]> git.proxmox.com Git - qemu.git/blob - target-i386/helper.c
target-i386: Implement BLSR, BLSMSK, BLSI
[qemu.git] / target-i386 / helper.c
1 /*
2 * i386 helpers (without register variable usage)
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "sysemu/kvm.h"
22 #ifndef CONFIG_USER_ONLY
23 #include "sysemu/sysemu.h"
24 #include "monitor/monitor.h"
25 #endif
26
27 //#define DEBUG_MMU
28
29 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
30 {
31 int cpuver = env->cpuid_version;
32
33 if (family == NULL || model == NULL) {
34 return;
35 }
36
37 *family = (cpuver >> 8) & 0x0f;
38 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
39 }
40
41 /* Broadcast MCA signal for processor version 06H_EH and above */
42 int cpu_x86_support_mca_broadcast(CPUX86State *env)
43 {
44 int family = 0;
45 int model = 0;
46
47 cpu_x86_version(env, &family, &model);
48 if ((family == 6 && model >= 14) || family > 6) {
49 return 1;
50 }
51
52 return 0;
53 }
54
55 /***********************************************************/
56 /* x86 debug */
57
58 static const char *cc_op_str[CC_OP_NB] = {
59 "DYNAMIC",
60 "EFLAGS",
61
62 "MULB",
63 "MULW",
64 "MULL",
65 "MULQ",
66
67 "ADDB",
68 "ADDW",
69 "ADDL",
70 "ADDQ",
71
72 "ADCB",
73 "ADCW",
74 "ADCL",
75 "ADCQ",
76
77 "SUBB",
78 "SUBW",
79 "SUBL",
80 "SUBQ",
81
82 "SBBB",
83 "SBBW",
84 "SBBL",
85 "SBBQ",
86
87 "LOGICB",
88 "LOGICW",
89 "LOGICL",
90 "LOGICQ",
91
92 "INCB",
93 "INCW",
94 "INCL",
95 "INCQ",
96
97 "DECB",
98 "DECW",
99 "DECL",
100 "DECQ",
101
102 "SHLB",
103 "SHLW",
104 "SHLL",
105 "SHLQ",
106
107 "SARB",
108 "SARW",
109 "SARL",
110 "SARQ",
111
112 "BMILGB",
113 "BMILGW",
114 "BMILGL",
115 "BMILGQ",
116 };
117
118 static void
119 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
120 const char *name, struct SegmentCache *sc)
121 {
122 #ifdef TARGET_X86_64
123 if (env->hflags & HF_CS64_MASK) {
124 cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
125 sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00);
126 } else
127 #endif
128 {
129 cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
130 (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00);
131 }
132
133 if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
134 goto done;
135
136 cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
137 if (sc->flags & DESC_S_MASK) {
138 if (sc->flags & DESC_CS_MASK) {
139 cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
140 ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
141 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
142 (sc->flags & DESC_R_MASK) ? 'R' : '-');
143 } else {
144 cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16");
145 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
146 (sc->flags & DESC_W_MASK) ? 'W' : '-');
147 }
148 cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
149 } else {
150 static const char *sys_type_name[2][16] = {
151 { /* 32 bit mode */
152 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
153 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
154 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
155 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
156 },
157 { /* 64 bit mode */
158 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
159 "Reserved", "Reserved", "Reserved", "Reserved",
160 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
161 "Reserved", "IntGate64", "TrapGate64"
162 }
163 };
164 cpu_fprintf(f, "%s",
165 sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
166 [(sc->flags & DESC_TYPE_MASK)
167 >> DESC_TYPE_SHIFT]);
168 }
169 done:
170 cpu_fprintf(f, "\n");
171 }
172
173 #define DUMP_CODE_BYTES_TOTAL 50
174 #define DUMP_CODE_BYTES_BACKWARD 20
175
176 void cpu_dump_state(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
177 int flags)
178 {
179 int eflags, i, nb;
180 char cc_op_name[32];
181 static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
182
183 cpu_synchronize_state(env);
184
185 eflags = env->eflags;
186 #ifdef TARGET_X86_64
187 if (env->hflags & HF_CS64_MASK) {
188 cpu_fprintf(f,
189 "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
190 "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
191 "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
