]> git.proxmox.com Git - qemu.git/blob - target-cris/op_helper.c
Remove dead and bitrotten "qemu-fast" code.
[qemu.git] / target-cris / op_helper.c
1 /*
2 * CRIS helper routines
3 *
4 * Copyright (c) 2007 AXIS Communications
5 * Written by Edgar E. Iglesias
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <assert.h>
23 #include "exec.h"
24 #include "mmu.h"
25 #include "helper.h"
26
27 #define D(x)
28
29 #if !defined(CONFIG_USER_ONLY)
30
31 #define MMUSUFFIX _mmu
32
33 #define SHIFT 0
34 #include "softmmu_template.h"
35
36 #define SHIFT 1
37 #include "softmmu_template.h"
38
39 #define SHIFT 2
40 #include "softmmu_template.h"
41
42 #define SHIFT 3
43 #include "softmmu_template.h"
44
45 /* Try to fill the TLB and return an exception if error. If retaddr is
46 NULL, it means that the function was called in C code (i.e. not
47 from generated code or from helper.c) */
48 /* XXX: fix it to restore all registers */
49 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
50 {
51 TranslationBlock *tb;
52 CPUState *saved_env;
53 unsigned long pc;
54 int ret;
55
56 /* XXX: hack to restore env in all cases, even if not called from
57 generated code */
58 saved_env = env;
59 env = cpu_single_env;
60
61 D(fprintf(logfile, "%s pc=%x tpc=%x ra=%x\n", __func__,
62 env->pc, env->debug1, retaddr));
63 ret = cpu_cris_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
64 if (__builtin_expect(ret, 0)) {
65 if (retaddr) {
66 /* now we have a real cpu fault */
67 pc = (unsigned long)retaddr;
68 tb = tb_find_pc(pc);
69 if (tb) {
70 /* the PC is inside the translated code. It means that we have
71 a virtual CPU fault */
72 cpu_restore_state(tb, env, pc, NULL);
73
74 /* Evaluate flags after retranslation. */
75 helper_top_evaluate_flags();
76 }
77 }
78 cpu_loop_exit();
79 }
80 env = saved_env;
81 }
82
83 #endif
84
85 void helper_raise_exception(uint32_t index)
86 {
87 env->exception_index = index;
88 cpu_loop_exit();
89 }
90
91 void helper_tlb_flush_pid(uint32_t pid)
92 {
93 #if !defined(CONFIG_USER_ONLY)
94 cris_mmu_flush_pid(env, pid);
95 #endif
96 }
97
98 void helper_dump(uint32_t a0, uint32_t a1, uint32_t a2)
99 {
100 (fprintf(logfile, "%s: a0=%x a1=%x\n", __func__, a0, a1));
101 }
102
103 void helper_dummy(void)
104 {
105
106 }
107
108 /* Used by the tlb decoder. */
109 #define EXTRACT_FIELD(src, start, end) \
110 (((src) >> start) & ((1 << (end - start + 1)) - 1))
111
112 void helper_movl_sreg_reg (uint32_t sreg, uint32_t reg)
113 {
114 uint32_t srs;
115 srs = env->pregs[PR_SRS];
116 srs &= 3;
117 env->sregs[srs][sreg] = env->regs[reg];
118
119 #if !defined(CONFIG_USER_ONLY)
120 if (srs == 1 || srs == 2) {
121 if (sreg == 6) {
122 /* Writes to tlb-hi write to mm_cause as a side
123 effect. */
124 env->sregs[SFR_RW_MM_TLB_HI] = T0;
125 env->sregs[SFR_R_MM_CAUSE] = T0;
126 }
127 else if (sreg == 5) {
128 uint32_t set;
129 uint32_t idx;
130 uint32_t lo, hi;
131 uint32_t vaddr;
132 int tlb_v;
133
134 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
135 set >>= 4;
136 set &= 3;
137
138 idx &= 15;
139 /* We've just made a write to tlb_lo. */
140 lo = env->sregs[SFR_RW_MM_TLB_LO];
141 /* Writes are done via r_mm_cause. */
