]> git.proxmox.com Git - qemu.git/blob - target-i386/exec.h
new directory structure
[qemu.git] / target-i386 / exec.h
1 /*
2 * i386 execution defines
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "dyngen-exec.h"
21
22 /* at least 4 register variables are defines */
23 register struct CPUX86State *env asm(AREG0);
24 register uint32_t T0 asm(AREG1);
25 register uint32_t T1 asm(AREG2);
26 register uint32_t T2 asm(AREG3);
27
28 #define A0 T2
29
30 /* if more registers are available, we define some registers too */
31 #ifdef AREG4
32 register uint32_t EAX asm(AREG4);
33 #define reg_EAX
34 #endif
35
36 #ifdef AREG5
37 register uint32_t ESP asm(AREG5);
38 #define reg_ESP
39 #endif
40
41 #ifdef AREG6
42 register uint32_t EBP asm(AREG6);
43 #define reg_EBP
44 #endif
45
46 #ifdef AREG7
47 register uint32_t ECX asm(AREG7);
48 #define reg_ECX
49 #endif
50
51 #ifdef AREG8
52 register uint32_t EDX asm(AREG8);
53 #define reg_EDX
54 #endif
55
56 #ifdef AREG9
57 register uint32_t EBX asm(AREG9);
58 #define reg_EBX
59 #endif
60
61 #ifdef AREG10
62 register uint32_t ESI asm(AREG10);
63 #define reg_ESI
64 #endif
65
66 #ifdef AREG11
67 register uint32_t EDI asm(AREG11);
68 #define reg_EDI
69 #endif
70
71 extern FILE *logfile;
72 extern int loglevel;
73
74 #ifndef reg_EAX
75 #define EAX (env->regs[R_EAX])
76 #endif
77 #ifndef reg_ECX
78 #define ECX (env->regs[R_ECX])
79 #endif
80 #ifndef reg_EDX
81 #define EDX (env->regs[R_EDX])
82 #endif
83 #ifndef reg_EBX
84 #define EBX (env->regs[R_EBX])
85 #endif
86 #ifndef reg_ESP
87 #define ESP (env->regs[R_ESP])
88 #endif
89 #ifndef reg_EBP
90 #define EBP (env->regs[R_EBP])
91 #endif
92 #ifndef reg_ESI
93 #define ESI (env->regs[R_ESI])
94 #endif
95 #ifndef reg_EDI
96 #define EDI (env->regs[R_EDI])
97 #endif
98 #define EIP (env->eip)
99 #define DF (env->df)
100
101 #define CC_SRC (env->cc_src)
102 #define CC_DST (env->cc_dst)
103 #define CC_OP (env->cc_op)
104
105 /* float macros */
106 #define FT0 (env->ft0)
107 #define ST0 (env->fpregs[env->fpstt])
108 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7])
109 #define ST1 ST(1)
110
111 #ifdef USE_FP_CONVERT
112 #define FP_CONVERT (env->fp_convert)
113 #endif
114
115 #include "cpu.h"
116 #include "exec-all.h"
117
118 typedef struct CCTable {
119 int (*compute_all)(void); /* return all the flags */
120 int (*compute_c)(void); /* return the C flag */
121 } CCTable;
122
123 extern CCTable cc_table[];
124
125 void load_seg(int seg_reg, int selector, unsigned cur_eip);
126 void helper_ljmp_protected_T0_T1(void);
127 void helper_lcall_real_T0_T1(int shift, int next_eip);
128 void helper_lcall_protected_T0_T1(int shift, int next_eip);
129 void helper_iret_real(int shift);
130 void helper_iret_protected(int shift);
131 void helper_lret_protected(int shift, int addend);
132 void helper_lldt_T0(void);
133 void helper_ltr_T0(void);
134 void helper_movl_crN_T0(int reg);
135 void helper_movl_drN_T0(int reg);
136 void helper_invlpg(unsigned int addr);
137 void cpu_x86_update_cr0(CPUX86State *env);
138 void cpu_x86_update_cr3(CPUX86State *env);
139 void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
140 int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, int is_write);
141 void tlb_fill(unsigned long addr, int is_write, void *retaddr);
142 void __hidden cpu_lock(void);
143 void __hidden cpu_unlock(void);
144 void do_interrupt(int intno, int is_int, int error_code,
145 unsigned int next_eip, int is_hw);
146 void do_interrupt_user(int intno, int is_int, int error_code,
147 unsigned int next_eip);
148 void raise_interrupt(int intno, int is_int, int error_code,
149 unsigned int next_eip);