192 "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
193 "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
194 env->regs[R_EAX],
195 env->regs[R_EBX],
196 env->regs[R_ECX],
197 env->regs[R_EDX],
198 env->regs[R_ESI],
199 env->regs[R_EDI],
200 env->regs[R_EBP],
201 env->regs[R_ESP],
202 env->regs[8],
203 env->regs[9],
204 env->regs[10],
205 env->regs[11],
206 env->regs[12],
207 env->regs[13],
208 env->regs[14],
209 env->regs[15],
210 env->eip, eflags,
211 eflags & DF_MASK ? 'D' : '-',
212 eflags & CC_O ? 'O' : '-',
213 eflags & CC_S ? 'S' : '-',
214 eflags & CC_Z ? 'Z' : '-',
215 eflags & CC_A ? 'A' : '-',
216 eflags & CC_P ? 'P' : '-',
217 eflags & CC_C ? 'C' : '-',
218 env->hflags & HF_CPL_MASK,
219 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
220 (env->a20_mask >> 20) & 1,
221 (env->hflags >> HF_SMM_SHIFT) & 1,
222 env->halted);
223 } else
224 #endif
225 {
226 cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
227 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
228 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
229 (uint32_t)env->regs[R_EAX],
230 (uint32_t)env->regs[R_EBX],
231 (uint32_t)env->regs[R_ECX],
232 (uint32_t)env->regs[R_EDX],
233 (uint32_t)env->regs[R_ESI],
234 (uint32_t)env->regs[R_EDI],
235 (uint32_t)env->regs[R_EBP],
236 (uint32_t)env->regs[R_ESP],
237 (uint32_t)env->eip, eflags,
238 eflags & DF_MASK ? 'D' : '-',
239 eflags & CC_O ? 'O' : '-',
240 eflags & CC_S ? 'S' : '-',
241 eflags & CC_Z ? 'Z' : '-',
242 eflags & CC_A ? 'A' : '-',
243 eflags & CC_P ? 'P' : '-',
244 eflags & CC_C ? 'C' : '-',
245 env->hflags & HF_CPL_MASK,
246 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
247 (env->a20_mask >> 20) & 1,
248 (env->hflags >> HF_SMM_SHIFT) & 1,
249 env->halted);
250 }
251
252 for(i = 0; i < 6; i++) {
253 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
254 &env->segs[i]);
255 }
256 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
257 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
258
259 #ifdef TARGET_X86_64
260 if (env->hflags & HF_LMA_MASK) {
261 cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
262 env->gdt.base, env->gdt.limit);
263 cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
264 env->idt.base, env->idt.limit);
265 cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
266 (uint32_t)env->cr[0],
267 env->cr[2],
268 env->cr[3],
269 (uint32_t)env->cr[4]);
270 for(i = 0; i < 4; i++)
271 cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
272 cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
273 env->dr[6], env->dr[7]);
274 } else
275 #endif
276 {
277 cpu_fprintf(f, "GDT= %08x %08x\n",
278 (uint32_t)env->gdt.base, env->gdt.limit);
279 cpu_fprintf(f, "IDT= %08x %08x\n",
280 (uint32_t)env->idt.base, env->idt.limit);
281 cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
282 (uint32_t)env->cr[0],
283 (uint32_t)env->cr[2],
284 (uint32_t)env->cr[3],
285 (uint32_t)env->cr[4]);
286 for(i = 0; i < 4; i++) {
287 cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
288 }
289 cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
290 env->dr[6], env->dr[7]);
291 }
292 if (flags & CPU_DUMP_CCOP) {
293 if ((unsigned)env->cc_op < CC_OP_NB)
294 snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
295 else
296 snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
297 #ifdef TARGET_X86_64
298 if (env->hflags & HF_CS64_MASK) {
299 cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
300 env->cc_src, env->cc_dst,
301 cc_op_name);
302 } else
303 #endif
304 {
305 cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
306 (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
307 cc_op_name);
308 }
309 }
310 cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
311 if (flags & CPU_DUMP_FPU) {
312 int fptag;
313 fptag = 0;
314 for(i = 0; i < 8; i++) {
315 fptag |= ((!env->fptags[i]) << i);
316 }
317 cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
318 env->fpuc,
319 (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
320 env->fpstt,
321 fptag,
322 env->mxcsr);
323 for(i=0;i<8;i++) {
324 CPU_LDoubleU u;
325 u.d = env->fpregs[i].d;
326 cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
327 i, u.l.lower, u.l.upper);
328 if ((i & 1) == 1)
329 cpu_fprintf(f, "\n");
330 else