142 hi = env->sregs[SFR_R_MM_CAUSE];
143
144 vaddr = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].hi,
145 13, 31);
146 vaddr <<= TARGET_PAGE_BITS;
147 tlb_v = EXTRACT_FIELD(env->tlbsets[srs-1][set][idx].lo,
148 3, 3);
149 env->tlbsets[srs - 1][set][idx].lo = lo;
150 env->tlbsets[srs - 1][set][idx].hi = hi;
151
152 D(fprintf(logfile,
153 "tlb flush vaddr=%x v=%d pc=%x\n",
154 vaddr, tlb_v, env->pc));
155 tlb_flush_page(env, vaddr);
156 }
157 }
158 #endif
159 }
160
161 void helper_movl_reg_sreg (uint32_t reg, uint32_t sreg)
162 {
163 uint32_t srs;
164 env->pregs[PR_SRS] &= 3;
165 srs = env->pregs[PR_SRS];
166
167 #if !defined(CONFIG_USER_ONLY)
168 if (srs == 1 || srs == 2)
169 {
170 uint32_t set;
171 uint32_t idx;
172 uint32_t lo, hi;
173
174 idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
175 set >>= 4;
176 set &= 3;
177 idx &= 15;
178
179 /* Update the mirror regs. */
180 hi = env->tlbsets[srs - 1][set][idx].hi;
181 lo = env->tlbsets[srs - 1][set][idx].lo;
182 env->sregs[SFR_RW_MM_TLB_HI] = hi;
183 env->sregs[SFR_RW_MM_TLB_LO] = lo;
184 }
185 #endif
186 env->regs[reg] = env->sregs[srs][sreg];
187 RETURN();
188 }
189
190 static void cris_ccs_rshift(CPUState *env)
191 {
192 uint32_t ccs;
193
194 /* Apply the ccs shift. */
195 ccs = env->pregs[PR_CCS];
196 ccs = (ccs & 0xc0000000) | ((ccs & 0x0fffffff) >> 10);
197 if (ccs & U_FLAG)
198 {
199 /* Enter user mode. */
200 env->ksp = env->regs[R_SP];
201 env->regs[R_SP] = env->pregs[PR_USP];
202 }
203
204 env->pregs[PR_CCS] = ccs;
205 }
206
207 void helper_rfe(void)
208 {
209 int rflag = env->pregs[PR_CCS] & R_FLAG;
210
211 D(fprintf(logfile, "rfe: erp=%x pid=%x ccs=%x btarget=%x\n",
212 env->pregs[PR_ERP], env->pregs[PR_PID],
213 env->pregs[PR_CCS],
214 env->btarget));
215
216 cris_ccs_rshift(env);
217
218 /* RFE sets the P_FLAG only if the R_FLAG is not set. */
219 if (!rflag)
220 env->pregs[PR_CCS] |= P_FLAG;
221 }
222
223 void helper_store(uint32_t a0)
224 {
225 if (env->pregs[PR_CCS] & P_FLAG )
226 {
227 cpu_abort(env, "cond_store_failed! pc=%x a0=%x\n",
228 env->pc, a0);
229 }
230 }
231
232 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
233 int is_asi)
234 {
235 D(printf("%s addr=%x w=%d ex=%d asi=%d\n",
236 __func__, addr, is_write, is_exec, is_asi));
237 }
238
239 static void evaluate_flags_writeback(uint32_t flags)
240 {
241 int x;
242
243 /* Extended arithmetics, leave the z flag alone. */
244 x = env->cc_x;
245 if ((x || env->cc_op == CC_OP_ADDC)
246 && flags & Z_FLAG)
247 env->cc_mask &= ~Z_FLAG;
248
249 /* all insn clear the x-flag except setf or clrf. */
250 env->pregs[PR_CCS] &= ~(env->cc_mask | X_FLAG);
251 flags &= env->cc_mask;
252 env->pregs[PR_CCS] |= flags;
253 }
254
255 void helper_evaluate_flags_muls(void)
256 {
257 uint32_t src;
258 uint32_t dst;
259 uint32_t res;
260 uint32_t flags = 0;
261 int64_t tmp;
262 int32_t mof;
263 int dneg;
264
265 src = env->cc_src;
266 dst = env->cc_dest;
267 res = env->cc_result;
268
269 dneg = ((int32_t)res) < 0;
270
271 mof = env->pregs[PR_MOF];
272 tmp = mof;
273 tmp <<= 32;
274 tmp |= res;
275 if (tmp == 0)
276 flags |= Z_FLAG;
277 else if (tmp < 0)
278 flags |= N_FLAG;
279 if ((dneg && mof != -1)
280 || (!dneg && mof != 0))
