]> git.proxmox.com Git - qemu.git/blob - target-cris/op_helper.c
CRIS: Fix brk 8 and add S-flag emulation.
[qemu.git] / target-cris / op_helper.c
1 /*
2 * CRIS helper routines
3 *
4 * Copyright (c) 2007 AXIS Communications
5 * Written by Edgar E. Iglesias
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <assert.h>
23 #include "exec.h"
24 #include "mmu.h"
25 #include "helper.h"
26
27 #define D(x)
28
29 #if !defined(CONFIG_USER_ONLY)
30
31 #define MMUSUFFIX _mmu
32
33 #define SHIFT 0
34 #include "softmmu_template.h"
35
36 #define SHIFT 1
37 #include "softmmu_template.h"
38
39 #define SHIFT 2
40 #include "softmmu_template.h"
41
42 #define SHIFT 3
43 #include "softmmu_template.h"
44
45 /* Try to fill the TLB and return an exception if error. If retaddr is
46 NULL, it means that the function was called in C code (i.e. not
47 from generated code or from helper.c) */
48 /* XXX: fix it to restore all registers */
49 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
50 {
51 TranslationBlock *tb;
52 CPUState *saved_env;
53 unsigned long pc;
54 int ret;
55
56 /* XXX: hack to restore env in all cases, even if not called from
57 generated code */
58 saved_env = env;
59 env = cpu_single_env;
60
61 D(fprintf(logfile, "%s pc=%x tpc=%x ra=%x\n", __func__,
62 env->pc, env->debug1, retaddr));
63 ret = cpu_cris_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
64 if (unlikely(ret)) {
65 if (retaddr) {
66 /* now we have a real cpu fault */
67 pc = (unsigned long)retaddr;
68 tb = tb_find_pc(pc);
69 if (tb) {
70 /* the PC is inside the translated code. It means that we have
71 a virtual CPU fault */
72 cpu_restore_state(tb, env, pc, NULL);
73
74 /* Evaluate flags after retranslation. */
75 helper_top_evaluate_flags();
76 }
77 }
78 cpu_loop_exit();
79 }
80 env = saved_env;
81 }
82
83 #endif
84
85 void helper_raise_exception(uint32_t index)
86 {
87 env->exception_index = index;
88 cpu_loop_exit();
89 }
90
91 void helper_tlb_flush_pid(uint32_t pid)
92 {
93 #if !defined(CONFIG_USER_ONLY)
94 pid &= 0xff;
95 if (pid != (env->pregs[PR_PID] & 0xff))
96 cris_mmu_flush_pid(env, env->pregs[PR_PID]);
97 #endif
98 }
99
100 void helper_spc_write(uint32_t new_spc)
101 {
102 #if !defined(CONFIG_USER_ONLY)
103 tlb_flush_page(env, env->pregs[PR_SPC]);
104 tlb_flush_page(env, new_spc);
105 #endif
106 }
107
108 void helper_dump(uint32_t a0, uint32_t a1, uint32_t a2)
109 {
110 (fprintf(logfile, "%s: a0=%x a1=%x\n", __func__, a0, a1));
111 }
112
113 /* Used by the tlb decoder. */
114 #define EXTRACT_FIELD(src, start, end) \
115 (((src) >> start) & ((1 << (end - start + 1)) - 1))
116
117 void helper_movl_sreg_reg (uint32_t sreg, uint32_t reg)
118 {
119 uint32_t srs;
120 srs = env->pregs[PR_SRS];
121 srs &= 3;
122 env->sregs[srs][sreg] = env->regs[reg];
123
124 #if !defined(CONFIG_USER_ONLY)
125 if (srs == 1 || srs == 2) {
126 if (sreg == 6) {
127 /* Writes to tlb-hi write to mm_cause as a side
128 effect. */
129 env->sregs[SFR_RW_MM_TLB_HI] = env->regs[reg];
130 env->sregs[SFR_R_MM_CAUSE] = env->regs[reg];
131 }
132 else if (sreg == 5) {
133 uint32_t set;
134 uint32_t idx;
135 uint32_t lo, hi;
136 uint32_t vaddr;
137 int tlb_v;
138
139 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
140 set >>= 4;
141 set &= 3;
142
143 idx &= 15;
144 /* We've just made a write to tlb_lo. */
