]> git.proxmox.com Git - qemu.git/blob - target-i386/exec.h
target-i386: fix helper_fscale() wrt softfloat
[qemu.git] / target-i386 / exec.h
1 /*
2 * i386 execution defines
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "dyngen-exec.h"
21
22 /* XXX: factorize this mess */
23 #ifdef TARGET_X86_64
24 #define TARGET_LONG_BITS 64
25 #else
26 #define TARGET_LONG_BITS 32
27 #endif
28
29 #include "cpu-defs.h"
30
31 register struct CPUX86State *env asm(AREG0);
32
33 #include "qemu-common.h"
34 #include "qemu-log.h"
35
36 #undef EAX
37 #define EAX (env->regs[R_EAX])
38 #undef ECX
39 #define ECX (env->regs[R_ECX])
40 #undef EDX
41 #define EDX (env->regs[R_EDX])
42 #undef EBX
43 #define EBX (env->regs[R_EBX])
44 #undef ESP
45 #define ESP (env->regs[R_ESP])
46 #undef EBP
47 #define EBP (env->regs[R_EBP])
48 #undef ESI
49 #define ESI (env->regs[R_ESI])
50 #undef EDI
51 #define EDI (env->regs[R_EDI])
52 #undef EIP
53 #define EIP (env->eip)
54 #define DF (env->df)
55
56 #define CC_SRC (env->cc_src)
57 #define CC_DST (env->cc_dst)
58 #define CC_OP (env->cc_op)
59
60 /* float macros */
61 #define FT0 (env->ft0)
62 #define ST0 (env->fpregs[env->fpstt].d)
63 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
64 #define ST1 ST(1)
65
66 #include "cpu.h"
67 #include "exec-all.h"
68
69 /* op_helper.c */
70 void do_interrupt(int intno, int is_int, int error_code,
71 target_ulong next_eip, int is_hw);
72 void do_interrupt_user(int intno, int is_int, int error_code,
73 target_ulong next_eip);
74 void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75 void QEMU_NORETURN raise_exception(int exception_index);
76 void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv);
77 void do_smm_enter(void);
78
79 /* n must be a constant to be efficient */
80 static inline target_long lshift(target_long x, int n)
81 {
82 if (n >= 0)
83 return x << n;
84 else
85 return x >> (-n);
86 }
87
88 #include "helper.h"
89
90 static inline void svm_check_intercept(uint32_t type)
91 {
92 helper_svm_check_intercept_param(type, 0);
93 }
94
95 #if !defined(CONFIG_USER_ONLY)
96
97 #include "softmmu_exec.h"
98
99 #endif /* !defined(CONFIG_USER_ONLY) */
100
101 #ifdef USE_X86LDOUBLE
102 /* use long double functions */
103 #define floatx_to_int32 floatx80_to_int32
104 #define floatx_to_int64 floatx80_to_int64
105 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
106 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
107 #define int32_to_floatx int32_to_floatx80
108 #define int64_to_floatx int64_to_floatx80
109 #define float32_to_floatx float32_to_floatx80
110 #define float64_to_floatx float64_to_floatx80
111 #define floatx_to_float32 floatx80_to_float32
112 #define floatx_to_float64 floatx80_to_float64
113 #define floatx_add floatx80_add
114 #define floatx_mul floatx80_mul
115 #define floatx_sub floatx80_sub
116 #define floatx_abs floatx80_abs
117 #define floatx_chs floatx80_chs
118 #define floatx_scalbn floatx80_scalbn
119 #define floatx_round_to_int floatx80_round_to_int
120 #define floatx_compare floatx80_compare
121 #define floatx_compare_quiet floatx80_compare_quiet
122 #define floatx_is_any_nan floatx80_is_any_nan
123 #else
124 #define floatx_to_int32 float64_to_int32
125 #define floatx_to_int64 float64_to_int64
126 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
127 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
128 #define int32_to_floatx int32_to_float64
129 #define int64_to_floatx int64_to_float64
130 #define float32_to_floatx float32_to_float64
131 #define float64_to_floatx(x, e) (x)
132 #define floatx_to_float32 float64_to_float32
133 #define floatx_to_float64(x, e) (x)
134 #define floatx_add float64_add
135 #define floatx_mul float64_mul
136 #define floatx_sub float64_sub
137 #define floatx_abs float64_abs
138 #define floatx_chs float64_chs
139 #define floatx_scalbn float64_scalbn
140 #define floatx_round_to_int float64_round_to_int
141 #define floatx_compare float64_compare
142 #define floatx_compare_quiet float64_compare_quiet
143 #define floatx_is_any_nan float64_is_any_nan
144 #endif
145
146 #define RC_MASK 0xc00
147 #define RC_NEAR 0x000
148 #define RC_DOWN 0x400
149 #define RC_UP 0x800
