
304 void OPPROTO op_movl_tlb_lo_T0 (void)
305 {
306 uint32_t srs;
307
308 env->pregs[PR_SRS] &= 3;
309 srs = env->pregs[PR_SRS];
310
311 if (srs == 1 || srs == 2)
312 {
313 uint32_t set;
314 uint32_t idx;
315 uint32_t lo, hi;
316
317 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
318 set >>= 4;
319 set &= 3;
320
321 idx &= 15;
322 /* We've just made a write to tlb_lo. */
323 lo = env->sregs[SFR_RW_MM_TLB_LO];
324 /* Writes are done via r_mm_cause. */
325 hi = env->sregs[SFR_R_MM_CAUSE];
326 env->tlbsets[srs - 1][set][idx].lo = lo;
327 env->tlbsets[srs - 1][set][idx].hi = hi;
328 }
329 RETURN();
330 }
331
332 void OPPROTO op_movl_T0_sreg (void)
333 {
334 uint32_t srs;
335 env->pregs[PR_SRS] &= 3;
336 srs = env->pregs[PR_SRS];
337
338 if (srs == 1 || srs == 2)
339 {
340 uint32_t set;
341 uint32_t idx;
342 uint32_t lo, hi;
343
344 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
345 set >>= 4;
346 set &= 3;
347 idx &= 15;
348
349 /* Update the mirror regs. */
350 hi = env->tlbsets[srs - 1][set][idx].hi;
351 lo = env->tlbsets[srs - 1][set][idx].lo;
352 env->sregs[SFR_RW_MM_TLB_HI] = hi;
353 env->sregs[SFR_RW_MM_TLB_LO] = lo;
354 }
355 T0 = env->sregs[srs][PARAM1];
356 RETURN();
357 }
358
359 void OPPROTO op_update_cc (void)
360 {
361 env->cc_op = PARAM1;
362 env->cc_dest = PARAM2;
363 env->cc_src = PARAM3;
364 RETURN();
365 }
366
367 void OPPROTO op_update_cc_op (void)
368 {
369 env->cc_op = PARAM1;
370 RETURN();
371 }
372
373 void OPPROTO op_update_cc_mask (void)
374 {
375 env->cc_mask = PARAM1;
376 RETURN();
377 }
378
379 void OPPROTO op_update_cc_dest_T0 (void)
380 {
381 env->cc_dest = T0;
382 RETURN();
383 }
384
385 void OPPROTO op_update_cc_result_T0 (void)
386 {
387 env->cc_result = T0;
388 RETURN();
389 }
390
391 void OPPROTO op_update_cc_size_im (void)
392 {
393 env->cc_size = PARAM1;
394 RETURN();
395 }
396
397 void OPPROTO op_update_cc_src_T1 (void)
398 {
399 env->cc_src = T1;
400 RETURN();
401 }
402 void OPPROTO op_update_cc_x (void)
403 {
404 env->cc_x_live = PARAM1;
405 env->cc_x = PARAM2;
406 RETURN();
407 }
408
409 void OPPROTO op_extb_T0_T0 (void)
410 {
411 T0 = ((int8_t)T0);
412 RETURN();
413 }
414 void OPPROTO op_extb_T1_T0 (void)
415 {
416 T1 = ((int8_t)T0);
417 RETURN();
418 }