145 lo = env->sregs[SFR_RW_MM_TLB_LO];
146 /* Writes are done via r_mm_cause. */
147 hi = env->sregs[SFR_R_MM_CAUSE];
148
149 vaddr = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].hi,
150 13, 31);
151 vaddr <<= TARGET_PAGE_BITS;
152 tlb_v = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].lo,
153 3, 3);
154 env->tlbsets[srs - 1][set][idx].lo = lo;
155 env->tlbsets[srs - 1][set][idx].hi = hi;
156
157 D(fprintf(logfile,
158 "tlb flush vaddr=%x v=%d pc=%x\n",
159 vaddr, tlb_v, env->pc));
160 tlb_flush_page(env, vaddr);
161 }
162 }
163 #endif
164 }
165
166 void helper_movl_reg_sreg (uint32_t reg, uint32_t sreg)
167 {
168 uint32_t srs;
169 env->pregs[PR_SRS] &= 3;
170 srs = env->pregs[PR_SRS];
171
172 #if !defined(CONFIG_USER_ONLY)
173 if (srs == 1 || srs == 2)
174 {
175 uint32_t set;
176 uint32_t idx;
177 uint32_t lo, hi;
178
179 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
180 set >>= 4;
181 set &= 3;
182 idx &= 15;
183
184 /* Update the mirror regs. */
185 hi = env->tlbsets[srs - 1][set][idx].hi;
186 lo = env->tlbsets[srs - 1][set][idx].lo;
187 env->sregs[SFR_RW_MM_TLB_HI] = hi;
188 env->sregs[SFR_RW_MM_TLB_LO] = lo;
189 }
190 #endif
191 env->regs[reg] = env->sregs[srs][sreg];
192 RETURN();
193 }
194
195 static void cris_ccs_rshift(CPUState *env)
196 {
197 uint32_t ccs;
198
199 /* Apply the ccs shift. */
200 ccs = env->pregs[PR_CCS];
201 ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
202 if (ccs & U_FLAG)
203 {
204 /* Enter user mode. */
205 env->ksp = env->regs[R_SP];
206 env->regs[R_SP] = env->pregs[PR_USP];
207 }
208
209 env->pregs[PR_CCS] = ccs;
210 }
211
212 void helper_rfe(void)
213 {
214 int rflag = env->pregs[PR_CCS] & R_FLAG;
215
216 D(fprintf(logfile, "rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
217 env->pregs[PR_ERP], env->pregs[PR_PID],
218 env->pregs[PR_CCS],
219 env->btarget));
220
221 cris_ccs_rshift(env);
222
223 /* RFE sets the P_FLAG only if the R_FLAG is not set. */
224 if (!rflag)
225 env->pregs[PR_CCS] |= P_FLAG;
226 }
227
228 void helper_rfn(void)
229 {
230 int rflag = env->pregs[PR_CCS] & R_FLAG;
231
232 D(fprintf(logfile, "rfn: erp=%x pid=%x ccs=%x btarget=%x\n",
233 env->pregs[PR_ERP], env->pregs[PR_PID],
234 env->pregs[PR_CCS],
235 env->btarget));
236
237 cris_ccs_rshift(env);
238
239 /* Set the P_FLAG only if the R_FLAG is not set. */
240 if (!rflag)
241 env->pregs[PR_CCS] |= P_FLAG;
242
243 /* Always set the M flag. */
244 env->pregs[PR_CCS] |= M_FLAG;
245 }
246
247 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
248 int is_asi, int size)
249 {
250 D(printf("%s addr=%x w=%d ex=%d asi=%d, size=%d\n",
251 __func__, addr, is_write, is_exec, is_asi, size));
252 }
253
254 static void evaluate_flags_writeback(uint32_t flags)
255 {
256 int x;
257
258 /* Extended arithmetics, leave the z flag alone. */
259 x = env->cc_x;
260 if ((x || env->cc_op == CC_OP_ADDC)
261 && flags & Z_FLAG)
262 env->cc_mask &= ~Z_FLAG;
263
264 /* all insn clear the x-flag except setf or clrf. */
265 env->pregs[PR_CCS] &= ~(env->cc_mask | X_FLAG);
266 flags &= env->cc_mask;
267 env->pregs[PR_CCS] |= flags;
268 }
269
270 void helper_evaluate_flags_muls(void)
271 {
272 uint32_t src;
273 uint32_t dst;
274 uint32_t res;
275 uint32_t flags = 0;
276 int64_t tmp;
277 int32_t mof;
278 int dneg;
279
280 src = env->cc_src;
281 dst = env->cc_dest;