331 cpu_fprintf(f, " ");
332 }
333 if (env->hflags & HF_CS64_MASK)
334 nb = 16;
335 else
336 nb = 8;
337 for(i=0;i<nb;i++) {
338 cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
339 i,
340 env->xmm_regs[i].XMM_L(3),
341 env->xmm_regs[i].XMM_L(2),
342 env->xmm_regs[i].XMM_L(1),
343 env->xmm_regs[i].XMM_L(0));
344 if ((i & 1) == 1)
345 cpu_fprintf(f, "\n");
346 else
347 cpu_fprintf(f, " ");
348 }
349 }
350 if (flags & CPU_DUMP_CODE) {
351 target_ulong base = env->segs[R_CS].base + env->eip;
352 target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
353 uint8_t code;
354 char codestr[3];
355
356 cpu_fprintf(f, "Code=");
357 for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
358 if (cpu_memory_rw_debug(env, base - offs + i, &code, 1, 0) == 0) {
359 snprintf(codestr, sizeof(codestr), "%02x", code);
360 } else {
361 snprintf(codestr, sizeof(codestr), "??");
362 }
363 cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
364 i == offs ? "<" : "", codestr, i == offs ? ">" : "");
365 }
366 cpu_fprintf(f, "\n");
367 }
368 }
369
370 /***********************************************************/
371 /* x86 mmu */
372 /* XXX: add PGE support */
373
374 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
375 {
376 CPUX86State *env = &cpu->env;
377
378 a20_state = (a20_state != 0);
379 if (a20_state != ((env->a20_mask >> 20) & 1)) {
380 #if defined(DEBUG_MMU)
381 printf("A20 update: a20=%d\n", a20_state);
382 #endif
383 /* if the cpu is currently executing code, we must unlink it and
384 all the potentially executing TB */
385 cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
386
387 /* when a20 is changed, all the MMU mappings are invalid, so
388 we must flush everything */
389 tlb_flush(env, 1);
390 env->a20_mask = ~(1 << 20) | (a20_state << 20);
391 }
392 }
393
394 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
395 {
396 int pe_state;
397
398 #if defined(DEBUG_MMU)
399 printf("CR0 update: CR0=0x%08x\n", new_cr0);
400 #endif
401 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
402 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
403 tlb_flush(env, 1);
404 }
405
406 #ifdef TARGET_X86_64
407 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
408 (env->efer & MSR_EFER_LME)) {
409 /* enter in long mode */
410 /* XXX: generate an exception */
411 if (!(env->cr[4] & CR4_PAE_MASK))
412 return;
413 env->efer |= MSR_EFER_LMA;
414 env->hflags |= HF_LMA_MASK;
415 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
416 (env->efer & MSR_EFER_LMA)) {
417 /* exit long mode */
418 env->efer &= ~MSR_EFER_LMA;
419 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
420 env->eip &= 0xffffffff;
421 }
422 #endif
423 env->cr[0] = new_cr0 | CR0_ET_MASK;
424
425 /* update PE flag in hidden flags */
426 pe_state = (env->cr[0] & CR0_PE_MASK);
427 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
428 /* ensure that ADDSEG is always set in real mode */
429 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
430 /* update FPU flags */
431 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
432 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
433 }
434
435 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
436 the PDPT */
437 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
438 {
439 env->cr[3] = new_cr3;
440 if (env->cr[0] & CR0_PG_MASK) {
441 #if defined(DEBUG_MMU)
442 printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
443 #endif
444 tlb_flush(env, 0);
445 }
446 }
447
448 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
449 {
450 #if defined(DEBUG_MMU)
451 printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
452 #endif
453 if ((new_cr4 ^ env->cr[4]) &
454 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
455 CR4_SMEP_MASK | CR4_SMAP_MASK)) {
456 tlb_flush(env, 1);
457 }
458 /* SSE handling */
459 if (!(env->cpuid_features & CPUID_SSE)) {
460 new_cr4 &= ~CR4_OSFXSR_MASK;
461 }
462 env->hflags &= ~HF_OSFXSR_MASK;
463 if (new_cr4 & CR4_OSFXSR_MASK) {
464 env->hflags |= HF_OSFXSR_MASK;
465 }
466
467 if (!(env->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SMAP)) {
468 new_cr4 &= ~CR4_SMAP_MASK;
469 }
470 env->hflags &= ~HF_SMAP_MASK;
471 if (new_cr4 & CR4_SMAP_MASK) {
472 env->hflags |= HF_SMAP_MASK;
