]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: x86: Consolidate TCG and KVM MCE injection code
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
35 //
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66 static bool has_msr_async_pf_en;
67 #endif
68 static int lm_capable_kernel;
69
70 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71 {
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93 }
94
95 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
97 {
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
102
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
106 }
107
108 for (i = 0; i < cpuid->nent; ++i) {
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
131 */
132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
133 ret |= cpuid_1_edx & 0x183f7ff;
134 break;
135 }
136 break;
137 }
138 }
139 }
140
141 qemu_free(cpuid);
142
143 return ret;
144 }
145
146 #ifdef CONFIG_KVM_PARA
147 struct kvm_para_features {
148 int cap;
149 int feature;
150 } para_features[] = {
151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154 #ifdef KVM_CAP_ASYNC_PF
155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
156 #endif
157 { -1, -1 }
158 };
159
160 static int get_para_features(CPUState *env)
161 {
162 int i, features = 0;
163
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
167 }
168 }
169 #ifdef KVM_CAP_ASYNC_PF
170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171 #endif
172 return features;
173 }
174 #endif /* CONFIG_KVM_PARA */
175
176 #ifdef KVM_CAP_MCE
177 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
178 int *max_banks)
179 {
180 int r;
181
182 r = kvm_check_extension(s, KVM_CAP_MCE);
183 if (r > 0) {
184 *max_banks = r;
185 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
186 }
187 return -ENOSYS;
188 }
189
190 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
191 {
192 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
193 }
194
195 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
196 {
197 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
198 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
199 uint64_t mcg_status = MCG_STATUS_MCIP;
200
201 if (code == BUS_MCEERR_AR) {
202 status |= MCI_STATUS_AR | 0x134;
203 mcg_status |= MCG_STATUS_EIPV;
204 } else {
205 status |= 0xc0;
206 mcg_status |= MCG_STATUS_RIPV;
207 }
208 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
209 (MCM_ADDR_PHYS << 6) | 0xc,
210 cpu_x86_support_mca_broadcast(env) ?
211 MCE_INJECT_BROADCAST : 0);
212 }
213 #endif /* KVM_CAP_MCE */
214
215 static void hardware_memory_error(void)
216 {
217 fprintf(stderr, "Hardware memory error!\n");
218 exit(1);
219 }
220
221 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
222 {
223 #ifdef KVM_CAP_MCE
224 ram_addr_t ram_addr;
225 target_phys_addr_t paddr;
226
227 if ((env->mcg_cap & MCG_SER_P) && addr
228 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
229 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
230 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
231 &paddr)) {
232 fprintf(stderr, "Hardware memory error for memory used by "
233 "QEMU itself instead of guest system!\n");
234 /* Hope we are lucky for AO MCE */
235 if (code == BUS_MCEERR_AO) {
236 return 0;
237 } else {
238 hardware_memory_error();
239 }
240 }
241 kvm_mce_inject(env, paddr, code);
242 } else
243 #endif /* KVM_CAP_MCE */
244 {
245 if (code == BUS_MCEERR_AO) {
246 return 0;
247 } else if (code == BUS_MCEERR_AR) {
248 hardware_memory_error();
249 } else {
250 return 1;
251 }
252 }
253 return 0;
254 }
255
256 int kvm_arch_on_sigbus(int code, void *addr)
257 {
258 #ifdef KVM_CAP_MCE
259 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
260 ram_addr_t ram_addr;
261 target_phys_addr_t paddr;
262
263 /* Hope we are lucky for AO MCE */
264 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
265 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
266 &paddr)) {
267 fprintf(stderr, "Hardware memory error for memory used by "
268 "QEMU itself instead of guest system!: %p\n", addr);
269 return 0;
270 }
271 kvm_mce_inject(first_cpu, paddr, code);
272 } else
273 #endif /* KVM_CAP_MCE */
274 {
275 if (code == BUS_MCEERR_AO) {
276 return 0;
277 } else if (code == BUS_MCEERR_AR) {
278 hardware_memory_error();
279 } else {
280 return 1;
281 }
282 }
283 return 0;
284 }
285
286 static int kvm_inject_mce_oldstyle(CPUState *env)
287 {
288 #ifdef KVM_CAP_MCE
289 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
290 unsigned int bank, bank_num = env->mcg_cap & 0xff;
291 struct kvm_x86_mce mce;
292
293 env->exception_injected = -1;
294
295 /*
296 * There must be at least one bank in use if an MCE is pending.
297 * Find it and use its values for the event injection.