282 res = env->cc_result;
283
284 dneg = ((int32_t)res) < 0;
285
286 mof = env->pregs[PR_MOF];
287 tmp = mof;
288 tmp <<= 32;
289 tmp |= res;
290 if (tmp == 0)
291 flags |= Z_FLAG;
292 else if (tmp < 0)
293 flags |= N_FLAG;
294 if ((dneg && mof != -1)
295 || (!dneg && mof != 0))
296 flags |= V_FLAG;
297 evaluate_flags_writeback(flags);
298 }
299
300 void helper_evaluate_flags_mulu(void)
301 {
302 uint32_t src;
303 uint32_t dst;
304 uint32_t res;
305 uint32_t flags = 0;
306 uint64_t tmp;
307 uint32_t mof;
308
309 src = env->cc_src;
310 dst = env->cc_dest;
311 res = env->cc_result;
312
313 mof = env->pregs[PR_MOF];
314 tmp = mof;
315 tmp <<= 32;
316 tmp |= res;
317 if (tmp == 0)
318 flags |= Z_FLAG;
319 else if (tmp >> 63)
320 flags |= N_FLAG;
321 if (mof)
322 flags |= V_FLAG;
323
324 evaluate_flags_writeback(flags);
325 }
326
327 void helper_evaluate_flags_mcp(void)
328 {
329 uint32_t src;
330 uint32_t dst;
331 uint32_t res;
332 uint32_t flags = 0;
333
334 src = env->cc_src;
335 dst = env->cc_dest;
336 res = env->cc_result;
337
338 if ((res & 0x80000000L) != 0L)
339 {
340 flags |= N_FLAG;
341 if (((src & 0x80000000L) == 0L)
342 && ((dst & 0x80000000L) == 0L))
343 {
344 flags |= V_FLAG;
345 }
346 else if (((src & 0x80000000L) != 0L) &&
347 ((dst & 0x80000000L) != 0L))
348 {
349 flags |= R_FLAG;
350 }
351 }
352 else
353 {
354 if (res == 0L)
355 flags |= Z_FLAG;
356 if (((src & 0x80000000L) != 0L)
357 && ((dst & 0x80000000L) != 0L))
358 flags |= V_FLAG;
359 if ((dst & 0x80000000L) != 0L
360 || (src & 0x80000000L) != 0L)
361 flags |= R_FLAG;
362 }
363
364 evaluate_flags_writeback(flags);
365 }
366
367 void helper_evaluate_flags_alu_4(void)
368 {
369 uint32_t src;
370 uint32_t dst;
371 uint32_t res;
372 uint32_t flags = 0;
373
374 src = env->cc_src;
375 dst = env->cc_dest;
376
377 /* Reconstruct the result. */
378 switch (env->cc_op)
379 {
380 case CC_OP_SUB:
381 res = dst - src;
382 break;
383 case CC_OP_ADD:
384 res = dst + src;
385 break;
386 default:
387 res = env->cc_result;
388 break;
389 }
390
391 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
392 src = ~src;
393
394 if ((res & 0x80000000L) != 0L)
395 {
396 flags |= N_FLAG;
397 if (((src & 0x80000000L) == 0L)
398 && ((dst & 0x80000000L) == 0L))
399 {
400 flags |= V_FLAG;
401 }
402 else if (((src & 0x80000000L) != 0L) &&
403 ((dst & 0x80000000L) != 0L))
404 {
405 flags |= C_FLAG;
406 }
407 }
408 else
409 {
410 if (res == 0L)
411 flags |= Z_FLAG;
412 if (((src & 0x80000000L) != 0L)
413 && ((dst & 0x80000000L) != 0L))
414 flags |= V_FLAG;
415 if ((dst & 0x80000000L) != 0L
416 || (src & 0x80000000L) != 0L)
417 flags |= C_FLAG;
418 }
419
420 if (env->cc_op == CC_OP_SUB
421 || env->cc_op == CC_OP_CMP) {
422 flags ^= C_FLAG;
423 }
424 evaluate_flags_writeback(flags);
425 }
426
427 void helper_evaluate_flags_move_4 (void)
428 {
429 uint32_t res;
430 uint32_t flags = 0;
431
432 res = env->cc_result;
433
434 if ((int32_t)res < 0)
435 flags |= N_FLAG;
436 else if (res == 0L)
437 flags |= Z_FLAG;
438
439 evaluate_flags_writeback(flags);
440 }
441 void helper_evaluate_flags_move_2 (void)
442 {
443 uint32_t src;
444 uint32_t flags = 0;
445 uint16_t res;
446
447 src = env->cc_src;
448 res = env->cc_result;
449
450 if ((int16_t)res < 0L)
451 flags |= N_FLAG;
452 else if (res == 0)
453 flags |= Z_FLAG;
454