473 }
474
475 env->cr[4] = new_cr4;
476 }
477
478 #if defined(CONFIG_USER_ONLY)
479
480 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
481 int is_write, int mmu_idx)
482 {
483 /* user mode only emulation */
484 is_write &= 1;
485 env->cr[2] = addr;
486 env->error_code = (is_write << PG_ERROR_W_BIT);
487 env->error_code |= PG_ERROR_U_MASK;
488 env->exception_index = EXCP0E_PAGE;
489 return 1;
490 }
491
492 #else
493
494 /* XXX: This value should match the one returned by CPUID
495 * and in exec.c */
496 # if defined(TARGET_X86_64)
497 # define PHYS_ADDR_MASK 0xfffffff000LL
498 # else
499 # define PHYS_ADDR_MASK 0xffffff000LL
500 # endif
501
502 /* return value:
503 -1 = cannot handle fault
504 0 = nothing more to do
505 1 = generate PF fault
506 */
507 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
508 int is_write1, int mmu_idx)
509 {
510 uint64_t ptep, pte;
511 target_ulong pde_addr, pte_addr;
512 int error_code, is_dirty, prot, page_size, is_write, is_user;
513 hwaddr paddr;
514 uint32_t page_offset;
515 target_ulong vaddr, virt_addr;
516
517 is_user = mmu_idx == MMU_USER_IDX;
518 #if defined(DEBUG_MMU)
519 printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
520 addr, is_write1, is_user, env->eip);
521 #endif
522 is_write = is_write1 & 1;
523
524 if (!(env->cr[0] & CR0_PG_MASK)) {
525 pte = addr;
526 virt_addr = addr & TARGET_PAGE_MASK;
527 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
528 page_size = 4096;
529 goto do_mapping;
530 }
531
532 if (env->cr[4] & CR4_PAE_MASK) {
533 uint64_t pde, pdpe;
534 target_ulong pdpe_addr;
535
536 #ifdef TARGET_X86_64
537 if (env->hflags & HF_LMA_MASK) {
538 uint64_t pml4e_addr, pml4e;
539 int32_t sext;
540
541 /* test virtual address sign extension */
542 sext = (int64_t)addr >> 47;
543 if (sext != 0 && sext != -1) {
544 env->error_code = 0;
545 env->exception_index = EXCP0D_GPF;
546 return 1;
547 }
548
549 pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
550 env->a20_mask;
551 pml4e = ldq_phys(pml4e_addr);
552 if (!(pml4e & PG_PRESENT_MASK)) {
553 error_code = 0;
554 goto do_fault;
555 }
556 if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
557 error_code = PG_ERROR_RSVD_MASK;
558 goto do_fault;
559 }
560 if (!(pml4e & PG_ACCESSED_MASK)) {
561 pml4e |= PG_ACCESSED_MASK;
562 stl_phys_notdirty(pml4e_addr, pml4e);
563 }
564 ptep = pml4e ^ PG_NX_MASK;
565 pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
566 env->a20_mask;
567 pdpe = ldq_phys(pdpe_addr);
568 if (!(pdpe & PG_PRESENT_MASK)) {
569 error_code = 0;
570 goto do_fault;
571 }
572 if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
573 error_code = PG_ERROR_RSVD_MASK;
574 goto do_fault;
575 }
576 ptep &= pdpe ^ PG_NX_MASK;
577 if (!(pdpe & PG_ACCESSED_MASK)) {
578 pdpe |= PG_ACCESSED_MASK;
579 stl_phys_notdirty(pdpe_addr, pdpe);
580 }
581 } else
582 #endif
583 {
584 /* XXX: load them when cr3 is loaded ? */
585 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
586 env->a20_mask;
587 pdpe = ldq_phys(pdpe_addr);
588 if (!(pdpe & PG_PRESENT_MASK)) {
589 error_code = 0;
590 goto do_fault;
591 }
592 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
593 }
594
595 pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
596 env->a20_mask;
597 pde = ldq_phys(pde_addr);
598 if (!(pde & PG_PRESENT_MASK)) {
599 error_code = 0;
600 goto do_fault;
601 }
602 if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
603 error_code = PG_ERROR_RSVD_MASK;
604 goto do_fault;
605 }
606 ptep &= pde ^ PG_NX_MASK;
607 if (pde & PG_PSE_MASK) {
608 /* 2 MB page */
609 page_size = 2048 * 1024;
610 ptep ^= PG_NX_MASK;
611 if ((ptep & PG_NX_MASK) && is_write1 == 2) {
612 goto do_fault_protect;
613 }
614 switch (mmu_idx) {
615 case MMU_USER_IDX:
616 if (!(ptep & PG_USER_MASK)) {
617 goto do_fault_protect;
618 }
619 if (is_write && !(ptep & PG_RW_MASK)) {
620 goto do_fault_protect;
621 }
622 break;
623
624 case MMU_KERNEL_IDX:
625 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
626 (ptep & PG_USER_MASK)) {
627 goto do_fault_protect;
628 }
629 /* fall through */
630 case MMU_KSMAP_IDX:
631 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
632 (ptep & PG_USER_MASK)) {
633 goto do_fault_protect;
634 }
635 if ((env->cr[0] & CR0_WP_MASK) &&
