]> git.proxmox.com Git - qemu.git/blob - target-i386/helper.c
target-i386: Pass X86CPU to cpu_x86_set_a20()
[qemu.git] / target-i386 / helper.c
1 /*
2 * i386 helpers (without register variable usage)
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "cpu.h"
21 #include "sysemu/kvm.h"
22 #ifndef CONFIG_USER_ONLY
23 #include "sysemu/sysemu.h"
24 #include "monitor/monitor.h"
25 #endif
26
27 //#define DEBUG_MMU
28
29 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
30 {
31 int cpuver = env->cpuid_version;
32
33 if (family == NULL || model == NULL) {
34 return;
35 }
36
37 *family = (cpuver >> 8) & 0x0f;
38 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
39 }
40
41 /* Broadcast MCA signal for processor version 06H_EH and above */
42 int cpu_x86_support_mca_broadcast(CPUX86State *env)
43 {
44 int family = 0;
45 int model = 0;
46
47 cpu_x86_version(env, &family, &model);
48 if ((family == 6 && model >= 14) || family > 6) {
49 return 1;
50 }
51
52 return 0;
53 }
54
55 /***********************************************************/
56 /* x86 debug */
57
58 static const char *cc_op_str[] = {
59 "DYNAMIC",
60 "EFLAGS",
61
62 "MULB",
63 "MULW",
64 "MULL",
65 "MULQ",
66
67 "ADDB",
68 "ADDW",
69 "ADDL",
70 "ADDQ",
71
72 "ADCB",
73 "ADCW",
74 "ADCL",
75 "ADCQ",
76
77 "SUBB",
78 "SUBW",
79 "SUBL",
80 "SUBQ",
81
82 "SBBB",
83 "SBBW",
84 "SBBL",
85 "SBBQ",
86
87 "LOGICB",
88 "LOGICW",
89 "LOGICL",
90 "LOGICQ",
91
92 "INCB",
93 "INCW",
94 "INCL",
95 "INCQ",
96
97 "DECB",
98 "DECW",
99 "DECL",
100 "DECQ",
101
102 "SHLB",
103 "SHLW",
104 "SHLL",
105 "SHLQ",
106
107 "SARB",
108 "SARW",
109 "SARL",
110 "SARQ",
111 };
112
113 static void
114 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
115 const char *name, struct SegmentCache *sc)
116 {
117 #ifdef TARGET_X86_64
118 if (env->hflags & HF_CS64_MASK) {
119 cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
120 sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00);
121 } else
122 #endif
123 {
124 cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
125 (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00);
126 }
127
128 if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
129 goto done;
130
131 cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
132 if (sc->flags & DESC_S_MASK) {
133 if (sc->flags & DESC_CS_MASK) {
134 cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
135 ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
136 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
137 (sc->flags & DESC_R_MASK) ? 'R' : '-');
138 } else {
139 cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16");
140 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
141 (sc->flags & DESC_W_MASK) ? 'W' : '-');
142 }
143 cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
144 } else {
145 static const char *sys_type_name[2][16] = {
146 { /* 32 bit mode */
147 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
148 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
149 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
150 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
151 },
152 { /* 64 bit mode */
153 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
154 "Reserved", "Reserved", "Reserved", "Reserved",
155 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
156 "Reserved", "IntGate64", "TrapGate64"
157 }
158 };
159 cpu_fprintf(f, "%s",
160 sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
161 [(sc->flags & DESC_TYPE_MASK)
162 >> DESC_TYPE_SHIFT]);
163 }
164 done:
165 cpu_fprintf(f, "\n");
166 }
167
168 #define DUMP_CODE_BYTES_TOTAL 50
169 #define DUMP_CODE_BYTES_BACKWARD 20
170
171 void cpu_dump_state(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
172 int flags)
173 {
174 int eflags, i, nb;
175 char cc_op_name[32];
176 static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
177
178 cpu_synchronize_state(env);
179
180 eflags = env->eflags;
181 #ifdef TARGET_X86_64
182 if (env->hflags & HF_CS64_MASK) {
183 cpu_fprintf(f,
184 "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
185 "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
186 "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
187 "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
188 "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
189 env->regs[R_EAX],
190 env->regs[R_EBX],
191 env->regs[R_ECX],
192 env->regs[R_EDX],
193 env->regs[R_ESI],