150 #define RC_CHOP 0xc00
151
152 #define MAXTAN 9223372036854775808.0
153
154 #ifdef USE_X86LDOUBLE
155
156 /* only for x86 */
157 typedef CPU_LDoubleU CPU86_LDoubleU;
158
159 /* the following deal with x86 long double-precision numbers */
160 #define MAXEXPD 0x7fff
161 #define EXPBIAS 16383
162 #define EXPD(fp) (fp.l.upper & 0x7fff)
163 #define SIGND(fp) ((fp.l.upper) & 0x8000)
164 #define MANTD(fp) (fp.l.lower)
165 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
166
167 #else
168
169 typedef CPU_DoubleU CPU86_LDoubleU;
170
171 /* the following deal with IEEE double-precision numbers */
172 #define MAXEXPD 0x7ff
173 #define EXPBIAS 1023
174 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
175 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
176 #ifdef __arm__
177 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
178 #else
179 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
180 #endif
181 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
182 #endif
183
184 static inline void fpush(void)
185 {
186 env->fpstt = (env->fpstt - 1) & 7;
187 env->fptags[env->fpstt] = 0; /* validate stack entry */
188 }
189
190 static inline void fpop(void)
191 {
192 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
193 env->fpstt = (env->fpstt + 1) & 7;
194 }
195
196 #ifndef USE_X86LDOUBLE
197 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
198 {
199 CPU86_LDoubleU temp;
200 int upper, e;
201 uint64_t ll;
202
203 /* mantissa */
204 upper = lduw(ptr + 8);
205 /* XXX: handle overflow ? */
206 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
207 e |= (upper >> 4) & 0x800; /* sign */
208 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
209 #ifdef __arm__
210 temp.l.upper = (e << 20) | (ll >> 32);
211 temp.l.lower = ll;
212 #else
213 temp.ll = ll | ((uint64_t)e << 52);
214 #endif
215 return temp.d;
216 }
217
218 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
219 {
220 CPU86_LDoubleU temp;
221 int e;
222
223 temp.d = f;
224 /* mantissa */
225 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
226 /* exponent + sign */
227 e = EXPD(temp) - EXPBIAS + 16383;
228 e |= SIGND(temp) >> 16;
229 stw(ptr + 8, e);
230 }
231 #else
232
233 /* we use memory access macros */
234
235 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
236 {
237 CPU86_LDoubleU temp;
238
239 temp.l.lower = ldq(ptr);
240 temp.l.upper = lduw(ptr + 8);
241 return temp.d;
242 }
243
244 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
245 {
246 CPU86_LDoubleU temp;
247
248 temp.d = f;
249 stq(ptr, temp.l.lower);
250 stw(ptr + 8, temp.l.upper);
251 }
252
253 #endif /* USE_X86LDOUBLE */
254
255 #define FPUS_IE (1 << 0)
256 #define FPUS_DE (1 << 1)
257 #define FPUS_ZE (1 << 2)
258 #define FPUS_OE (1 << 3)
259 #define FPUS_UE (1 << 4)
260 #define FPUS_PE (1 << 5)
261 #define FPUS_SF (1 << 6)
262 #define FPUS_SE (1 << 7)
263 #define FPUS_B (1 << 15)
264
265 #define FPUC_EM 0x3f
266
267 static inline uint32_t compute_eflags(void)
268 {
269 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
270 }
271
272 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
273 static inline void load_eflags(int eflags, int update_mask)
274 {
275 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
276 DF = 1 - (2 * ((eflags >> 10) & 1));
277 env->eflags = (env->eflags & ~update_mask) |
278 (eflags & update_mask) | 0x2;
279 }
280
281 static inline int cpu_has_work(CPUState *env)
282 {
283 return ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
284 (env->eflags & IF_MASK)) ||
285 (env->interrupt_request & (CPU_INTERRUPT_NMI |
286 CPU_INTERRUPT_INIT |
287 CPU_INTERRUPT_SIPI |
288 CPU_INTERRUPT_MCE));
289 }
290
291 /* load efer and update the corresponding hflags. XXX: do consistency
292 checks with cpuid bits ? */
293 static inline void cpu_load_efer(CPUState *env, uint64_t val)
294 {
295 env->efer = val;
296 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
297 if (env->efer & MSR_EFER_LMA)
298 env->hflags |= HF_LMA_MASK;
299 if (env->efer & MSR_EFER_SVME)
300 env->hflags |= HF_SVME_MASK;
301 }
302
303 static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
304 {
305 env->eip = tb->pc - tb->cs_base;
306 }
307