636 is_write && !(ptep & PG_RW_MASK)) {
637 goto do_fault_protect;
638 }
639 break;
640
641 default: /* cannot happen */
642 break;
643 }
644 is_dirty = is_write && !(pde & PG_DIRTY_MASK);
645 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
646 pde |= PG_ACCESSED_MASK;
647 if (is_dirty)
648 pde |= PG_DIRTY_MASK;
649 stl_phys_notdirty(pde_addr, pde);
650 }
651 /* align to page_size */
652 pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
653 virt_addr = addr & ~(page_size - 1);
654 } else {
655 /* 4 KB page */
656 if (!(pde & PG_ACCESSED_MASK)) {
657 pde |= PG_ACCESSED_MASK;
658 stl_phys_notdirty(pde_addr, pde);
659 }
660 pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
661 env->a20_mask;
662 pte = ldq_phys(pte_addr);
663 if (!(pte & PG_PRESENT_MASK)) {
664 error_code = 0;
665 goto do_fault;
666 }
667 if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
668 error_code = PG_ERROR_RSVD_MASK;
669 goto do_fault;
670 }
671 /* combine pde and pte nx, user and rw protections */
672 ptep &= pte ^ PG_NX_MASK;
673 ptep ^= PG_NX_MASK;
674 if ((ptep & PG_NX_MASK) && is_write1 == 2)
675 goto do_fault_protect;
676 switch (mmu_idx) {
677 case MMU_USER_IDX:
678 if (!(ptep & PG_USER_MASK)) {
679 goto do_fault_protect;
680 }
681 if (is_write && !(ptep & PG_RW_MASK)) {
682 goto do_fault_protect;
683 }
684 break;
685
686 case MMU_KERNEL_IDX:
687 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
688 (ptep & PG_USER_MASK)) {
689 goto do_fault_protect;
690 }
691 /* fall through */
692 case MMU_KSMAP_IDX:
693 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
694 (ptep & PG_USER_MASK)) {
695 goto do_fault_protect;
696 }
697 if ((env->cr[0] & CR0_WP_MASK) &&
698 is_write && !(ptep & PG_RW_MASK)) {
699 goto do_fault_protect;
700 }
701 break;
702
703 default: /* cannot happen */
704 break;
705 }
706 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
707 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
708 pte |= PG_ACCESSED_MASK;
709 if (is_dirty)
710 pte |= PG_DIRTY_MASK;
711 stl_phys_notdirty(pte_addr, pte);
712 }
713 page_size = 4096;
714 virt_addr = addr & ~0xfff;
715 pte = pte & (PHYS_ADDR_MASK | 0xfff);
716 }
717 } else {
718 uint32_t pde;
719
720 /* page directory entry */
721 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
722 env->a20_mask;
723 pde = ldl_phys(pde_addr);
724 if (!(pde & PG_PRESENT_MASK)) {
725 error_code = 0;
726 goto do_fault;
727 }
728 /* if PSE bit is set, then we use a 4MB page */
729 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
730 page_size = 4096 * 1024;
731 switch (mmu_idx) {
732 case MMU_USER_IDX:
733 if (!(pde & PG_USER_MASK)) {
734 goto do_fault_protect;
735 }
736 if (is_write && !(pde & PG_RW_MASK)) {
737 goto do_fault_protect;
738 }
739 break;
740
741 case MMU_KERNEL_IDX:
742 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
743 (pde & PG_USER_MASK)) {
744 goto do_fault_protect;
745 }
746 /* fall through */
747 case MMU_KSMAP_IDX:
748 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
749 (pde & PG_USER_MASK)) {
750 goto do_fault_protect;
751 }
752 if ((env->cr[0] & CR0_WP_MASK) &&
753 is_write && !(pde & PG_RW_MASK)) {
754 goto do_fault_protect;
755 }
756 break;
757
758 default: /* cannot happen */
759 break;
760 }
761 is_dirty = is_write && !(pde & PG_DIRTY_MASK);
762 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
763 pde |= PG_ACCESSED_MASK;
764 if (is_dirty)
765 pde |= PG_DIRTY_MASK;
766 stl_phys_notdirty(pde_addr, pde);
767 }
768
769 pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
770 ptep = pte;
771 virt_addr = addr & ~(page_size - 1);
772 } else {
773 if (!(pde & PG_ACCESSED_MASK)) {
774 pde |= PG_ACCESSED_MASK;
775 stl_phys_notdirty(pde_addr, pde);
776 }
777
778 /* page directory entry */
779 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
780 env->a20_mask;
781 pte = ldl_phys(pte_addr);
782 if (!(pte & PG_PRESENT_MASK)) {
783 error_code = 0;
784 goto do_fault;
785 }
786 /* combine pde and pte user and rw protections */
787 ptep = pte & pde;
788 switch (mmu_idx) {
789 case MMU_USER_IDX:
790 if (!(ptep & PG_USER_MASK)) {
791 goto do_fault_protect;
792 }
793 if (is_write && !(ptep & PG_RW_MASK)) {
794 goto do_fault_protect;
795 }
796 break;
797