194 env->regs[R_EDI],
195 env->regs[R_EBP],
196 env->regs[R_ESP],
197 env->regs[8],
198 env->regs[9],
199 env->regs[10],
200 env->regs[11],
201 env->regs[12],
202 env->regs[13],
203 env->regs[14],
204 env->regs[15],
205 env->eip, eflags,
206 eflags & DF_MASK ? 'D' : '-',
207 eflags & CC_O ? 'O' : '-',
208 eflags & CC_S ? 'S' : '-',
209 eflags & CC_Z ? 'Z' : '-',
210 eflags & CC_A ? 'A' : '-',
211 eflags & CC_P ? 'P' : '-',
212 eflags & CC_C ? 'C' : '-',
213 env->hflags & HF_CPL_MASK,
214 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
215 (env->a20_mask >> 20) & 1,
216 (env->hflags >> HF_SMM_SHIFT) & 1,
217 env->halted);
218 } else
219 #endif
220 {
221 cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
222 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
223 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
224 (uint32_t)env->regs[R_EAX],
225 (uint32_t)env->regs[R_EBX],
226 (uint32_t)env->regs[R_ECX],
227 (uint32_t)env->regs[R_EDX],
228 (uint32_t)env->regs[R_ESI],
229 (uint32_t)env->regs[R_EDI],
230 (uint32_t)env->regs[R_EBP],
231 (uint32_t)env->regs[R_ESP],
232 (uint32_t)env->eip, eflags,
233 eflags & DF_MASK ? 'D' : '-',
234 eflags & CC_O ? 'O' : '-',
235 eflags & CC_S ? 'S' : '-',
236 eflags & CC_Z ? 'Z' : '-',
237 eflags & CC_A ? 'A' : '-',
238 eflags & CC_P ? 'P' : '-',
239 eflags & CC_C ? 'C' : '-',
240 env->hflags & HF_CPL_MASK,
241 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
242 (env->a20_mask >> 20) & 1,
243 (env->hflags >> HF_SMM_SHIFT) & 1,
244 env->halted);
245 }
246
247 for(i = 0; i < 6; i++) {
248 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
249 &env->segs[i]);
250 }
251 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
252 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
253
254 #ifdef TARGET_X86_64
255 if (env->hflags & HF_LMA_MASK) {
256 cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
257 env->gdt.base, env->gdt.limit);
258 cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
259 env->idt.base, env->idt.limit);
260 cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
261 (uint32_t)env->cr[0],
262 env->cr[2],
263 env->cr[3],
264 (uint32_t)env->cr[4]);
265 for(i = 0; i < 4; i++)
266 cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
267 cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
268 env->dr[6], env->dr[7]);
269 } else
270 #endif
271 {
272 cpu_fprintf(f, "GDT= %08x %08x\n",
273 (uint32_t)env->gdt.base, env->gdt.limit);
274 cpu_fprintf(f, "IDT= %08x %08x\n",
275 (uint32_t)env->idt.base, env->idt.limit);
276 cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
277 (uint32_t)env->cr[0],
278 (uint32_t)env->cr[2],
279 (uint32_t)env->cr[3],
280 (uint32_t)env->cr[4]);
281 for(i = 0; i < 4; i++) {
282 cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
283 }
284 cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
285 env->dr[6], env->dr[7]);
286 }
287 if (flags & CPU_DUMP_CCOP) {
288 if ((unsigned)env->cc_op < CC_OP_NB)
289 snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
290 else
291 snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
292 #ifdef TARGET_X86_64
293 if (env->hflags & HF_CS64_MASK) {
294 cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
295 env->cc_src, env->cc_dst,
296 cc_op_name);
297 } else
298 #endif
299 {
300 cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
301 (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
302 cc_op_name);
303 }
304 }
305 cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
306 if (flags & CPU_DUMP_FPU) {
307 int fptag;
308 fptag = 0;
309 for(i = 0; i < 8; i++) {
310 fptag |= ((!env->fptags[i]) << i);
311 }
312 cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
313 env->fpuc,
314 (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
315 env->fpstt,
316 fptag,
317 env->mxcsr);
318 for(i=0;i<8;i++) {
319 CPU_LDoubleU u;
320 u.d = env->fpregs[i].d;
321 cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
322 i, u.l.lower, u.l.upper);
323 if ((i & 1) == 1)
324 cpu_fprintf(f, "\n");
325 else
326 cpu_fprintf(f, " ");
327 }
328 if (env->hflags & HF_CS64_MASK)
329 nb = 16;
330 else
331 nb = 8;
332 for(i=0;i<nb;i++) {
333 cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
334 i,
335 env->xmm_regs[i].XMM_L(3),
336 env->xmm_regs[i].XMM_L(2),
337 env->xmm_regs[i].XMM_L(1),
338 env->xmm_regs[i].XMM_L(0));
339 if ((i & 1) == 1)
340 cpu_fprintf(f, "\n");