281 flags |= V_FLAG;
282 evaluate_flags_writeback(flags);
283 }
284
285 void helper_evaluate_flags_mulu(void)
286 {
287 uint32_t src;
288 uint32_t dst;
289 uint32_t res;
290 uint32_t flags = 0;
291 uint64_t tmp;
292 uint32_t mof;
293
294 src = env->cc_src;
295 dst = env->cc_dest;
296 res = env->cc_result;
297
298 mof = env->pregs[PR_MOF];
299 tmp = mof;
300 tmp <<= 32;
301 tmp |= res;
302 if (tmp == 0)
303 flags |= Z_FLAG;
304 else if (tmp >> 63)
305 flags |= N_FLAG;
306 if (mof)
307 flags |= V_FLAG;
308
309 evaluate_flags_writeback(flags);
310 }
311
312 void helper_evaluate_flags_mcp(void)
313 {
314 uint32_t src;
315 uint32_t dst;
316 uint32_t res;
317 uint32_t flags = 0;
318
319 src = env->cc_src;
320 dst = env->cc_dest;
321 res = env->cc_result;
322
323 if ((res & 0x80000000L) != 0L)
324 {
325 flags |= N_FLAG;
326 if (((src & 0x80000000L) == 0L)
327 && ((dst & 0x80000000L) == 0L))
328 {
329 flags |= V_FLAG;
330 }
331 else if (((src & 0x80000000L) != 0L) &&
332 ((dst & 0x80000000L) != 0L))
333 {
334 flags |= R_FLAG;
335 }
336 }
337 else
338 {
339 if (res == 0L)
340 flags |= Z_FLAG;
341 if (((src & 0x80000000L) != 0L)
342 && ((dst & 0x80000000L) != 0L))
343 flags |= V_FLAG;
344 if ((dst & 0x80000000L) != 0L
345 || (src & 0x80000000L) != 0L)
346 flags |= R_FLAG;
347 }
348
349 evaluate_flags_writeback(flags);
350 }
351
352 void helper_evaluate_flags_alu_4(void)
353 {
354 uint32_t src;
355 uint32_t dst;
356 uint32_t res;
357 uint32_t flags = 0;
358
359 src = env->cc_src;
360 dst = env->cc_dest;
361
362 /* Reconstruct the result. */
363 switch (env->cc_op)
364 {
365 case CC_OP_SUB:
366 res = dst - src;
367 break;
368 case CC_OP_ADD:
369 res = dst + src;
370 break;
371 default:
372 res = env->cc_result;
373 break;
374 }
375
376 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
377 src = ~src;
378
379 if ((res & 0x80000000L) != 0L)
380 {
381 flags |= N_FLAG;
382 if (((src & 0x80000000L) == 0L)
383 && ((dst & 0x80000000L) == 0L))
384 {
385 flags |= V_FLAG;
386 }
387 else if (((src & 0x80000000L) != 0L) &&
388 ((dst & 0x80000000L) != 0L))
389 {
390 flags |= C_FLAG;
391 }
392 }
393 else
394 {
395 if (res == 0L)
396 flags |= Z_FLAG;
397 if (((src & 0x80000000L) != 0L)
398 && ((dst & 0x80000000L) != 0L))
399 flags |= V_FLAG;
400 if ((dst & 0x80000000L) != 0L
401 || (src & 0x80000000L) != 0L)
402 flags |= C_FLAG;
403 }
404
405 if (env->cc_op == CC_OP_SUB
406 || env->cc_op == CC_OP_CMP) {
407 flags ^= C_FLAG;
408 }
409 evaluate_flags_writeback(flags);
410 }
411
412 void helper_evaluate_flags_move_4 (void)
413 {
414 uint32_t res;
415 uint32_t flags = 0;
416
417 res = env->cc_result;
418
419 if ((int32_t)res < 0)
420 flags |= N_FLAG;
421 else if (res == 0L)
422 flags |= Z_FLAG;
423
424 evaluate_flags_writeback(flags);
425 }
426 void helper_evaluate_flags_move_2 (void)
427 {
428 uint32_t src;
429 uint32_t flags = 0;
430 uint16_t res;
431
432 src = env->cc_src;
433 res = env->cc_result;
434
435 if ((int16_t)res < 0L)
436 flags |= N_FLAG;
437 else if (res == 0)
438 flags |= Z_FLAG;
439
440 evaluate_flags_writeback(flags);
441 }
442
443 /* TODO: This is expensive. We could split things up and only evaluate part of
