]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
cpu: Make first_cpu and next_cpu CPUState
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
73
74 bool kvm_allows_irq0_override(void)
75 {
76 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
77 }
78
79 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80 {
81 struct kvm_cpuid2 *cpuid;
82 int r, size;
83
84 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86 cpuid->nent = max;
87 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88 if (r == 0 && cpuid->nent >= max) {
89 r = -E2BIG;
90 }
91 if (r < 0) {
92 if (r == -E2BIG) {
93 g_free(cpuid);
94 return NULL;
95 } else {
96 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97 strerror(-r));
98 exit(1);
99 }
100 }
101 return cpuid;
102 }
103
104 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105 * for all entries.
106 */
107 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108 {
109 struct kvm_cpuid2 *cpuid;
110 int max = 1;
111 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112 max *= 2;
113 }
114 return cpuid;
115 }
116
117 struct kvm_para_features {
118 int cap;
119 int feature;
120 } para_features[] = {
121 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 { -1, -1 }
126 };
127
128 static int get_para_features(KVMState *s)
129 {
130 int i, features = 0;
131
132 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133 if (kvm_check_extension(s, para_features[i].cap)) {
134 features |= (1 << para_features[i].feature);
135 }
136 }
137
138 return features;
139 }
140
141
142 /* Returns the value for a specific register on the cpuid entry
143 */
144 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145 {
146 uint32_t ret = 0;
147 switch (reg) {
148 case R_EAX:
149 ret = entry->eax;
150 break;
151 case R_EBX:
152 ret = entry->ebx;
153 break;
154 case R_ECX:
155 ret = entry->ecx;
156 break;
157 case R_EDX:
158 ret = entry->edx;
159 break;
160 }
161 return ret;
162 }
163
164 /* Find matching entry for function/index on kvm_cpuid2 struct
165 */
166 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167 uint32_t function,
168 uint32_t index)
169 {
170 int i;
171 for (i = 0; i < cpuid->nent; ++i) {
172 if (cpuid->entries[i].function == function &&
173 cpuid->entries[i].index == index) {
174 return &cpuid->entries[i];
175 }
176 }
177 /* not found: */
178 return NULL;
179 }
180
181 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182 uint32_t index, int reg)
183 {
184 struct kvm_cpuid2 *cpuid;
185 uint32_t ret = 0;
186 uint32_t cpuid_1_edx;
187 bool found = false;
188
189 cpuid = get_supported_cpuid(s);
190
191 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192 if (entry) {
193 found = true;
194 ret = cpuid_entry_get_reg(entry, reg);
195 }
196
197 /* Fixups for the data returned by KVM, below */
198
199 if (function == 1 && reg == R_EDX) {
200 /* KVM before 2.6.30 misreports the following features */
201 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202 } else if (function == 1 && reg == R_ECX) {
203 /* We can set the hypervisor flag, even if KVM does not return it on
204 * GET_SUPPORTED_CPUID
205 */
206 ret |= CPUID_EXT_HYPERVISOR;
207 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209 * and the irqchip is in the kernel.