341 else
342 cpu_fprintf(f, " ");
343 }
344 }
345 if (flags & CPU_DUMP_CODE) {
346 target_ulong base = env->segs[R_CS].base + env->eip;
347 target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
348 uint8_t code;
349 char codestr[3];
350
351 cpu_fprintf(f, "Code=");
352 for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
353 if (cpu_memory_rw_debug(env, base - offs + i, &code, 1, 0) == 0) {
354 snprintf(codestr, sizeof(codestr), "%02x", code);
355 } else {
356 snprintf(codestr, sizeof(codestr), "??");
357 }
358 cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
359 i == offs ? "<" : "", codestr, i == offs ? ">" : "");
360 }
361 cpu_fprintf(f, "\n");
362 }
363 }
364
365 /***********************************************************/
366 /* x86 mmu */
367 /* XXX: add PGE support */
368
369 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
370 {
371 CPUX86State *env = &cpu->env;
372
373 a20_state = (a20_state != 0);
374 if (a20_state != ((env->a20_mask >> 20) & 1)) {
375 #if defined(DEBUG_MMU)
376 printf("A20 update: a20=%d\n", a20_state);
377 #endif
378 /* if the cpu is currently executing code, we must unlink it and
379 all the potentially executing TB */
380 cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
381
382 /* when a20 is changed, all the MMU mappings are invalid, so
383 we must flush everything */
384 tlb_flush(env, 1);
385 env->a20_mask = ~(1 << 20) | (a20_state << 20);
386 }
387 }
388
389 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
390 {
391 int pe_state;
392
393 #if defined(DEBUG_MMU)
394 printf("CR0 update: CR0=0x%08x\n", new_cr0);
395 #endif
396 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
397 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
398 tlb_flush(env, 1);
399 }
400
401 #ifdef TARGET_X86_64
402 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
403 (env->efer & MSR_EFER_LME)) {
404 /* enter in long mode */
405 /* XXX: generate an exception */
406 if (!(env->cr[4] & CR4_PAE_MASK))
407 return;
408 env->efer |= MSR_EFER_LMA;
409 env->hflags |= HF_LMA_MASK;
410 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
411 (env->efer & MSR_EFER_LMA)) {
412 /* exit long mode */
413 env->efer &= ~MSR_EFER_LMA;
414 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
415 env->eip &= 0xffffffff;
416 }
417 #endif
418 env->cr[0] = new_cr0 | CR0_ET_MASK;
419
420 /* update PE flag in hidden flags */
421 pe_state = (env->cr[0] & CR0_PE_MASK);
422 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
423 /* ensure that ADDSEG is always set in real mode */
424 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
425 /* update FPU flags */
426 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
427 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
428 }
429
430 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
431 the PDPT */
432 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
433 {
434 env->cr[3] = new_cr3;
435 if (env->cr[0] & CR0_PG_MASK) {
436 #if defined(DEBUG_MMU)
437 printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
438 #endif
439 tlb_flush(env, 0);
440 }
441 }
442
443 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
444 {
445 #if defined(DEBUG_MMU)
446 printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
447 #endif
448 if ((new_cr4 ^ env->cr[4]) &
449 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
450 CR4_SMEP_MASK | CR4_SMAP_MASK)) {
451 tlb_flush(env, 1);
452 }
453 /* SSE handling */
454 if (!(env->cpuid_features & CPUID_SSE)) {
455 new_cr4 &= ~CR4_OSFXSR_MASK;
456 }
457 env->hflags &= ~HF_OSFXSR_MASK;
458 if (new_cr4 & CR4_OSFXSR_MASK) {
459 env->hflags |= HF_OSFXSR_MASK;
460 }
461
462 if (!(env->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SMAP)) {
463 new_cr4 &= ~CR4_SMAP_MASK;
464 }
465 env->hflags &= ~HF_SMAP_MASK;
466 if (new_cr4 & CR4_SMAP_MASK) {
467 env->hflags |= HF_SMAP_MASK;
468 }
469
470 env->cr[4] = new_cr4;
471 }
472
473 #if defined(CONFIG_USER_ONLY)
474
475 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
476 int is_write, int mmu_idx)
477 {
478 /* user mode only emulation */
479 is_write &= 1;
480 env->cr[2] = addr;
481 env->error_code = (is_write << PG_ERROR_W_BIT);
482 env->error_code |= PG_ERROR_U_MASK;
483 env->exception_index = EXCP0E_PAGE;
484 return 1;
485 }
486
487 #else
488
489 /* XXX: This value should match the one returned by CPUID
490 * and in exec.c */