298 */
299 for (bank = 0; bank < bank_num; bank++) {
300 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
301 break;
302 }
303 }
304 assert(bank < bank_num);
305
306 mce.bank = bank;
307 mce.status = env->mce_banks[bank * 4 + 1];
308 mce.mcg_status = env->mcg_status;
309 mce.addr = env->mce_banks[bank * 4 + 2];
310 mce.misc = env->mce_banks[bank * 4 + 3];
311
312 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
313 }
314 #endif /* KVM_CAP_MCE */
315 return 0;
316 }
317
318 static void cpu_update_state(void *opaque, int running, int reason)
319 {
320 CPUState *env = opaque;
321
322 if (running) {
323 env->tsc_valid = false;
324 }
325 }
326
327 int kvm_arch_init_vcpu(CPUState *env)
328 {
329 struct {
330 struct kvm_cpuid2 cpuid;
331 struct kvm_cpuid_entry2 entries[100];
332 } __attribute__((packed)) cpuid_data;
333 uint32_t limit, i, j, cpuid_i;
334 uint32_t unused;
335 struct kvm_cpuid_entry2 *c;
336 #ifdef CONFIG_KVM_PARA
337 uint32_t signature[3];
338 #endif
339
340 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
341
342 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
343 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
344 env->cpuid_ext_features |= i;
345
346 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
347 0, R_EDX);
348 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
349 0, R_ECX);
350 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
351 0, R_EDX);
352
353
354 cpuid_i = 0;
355
356 #ifdef CONFIG_KVM_PARA
357 /* Paravirtualization CPUIDs */
358 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
359 c = &cpuid_data.entries[cpuid_i++];
360 memset(c, 0, sizeof(*c));
361 c->function = KVM_CPUID_SIGNATURE;
362 c->eax = 0;
363 c->ebx = signature[0];
364 c->ecx = signature[1];
365 c->edx = signature[2];
366
367 c = &cpuid_data.entries[cpuid_i++];
368 memset(c, 0, sizeof(*c));
369 c->function = KVM_CPUID_FEATURES;
370 c->eax = env->cpuid_kvm_features & get_para_features(env);
371 #endif
372
373 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
374
375 for (i = 0; i <= limit; i++) {
376 c = &cpuid_data.entries[cpuid_i++];
377
378 switch (i) {
379 case 2: {
380 /* Keep reading function 2 till all the input is received */
381 int times;
382
383 c->function = i;
384 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
385 KVM_CPUID_FLAG_STATE_READ_NEXT;
386 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
387 times = c->eax & 0xff;
388
389 for (j = 1; j < times; ++j) {
390 c = &cpuid_data.entries[cpuid_i++];
391 c->function = i;
392 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
393 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
394 }
395 break;
396 }
397 case 4:
398 case 0xb:
399 case 0xd:
400 for (j = 0; ; j++) {
401 c->function = i;
402 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
403 c->index = j;
404 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
405
406 if (i == 4 && c->eax == 0) {
407 break;
408 }
409 if (i == 0xb && !(c->ecx & 0xff00)) {
410 break;
411 }
412 if (i == 0xd && c->eax == 0) {
413 break;
414 }
415 c = &cpuid_data.entries[cpuid_i++];
416 }
417 break;
418 default:
419 c->function = i;
420 c->flags = 0;
421 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
422 break;
423 }
424 }
425 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
426
427 for (i = 0x80000000; i <= limit; i++) {
428 c = &cpuid_data.entries[cpuid_i++];
429
430 c->function = i;
431 c->flags = 0;
432 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
433 }
434
435 cpuid_data.cpuid.nent = cpuid_i;
436
437 #ifdef KVM_CAP_MCE
438 if (((env->cpuid_version >> 8)&0xF) >= 6
439 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
440 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
441 uint64_t mcg_cap;
442 int banks;
443
444 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
445 perror("kvm_get_mce_cap_supported FAILED");
446 } else {
447 if (banks > MCE_BANKS_DEF)
448 banks = MCE_BANKS_DEF;
449 mcg_cap &= MCE_CAP_DEF;
450 mcg_cap |= banks;
451 if (kvm_setup_mce(env, &mcg_cap)) {
452 perror("kvm_setup_mce FAILED");
453 } else {
454 env->mcg_cap = mcg_cap;
455 }
456 }
457 }
458 #endif
459
460 qemu_add_vm_change_state_handler(cpu_update_state, env);
461
462 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
463 }
464
465 void kvm_arch_reset_vcpu(CPUState *env)
466 {
467 env->exception_injected = -1;
468 env->interrupt_injected = -1;
469 env->xcr0 = 1;
470 if (kvm_irqchip_in_kernel()) {
471 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
472 KVM_MP_STATE_UNINITIALIZED;
473 } else {
474 env->mp_state = KVM_MP_STATE_RUNNABLE;
475 }
476 }
477
478 static int kvm_get_supported_msrs(KVMState *s)
479 {
480 static int kvm_supported_msrs;
481 int ret = 0;
482
483 /* first time */
484 if (kvm_supported_msrs == 0) {
485 struct kvm_msr_list msr_list, *kvm_msr_list;
486
487 kvm_supported_msrs = -1;
488
489 /* Obtain MSR list from KVM. These are the MSRs that we must
490 * save/restore */
491 msr_list.nmsrs = 0;
492 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
493 if (ret < 0 && ret != -E2BIG) {
494 return ret;
495 }
496 /* Old kernel modules had a bug and could write beyond the provided
497 memory. Allocate at least a safe amount of 1K. */
498 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
499 msr_list.nmsrs *
500 sizeof(msr_list.indices[0])));
501
502 kvm_msr_list->nmsrs = msr_list.nmsrs;
503 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
504 if (ret >= 0) {
505 int i;
506
507 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
508 if (kvm_msr_list->indices[i] == MSR_STAR) {
509 has_msr_star = true;
510 continue;
511 }
512 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
513 has_msr_hsave_pa = true;
514 continue;
515 }
516 }
517 }
518
519 free(kvm_msr_list);
520 }
521
522 return ret;
523 }
524
525 int kvm_arch_init(KVMState *s)
526 {
527 uint64_t identity_base = 0xfffbc000;
528 int ret;
529 struct utsname utsname;
530
531 ret = kvm_get_supported_msrs(s);
532 if (ret < 0) {
533 return ret;
534 }
535
536 uname(&utsname);
537 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
538
539 /*
540 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
541 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
542 * Since these must be part of guest physical memory, we need to allocate
543 * them, both by setting their start addresses in the kernel and by
544 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
545 *
546 * Older KVM versions may not support setting the identity map base. In
547 * that case we need to stick with the default, i.e. a 256K maximum BIOS
548 * size.