798 case MMU_KERNEL_IDX:
799 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
800 (ptep & PG_USER_MASK)) {
801 goto do_fault_protect;
802 }
803 /* fall through */
804 case MMU_KSMAP_IDX:
805 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
806 (ptep & PG_USER_MASK)) {
807 goto do_fault_protect;
808 }
809 if ((env->cr[0] & CR0_WP_MASK) &&
810 is_write && !(ptep & PG_RW_MASK)) {
811 goto do_fault_protect;
812 }
813 break;
814
815 default: /* cannot happen */
816 break;
817 }
818 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
819 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
820 pte |= PG_ACCESSED_MASK;
821 if (is_dirty)
822 pte |= PG_DIRTY_MASK;
823 stl_phys_notdirty(pte_addr, pte);
824 }
825 page_size = 4096;
826 virt_addr = addr & ~0xfff;
827 }
828 }
829 /* the page can be put in the TLB */
830 prot = PAGE_READ;
831 if (!(ptep & PG_NX_MASK))
832 prot |= PAGE_EXEC;
833 if (pte & PG_DIRTY_MASK) {
834 /* only set write access if already dirty... otherwise wait
835 for dirty access */
836 if (is_user) {
837 if (ptep & PG_RW_MASK)
838 prot |= PAGE_WRITE;
839 } else {
840 if (!(env->cr[0] & CR0_WP_MASK) ||
841 (ptep & PG_RW_MASK))
842 prot |= PAGE_WRITE;
843 }
844 }
845 do_mapping:
846 pte = pte & env->a20_mask;
847
848 /* Even if 4MB pages, we map only one 4KB page in the cache to
849 avoid filling it too fast */
850 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
851 paddr = (pte & TARGET_PAGE_MASK) + page_offset;
852 vaddr = virt_addr + page_offset;
853
854 tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
855 return 0;
856 do_fault_protect:
857 error_code = PG_ERROR_P_MASK;
858 do_fault:
859 error_code |= (is_write << PG_ERROR_W_BIT);
860 if (is_user)
861 error_code |= PG_ERROR_U_MASK;
862 if (is_write1 == 2 &&
863 (((env->efer & MSR_EFER_NXE) &&
864 (env->cr[4] & CR4_PAE_MASK)) ||
865 (env->cr[4] & CR4_SMEP_MASK)))
866 error_code |= PG_ERROR_I_D_MASK;
867 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
868 /* cr2 is not modified in case of exceptions */
869 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
870 addr);
871 } else {
872 env->cr[2] = addr;
873 }
874 env->error_code = error_code;
875 env->exception_index = EXCP0E_PAGE;
876 return 1;
877 }
878
879 hwaddr cpu_get_phys_page_debug(CPUX86State *env, target_ulong addr)
880 {
881 target_ulong pde_addr, pte_addr;
882 uint64_t pte;
883 hwaddr paddr;
884 uint32_t page_offset;
885 int page_size;
886
887 if (env->cr[4] & CR4_PAE_MASK) {
888 target_ulong pdpe_addr;
889 uint64_t pde, pdpe;
890
891 #ifdef TARGET_X86_64
892 if (env->hflags & HF_LMA_MASK) {
893 uint64_t pml4e_addr, pml4e;
894 int32_t sext;
895
896 /* test virtual address sign extension */
897 sext = (int64_t)addr >> 47;
898 if (sext != 0 && sext != -1)
899 return -1;
900
901 pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
902 env->a20_mask;
903 pml4e = ldq_phys(pml4e_addr);
904 if (!(pml4e & PG_PRESENT_MASK))
905 return -1;
906
907 pdpe_addr = ((pml4e & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
908 (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask;
909 pdpe = ldq_phys(pdpe_addr);
910 if (!(pdpe & PG_PRESENT_MASK))
911 return -1;
912 } else
913 #endif
914 {
915 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
916 env->a20_mask;
917 pdpe = ldq_phys(pdpe_addr);
918 if (!(pdpe & PG_PRESENT_MASK))
919 return -1;
920 }
921
922 pde_addr = ((pdpe & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
923 (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask;
924 pde = ldq_phys(pde_addr);
925 if (!(pde & PG_PRESENT_MASK)) {
926 return -1;
927 }
928 if (pde & PG_PSE_MASK) {
929 /* 2 MB page */
930 page_size = 2048 * 1024;
931 pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
932 } else {
933 /* 4 KB page */
934 pte_addr = ((pde & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
935 (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask;
936 page_size = 4096;
937 pte = ldq_phys(pte_addr);
938 }
939 pte &= ~(PG_NX_MASK | PG_HI_USER_MASK);
940 if (!(pte & PG_PRESENT_MASK))
941 return -1;
942 } else {
943 uint32_t pde;
944
945 if (!(env->cr[0] & CR0_PG_MASK)) {
946 pte = addr;
947 page_size = 4096;
948 } else {
949 /* page directory entry */