491 # if defined(TARGET_X86_64)
492 # define PHYS_ADDR_MASK 0xfffffff000LL
493 # else
494 # define PHYS_ADDR_MASK 0xffffff000LL
495 # endif
496
497 /* return value:
498 -1 = cannot handle fault
499 0 = nothing more to do
500 1 = generate PF fault
501 */
502 int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
503 int is_write1, int mmu_idx)
504 {
505 uint64_t ptep, pte;
506 target_ulong pde_addr, pte_addr;
507 int error_code, is_dirty, prot, page_size, is_write, is_user;
508 hwaddr paddr;
509 uint32_t page_offset;
510 target_ulong vaddr, virt_addr;
511
512 is_user = mmu_idx == MMU_USER_IDX;
513 #if defined(DEBUG_MMU)
514 printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
515 addr, is_write1, is_user, env->eip);
516 #endif
517 is_write = is_write1 & 1;
518
519 if (!(env->cr[0] & CR0_PG_MASK)) {
520 pte = addr;
521 virt_addr = addr & TARGET_PAGE_MASK;
522 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
523 page_size = 4096;
524 goto do_mapping;
525 }
526
527 if (env->cr[4] & CR4_PAE_MASK) {
528 uint64_t pde, pdpe;
529 target_ulong pdpe_addr;
530
531 #ifdef TARGET_X86_64
532 if (env->hflags & HF_LMA_MASK) {
533 uint64_t pml4e_addr, pml4e;
534 int32_t sext;
535
536 /* test virtual address sign extension */
537 sext = (int64_t)addr >> 47;
538 if (sext != 0 && sext != -1) {
539 env->error_code = 0;
540 env->exception_index = EXCP0D_GPF;
541 return 1;
542 }
543
544 pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
545 env->a20_mask;
546 pml4e = ldq_phys(pml4e_addr);
547 if (!(pml4e & PG_PRESENT_MASK)) {
548 error_code = 0;
549 goto do_fault;
550 }
551 if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
552 error_code = PG_ERROR_RSVD_MASK;
553 goto do_fault;
554 }
555 if (!(pml4e & PG_ACCESSED_MASK)) {
556 pml4e |= PG_ACCESSED_MASK;
557 stl_phys_notdirty(pml4e_addr, pml4e);
558 }
559 ptep = pml4e ^ PG_NX_MASK;
560 pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
561 env->a20_mask;
562 pdpe = ldq_phys(pdpe_addr);
563 if (!(pdpe & PG_PRESENT_MASK)) {
564 error_code = 0;
565 goto do_fault;
566 }
567 if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
568 error_code = PG_ERROR_RSVD_MASK;
569 goto do_fault;
570 }
571 ptep &= pdpe ^ PG_NX_MASK;
572 if (!(pdpe & PG_ACCESSED_MASK)) {
573 pdpe |= PG_ACCESSED_MASK;
574 stl_phys_notdirty(pdpe_addr, pdpe);
575 }
576 } else
577 #endif
578 {
579 /* XXX: load them when cr3 is loaded ? */
580 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
581 env->a20_mask;
582 pdpe = ldq_phys(pdpe_addr);
583 if (!(pdpe & PG_PRESENT_MASK)) {
584 error_code = 0;
585 goto do_fault;
586 }
587 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
588 }
589
590 pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
591 env->a20_mask;
592 pde = ldq_phys(pde_addr);
593 if (!(pde & PG_PRESENT_MASK)) {
594 error_code = 0;
595 goto do_fault;
596 }
597 if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
598 error_code = PG_ERROR_RSVD_MASK;
599 goto do_fault;
600 }
601 ptep &= pde ^ PG_NX_MASK;
602 if (pde & PG_PSE_MASK) {
603 /* 2 MB page */
604 page_size = 2048 * 1024;
605 ptep ^= PG_NX_MASK;
606 if ((ptep & PG_NX_MASK) && is_write1 == 2) {
607 goto do_fault_protect;
608 }
609 switch (mmu_idx) {
610 case MMU_USER_IDX:
611 if (!(ptep & PG_USER_MASK)) {
612 goto do_fault_protect;
613 }
614 if (is_write && !(ptep & PG_RW_MASK)) {
615 goto do_fault_protect;
616 }
617 break;
618
619 case MMU_KERNEL_IDX:
620 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
621 (ptep & PG_USER_MASK)) {
622 goto do_fault_protect;
623 }
624 /* fall through */
625 case MMU_KSMAP_IDX:
626 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
627 (ptep & PG_USER_MASK)) {
628 goto do_fault_protect;
629 }
630 if ((env->cr[0] & CR0_WP_MASK) &&
631 is_write && !(ptep & PG_RW_MASK)) {
632 goto do_fault_protect;
633 }
634 break;
635
636 default: /* cannot happen */
637 break;
638 }
639 is_dirty = is_write && !(pde & PG_DIRTY_MASK);
640 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
641 pde |= PG_ACCESSED_MASK;
642 if (is_dirty)
643 pde |= PG_DIRTY_MASK;
644 stl_phys_notdirty(pde_addr, pde);
645 }
646 /* align to page_size */
647 pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
648 virt_addr = addr & ~(page_size - 1);
649 } else {
650 /* 4 KB page */
651 if (!(pde & PG_ACCESSED_MASK)) {
652 pde |= PG_ACCESSED_MASK;
653 stl_phys_notdirty(pde_addr, pde);
654 }
655 pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