549 */
550 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
551 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
552 /* Allows up to 16M BIOSes. */
553 identity_base = 0xfeffc000;
554
555 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
556 if (ret < 0) {
557 return ret;
558 }
559 }
560 #endif
561 /* Set TSS base one page after EPT identity map. */
562 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
563 if (ret < 0) {
564 return ret;
565 }
566
567 /* Tell fw_cfg to notify the BIOS to reserve the range. */
568 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
569 if (ret < 0) {
570 fprintf(stderr, "e820_add_entry() table is full\n");
571 return ret;
572 }
573
574 return 0;
575 }
576
577 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
578 {
579 lhs->selector = rhs->selector;
580 lhs->base = rhs->base;
581 lhs->limit = rhs->limit;
582 lhs->type = 3;
583 lhs->present = 1;
584 lhs->dpl = 3;
585 lhs->db = 0;
586 lhs->s = 1;
587 lhs->l = 0;
588 lhs->g = 0;
589 lhs->avl = 0;
590 lhs->unusable = 0;
591 }
592
593 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
594 {
595 unsigned flags = rhs->flags;
596 lhs->selector = rhs->selector;
597 lhs->base = rhs->base;
598 lhs->limit = rhs->limit;
599 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
600 lhs->present = (flags & DESC_P_MASK) != 0;
601 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
602 lhs->db = (flags >> DESC_B_SHIFT) & 1;
603 lhs->s = (flags & DESC_S_MASK) != 0;
604 lhs->l = (flags >> DESC_L_SHIFT) & 1;
605 lhs->g = (flags & DESC_G_MASK) != 0;
606 lhs->avl = (flags & DESC_AVL_MASK) != 0;
607 lhs->unusable = 0;
608 }
609
610 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
611 {
612 lhs->selector = rhs->selector;
613 lhs->base = rhs->base;
614 lhs->limit = rhs->limit;
615 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
616 (rhs->present * DESC_P_MASK) |
617 (rhs->dpl << DESC_DPL_SHIFT) |
618 (rhs->db << DESC_B_SHIFT) |
619 (rhs->s * DESC_S_MASK) |
620 (rhs->l << DESC_L_SHIFT) |
621 (rhs->g * DESC_G_MASK) |
622 (rhs->avl * DESC_AVL_MASK);
623 }
624
625 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
626 {
627 if (set) {
628 *kvm_reg = *qemu_reg;
629 } else {
630 *qemu_reg = *kvm_reg;
631 }
632 }
633
634 static int kvm_getput_regs(CPUState *env, int set)
635 {
636 struct kvm_regs regs;
637 int ret = 0;
638
639 if (!set) {
640 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
641 if (ret < 0) {
642 return ret;
643 }
644 }
645
646 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
647 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
648 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
649 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
650 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
651 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
652 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
653 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
654 #ifdef TARGET_X86_64
655 kvm_getput_reg(&regs.r8, &env->regs[8], set);
656 kvm_getput_reg(&regs.r9, &env->regs[9], set);
657 kvm_getput_reg(&regs.r10, &env->regs[10], set);
658 kvm_getput_reg(&regs.r11, &env->regs[11], set);
659 kvm_getput_reg(&regs.r12, &env->regs[12], set);
660 kvm_getput_reg(&regs.r13, &env->regs[13], set);
661 kvm_getput_reg(&regs.r14, &env->regs[14], set);
662 kvm_getput_reg(&regs.r15, &env->regs[15], set);
663 #endif
664
665 kvm_getput_reg(&regs.rflags, &env->eflags, set);
666 kvm_getput_reg(&regs.rip, &env->eip, set);
667
668 if (set) {
669 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
670 }
671
672 return ret;
673 }
674
675 static int kvm_put_fpu(CPUState *env)
676 {
677 struct kvm_fpu fpu;
678 int i;
679
680 memset(&fpu, 0, sizeof fpu);
681 fpu.fsw = env->fpus & ~(7 << 11);
682 fpu.fsw |= (env->fpstt & 7) << 11;
683 fpu.fcw = env->fpuc;
684 for (i = 0; i < 8; ++i) {
685 fpu.ftwx |= (!env->fptags[i]) << i;
686 }
687 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
688 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
689 fpu.mxcsr = env->mxcsr;
690
691 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
692 }
693
694 #ifdef KVM_CAP_XSAVE
695 #define XSAVE_CWD_RIP 2
696 #define XSAVE_CWD_RDP 4
697 #define XSAVE_MXCSR 6
698 #define XSAVE_ST_SPACE 8
699 #define XSAVE_XMM_SPACE 40
700 #define XSAVE_XSTATE_BV 128
701 #define XSAVE_YMMH_SPACE 144
702 #endif
703
704 static int kvm_put_xsave(CPUState *env)
705 {
706 #ifdef KVM_CAP_XSAVE
707 int i, r;
708 struct kvm_xsave* xsave;
709 uint16_t cwd, swd, twd, fop;
710
711 if (!kvm_has_xsave()) {
712 return kvm_put_fpu(env);
713 }
714
715 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
716 memset(xsave, 0, sizeof(struct kvm_xsave));
717 cwd = swd = twd = fop = 0;
718 swd = env->fpus & ~(7 << 11);
719 swd |= (env->fpstt & 7) << 11;
720 cwd = env->fpuc;
721 for (i = 0; i < 8; ++i) {
722 twd |= (!env->fptags[i]) << i;
723 }
724 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
725 xsave->region[1] = (uint32_t)(fop << 16) + twd;
726 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
727 sizeof env->fpregs);
728 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
729 sizeof env->xmm_regs);
730 xsave->region[XSAVE_MXCSR] = env->mxcsr;
731 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
732 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