419 void OPPROTO op_extb_T1_T1 (void)
420 {
421 T1 = ((int8_t)T1);
422 RETURN();
423 }
424 void OPPROTO op_zextb_T0_T0 (void)
425 {
426 T0 = ((uint8_t)T0);
427 RETURN();
428 }
429 void OPPROTO op_zextb_T1_T0 (void)
430 {
431 T1 = ((uint8_t)T0);
432 RETURN();
433 }
434 void OPPROTO op_zextb_T1_T1 (void)
435 {
436 T1 = ((uint8_t)T1);
437 RETURN();
438 }
439 void OPPROTO op_extw_T0_T0 (void)
440 {
441 T0 = ((int16_t)T0);
442 RETURN();
443 }
444 void OPPROTO op_extw_T1_T0 (void)
445 {
446 T1 = ((int16_t)T0);
447 RETURN();
448 }
449 void OPPROTO op_extw_T1_T1 (void)
450 {
451 T1 = ((int16_t)T1);
452 RETURN();
453 }
454
455 void OPPROTO op_zextw_T0_T0 (void)
456 {
457 T0 = ((uint16_t)T0);
458 RETURN();
459 }
460 void OPPROTO op_zextw_T1_T0 (void)
461 {
462 T1 = ((uint16_t)T0);
463 RETURN();
464 }
465
466 void OPPROTO op_zextw_T1_T1 (void)
467 {
468 T1 = ((uint16_t)T1);
469 RETURN();
470 }
471
472 void OPPROTO op_movl_T0_im (void)
473 {
474 T0 = PARAM1;
475 RETURN();
476 }
477 void OPPROTO op_movl_T1_im (void)
478 {
479 T1 = PARAM1;
480 RETURN();
481 }
482
483 void OPPROTO op_addl_T0_im (void)
484 {
485 T0 += PARAM1;
486 RETURN();
487 }
488
489 void OPPROTO op_addl_T1_im (void)
490 {
491 T1 += PARAM1;
492 RETURN();
493
494 }
495 void OPPROTO op_subl_T0_im (void)
496 {
497 T0 -= PARAM1;
498 RETURN();
499 }
500
501 void OPPROTO op_addxl_T0_C (void)
502 {
503 if (env->pregs[PR_CCS] & X_FLAG)
504 T0 += !!(env->pregs[PR_CCS] & C_FLAG);
505 RETURN();
506 }
507 void OPPROTO op_subxl_T0_C (void)
508 {
509 if (env->pregs[PR_CCS] & X_FLAG)
510 T0 -= !!(env->pregs[PR_CCS] & C_FLAG);
511 RETURN();
512 }
513 void OPPROTO op_addl_T0_C (void)
514 {
515 T0 += !!(env->pregs[PR_CCS] & C_FLAG);
516 RETURN();
517 }
518 void OPPROTO op_addl_T0_R (void)
519 {
520 T0 += !!(env->pregs[PR_CCS] & R_FLAG);
521 RETURN();
522 }
523
524 void OPPROTO op_clr_R (void)
525 {
526 env->pregs[PR_CCS] &= ~R_FLAG;
527 RETURN();
528 }
529
530
531 void OPPROTO op_andl_T0_im (void)
532 {
533 T0 &= PARAM1;
534 RETURN();
535 }
536
537 void OPPROTO op_andl_T1_im (void)
538 {
539 T1 &= PARAM1;
540 RETURN();
541 }
542
543 void OPPROTO op_movl_T0_T1 (void)
544 {
545 T0 = T1;
546 RETURN();
547 }
548
549 void OPPROTO op_swp_T0_T1 (void)
550 {
551 T0 ^= T1;
552 T1 ^= T0;
553 T0 ^= T1;
554 RETURN();