656 env->a20_mask;
657 pte = ldq_phys(pte_addr);
658 if (!(pte & PG_PRESENT_MASK)) {
659 error_code = 0;
660 goto do_fault;
661 }
662 if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
663 error_code = PG_ERROR_RSVD_MASK;
664 goto do_fault;
665 }
666 /* combine pde and pte nx, user and rw protections */
667 ptep &= pte ^ PG_NX_MASK;
668 ptep ^= PG_NX_MASK;
669 if ((ptep & PG_NX_MASK) && is_write1 == 2)
670 goto do_fault_protect;
671 switch (mmu_idx) {
672 case MMU_USER_IDX:
673 if (!(ptep & PG_USER_MASK)) {
674 goto do_fault_protect;
675 }
676 if (is_write && !(ptep & PG_RW_MASK)) {
677 goto do_fault_protect;
678 }
679 break;
680
681 case MMU_KERNEL_IDX:
682 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
683 (ptep & PG_USER_MASK)) {
684 goto do_fault_protect;
685 }
686 /* fall through */
687 case MMU_KSMAP_IDX:
688 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
689 (ptep & PG_USER_MASK)) {
690 goto do_fault_protect;
691 }
692 if ((env->cr[0] & CR0_WP_MASK) &&
693 is_write && !(ptep & PG_RW_MASK)) {
694 goto do_fault_protect;
695 }
696 break;
697
698 default: /* cannot happen */
699 break;
700 }
701 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
702 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
703 pte |= PG_ACCESSED_MASK;
704 if (is_dirty)
705 pte |= PG_DIRTY_MASK;
706 stl_phys_notdirty(pte_addr, pte);
707 }
708 page_size = 4096;
709 virt_addr = addr & ~0xfff;
710 pte = pte & (PHYS_ADDR_MASK | 0xfff);
711 }
712 } else {
713 uint32_t pde;
714
715 /* page directory entry */
716 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
717 env->a20_mask;
718 pde = ldl_phys(pde_addr);
719 if (!(pde & PG_PRESENT_MASK)) {
720 error_code = 0;
721 goto do_fault;
722 }
723 /* if PSE bit is set, then we use a 4MB page */
724 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
725 page_size = 4096 * 1024;
726 switch (mmu_idx) {
727 case MMU_USER_IDX:
728 if (!(pde & PG_USER_MASK)) {
729 goto do_fault_protect;
730 }
731 if (is_write && !(pde & PG_RW_MASK)) {
732 goto do_fault_protect;
733 }
734 break;
735
736 case MMU_KERNEL_IDX:
737 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
738 (pde & PG_USER_MASK)) {
739 goto do_fault_protect;
740 }
741 /* fall through */
742 case MMU_KSMAP_IDX:
743 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
744 (pde & PG_USER_MASK)) {
745 goto do_fault_protect;
746 }
747 if ((env->cr[0] & CR0_WP_MASK) &&
748 is_write && !(pde & PG_RW_MASK)) {
749 goto do_fault_protect;
750 }
751 break;
752
753 default: /* cannot happen */
754 break;
755 }
756 is_dirty = is_write && !(pde & PG_DIRTY_MASK);
757 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
758 pde |= PG_ACCESSED_MASK;
759 if (is_dirty)
760 pde |= PG_DIRTY_MASK;
761 stl_phys_notdirty(pde_addr, pde);
762 }
763
764 pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
765 ptep = pte;
766 virt_addr = addr & ~(page_size - 1);
767 } else {
768 if (!(pde & PG_ACCESSED_MASK)) {
769 pde |= PG_ACCESSED_MASK;
770 stl_phys_notdirty(pde_addr, pde);
771 }
772
773 /* page directory entry */
774 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
775 env->a20_mask;
776 pte = ldl_phys(pte_addr);
777 if (!(pte & PG_PRESENT_MASK)) {
778 error_code = 0;
779 goto do_fault;
780 }
781 /* combine pde and pte user and rw protections */
782 ptep = pte & pde;
783 switch (mmu_idx) {
784 case MMU_USER_IDX:
785 if (!(ptep & PG_USER_MASK)) {
786 goto do_fault_protect;
787 }
788 if (is_write && !(ptep & PG_RW_MASK)) {
789 goto do_fault_protect;
790 }
791 break;
792
793 case MMU_KERNEL_IDX:
794 if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) &&
795 (ptep & PG_USER_MASK)) {
796 goto do_fault_protect;
797 }
798 /* fall through */
799 case MMU_KSMAP_IDX:
800 if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) &&
801 (ptep & PG_USER_MASK)) {
802 goto do_fault_protect;
803 }
804 if ((env->cr[0] & CR0_WP_MASK) &&
805 is_write && !(ptep & PG_RW_MASK)) {
806 goto do_fault_protect;
807 }
808 break;
809
810 default: /* cannot happen */
811 break;
812 }
813 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
814 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
815 pte |= PG_ACCESSED_MASK;
816 if (is_dirty)
817 pte |= PG_DIRTY_MASK;
818 stl_phys_notdirty(pte_addr, pte);
819 }
820 page_size = 4096;
821 virt_addr = addr & ~0xfff;
822 }
823 }
824 /* the page can be put in the TLB */