733 sizeof env->ymmh_regs);
734 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
735 qemu_free(xsave);
736 return r;
737 #else
738 return kvm_put_fpu(env);
739 #endif
740 }
741
742 static int kvm_put_xcrs(CPUState *env)
743 {
744 #ifdef KVM_CAP_XCRS
745 struct kvm_xcrs xcrs;
746
747 if (!kvm_has_xcrs()) {
748 return 0;
749 }
750
751 xcrs.nr_xcrs = 1;
752 xcrs.flags = 0;
753 xcrs.xcrs[0].xcr = 0;
754 xcrs.xcrs[0].value = env->xcr0;
755 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
756 #else
757 return 0;
758 #endif
759 }
760
761 static int kvm_put_sregs(CPUState *env)
762 {
763 struct kvm_sregs sregs;
764
765 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
766 if (env->interrupt_injected >= 0) {
767 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
768 (uint64_t)1 << (env->interrupt_injected % 64);
769 }
770
771 if ((env->eflags & VM_MASK)) {
772 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
773 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
774 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
775 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
776 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
777 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
778 } else {
779 set_seg(&sregs.cs, &env->segs[R_CS]);
780 set_seg(&sregs.ds, &env->segs[R_DS]);
781 set_seg(&sregs.es, &env->segs[R_ES]);
782 set_seg(&sregs.fs, &env->segs[R_FS]);
783 set_seg(&sregs.gs, &env->segs[R_GS]);
784 set_seg(&sregs.ss, &env->segs[R_SS]);
785 }
786
787 set_seg(&sregs.tr, &env->tr);
788 set_seg(&sregs.ldt, &env->ldt);
789
790 sregs.idt.limit = env->idt.limit;
791 sregs.idt.base = env->idt.base;
792 sregs.gdt.limit = env->gdt.limit;
793 sregs.gdt.base = env->gdt.base;
794
795 sregs.cr0 = env->cr[0];
796 sregs.cr2 = env->cr[2];
797 sregs.cr3 = env->cr[3];
798 sregs.cr4 = env->cr[4];
799
800 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
801 sregs.apic_base = cpu_get_apic_base(env->apic_state);
802
803 sregs.efer = env->efer;
804
805 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
806 }
807
808 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
809 uint32_t index, uint64_t value)
810 {
811 entry->index = index;
812 entry->data = value;
813 }
814
815 static int kvm_put_msrs(CPUState *env, int level)
816 {
817 struct {
818 struct kvm_msrs info;
819 struct kvm_msr_entry entries[100];
820 } msr_data;
821 struct kvm_msr_entry *msrs = msr_data.entries;
822 int n = 0;
823
824 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
825 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
826 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
827 if (has_msr_star) {
828 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
829 }
830 if (has_msr_hsave_pa) {
831 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
832 }
833 #ifdef TARGET_X86_64
834 if (lm_capable_kernel) {
835 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
836 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
837 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
838 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
839 }
840 #endif
841 if (level == KVM_PUT_FULL_STATE) {
842 /*
843 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
844 * writeback. Until this is fixed, we only write the offset to SMP
845 * guests after migration, desynchronizing the VCPUs, but avoiding
846 * huge jump-backs that would occur without any writeback at all.
847 */
848 if (smp_cpus == 1 || env->tsc != 0) {
849 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
850 }
851 }
852 /*
853 * The following paravirtual MSRs have side effects on the guest or are
854 * too heavy for normal writeback. Limit them to reset or full state
855 * updates.
856 */
857 if (level >= KVM_PUT_RESET_STATE) {
858 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
859 env->system_time_msr);
860 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
861 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
862 if (has_msr_async_pf_en) {
863 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
864 env->async_pf_en_msr);
865 }
866 #endif
867 }
868 #ifdef KVM_CAP_MCE
869 if (env->mcg_cap) {
870 int i;
871
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
873 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
874 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
875 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
876 }
877 }
878 #endif
879
880 msr_data.info.nmsrs = n;
881
882 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
883
884 }
885
886
887 static int kvm_get_fpu(CPUState *env)
888 {
889 struct kvm_fpu fpu;
890 int i, ret;
891
892 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
893 if (ret < 0) {
894 return ret;
895 }
896
897 env->fpstt = (fpu.fsw >> 11) & 7;
898 env->fpus = fpu.fsw;
899 env->fpuc = fpu.fcw;
900 for (i = 0; i < 8; ++i) {
901 env->fptags[i] = !((fpu.ftwx >> i) & 1);
902 }
903 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
904 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
905 env->mxcsr = fpu.mxcsr;
906
907 return 0;
908 }
909
910 static int kvm_get_xsave(CPUState *env)
911 {
912 #ifdef KVM_CAP_XSAVE
913 struct kvm_xsave* xsave;
914 int ret, i;
915 uint16_t cwd, swd, twd, fop;
916
917 if (!kvm_has_xsave()) {
918 return kvm_get_fpu(env);
919 }
920
921 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