950 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
951 pde = ldl_phys(pde_addr);
952 if (!(pde & PG_PRESENT_MASK))
953 return -1;
954 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
955 pte = pde & ~0x003ff000; /* align to 4MB */
956 page_size = 4096 * 1024;
957 } else {
958 /* page directory entry */
959 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
960 pte = ldl_phys(pte_addr);
961 if (!(pte & PG_PRESENT_MASK))
962 return -1;
963 page_size = 4096;
964 }
965 }
966 pte = pte & env->a20_mask;
967 }
968
969 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
970 paddr = (pte & TARGET_PAGE_MASK) + page_offset;
971 return paddr;
972 }
973
974 void hw_breakpoint_insert(CPUX86State *env, int index)
975 {
976 int type = 0, err = 0;
977
978 switch (hw_breakpoint_type(env->dr[7], index)) {
979 case DR7_TYPE_BP_INST:
980 if (hw_breakpoint_enabled(env->dr[7], index)) {
981 err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU,
982 &env->cpu_breakpoint[index]);
983 }
984 break;
985 case DR7_TYPE_DATA_WR:
986 type = BP_CPU | BP_MEM_WRITE;
987 break;
988 case DR7_TYPE_IO_RW:
989 /* No support for I/O watchpoints yet */
990 break;
991 case DR7_TYPE_DATA_RW:
992 type = BP_CPU | BP_MEM_ACCESS;
993 break;
994 }
995
996 if (type != 0) {
997 err = cpu_watchpoint_insert(env, env->dr[index],
998 hw_breakpoint_len(env->dr[7], index),
999 type, &env->cpu_watchpoint[index]);
1000 }
1001
1002 if (err) {
1003 env->cpu_breakpoint[index] = NULL;
1004 }
1005 }
1006
1007 void hw_breakpoint_remove(CPUX86State *env, int index)
1008 {
1009 if (!env->cpu_breakpoint[index])
1010 return;
1011 switch (hw_breakpoint_type(env->dr[7], index)) {
1012 case DR7_TYPE_BP_INST:
1013 if (hw_breakpoint_enabled(env->dr[7], index)) {
1014 cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]);
1015 }
1016 break;
1017 case DR7_TYPE_DATA_WR:
1018 case DR7_TYPE_DATA_RW:
1019 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]);
1020 break;
1021 case DR7_TYPE_IO_RW:
1022 /* No support for I/O watchpoints yet */
1023 break;
1024 }
1025 }
1026
1027 bool check_hw_breakpoints(CPUX86State *env, bool force_dr6_update)
1028 {
1029 target_ulong dr6;
1030 int reg;
1031 bool hit_enabled = false;
1032
1033 dr6 = env->dr[6] & ~0xf;
1034 for (reg = 0; reg < DR7_MAX_BP; reg++) {
1035 bool bp_match = false;
1036 bool wp_match = false;
1037
1038 switch (hw_breakpoint_type(env->dr[7], reg)) {
1039 case DR7_TYPE_BP_INST:
1040 if (env->dr[reg] == env->eip) {
1041 bp_match = true;
1042 }
1043 break;
1044 case DR7_TYPE_DATA_WR:
1045 case DR7_TYPE_DATA_RW:
1046 if (env->cpu_watchpoint[reg] &&
1047 env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT) {
1048 wp_match = true;
1049 }
1050 break;
1051 case DR7_TYPE_IO_RW:
1052 break;
1053 }
1054 if (bp_match || wp_match) {
1055 dr6 |= 1 << reg;
1056 if (hw_breakpoint_enabled(env->dr[7], reg)) {
1057 hit_enabled = true;
1058 }
1059 }
1060 }
1061
1062 if (hit_enabled || force_dr6_update) {
1063 env->dr[6] = dr6;
1064 }
1065
1066 return hit_enabled;
1067 }
1068
1069 void breakpoint_handler(CPUX86State *env)
1070 {
1071 CPUBreakpoint *bp;
1072
1073 if (env->watchpoint_hit) {
1074 if (env->watchpoint_hit->flags & BP_CPU) {
1075 env->watchpoint_hit = NULL;
1076 if (check_hw_breakpoints(env, false)) {
1077 raise_exception(env, EXCP01_DB);
1078 } else {
1079 cpu_resume_from_signal(env, NULL);
1080 }
1081 }
1082 } else {
1083 QTAILQ_FOREACH(bp, &env->breakpoints, entry)
1084 if (bp->pc == env->eip) {
1085 if (bp->flags & BP_CPU) {
1086 check_hw_breakpoints(env, true);
1087 raise_exception(env, EXCP01_DB);
1088 }
1089 break;
1090 }
1091 }
1092 }
1093
1094 typedef struct MCEInjectionParams {
1095 Monitor *mon;
1096 X86CPU *cpu;
1097 int bank;
1098 uint64_t status;
1099 uint64_t mcg_status;
1100 uint64_t addr;
1101 uint64_t misc;
1102 int flags;
1103 } MCEInjectionParams;
1104
1105 static void do_inject_x86_mce(void *data)
1106 {
1107 MCEInjectionParams *params = data;
1108 CPUX86State *cenv = &params->cpu->env;
1109 CPUState *cpu = CPU(params->cpu);
1110 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
1111
1112 cpu_synchronize_state(cenv);
1113
1114 /*
1115 * If there is an MCE exception being processed, ignore this SRAO MCE
1116 * unless unconditional injection was requested.