825 prot = PAGE_READ;
826 if (!(ptep & PG_NX_MASK))
827 prot |= PAGE_EXEC;
828 if (pte & PG_DIRTY_MASK) {
829 /* only set write access if already dirty... otherwise wait
830 for dirty access */
831 if (is_user) {
832 if (ptep & PG_RW_MASK)
833 prot |= PAGE_WRITE;
834 } else {
835 if (!(env->cr[0] & CR0_WP_MASK) ||
836 (ptep & PG_RW_MASK))
837 prot |= PAGE_WRITE;
838 }
839 }
840 do_mapping:
841 pte = pte & env->a20_mask;
842
843 /* Even if 4MB pages, we map only one 4KB page in the cache to
844 avoid filling it too fast */
845 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
846 paddr = (pte & TARGET_PAGE_MASK) + page_offset;
847 vaddr = virt_addr + page_offset;
848
849 tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
850 return 0;
851 do_fault_protect:
852 error_code = PG_ERROR_P_MASK;
853 do_fault:
854 error_code |= (is_write << PG_ERROR_W_BIT);
855 if (is_user)
856 error_code |= PG_ERROR_U_MASK;
857 if (is_write1 == 2 &&
858 (((env->efer & MSR_EFER_NXE) &&
859 (env->cr[4] & CR4_PAE_MASK)) ||
860 (env->cr[4] & CR4_SMEP_MASK)))
861 error_code |= PG_ERROR_I_D_MASK;
862 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
863 /* cr2 is not modified in case of exceptions */
864 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
865 addr);
866 } else {
867 env->cr[2] = addr;
868 }
869 env->error_code = error_code;
870 env->exception_index = EXCP0E_PAGE;
871 return 1;
872 }
873
874 hwaddr cpu_get_phys_page_debug(CPUX86State *env, target_ulong addr)
875 {
876 target_ulong pde_addr, pte_addr;
877 uint64_t pte;
878 hwaddr paddr;
879 uint32_t page_offset;
880 int page_size;
881
882 if (env->cr[4] & CR4_PAE_MASK) {
883 target_ulong pdpe_addr;
884 uint64_t pde, pdpe;
885
886 #ifdef TARGET_X86_64
887 if (env->hflags & HF_LMA_MASK) {
888 uint64_t pml4e_addr, pml4e;
889 int32_t sext;
890
891 /* test virtual address sign extension */
892 sext = (int64_t)addr >> 47;
893 if (sext != 0 && sext != -1)
894 return -1;
895
896 pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
897 env->a20_mask;
898 pml4e = ldq_phys(pml4e_addr);
899 if (!(pml4e & PG_PRESENT_MASK))
900 return -1;
901
902 pdpe_addr = ((pml4e & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
903 (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask;
904 pdpe = ldq_phys(pdpe_addr);
905 if (!(pdpe & PG_PRESENT_MASK))
906 return -1;
907 } else
908 #endif
909 {
910 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
911 env->a20_mask;
912 pdpe = ldq_phys(pdpe_addr);
913 if (!(pdpe & PG_PRESENT_MASK))
914 return -1;
915 }
916
917 pde_addr = ((pdpe & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
918 (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask;
919 pde = ldq_phys(pde_addr);
920 if (!(pde & PG_PRESENT_MASK)) {
921 return -1;
922 }
923 if (pde & PG_PSE_MASK) {
924 /* 2 MB page */
925 page_size = 2048 * 1024;
926 pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
927 } else {
928 /* 4 KB page */
929 pte_addr = ((pde & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) +
930 (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask;
931 page_size = 4096;
932 pte = ldq_phys(pte_addr);
933 }
934 pte &= ~(PG_NX_MASK | PG_HI_USER_MASK);
935 if (!(pte & PG_PRESENT_MASK))
936 return -1;
937 } else {
938 uint32_t pde;
939
940 if (!(env->cr[0] & CR0_PG_MASK)) {
941 pte = addr;
942 page_size = 4096;
943 } else {
944 /* page directory entry */
945 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
946 pde = ldl_phys(pde_addr);
947 if (!(pde & PG_PRESENT_MASK))
948 return -1;
949 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
950 pte = pde & ~0x003ff000; /* align to 4MB */
951 page_size = 4096 * 1024;
952 } else {
953 /* page directory entry */
954 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
955 pte = ldl_phys(pte_addr);
956 if (!(pte & PG_PRESENT_MASK))
957 return -1;
958 page_size = 4096;
959 }
960 }
961 pte = pte & env->a20_mask;
962 }
963
964 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
965 paddr = (pte & TARGET_PAGE_MASK) + page_offset;
966 return paddr;
967 }
968
969 void hw_breakpoint_insert(CPUX86State *env, int index)
970 {
971 int type = 0, err = 0;
972
973 switch (hw_breakpoint_type(env->dr[7], index)) {
974 case DR7_TYPE_BP_INST:
975 if (hw_breakpoint_enabled(env->dr[7], index)) {
976 err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU,
977 &env->cpu_breakpoint[index]);
978 }
979 break;