922 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
923 if (ret < 0) {
924 qemu_free(xsave);
925 return ret;
926 }
927
928 cwd = (uint16_t)xsave->region[0];
929 swd = (uint16_t)(xsave->region[0] >> 16);
930 twd = (uint16_t)xsave->region[1];
931 fop = (uint16_t)(xsave->region[1] >> 16);
932 env->fpstt = (swd >> 11) & 7;
933 env->fpus = swd;
934 env->fpuc = cwd;
935 for (i = 0; i < 8; ++i) {
936 env->fptags[i] = !((twd >> i) & 1);
937 }
938 env->mxcsr = xsave->region[XSAVE_MXCSR];
939 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
940 sizeof env->fpregs);
941 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
942 sizeof env->xmm_regs);
943 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
944 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
945 sizeof env->ymmh_regs);
946 qemu_free(xsave);
947 return 0;
948 #else
949 return kvm_get_fpu(env);
950 #endif
951 }
952
953 static int kvm_get_xcrs(CPUState *env)
954 {
955 #ifdef KVM_CAP_XCRS
956 int i, ret;
957 struct kvm_xcrs xcrs;
958
959 if (!kvm_has_xcrs()) {
960 return 0;
961 }
962
963 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
964 if (ret < 0) {
965 return ret;
966 }
967
968 for (i = 0; i < xcrs.nr_xcrs; i++) {
969 /* Only support xcr0 now */
970 if (xcrs.xcrs[0].xcr == 0) {
971 env->xcr0 = xcrs.xcrs[0].value;
972 break;
973 }
974 }
975 return 0;
976 #else
977 return 0;
978 #endif
979 }
980
981 static int kvm_get_sregs(CPUState *env)
982 {
983 struct kvm_sregs sregs;
984 uint32_t hflags;
985 int bit, i, ret;
986
987 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
988 if (ret < 0) {
989 return ret;
990 }
991
992 /* There can only be one pending IRQ set in the bitmap at a time, so try
993 to find it and save its number instead (-1 for none). */
994 env->interrupt_injected = -1;
995 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
996 if (sregs.interrupt_bitmap[i]) {
997 bit = ctz64(sregs.interrupt_bitmap[i]);
998 env->interrupt_injected = i * 64 + bit;
999 break;
1000 }
1001 }
1002
1003 get_seg(&env->segs[R_CS], &sregs.cs);
1004 get_seg(&env->segs[R_DS], &sregs.ds);
1005 get_seg(&env->segs[R_ES], &sregs.es);
1006 get_seg(&env->segs[R_FS], &sregs.fs);
1007 get_seg(&env->segs[R_GS], &sregs.gs);
1008 get_seg(&env->segs[R_SS], &sregs.ss);
1009
1010 get_seg(&env->tr, &sregs.tr);
1011 get_seg(&env->ldt, &sregs.ldt);
1012
1013 env->idt.limit = sregs.idt.limit;
1014 env->idt.base = sregs.idt.base;
1015 env->gdt.limit = sregs.gdt.limit;
1016 env->gdt.base = sregs.gdt.base;
1017
1018 env->cr[0] = sregs.cr0;
1019 env->cr[2] = sregs.cr2;
1020 env->cr[3] = sregs.cr3;
1021 env->cr[4] = sregs.cr4;
1022
1023 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1024
1025 env->efer = sregs.efer;
1026 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1027
1028 #define HFLAG_COPY_MASK \
1029 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1030 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1031 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1032 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1033
1034 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1035 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1036 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1037 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1038 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1039 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1040 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1041
1042 if (env->efer & MSR_EFER_LMA) {
1043 hflags |= HF_LMA_MASK;
1044 }
1045
1046 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1047 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1048 } else {
1049 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1050 (DESC_B_SHIFT - HF_CS32_SHIFT);
1051 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1052 (DESC_B_SHIFT - HF_SS32_SHIFT);
1053 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1054 !(hflags & HF_CS32_MASK)) {
1055 hflags |= HF_ADDSEG_MASK;
1056 } else {
1057 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1058 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1059 }
1060 }
1061 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1062
1063 return 0;
1064 }
1065
1066 static int kvm_get_msrs(CPUState *env)
1067 {
1068 struct {
1069 struct kvm_msrs info;
1070 struct kvm_msr_entry entries[100];
1071 } msr_data;
1072 struct kvm_msr_entry *msrs = msr_data.entries;
1073 int ret, i, n;
1074
1075 n = 0;
1076 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1079 if (has_msr_star) {
1080 msrs[n++].index = MSR_STAR;
1081 }
1082 if (has_msr_hsave_pa) {
1083 msrs[n++].index = MSR_VM_HSAVE_PA;
1084 }
1085
1086 if (!env->tsc_valid) {
1087 msrs[n++].index = MSR_IA32_TSC;
1088 env->tsc_valid = !vm_running;
1089 }
1090
1091 #ifdef TARGET_X86_64
1092 if (lm_capable_kernel) {
1093 msrs[n++].index = MSR_CSTAR;
1094 msrs[n++].index = MSR_KERNELGSBASE;
1095 msrs[n++].index = MSR_FMASK;
1096 msrs[n++].index = MSR_LSTAR;
1097 }
1098 #endif
1099 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1100 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1101 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1102 if (has_msr_async_pf_en) {
1103 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1104 }
1105 #endif
1106
1107 #ifdef KVM_CAP_MCE
1108 if (env->mcg_cap) {
1109 msrs[n++].index = MSR_MCG_STATUS;