150 void raise_exception_err(int exception_index, int error_code);
151 void raise_exception(int exception_index);
152 void __hidden cpu_loop_exit(void);
153 void helper_fsave(uint8_t *ptr, int data32);
154 void helper_frstor(uint8_t *ptr, int data32);
155
156 void OPPROTO op_movl_eflags_T0(void);
157 void OPPROTO op_movl_T0_eflags(void);
158 void raise_interrupt(int intno, int is_int, int error_code,
159 unsigned int next_eip);
160 void raise_exception_err(int exception_index, int error_code);
161 void raise_exception(int exception_index);
162 void helper_divl_EAX_T0(uint32_t eip);
163 void helper_idivl_EAX_T0(uint32_t eip);
164 void helper_cmpxchg8b(void);
165 void helper_cpuid(void);
166 void helper_rdtsc(void);
167 void helper_rdmsr(void);
168 void helper_wrmsr(void);
169 void helper_lsl(void);
170 void helper_lar(void);
171
172 #ifdef USE_X86LDOUBLE
173 /* use long double functions */
174 #define lrint lrintl
175 #define llrint llrintl
176 #define fabs fabsl
177 #define sin sinl
178 #define cos cosl
179 #define sqrt sqrtl
180 #define pow powl
181 #define log logl
182 #define tan tanl
183 #define atan2 atan2l
184 #define floor floorl
185 #define ceil ceill
186 #define rint rintl
187 #endif
188
189 extern int lrint(CPU86_LDouble x);
190 extern int64_t llrint(CPU86_LDouble x);
191 extern CPU86_LDouble fabs(CPU86_LDouble x);
192 extern CPU86_LDouble sin(CPU86_LDouble x);
193 extern CPU86_LDouble cos(CPU86_LDouble x);
194 extern CPU86_LDouble sqrt(CPU86_LDouble x);
195 extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
196 extern CPU86_LDouble log(CPU86_LDouble x);
197 extern CPU86_LDouble tan(CPU86_LDouble x);
198 extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
199 extern CPU86_LDouble floor(CPU86_LDouble x);
200 extern CPU86_LDouble ceil(CPU86_LDouble x);
201 extern CPU86_LDouble rint(CPU86_LDouble x);
202
203 #define RC_MASK 0xc00
204 #define RC_NEAR 0x000
205 #define RC_DOWN 0x400
206 #define RC_UP 0x800
207 #define RC_CHOP 0xc00
208
209 #define MAXTAN 9223372036854775808.0
210
211 #ifdef __arm__
212 /* we have no way to do correct rounding - a FPU emulator is needed */
213 #define FE_DOWNWARD FE_TONEAREST
214 #define FE_UPWARD FE_TONEAREST
215 #define FE_TOWARDZERO FE_TONEAREST
216 #endif
217
218 #ifdef USE_X86LDOUBLE
219
220 /* only for x86 */
221 typedef union {
222 long double d;
223 struct {
224 unsigned long long lower;
225 unsigned short upper;
226 } l;
227 } CPU86_LDoubleU;
228
229 /* the following deal with x86 long double-precision numbers */
230 #define MAXEXPD 0x7fff
231 #define EXPBIAS 16383
232 #define EXPD(fp) (fp.l.upper & 0x7fff)
233 #define SIGND(fp) ((fp.l.upper) & 0x8000)
234 #define MANTD(fp) (fp.l.lower)
235 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
236
237 #else
238
239 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
240 typedef union {
241 double d;
242 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
243 struct {
244 uint32_t lower;
245 int32_t upper;
246 } l;
247 #else
248 struct {
249 int32_t upper;
250 uint32_t lower;
251 } l;
252 #endif
253 #ifndef __arm__
254 int64_t ll;
255 #endif
256 } CPU86_LDoubleU;
257
258 /* the following deal with IEEE double-precision numbers */
259 #define MAXEXPD 0x7ff
260 #define EXPBIAS 1023
261 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
262 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
263 #ifdef __arm__
264 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
265 #else
266 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
267 #endif
268 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
269 #endif
270
271 static inline void fpush(void)
272 {
273 env->fpstt = (env->fpstt - 1) & 7;