980 case DR7_TYPE_DATA_WR:
981 type = BP_CPU | BP_MEM_WRITE;
982 break;
983 case DR7_TYPE_IO_RW:
984 /* No support for I/O watchpoints yet */
985 break;
986 case DR7_TYPE_DATA_RW:
987 type = BP_CPU | BP_MEM_ACCESS;
988 break;
989 }
990
991 if (type != 0) {
992 err = cpu_watchpoint_insert(env, env->dr[index],
993 hw_breakpoint_len(env->dr[7], index),
994 type, &env->cpu_watchpoint[index]);
995 }
996
997 if (err) {
998 env->cpu_breakpoint[index] = NULL;
999 }
1000 }
1001
1002 void hw_breakpoint_remove(CPUX86State *env, int index)
1003 {
1004 if (!env->cpu_breakpoint[index])
1005 return;
1006 switch (hw_breakpoint_type(env->dr[7], index)) {
1007 case DR7_TYPE_BP_INST:
1008 if (hw_breakpoint_enabled(env->dr[7], index)) {
1009 cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]);
1010 }
1011 break;
1012 case DR7_TYPE_DATA_WR:
1013 case DR7_TYPE_DATA_RW:
1014 cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]);
1015 break;
1016 case DR7_TYPE_IO_RW:
1017 /* No support for I/O watchpoints yet */
1018 break;
1019 }
1020 }
1021
1022 bool check_hw_breakpoints(CPUX86State *env, bool force_dr6_update)
1023 {
1024 target_ulong dr6;
1025 int reg;
1026 bool hit_enabled = false;
1027
1028 dr6 = env->dr[6] & ~0xf;
1029 for (reg = 0; reg < DR7_MAX_BP; reg++) {
1030 bool bp_match = false;
1031 bool wp_match = false;
1032
1033 switch (hw_breakpoint_type(env->dr[7], reg)) {
1034 case DR7_TYPE_BP_INST:
1035 if (env->dr[reg] == env->eip) {
1036 bp_match = true;
1037 }
1038 break;
1039 case DR7_TYPE_DATA_WR:
1040 case DR7_TYPE_DATA_RW:
1041 if (env->cpu_watchpoint[reg] &&
1042 env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT) {
1043 wp_match = true;
1044 }
1045 break;
1046 case DR7_TYPE_IO_RW:
1047 break;
1048 }
1049 if (bp_match || wp_match) {
1050 dr6 |= 1 << reg;
1051 if (hw_breakpoint_enabled(env->dr[7], reg)) {
1052 hit_enabled = true;
1053 }
1054 }
1055 }
1056
1057 if (hit_enabled || force_dr6_update) {
1058 env->dr[6] = dr6;
1059 }
1060
1061 return hit_enabled;
1062 }
1063
1064 void breakpoint_handler(CPUX86State *env)
1065 {
1066 CPUBreakpoint *bp;
1067
1068 if (env->watchpoint_hit) {
1069 if (env->watchpoint_hit->flags & BP_CPU) {
1070 env->watchpoint_hit = NULL;
1071 if (check_hw_breakpoints(env, false)) {
1072 raise_exception(env, EXCP01_DB);
1073 } else {
1074 cpu_resume_from_signal(env, NULL);
1075 }
1076 }
1077 } else {
1078 QTAILQ_FOREACH(bp, &env->breakpoints, entry)
1079 if (bp->pc == env->eip) {
1080 if (bp->flags & BP_CPU) {
1081 check_hw_breakpoints(env, true);
1082 raise_exception(env, EXCP01_DB);
1083 }
1084 break;
1085 }
1086 }
1087 }
1088
1089 typedef struct MCEInjectionParams {
1090 Monitor *mon;
1091 X86CPU *cpu;
1092 int bank;
1093 uint64_t status;
1094 uint64_t mcg_status;
1095 uint64_t addr;
1096 uint64_t misc;
1097 int flags;
1098 } MCEInjectionParams;
1099
1100 static void do_inject_x86_mce(void *data)
1101 {
1102 MCEInjectionParams *params = data;
1103 CPUX86State *cenv = &params->cpu->env;
1104 CPUState *cpu = CPU(params->cpu);
1105 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
1106
1107 cpu_synchronize_state(cenv);
1108
1109 /*
1110 * If there is an MCE exception being processed, ignore this SRAO MCE
1111 * unless unconditional injection was requested.
1112 */
1113 if (!(params->flags & MCE_INJECT_UNCOND_AO)
1114 && !(params->status & MCI_STATUS_AR)
1115 && (cenv->mcg_status & MCG_STATUS_MCIP)) {
1116 return;
1117 }
1118
1119 if (params->status & MCI_STATUS_UC) {
1120 /*
1121 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1122 * reporting is disabled
1123 */
1124 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
1125 monitor_printf(params->mon,
1126 "CPU %d: Uncorrected error reporting disabled\n",
1127 cpu->cpu_index);
1128 return;
1129 }
1130
1131 /*
1132 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1133 * reporting is disabled for the bank
1134 */
1135 if (banks[0] != ~(uint64_t)0) {
1136 monitor_printf(params->mon,
1137 "CPU %d: Uncorrected error reporting disabled for"
1138 " bank %d\n",
1139 cpu->cpu_index, params->bank);
1140 return;
1141 }
1142
1143 if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
1144 !(cenv->cr[4] & CR4_MCE_MASK)) {
1145 monitor_printf(params->mon,
1146 "CPU %d: Previous MCE still in progress, raising"
1147 " triple fault\n",
1148 cpu->cpu_index);
1149 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1150 qemu_system_reset_request();