1110 msrs[n++].index = MSR_MCG_CTL;
1111 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1112 msrs[n++].index = MSR_MC0_CTL + i;
1113 }
1114 }
1115 #endif
1116
1117 msr_data.info.nmsrs = n;
1118 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1119 if (ret < 0) {
1120 return ret;
1121 }
1122
1123 for (i = 0; i < ret; i++) {
1124 switch (msrs[i].index) {
1125 case MSR_IA32_SYSENTER_CS:
1126 env->sysenter_cs = msrs[i].data;
1127 break;
1128 case MSR_IA32_SYSENTER_ESP:
1129 env->sysenter_esp = msrs[i].data;
1130 break;
1131 case MSR_IA32_SYSENTER_EIP:
1132 env->sysenter_eip = msrs[i].data;
1133 break;
1134 case MSR_STAR:
1135 env->star = msrs[i].data;
1136 break;
1137 #ifdef TARGET_X86_64
1138 case MSR_CSTAR:
1139 env->cstar = msrs[i].data;
1140 break;
1141 case MSR_KERNELGSBASE:
1142 env->kernelgsbase = msrs[i].data;
1143 break;
1144 case MSR_FMASK:
1145 env->fmask = msrs[i].data;
1146 break;
1147 case MSR_LSTAR:
1148 env->lstar = msrs[i].data;
1149 break;
1150 #endif
1151 case MSR_IA32_TSC:
1152 env->tsc = msrs[i].data;
1153 break;
1154 case MSR_VM_HSAVE_PA:
1155 env->vm_hsave = msrs[i].data;
1156 break;
1157 case MSR_KVM_SYSTEM_TIME:
1158 env->system_time_msr = msrs[i].data;
1159 break;
1160 case MSR_KVM_WALL_CLOCK:
1161 env->wall_clock_msr = msrs[i].data;
1162 break;
1163 #ifdef KVM_CAP_MCE
1164 case MSR_MCG_STATUS:
1165 env->mcg_status = msrs[i].data;
1166 break;
1167 case MSR_MCG_CTL:
1168 env->mcg_ctl = msrs[i].data;
1169 break;
1170 #endif
1171 default:
1172 #ifdef KVM_CAP_MCE
1173 if (msrs[i].index >= MSR_MC0_CTL &&
1174 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1175 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1176 }
1177 #endif
1178 break;
1179 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1180 case MSR_KVM_ASYNC_PF_EN:
1181 env->async_pf_en_msr = msrs[i].data;
1182 break;
1183 #endif
1184 }
1185 }
1186
1187 return 0;
1188 }
1189
1190 static int kvm_put_mp_state(CPUState *env)
1191 {
1192 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1193
1194 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1195 }
1196
1197 static int kvm_get_mp_state(CPUState *env)
1198 {
1199 struct kvm_mp_state mp_state;
1200 int ret;
1201
1202 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1203 if (ret < 0) {
1204 return ret;
1205 }
1206 env->mp_state = mp_state.mp_state;
1207 if (kvm_irqchip_in_kernel()) {
1208 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1209 }
1210 return 0;
1211 }
1212
1213 static int kvm_put_vcpu_events(CPUState *env, int level)
1214 {
1215 #ifdef KVM_CAP_VCPU_EVENTS
1216 struct kvm_vcpu_events events;
1217
1218 if (!kvm_has_vcpu_events()) {
1219 return 0;
1220 }
1221
1222 events.exception.injected = (env->exception_injected >= 0);
1223 events.exception.nr = env->exception_injected;
1224 events.exception.has_error_code = env->has_error_code;
1225 events.exception.error_code = env->error_code;
1226
1227 events.interrupt.injected = (env->interrupt_injected >= 0);
1228 events.interrupt.nr = env->interrupt_injected;
1229 events.interrupt.soft = env->soft_interrupt;
1230
1231 events.nmi.injected = env->nmi_injected;
1232 events.nmi.pending = env->nmi_pending;
1233 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1234
1235 events.sipi_vector = env->sipi_vector;
1236
1237 events.flags = 0;
1238 if (level >= KVM_PUT_RESET_STATE) {
1239 events.flags |=
1240 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1241 }
1242
1243 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1244 #else
1245 return 0;
1246 #endif
1247 }
1248
1249 static int kvm_get_vcpu_events(CPUState *env)
1250 {
1251 #ifdef KVM_CAP_VCPU_EVENTS
1252 struct kvm_vcpu_events events;
1253 int ret;
1254
1255 if (!kvm_has_vcpu_events()) {
1256 return 0;
1257 }
1258
1259 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1260 if (ret < 0) {
1261 return ret;
1262 }
1263 env->exception_injected =
1264 events.exception.injected ? events.exception.nr : -1;
1265 env->has_error_code = events.exception.has_error_code;
1266 env->error_code = events.exception.error_code;
1267
1268 env->interrupt_injected =
1269 events.interrupt.injected ? events.interrupt.nr : -1;
1270 env->soft_interrupt = events.interrupt.soft;
1271
1272 env->nmi_injected = events.nmi.injected;
1273 env->nmi_pending = events.nmi.pending;
1274 if (events.nmi.masked) {
1275 env->hflags2 |= HF2_NMI_MASK;
1276 } else {
1277 env->hflags2 &= ~HF2_NMI_MASK;
1278 }
1279
1280 env->sipi_vector = events.sipi_vector;
1281 #endif
1282
1283 return 0;
1284 }
1285
1286 static int kvm_guest_debug_workarounds(CPUState *env)
1287 {
1288 int ret = 0;
1289 #ifdef KVM_CAP_SET_GUEST_DEBUG
1290 unsigned long reinject_trap = 0;
1291
1292 if (!kvm_has_vcpu_events()) {
1293 if (env->exception_injected == 1) {
1294 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1295 } else if (env->exception_injected == 3) {
1296 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1297 }
1298 env->exception_injected = -1;
1299 }
1300
1301 /*
1302 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1303 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1304 * by updating the debug state once again if single-stepping is on.
1305 * Another reason to call kvm_update_guest_debug here is a pending debug
1306 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1307 * reinject them via SET_GUEST_DEBUG.