1117 */
1118 if (!(params->flags & MCE_INJECT_UNCOND_AO)
1119 && !(params->status & MCI_STATUS_AR)
1120 && (cenv->mcg_status & MCG_STATUS_MCIP)) {
1121 return;
1122 }
1123
1124 if (params->status & MCI_STATUS_UC) {
1125 /*
1126 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1127 * reporting is disabled
1128 */
1129 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
1130 monitor_printf(params->mon,
1131 "CPU %d: Uncorrected error reporting disabled\n",
1132 cpu->cpu_index);
1133 return;
1134 }
1135
1136 /*
1137 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1138 * reporting is disabled for the bank
1139 */
1140 if (banks[0] != ~(uint64_t)0) {
1141 monitor_printf(params->mon,
1142 "CPU %d: Uncorrected error reporting disabled for"
1143 " bank %d\n",
1144 cpu->cpu_index, params->bank);
1145 return;
1146 }
1147
1148 if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
1149 !(cenv->cr[4] & CR4_MCE_MASK)) {
1150 monitor_printf(params->mon,
1151 "CPU %d: Previous MCE still in progress, raising"
1152 " triple fault\n",
1153 cpu->cpu_index);
1154 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1155 qemu_system_reset_request();
1156 return;
1157 }
1158 if (banks[1] & MCI_STATUS_VAL) {
1159 params->status |= MCI_STATUS_OVER;
1160 }
1161 banks[2] = params->addr;
1162 banks[3] = params->misc;
1163 cenv->mcg_status = params->mcg_status;
1164 banks[1] = params->status;
1165 cpu_interrupt(cenv, CPU_INTERRUPT_MCE);
1166 } else if (!(banks[1] & MCI_STATUS_VAL)
1167 || !(banks[1] & MCI_STATUS_UC)) {
1168 if (banks[1] & MCI_STATUS_VAL) {
1169 params->status |= MCI_STATUS_OVER;
1170 }
1171 banks[2] = params->addr;
1172 banks[3] = params->misc;
1173 banks[1] = params->status;
1174 } else {
1175 banks[1] |= MCI_STATUS_OVER;
1176 }
1177 }
1178
1179 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
1180 uint64_t status, uint64_t mcg_status, uint64_t addr,
1181 uint64_t misc, int flags)
1182 {
1183 CPUX86State *cenv = &cpu->env;
1184 MCEInjectionParams params = {
1185 .mon = mon,
1186 .cpu = cpu,
1187 .bank = bank,
1188 .status = status,
1189 .mcg_status = mcg_status,
1190 .addr = addr,
1191 .misc = misc,
1192 .flags = flags,
1193 };
1194 unsigned bank_num = cenv->mcg_cap & 0xff;
1195 CPUX86State *env;
1196
1197 if (!cenv->mcg_cap) {
1198 monitor_printf(mon, "MCE injection not supported\n");
1199 return;
1200 }
1201 if (bank >= bank_num) {
1202 monitor_printf(mon, "Invalid MCE bank number\n");
1203 return;
1204 }
1205 if (!(status & MCI_STATUS_VAL)) {
1206 monitor_printf(mon, "Invalid MCE status code\n");
1207 return;
1208 }
1209 if ((flags & MCE_INJECT_BROADCAST)
1210 && !cpu_x86_support_mca_broadcast(cenv)) {
1211 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
1212 return;
1213 }
1214
1215 run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
1216 if (flags & MCE_INJECT_BROADCAST) {
1217 params.bank = 1;
1218 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
1219 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1220 params.addr = 0;
1221 params.misc = 0;
1222 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1223 if (cenv == env) {
1224 continue;
1225 }
1226 params.cpu = x86_env_get_cpu(env);
1227 run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
1228 }
1229 }
1230 }
1231
1232 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
1233 {
1234 if (kvm_enabled()) {
1235 env->tpr_access_type = access;
1236
1237 cpu_interrupt(env, CPU_INTERRUPT_TPR);
1238 } else {
1239 cpu_restore_state(env, env->mem_io_pc);
1240
1241 apic_handle_tpr_access_report(env->apic_state, env->eip, access);
1242 }
1243 }
1244 #endif /* !CONFIG_USER_ONLY */
1245
1246 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
1247 target_ulong *base, unsigned int *limit,
1248 unsigned int *flags)
1249 {
1250 SegmentCache *dt;
1251 target_ulong ptr;
1252 uint32_t e1, e2;
1253 int index;
1254
1255 if (selector & 0x4)
1256 dt = &env->ldt;
1257 else
1258 dt = &env->gdt;
1259 index = selector & ~7;
1260 ptr = dt->base + index;
1261 if ((index + 7) > dt->limit
1262 || cpu_memory_rw_debug(env, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1263 || cpu_memory_rw_debug(env, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1264 return 0;
1265
1266 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1267 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1268 if (e2 & DESC_G_MASK)
1269 *limit = (*limit << 12) | 0xfff;
1270 *flags = e2;
1271
1272 return 1;
1273 }
1274
1275 #if !defined(CONFIG_USER_ONLY)
1276 void do_cpu_init(X86CPU *cpu)
1277 {
1278 CPUX86State *env = &cpu->env;
1279 int sipi = env->interrupt_request & CPU_INTERRUPT_SIPI;
1280 uint64_t pat = env->pat;
1281
1282 cpu_reset(CPU(cpu));
1283 env->interrupt_request = sipi;
1284 env->pat = pat;
1285 apic_init_reset(env->apic_state);
1286 }
1287
1288 void do_cpu_sipi(X86CPU *cpu)
1289 {
1290 CPUX86State *env = &cpu->env;
1291
1292 apic_sipi(env->apic_state);
1293 }
1294 #else
1295 void do_cpu_init(X86CPU *cpu)
1296 {
1297 }
1298 void do_cpu_sipi(X86CPU *cpu)
1299 {
1300 }
1301 #endif