1151 return;
1152 }
1153 if (banks[1] & MCI_STATUS_VAL) {
1154 params->status |= MCI_STATUS_OVER;
1155 }
1156 banks[2] = params->addr;
1157 banks[3] = params->misc;
1158 cenv->mcg_status = params->mcg_status;
1159 banks[1] = params->status;
1160 cpu_interrupt(cenv, CPU_INTERRUPT_MCE);
1161 } else if (!(banks[1] & MCI_STATUS_VAL)
1162 || !(banks[1] & MCI_STATUS_UC)) {
1163 if (banks[1] & MCI_STATUS_VAL) {
1164 params->status |= MCI_STATUS_OVER;
1165 }
1166 banks[2] = params->addr;
1167 banks[3] = params->misc;
1168 banks[1] = params->status;
1169 } else {
1170 banks[1] |= MCI_STATUS_OVER;
1171 }
1172 }
1173
1174 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
1175 uint64_t status, uint64_t mcg_status, uint64_t addr,
1176 uint64_t misc, int flags)
1177 {
1178 CPUX86State *cenv = &cpu->env;
1179 MCEInjectionParams params = {
1180 .mon = mon,
1181 .cpu = cpu,
1182 .bank = bank,
1183 .status = status,
1184 .mcg_status = mcg_status,
1185 .addr = addr,
1186 .misc = misc,
1187 .flags = flags,
1188 };
1189 unsigned bank_num = cenv->mcg_cap & 0xff;
1190 CPUX86State *env;
1191
1192 if (!cenv->mcg_cap) {
1193 monitor_printf(mon, "MCE injection not supported\n");
1194 return;
1195 }
1196 if (bank >= bank_num) {
1197 monitor_printf(mon, "Invalid MCE bank number\n");
1198 return;
1199 }
1200 if (!(status & MCI_STATUS_VAL)) {
1201 monitor_printf(mon, "Invalid MCE status code\n");
1202 return;
1203 }
1204 if ((flags & MCE_INJECT_BROADCAST)
1205 && !cpu_x86_support_mca_broadcast(cenv)) {
1206 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
1207 return;
1208 }
1209
1210 run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
1211 if (flags & MCE_INJECT_BROADCAST) {
1212 params.bank = 1;
1213 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
1214 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1215 params.addr = 0;
1216 params.misc = 0;
1217 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1218 if (cenv == env) {
1219 continue;
1220 }
1221 params.cpu = x86_env_get_cpu(env);
1222 run_on_cpu(CPU(cpu), do_inject_x86_mce, &params);
1223 }
1224 }
1225 }
1226
1227 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
1228 {
1229 if (kvm_enabled()) {
1230 env->tpr_access_type = access;
1231
1232 cpu_interrupt(env, CPU_INTERRUPT_TPR);
1233 } else {
1234 cpu_restore_state(env, env->mem_io_pc);
1235
1236 apic_handle_tpr_access_report(env->apic_state, env->eip, access);
1237 }
1238 }
1239 #endif /* !CONFIG_USER_ONLY */
1240
1241 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
1242 target_ulong *base, unsigned int *limit,
1243 unsigned int *flags)
1244 {
1245 SegmentCache *dt;
1246 target_ulong ptr;
1247 uint32_t e1, e2;
1248 int index;
1249
1250 if (selector & 0x4)
1251 dt = &env->ldt;
1252 else
1253 dt = &env->gdt;
1254 index = selector & ~7;
1255 ptr = dt->base + index;
1256 if ((index + 7) > dt->limit
1257 || cpu_memory_rw_debug(env, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1258 || cpu_memory_rw_debug(env, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1259 return 0;
1260
1261 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1262 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1263 if (e2 & DESC_G_MASK)
1264 *limit = (*limit << 12) | 0xfff;
1265 *flags = e2;
1266
1267 return 1;
1268 }
1269
1270 X86CPU *cpu_x86_init(const char *cpu_model)
1271 {
1272 X86CPU *cpu;
1273 CPUX86State *env;
1274 Error *error = NULL;
1275
1276 cpu = X86_CPU(object_new(TYPE_X86_CPU));
1277 env = &cpu->env;
1278 env->cpu_model_str = cpu_model;
1279
1280 if (cpu_x86_register(cpu, cpu_model) < 0) {
1281 object_delete(OBJECT(cpu));
1282 return NULL;
1283 }
1284
1285 x86_cpu_realize(OBJECT(cpu), &error);
1286 if (error) {
1287 error_free(error);
1288 object_delete(OBJECT(cpu));
1289 return NULL;
1290 }
1291 return cpu;
1292 }
1293
1294 #if !defined(CONFIG_USER_ONLY)
1295 void do_cpu_init(X86CPU *cpu)
1296 {
1297 CPUX86State *env = &cpu->env;
1298 int sipi = env->interrupt_request & CPU_INTERRUPT_SIPI;
1299 uint64_t pat = env->pat;
1300
1301 cpu_reset(CPU(cpu));
1302 env->interrupt_request = sipi;
1303 env->pat = pat;
1304 apic_init_reset(env->apic_state);
1305 }
1306
1307 void do_cpu_sipi(X86CPU *cpu)
1308 {
1309 CPUX86State *env = &cpu->env;
1310
1311 apic_sipi(env->apic_state);
1312 }
1313 #else
1314 void do_cpu_init(X86CPU *cpu)
1315 {
1316 }
1317 void do_cpu_sipi(X86CPU *cpu)
1318 {
1319 }
1320 #endif