274 env->fptags[env->fpstt] = 0; /* validate stack entry */
275 }
276
277 static inline void fpop(void)
278 {
279 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
280 env->fpstt = (env->fpstt + 1) & 7;
281 }
282
283 #ifndef USE_X86LDOUBLE
284 static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
285 {
286 CPU86_LDoubleU temp;
287 int upper, e;
288 uint64_t ll;
289
290 /* mantissa */
291 upper = lduw(ptr + 8);
292 /* XXX: handle overflow ? */
293 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
294 e |= (upper >> 4) & 0x800; /* sign */
295 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
296 #ifdef __arm__
297 temp.l.upper = (e << 20) | (ll >> 32);
298 temp.l.lower = ll;
299 #else
300 temp.ll = ll | ((uint64_t)e << 52);
301 #endif
302 return temp.d;
303 }
304
305 static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
306 {
307 CPU86_LDoubleU temp;
308 int e;
309
310 temp.d = f;
311 /* mantissa */
312 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
313 /* exponent + sign */
314 e = EXPD(temp) - EXPBIAS + 16383;
315 e |= SIGND(temp) >> 16;
316 stw(ptr + 8, e);
317 }
318 #endif
319
320 const CPU86_LDouble f15rk[7];
321
322 void helper_fldt_ST0_A0(void);
323 void helper_fstt_ST0_A0(void);
324 void helper_fbld_ST0_A0(void);
325 void helper_fbst_ST0_A0(void);
326 void helper_f2xm1(void);
327 void helper_fyl2x(void);
328 void helper_fptan(void);
329 void helper_fpatan(void);
330 void helper_fxtract(void);
331 void helper_fprem1(void);
332 void helper_fprem(void);
333 void helper_fyl2xp1(void);
334 void helper_fsqrt(void);
335 void helper_fsincos(void);
336 void helper_frndint(void);
337 void helper_fscale(void);
338 void helper_fsin(void);
339 void helper_fcos(void);
340 void helper_fxam_ST0(void);
341 void helper_fstenv(uint8_t *ptr, int data32);
342 void helper_fldenv(uint8_t *ptr, int data32);
343 void helper_fsave(uint8_t *ptr, int data32);
344 void helper_frstor(uint8_t *ptr, int data32);
345
346 const uint8_t parity_table[256];
347 const uint8_t rclw_table[32];
348 const uint8_t rclb_table[32];
349
350 static inline uint32_t compute_eflags(void)
351 {
352 return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
353 }
354
355 #define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
356
357 #define FL_UPDATE_CPL0_MASK (TF_MASK | IF_MASK | IOPL_MASK | NT_MASK | \
358 RF_MASK | AC_MASK | ID_MASK)
359
360 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
361 static inline void load_eflags(int eflags, int update_mask)
362 {
363 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
364 DF = 1 - (2 * ((eflags >> 10) & 1));
365 env->eflags = (env->eflags & ~update_mask) |
366 (eflags & update_mask);
367 }
368
369 /* memory access macros */
370
371 #define ldul ldl
372 #define lduq ldq
373 #define ldul_user ldl_user
374 #define ldul_kernel ldl_kernel
375
376 #define ldub_raw ldub
377 #define ldsb_raw ldsb
378 #define lduw_raw lduw
379 #define ldsw_raw ldsw
380 #define ldl_raw ldl
381 #define ldq_raw ldq
382
383 #define stb_raw stb
384 #define stw_raw stw
385 #define stl_raw stl
386 #define stq_raw stq
387
388 #define MEMUSER 0
389 #define DATA_SIZE 1
390 #include "softmmu_header.h"
391
392 #define DATA_SIZE 2
393 #include "softmmu_header.h"
394
395 #define DATA_SIZE 4
396 #include "softmmu_header.h"
397
398 #define DATA_SIZE 8
399 #include "softmmu_header.h"
400
401 #undef MEMUSER
402 #define MEMUSER 1
403 #define DATA_SIZE 1
404 #include "softmmu_header.h"
405
406 #define DATA_SIZE 2
407 #include "softmmu_header.h"
408
409 #define DATA_SIZE 4
410 #include "softmmu_header.h"
411
412 #define DATA_SIZE 8
413 #include "softmmu_header.h"
414
415 #undef MEMUSER
416