444 CCR on a need to know basis. For now, we simply re-evaluate everything. */
445 void helper_evaluate_flags (void)
446 {
447 uint32_t src;
448 uint32_t dst;
449 uint32_t res;
450 uint32_t flags = 0;
451
452 src = env->cc_src;
453 dst = env->cc_dest;
454 res = env->cc_result;
455
456 if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP)
457 src = ~src;
458
459 /* Now, evaluate the flags. This stuff is based on
460 Per Zander's CRISv10 simulator. */
461 switch (env->cc_size)
462 {
463 case 1:
464 if ((res & 0x80L) != 0L)
465 {
466 flags |= N_FLAG;
467 if (((src & 0x80L) == 0L)
468 && ((dst & 0x80L) == 0L))
469 {
470 flags |= V_FLAG;
471 }
472 else if (((src & 0x80L) != 0L)
473 && ((dst & 0x80L) != 0L))
474 {
475 flags |= C_FLAG;
476 }
477 }
478 else
479 {
480 if ((res & 0xFFL) == 0L)
481 {
482 flags |= Z_FLAG;
483 }
484 if (((src & 0x80L) != 0L)
485 && ((dst & 0x80L) != 0L))
486 {
487 flags |= V_FLAG;
488 }
489 if ((dst & 0x80L) != 0L
490 || (src & 0x80L) != 0L)
491 {
492 flags |= C_FLAG;
493 }
494 }
495 break;
496 case 2:
497 if ((res & 0x8000L) != 0L)
498 {
499 flags |= N_FLAG;
500 if (((src & 0x8000L) == 0L)
501 && ((dst & 0x8000L) == 0L))
502 {
503 flags |= V_FLAG;
504 }
505 else if (((src & 0x8000L) != 0L)
506 && ((dst & 0x8000L) != 0L))
507 {
508 flags |= C_FLAG;
509 }
510 }
511 else
512 {
513 if ((res & 0xFFFFL) == 0L)
514 {
515 flags |= Z_FLAG;
516 }
517 if (((src & 0x8000L) != 0L)
518 && ((dst & 0x8000L) != 0L))
519 {
520 flags |= V_FLAG;
521 }
522 if ((dst & 0x8000L) != 0L
523 || (src & 0x8000L) != 0L)
524 {
525 flags |= C_FLAG;
526 }
527 }
528 break;
529 case 4:
530 if ((res & 0x80000000L) != 0L)
531 {
532 flags |= N_FLAG;
533 if (((src & 0x80000000L) == 0L)
534 && ((dst & 0x80000000L) == 0L))
535 {
536 flags |= V_FLAG;
537 }
538 else if (((src & 0x80000000L) != 0L) &&
539 ((dst & 0x80000000L) != 0L))
540 {
541 flags |= C_FLAG;
542 }
543 }
544 else
545 {
546 if (res == 0L)
547 flags |= Z_FLAG;
548 if (((src & 0x80000000L) != 0L)
549 && ((dst & 0x80000000L) != 0L))
550 flags |= V_FLAG;
551 if ((dst & 0x80000000L) != 0L
552 || (src & 0x80000000L) != 0L)
553 flags |= C_FLAG;
554 }
555 break;
556 default:
557 break;
558 }
559
560 if (env->cc_op == CC_OP_SUB
561 || env->cc_op == CC_OP_CMP) {
562 flags ^= C_FLAG;
563 }
564 evaluate_flags_writeback(flags);
565 }
566
567 void helper_top_evaluate_flags(void)
568 {
569 switch (env->cc_op)
570 {
571 case CC_OP_MCP:
572 helper_evaluate_flags_mcp();
573 break;
574 case CC_OP_MULS:
575 helper_evaluate_flags_muls();
576 break;
577 case CC_OP_MULU:
578 helper_evaluate_flags_mulu();
579 break;
580 case CC_OP_MOVE:
581 case CC_OP_AND:
582 case CC_OP_OR:
583 case CC_OP_XOR:
584 case CC_OP_ASR:
585 case CC_OP_LSR:
586 case CC_OP_LSL:
587 switch (env->cc_size)
588 {
589 case 4:
590 helper_evaluate_flags_move_4();
591 break;
592 case 2:
593 helper_evaluate_flags_move_2();
594 break;
595 default:
596 helper_evaluate_flags();
597 break;
598 }
599 break;
600 case CC_OP_FLAGS:
601 /* live. */
602 break;
603 default:
604 {
605 switch (env->cc_size)
606 {
607 case 4:
608 helper_evaluate_flags_alu_4();
609 break;
610 default:
611 helper_evaluate_flags();
612 break;
613 }
614 }
615 break;
616 }
617 }