555 }
556
557 void OPPROTO op_movl_T1_T0 (void)
558 {
559 T1 = T0;
560 RETURN();
561 }
562
563 void OPPROTO op_movl_pc_T0 (void)
564 {
565 env->pc = T0;
566 RETURN();
567 }
568
569 void OPPROTO op_movl_T0_0 (void)
570 {
571 T0 = 0;
572 RETURN();
573 }
574
575 void OPPROTO op_addl_T0_T1 (void)
576 {
577 T0 += T1;
578 RETURN();
579 }
580
581 void OPPROTO op_subl_T0_T1 (void)
582 {
583 T0 -= T1;
584 RETURN();
585 }
586
587 void OPPROTO op_absl_T1_T1 (void)
588 {
589 int32_t st = T1;
590
591 T1 = st < 0 ? -st : st;
592 RETURN();
593 }
594
595 void OPPROTO op_muls_T0_T1 (void)
596 {
597 int64_t tmp, t0 ,t1;
598
599 /* cast into signed values to make GCC sign extend these babies. */
600 t0 = (int32_t)T0;
601 t1 = (int32_t)T1;
602
603 tmp = t0 * t1;
604 T0 = tmp & 0xffffffff;
605 env->pregs[PR_MOF] = tmp >> 32;
606 RETURN();
607 }
608
609 void OPPROTO op_mulu_T0_T1 (void)
610 {
611 uint64_t tmp, t0 ,t1;
612 t0 = T0;
613 t1 = T1;
614
615 tmp = t0 * t1;
616 T0 = tmp & 0xffffffff;
617 env->pregs[PR_MOF] = tmp >> 32;
618 RETURN();
619 }
620
621 void OPPROTO op_dstep_T0_T1 (void)
622 {
623 T0 <<= 1;
624 if (T0 >= T1)
625 T0 -= T1;
626 RETURN();
627 }
628
629 void OPPROTO op_orl_T0_T1 (void)
630 {
631 T0 |= T1;
632 RETURN();
633 }
634
635 void OPPROTO op_andl_T0_T1 (void)
636 {
637 T0 &= T1;
638 RETURN();
639 }
640
641 void OPPROTO op_xorl_T0_T1 (void)
642 {
643 T0 ^= T1;
644 RETURN();
645 }
646
647 void OPPROTO op_lsll_T0_T1 (void)
648 {
649 int s = T1;
650 if (s > 31)
651 T0 = 0;
652 else
653 T0 <<= s;
654 RETURN();
655 }
656
657 void OPPROTO op_lsll_T0_im (void)
658 {
659 T0 <<= PARAM1;
660 RETURN();
661 }
662
663 void OPPROTO op_lsrl_T0_T1 (void)
664 {
665 int s = T1;
666 if (s > 31)
667 T0 = 0;
668 else
669 T0 >>= s;
670 RETURN();
671 }
672
673 /* Rely on GCC emitting an arithmetic shift for signed right shifts. */
674 void OPPROTO op_asrl_T0_T1 (void)
675 {
676 int s = T1;
677 if (s > 31)
678 T0 = T0 & 0x80000000 ? -1 : 0;
679 else
680 T0 = (int32_t)T0 >> s;
681 RETURN();
682 }
683
684 void OPPROTO op_btst_T0_T1 (void)
685 {
686 /* FIXME: clean this up. */
687
688 /* des ref:
689 The N flag is set according to the selected bit in the dest reg.
690 The Z flag is set if the selected bit and all bits to the right are
691 zero.