1308 */
1309 if (reinject_trap ||
1310 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1311 ret = kvm_update_guest_debug(env, reinject_trap);
1312 }
1313 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1314 return ret;
1315 }
1316
1317 static int kvm_put_debugregs(CPUState *env)
1318 {
1319 #ifdef KVM_CAP_DEBUGREGS
1320 struct kvm_debugregs dbgregs;
1321 int i;
1322
1323 if (!kvm_has_debugregs()) {
1324 return 0;
1325 }
1326
1327 for (i = 0; i < 4; i++) {
1328 dbgregs.db[i] = env->dr[i];
1329 }
1330 dbgregs.dr6 = env->dr[6];
1331 dbgregs.dr7 = env->dr[7];
1332 dbgregs.flags = 0;
1333
1334 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1335 #else
1336 return 0;
1337 #endif
1338 }
1339
1340 static int kvm_get_debugregs(CPUState *env)
1341 {
1342 #ifdef KVM_CAP_DEBUGREGS
1343 struct kvm_debugregs dbgregs;
1344 int i, ret;
1345
1346 if (!kvm_has_debugregs()) {
1347 return 0;
1348 }
1349
1350 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1351 if (ret < 0) {
1352 return ret;
1353 }
1354 for (i = 0; i < 4; i++) {
1355 env->dr[i] = dbgregs.db[i];
1356 }
1357 env->dr[4] = env->dr[6] = dbgregs.dr6;
1358 env->dr[5] = env->dr[7] = dbgregs.dr7;
1359 #endif
1360
1361 return 0;
1362 }
1363
1364 int kvm_arch_put_registers(CPUState *env, int level)
1365 {
1366 int ret;
1367
1368 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1369
1370 ret = kvm_getput_regs(env, 1);
1371 if (ret < 0) {
1372 return ret;
1373 }
1374 ret = kvm_put_xsave(env);
1375 if (ret < 0) {
1376 return ret;
1377 }
1378 ret = kvm_put_xcrs(env);
1379 if (ret < 0) {
1380 return ret;
1381 }
1382 ret = kvm_put_sregs(env);
1383 if (ret < 0) {
1384 return ret;
1385 }
1386 /* must be before kvm_put_msrs */
1387 ret = kvm_inject_mce_oldstyle(env);
1388 if (ret < 0) {
1389 return ret;
1390 }
1391 ret = kvm_put_msrs(env, level);
1392 if (ret < 0) {
1393 return ret;
1394 }
1395 if (level >= KVM_PUT_RESET_STATE) {
1396 ret = kvm_put_mp_state(env);
1397 if (ret < 0) {
1398 return ret;
1399 }
1400 }
1401 ret = kvm_put_vcpu_events(env, level);
1402 if (ret < 0) {
1403 return ret;
1404 }
1405 ret = kvm_put_debugregs(env);
1406 if (ret < 0) {
1407 return ret;
1408 }
1409 /* must be last */
1410 ret = kvm_guest_debug_workarounds(env);
1411 if (ret < 0) {
1412 return ret;
1413 }
1414 return 0;
1415 }
1416
1417 int kvm_arch_get_registers(CPUState *env)
1418 {
1419 int ret;
1420
1421 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1422
1423 ret = kvm_getput_regs(env, 0);
1424 if (ret < 0) {
1425 return ret;
1426 }
1427 ret = kvm_get_xsave(env);
1428 if (ret < 0) {
1429 return ret;
1430 }
1431 ret = kvm_get_xcrs(env);
1432 if (ret < 0) {
1433 return ret;
1434 }
1435 ret = kvm_get_sregs(env);
1436 if (ret < 0) {
1437 return ret;
1438 }
1439 ret = kvm_get_msrs(env);
1440 if (ret < 0) {
1441 return ret;
1442 }
1443 ret = kvm_get_mp_state(env);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447 ret = kvm_get_vcpu_events(env);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451 ret = kvm_get_debugregs(env);
1452 if (ret < 0) {
1453 return ret;
1454 }
1455 return 0;
1456 }
1457
1458 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1459 {
1460 int ret;
1461
1462 /* Inject NMI */
1463 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1464 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1465 DPRINTF("injected NMI\n");
1466 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1467 if (ret < 0) {
1468 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1469 strerror(-ret));
1470 }
1471 }
1472
1473 if (!kvm_irqchip_in_kernel()) {
1474 /* Force the VCPU out of its inner loop to process the INIT request */
1475 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1476 env->exit_request = 1;
1477 }
1478
1479 /* Try to inject an interrupt if the guest can accept it */
1480 if (run->ready_for_interrupt_injection &&
1481 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1482 (env->eflags & IF_MASK)) {
1483 int irq;
1484
1485 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1486 irq = cpu_get_pic_interrupt(env);
1487 if (irq >= 0) {
1488 struct kvm_interrupt intr;
1489
1490 intr.irq = irq;
1491 DPRINTF("injected interrupt %d\n", irq);
1492 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1493 if (ret < 0) {
1494 fprintf(stderr,
1495 "KVM: injection failed, interrupt lost (%s)\n",
1496 strerror(-ret));
1497 }
1498 }
1499 }
1500
1501 /* If we have an interrupt but the guest is not ready to receive an
1502 * interrupt, request an interrupt window exit. This will
1503 * cause a return to userspace as soon as the guest is ready to
1504 * receive interrupts. */
1505 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1506 run->request_interrupt_window = 1;
1507 } else {
1508 run->request_interrupt_window = 0;
1509 }
1510
1511 DPRINTF("setting tpr\n");
1512 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1513 }
1514 }
1515
1516 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1517 {
1518 if (run->if_flag) {
1519 env->eflags |= IF_MASK;
1520 } else {
1521 env->eflags &= ~IF_MASK;
1522 }
1523 cpu_set_apic_tpr(env->apic_state, run->cr8);
1524 cpu_set_apic_base(env->apic_state, run->apic_base);
1525 }
1526
1527 int kvm_arch_process_async_events(CPUState *env)
1528 {
1529 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1530 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1531 assert(env->mcg_cap);
1532
1533 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1534
1535 kvm_cpu_synchronize_state(env);
1536
1537 if (env->exception_injected == EXCP08_DBLE) {
1538 /* this means triple fault */
1539 qemu_system_reset_request();
1540 env->exit_request = 1;
1541 return 0;
1542 }
1543 env->exception_injected = EXCP12_MCHK;
1544 env->has_error_code = 0;
1545
1546 env->halted = 0;
1547 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1548 env->mp_state = KVM_MP_STATE_RUNNABLE;
1549 }
1550 }
1551
1552 if (kvm_irqchip_in_kernel()) {
1553 return 0;
1554 }
1555
1556 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1557 env->halted = 0;
1558 }
1559 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1560 kvm_cpu_synchronize_state(env);
1561 do_cpu_init(env);
1562 }
1563 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1564 kvm_cpu_synchronize_state(env);
1565 do_cpu_sipi(env);
1566 }
1567
1568 return env->halted;
1569 }
1570
1571 static int kvm_handle_halt(CPUState *env)
1572 {
1573 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1574 (env->eflags & IF_MASK)) &&
1575 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1576 env->halted = 1;
1577 return 0;
1578 }
1579
1580 return 1;
1581 }
1582
1583 static bool host_supports_vmx(void)
1584 {
1585 uint32_t ecx, unused;
1586
1587 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1588 return ecx & CPUID_EXT_VMX;
1589 }
1590
1591 #define VMX_INVALID_GUEST_STATE 0x80000021
1592
1593 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1594 {
1595 uint64_t code;
1596 int ret = 0;
1597
1598 switch (run->exit_reason) {
1599 case KVM_EXIT_HLT:
1600 DPRINTF("handle_hlt\n");
1601 ret = kvm_handle_halt(env);
1602 break;
1603 case KVM_EXIT_SET_TPR:
1604 ret = 1;
1605 break;
1606 case KVM_EXIT_FAIL_ENTRY:
1607 code = run->fail_entry.hardware_entry_failure_reason;
1608 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1609 code);
1610 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1611 fprintf(stderr,
1612 "\nIf you're runnning a guest on an Intel machine without "
1613 "unrestricted mode\n"
1614 "support, the failure can be most likely due to the guest "
1615 "entering an invalid\n"
1616 "state for Intel VT. For example, the guest maybe running "
1617 "in big real mode\n"
1618 "which is not supported on less recent Intel processors."