455 evaluate_flags_writeback(flags);
456 }
457
458 /* TODO: This is expensive. We could split things up and only evaluate part of
459 CCR on a need to know basis. For now, we simply re-evaluate everything. */
460 void helper_evaluate_flags (void)
461 {
462 uint32_t src;
463 uint32_t dst;
464 uint32_t res;
465 uint32_t flags = 0;
466
467 src = env->cc_src;
468 dst = env->cc_dest;
469 res = env->cc_result;
470
471 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
472 src = ~src;
473
474 /* Now, evaluate the flags. This stuff is based on
475 Per Zander's CRISv10 simulator. */
476 switch (env->cc_size)
477 {
478 case 1:
479 if ((res & 0x80L) != 0L)
480 {
481 flags |= N_FLAG;
482 if (((src & 0x80L) == 0L)
483 && ((dst & 0x80L) == 0L))
484 {
485 flags |= V_FLAG;
486 }
487 else if (((src & 0x80L) != 0L)
488 && ((dst & 0x80L) != 0L))
489 {
490 flags |= C_FLAG;
491 }
492 }
493 else
494 {
495 if ((res & 0xFFL) == 0L)
496 {
497 flags |= Z_FLAG;
498 }
499 if (((src & 0x80L) != 0L)
500 && ((dst & 0x80L) != 0L))
501 {
502 flags |= V_FLAG;
503 }
504 if ((dst & 0x80L) != 0L
505 || (src & 0x80L) != 0L)
506 {
507 flags |= C_FLAG;
508 }
509 }
510 break;
511 case 2:
512 if ((res & 0x8000L) != 0L)
513 {
514 flags |= N_FLAG;
515 if (((src & 0x8000L) == 0L)
516 && ((dst & 0x8000L) == 0L))
517 {
518 flags |= V_FLAG;
519 }
520 else if (((src & 0x8000L) != 0L)
521 && ((dst & 0x8000L) != 0L))
522 {
523 flags |= C_FLAG;
524 }
525 }
526 else
527 {
528 if ((res & 0xFFFFL) == 0L)
529 {
530 flags |= Z_FLAG;
531 }
532 if (((src & 0x8000L) != 0L)
533 && ((dst & 0x8000L) != 0L))
534 {
535 flags |= V_FLAG;
536 }
537 if ((dst & 0x8000L) != 0L
538 || (src & 0x8000L) != 0L)
539 {
540 flags |= C_FLAG;
541 }
542 }
543 break;
544 case 4:
545 if ((res & 0x80000000L) != 0L)
546 {
547 flags |= N_FLAG;
548 if (((src & 0x80000000L) == 0L)
549 && ((dst & 0x80000000L) == 0L))
550 {
551 flags |= V_FLAG;
552 }
553 else if (((src & 0x80000000L) != 0L) &&
554 ((dst & 0x80000000L) != 0L))
555 {
556 flags |= C_FLAG;
557 }
558 }
559 else
560 {
561 if (res == 0L)
562 flags |= Z_FLAG;
563 if (((src & 0x80000000L) != 0L)
564 && ((dst & 0x80000000L) != 0L))
565 flags |= V_FLAG;
566 if ((dst & 0x80000000L) != 0L
567 || (src & 0x80000000L) != 0L)
568 flags |= C_FLAG;
569 }
570 break;
571 default:
572 break;
573 }
574
575 if (env->cc_op == CC_OP_SUB
576 || env->cc_op == CC_OP_CMP) {
577 flags ^= C_FLAG;
578 }
579 evaluate_flags_writeback(flags);
580 }
581
582 void helper_top_evaluate_flags(void)
583 {
584 switch (env->cc_op)
585 {
586 case CC_OP_MCP:
587 helper_evaluate_flags_mcp();
588 break;
589 case CC_OP_MULS:
590 helper_evaluate_flags_muls();
591 break;
592 case CC_OP_MULU:
593 helper_evaluate_flags_mulu();
594 break;
595 case CC_OP_MOVE:
596 case CC_OP_AND:
597 case CC_OP_OR:
598 case CC_OP_XOR:
599 case CC_OP_ASR:
600 case CC_OP_LSR:
601 case CC_OP_LSL:
602 switch (env->cc_size)
603 {
604 case 4:
605 helper_evaluate_flags_move_4();
606 break;
607 case 2:
608 helper_evaluate_flags_move_2();
609 break;
610 default:
611 helper_evaluate_flags();
612 break;
613 }
614 break;
615 case CC_OP_FLAGS:
616 /* live. */
617 break;
618 default:
619 {
620 switch (env->cc_size)
621 {
622 case 4:
623 helper_evaluate_flags_alu_4();
624 break;
625 default:
626 helper_evaluate_flags();
627 break;
628 }
629 }
630 break;
631 }
632 }