692 The X flag is cleared.
693 Other flags are left untouched.
694 The destination reg is not affected.*/
695 unsigned int fz, sbit, bset, mask, masked_t0;
696
697 sbit = T1 & 31;
698 bset = !!(T0 & (1 << sbit));
699 mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
700 masked_t0 = T0 & mask;
701 fz = !(masked_t0 | bset);
702
703 /* Clear the X, N and Z flags. */
704 T0 = env->pregs[PR_CCS] & ~(X_FLAG | N_FLAG | Z_FLAG);
705 /* Set the N and Z flags accordingly. */
706 T0 |= (bset << 3) | (fz << 2);
707 RETURN();
708 }
709
710 void OPPROTO op_bound_T0_T1 (void)
711 {
712 if (T0 > T1)
713 T0 = T1;
714 RETURN();
715 }
716
717 void OPPROTO op_lz_T0_T1 (void)
718 {
719 T0 = clz32(T1);
720 RETURN();
721 }
722
723 void OPPROTO op_negl_T0_T1 (void)
724 {
725 T0 = -T1;
726 RETURN();
727 }
728
729 void OPPROTO op_negl_T1_T1 (void)
730 {
731 T1 = -T1;
732 RETURN();
733 }
734
735 void OPPROTO op_not_T0_T0 (void)
736 {
737 T0 = ~(T0);
738 RETURN();
739 }
740 void OPPROTO op_not_T1_T1 (void)
741 {
742 T1 = ~(T1);
743 RETURN();
744 }
745
746 void OPPROTO op_swapw_T0_T0 (void)
747 {
748 T0 = (T0 << 16) | ((T0 >> 16));
749 RETURN();
750 }
751
752 void OPPROTO op_swapb_T0_T0 (void)
753 {
754 T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff);
755 RETURN();
756 }
757
758 void OPPROTO op_swapr_T0_T0 (void)
759 {
760 T0 = (((T0 << 7) & 0x80808080) |
761 ((T0 << 5) & 0x40404040) |
762 ((T0 << 3) & 0x20202020) |
763 ((T0 << 1) & 0x10101010) |
764 ((T0 >> 1) & 0x08080808) |
765 ((T0 >> 3) & 0x04040404) |
766 ((T0 >> 5) & 0x02020202) |
767 ((T0 >> 7) & 0x01010101));
768 RETURN();
769 }
770
771 void OPPROTO op_tst_cc_eq (void) {
772 uint32_t flags = env->pregs[PR_CCS];
773 int z_set;
774
775 z_set = !!(flags & Z_FLAG);
776 T0 = z_set;
777 RETURN();
778 }
779
780 void OPPROTO op_tst_cc_eq_fast (void) {
781 T0 = !(env->cc_result);
782 RETURN();
783 }
784
785 void OPPROTO op_tst_cc_ne (void) {
786 uint32_t flags = env->pregs[PR_CCS];
787 int z_set;
788
789 z_set = !!(flags & Z_FLAG);
790 T0 = !z_set;
791 RETURN();
792 }
793 void OPPROTO op_tst_cc_ne_fast (void) {
794 T0 = !!(env->cc_result);
795 RETURN();
796 }
797
798 void OPPROTO op_tst_cc_cc (void) {
799 uint32_t flags = env->pregs[PR_CCS];
800 int c_set;
801
802 c_set = !!(flags & C_FLAG);
803 T0 = !c_set;
804 RETURN();
805 }
806 void OPPROTO op_tst_cc_cs (void) {
807 uint32_t flags = env->pregs[PR_CCS];
808 int c_set;
809
810 c_set = !!(flags & C_FLAG);
811 T0 = c_set;
812 RETURN();
813 }
814
815 void OPPROTO op_tst_cc_vc (void) {
816 uint32_t flags = env->pregs[PR_CCS];
817 int v_set;
818
819 v_set = !!(flags & V_FLAG);
820 T0 = !v_set;
821 RETURN();
822 }
823 void OPPROTO op_tst_cc_vs (void) {
824 uint32_t flags = env->pregs[PR_CCS];
825 int v_set;
826
827 v_set = !!(flags & V_FLAG);
828 T0 = v_set;
829 RETURN();
830 }
831 void OPPROTO op_tst_cc_pl (void) {
832 uint32_t flags = env->pregs[PR_CCS];
833 int n_set;
834
835 n_set = !!(flags & N_FLAG);
836 T0 = !n_set;
837 RETURN();
838 }
839 void OPPROTO op_tst_cc_pl_fast (void) {
840 T0 = ((int32_t)env->cc_result) >= 0;