1619 "\n\n");
1620 }
1621 ret = -1;
1622 break;
1623 case KVM_EXIT_EXCEPTION:
1624 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1625 run->ex.exception, run->ex.error_code);
1626 ret = -1;
1627 break;
1628 default:
1629 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1630 ret = -1;
1631 break;
1632 }
1633
1634 return ret;
1635 }
1636
1637 #ifdef KVM_CAP_SET_GUEST_DEBUG
1638 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1639 {
1640 static const uint8_t int3 = 0xcc;
1641
1642 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1643 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1644 return -EINVAL;
1645 }
1646 return 0;
1647 }
1648
1649 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1650 {
1651 uint8_t int3;
1652
1653 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1654 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1655 return -EINVAL;
1656 }
1657 return 0;
1658 }
1659
1660 static struct {
1661 target_ulong addr;
1662 int len;
1663 int type;
1664 } hw_breakpoint[4];
1665
1666 static int nb_hw_breakpoint;
1667
1668 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1669 {
1670 int n;
1671
1672 for (n = 0; n < nb_hw_breakpoint; n++) {
1673 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1674 (hw_breakpoint[n].len == len || len == -1)) {
1675 return n;
1676 }
1677 }
1678 return -1;
1679 }
1680
1681 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1682 target_ulong len, int type)
1683 {
1684 switch (type) {
1685 case GDB_BREAKPOINT_HW:
1686 len = 1;
1687 break;
1688 case GDB_WATCHPOINT_WRITE:
1689 case GDB_WATCHPOINT_ACCESS:
1690 switch (len) {
1691 case 1:
1692 break;
1693 case 2:
1694 case 4:
1695 case 8:
1696 if (addr & (len - 1)) {
1697 return -EINVAL;
1698 }
1699 break;
1700 default:
1701 return -EINVAL;
1702 }
1703 break;
1704 default:
1705 return -ENOSYS;
1706 }
1707
1708 if (nb_hw_breakpoint == 4) {
1709 return -ENOBUFS;
1710 }
1711 if (find_hw_breakpoint(addr, len, type) >= 0) {
1712 return -EEXIST;
1713 }
1714 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1715 hw_breakpoint[nb_hw_breakpoint].len = len;
1716 hw_breakpoint[nb_hw_breakpoint].type = type;
1717 nb_hw_breakpoint++;
1718
1719 return 0;
1720 }
1721
1722 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1723 target_ulong len, int type)
1724 {
1725 int n;
1726
1727 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1728 if (n < 0) {
1729 return -ENOENT;
1730 }
1731 nb_hw_breakpoint--;
1732 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1733
1734 return 0;
1735 }
1736
1737 void kvm_arch_remove_all_hw_breakpoints(void)
1738 {
1739 nb_hw_breakpoint = 0;
1740 }
1741
1742 static CPUWatchpoint hw_watchpoint;
1743
1744 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1745 {
1746 int handle = 0;
1747 int n;
1748
1749 if (arch_info->exception == 1) {
1750 if (arch_info->dr6 & (1 << 14)) {
1751 if (cpu_single_env->singlestep_enabled) {
1752 handle = 1;
1753 }
1754 } else {
1755 for (n = 0; n < 4; n++) {
1756 if (arch_info->dr6 & (1 << n)) {
1757 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1758 case 0x0:
1759 handle = 1;
1760 break;
1761 case 0x1:
1762 handle = 1;
1763 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1764 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1765 hw_watchpoint.flags = BP_MEM_WRITE;
1766 break;
1767 case 0x3:
1768 handle = 1;
1769 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1770 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1771 hw_watchpoint.flags = BP_MEM_ACCESS;
1772 break;
1773 }
1774 }
1775 }
1776 }
1777 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1778 handle = 1;
1779 }
1780 if (!handle) {
1781 cpu_synchronize_state(cpu_single_env);
1782 assert(cpu_single_env->exception_injected == -1);
1783
1784 cpu_single_env->exception_injected = arch_info->exception;
1785 cpu_single_env->has_error_code = 0;
1786 }
1787
1788 return handle;
1789 }
1790
1791 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1792 {
1793 const uint8_t type_code[] = {
1794 [GDB_BREAKPOINT_HW] = 0x0,
1795 [GDB_WATCHPOINT_WRITE] = 0x1,
1796 [GDB_WATCHPOINT_ACCESS] = 0x3
1797 };
1798 const uint8_t len_code[] = {
1799 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1800 };
1801 int n;
1802
1803 if (kvm_sw_breakpoints_active(env)) {
1804 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1805 }
1806 if (nb_hw_breakpoint > 0) {
1807 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1808 dbg->arch.debugreg[7] = 0x0600;
1809 for (n = 0; n < nb_hw_breakpoint; n++) {
1810 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1811 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1812 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1813 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1814 }
1815 }
1816 }
1817 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1818
1819 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1820 {
1821 return !(env->cr[0] & CR0_PE_MASK) ||
1822 ((env->segs[R_CS].selector & 3) != 3);
1823 }