841 RETURN();
842 }
843
844 void OPPROTO op_tst_cc_mi (void) {
845 uint32_t flags = env->pregs[PR_CCS];
846 int n_set;
847
848 n_set = !!(flags & N_FLAG);
849 T0 = n_set;
850 RETURN();
851 }
852 void OPPROTO op_tst_cc_mi_fast (void) {
853 T0 = ((int32_t)env->cc_result) < 0;
854 RETURN();
855 }
856
857 void OPPROTO op_tst_cc_ls (void) {
858 uint32_t flags = env->pregs[PR_CCS];
859 int c_set;
860 int z_set;
861
862 c_set = !!(flags & C_FLAG);
863 z_set = !!(flags & Z_FLAG);
864 T0 = c_set || z_set;
865 RETURN();
866 }
867 void OPPROTO op_tst_cc_hi (void) {
868 uint32_t flags = env->pregs[PR_CCS];
869 int z_set;
870 int c_set;
871
872 z_set = !!(flags & Z_FLAG);
873 c_set = !!(flags & C_FLAG);
874 T0 = !c_set && !z_set;
875 RETURN();
876
877 }
878
879 void OPPROTO op_tst_cc_ge (void) {
880 uint32_t flags = env->pregs[PR_CCS];
881 int n_set;
882 int v_set;
883
884 n_set = !!(flags & N_FLAG);
885 v_set = !!(flags & V_FLAG);
886 T0 = (n_set && v_set) || (!n_set && !v_set);
887 RETURN();
888 }
889
890 void OPPROTO op_tst_cc_ge_fast (void) {
891 T0 = ((int32_t)env->cc_src < (int32_t)env->cc_dest);
892 RETURN();
893 }
894
895 void OPPROTO op_tst_cc_lt (void) {
896 uint32_t flags = env->pregs[PR_CCS];
897 int n_set;
898 int v_set;
899
900 n_set = !!(flags & N_FLAG);
901 v_set = !!(flags & V_FLAG);
902 T0 = (n_set && !v_set) || (!n_set && v_set);
903 RETURN();
904 }
905
906 void OPPROTO op_tst_cc_gt (void) {
907 uint32_t flags = env->pregs[PR_CCS];
908 int n_set;
909 int v_set;
910 int z_set;
911
912 n_set = !!(flags & N_FLAG);
913 v_set = !!(flags & V_FLAG);
914 z_set = !!(flags & Z_FLAG);
915 T0 = (n_set && v_set && !z_set)
916 || (!n_set && !v_set && !z_set);
917 RETURN();
918 }
919
920 void OPPROTO op_tst_cc_le (void) {
921 uint32_t flags = env->pregs[PR_CCS];
922 int n_set;
923 int v_set;
924 int z_set;
925
926 n_set = !!(flags & N_FLAG);
927 v_set = !!(flags & V_FLAG);
928 z_set = !!(flags & Z_FLAG);
929 T0 = z_set || (n_set && !v_set) || (!n_set && v_set);
930 RETURN();
931 }
932
933 void OPPROTO op_tst_cc_p (void) {
934 uint32_t flags = env->pregs[PR_CCS];
935 int p_set;
936
937 p_set = !!(flags & P_FLAG);
938 T0 = p_set;
939 RETURN();
940 }
941
942 /* Evaluate the if the branch should be taken or not. Needs to be done in
943 the original sequence. The acutal branch is rescheduled to right after the
944 delay-slot. */
945 void OPPROTO op_evaluate_bcc (void)
946 {
947 env->btaken = T0;
948 RETURN();
949 }
950
951 /* this one is used on every alu op, optimize it!. */
952 void OPPROTO op_goto_if_not_x (void)
953 {
954 if (env->pregs[PR_CCS] & X_FLAG)
955 GOTO_LABEL_PARAM(1);
956 RETURN();
957 }
958
959 void OPPROTO op_cc_jmp (void)
960 {
961 if (env->btaken)
962 env->pc = PARAM1;
963 else
964 env->pc = PARAM2;
965 RETURN();
966 }
967
968 void OPPROTO op_cc_ngoto (void)
969 {
970 if (!env->btaken)
971 GOTO_LABEL_PARAM(1);
972 RETURN();
973 }
974
975 void OPPROTO op_movl_btarget_T0 (void)
976 {
977 env->btarget = T0;
978 RETURN();
979 }
980
981 void OPPROTO op_jmp1 (void)
982 {
983 env->pc = env->btarget;
984 RETURN();
985 }