210 */
211 if (kvm_irqchip_in_kernel() &&
212 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
214 }
215
216 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217 * without the in-kernel irqchip
218 */
219 if (!kvm_irqchip_in_kernel()) {
220 ret &= ~CPUID_EXT_X2APIC;
221 }
222 } else if (function == 0x80000001 && reg == R_EDX) {
223 /* On Intel, kvm returns cpuid according to the Intel spec,
224 * so add missing bits according to the AMD spec:
225 */
226 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
228 }
229
230 g_free(cpuid);
231
232 /* fallback for older kernels */
233 if ((function == KVM_CPUID_FEATURES) && !found) {
234 ret = get_para_features(s);
235 }
236
237 return ret;
238 }
239
240 typedef struct HWPoisonPage {
241 ram_addr_t ram_addr;
242 QLIST_ENTRY(HWPoisonPage) list;
243 } HWPoisonPage;
244
245 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247
248 static void kvm_unpoison_all(void *param)
249 {
250 HWPoisonPage *page, *next_page;
251
252 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253 QLIST_REMOVE(page, list);
254 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255 g_free(page);
256 }
257 }
258
259 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 {
261 HWPoisonPage *page;
262
263 QLIST_FOREACH(page, &hwpoison_page_list, list) {
264 if (page->ram_addr == ram_addr) {
265 return;
266 }
267 }
268 page = g_malloc(sizeof(HWPoisonPage));
269 page->ram_addr = ram_addr;
270 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
271 }
272
273 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274 int *max_banks)
275 {
276 int r;
277
278 r = kvm_check_extension(s, KVM_CAP_MCE);
279 if (r > 0) {
280 *max_banks = r;
281 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282 }
283 return -ENOSYS;
284 }
285
286 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287 {
288 CPUX86State *env = &cpu->env;
289 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291 uint64_t mcg_status = MCG_STATUS_MCIP;
292
293 if (code == BUS_MCEERR_AR) {
294 status |= MCI_STATUS_AR | 0x134;
295 mcg_status |= MCG_STATUS_EIPV;
296 } else {
297 status |= 0xc0;
298 mcg_status |= MCG_STATUS_RIPV;
299 }
300 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301 (MCM_ADDR_PHYS << 6) | 0xc,
302 cpu_x86_support_mca_broadcast(env) ?
303 MCE_INJECT_BROADCAST : 0);
304 }
305
306 static void hardware_memory_error(void)
307 {
308 fprintf(stderr, "Hardware memory error!\n");
309 exit(1);
310 }
311
312 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313 {
314 X86CPU *cpu = X86_CPU(c);
315 CPUX86State *env = &cpu->env;
316 ram_addr_t ram_addr;
317 hwaddr paddr;
318
319 if ((env->mcg_cap & MCG_SER_P) && addr
320 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
322 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323 fprintf(stderr, "Hardware memory error for memory used by "
324 "QEMU itself instead of guest system!\n");
325 /* Hope we are lucky for AO MCE */
326 if (code == BUS_MCEERR_AO) {
327 return 0;
328 } else {
329 hardware_memory_error();
330 }
331 }
332 kvm_hwpoison_page_add(ram_addr);
333 kvm_mce_inject(cpu, paddr, code);
334 } else {
335 if (code == BUS_MCEERR_AO) {
336 return 0;
337 } else if (code == BUS_MCEERR_AR) {
338 hardware_memory_error();
339 } else {
340 return 1;
341 }
342 }
343 return 0;
344 }
345
346 int kvm_arch_on_sigbus(int code, void *addr)
347 {
348 X86CPU *cpu = X86_CPU(first_cpu);
349
350 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
351 ram_addr_t ram_addr;
352 hwaddr paddr;
353
354 /* Hope we are lucky for AO MCE */
355 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
356 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
357 addr, &paddr)) {
358 fprintf(stderr, "Hardware memory error for memory used by "
359 "QEMU itself instead of guest system!: %p\n", addr);
360 return 0;
361 }
362 kvm_hwpoison_page_add(ram_addr);
363 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
364 } else {
365 if (code == BUS_MCEERR_AO) {
366 return 0;
367 } else if (code == BUS_MCEERR_AR) {
368 hardware_memory_error();
369 } else {
370 return 1;
371 }
372 }
373 return 0;
374 }
375
376 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
377 {
378 CPUX86State *env = &cpu->env;
379
380 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
381 unsigned int bank, bank_num = env->mcg_cap & 0xff;
382 struct kvm_x86_mce mce;
383
384 env->exception_injected = -1;
385
386 /*
387 * There must be at least one bank in use if an MCE is pending.
388 * Find it and use its values for the event injection.
389 */
390 for (bank = 0; bank < bank_num; bank++) {
391 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
392 break;
393 }
394 }
395 assert(bank < bank_num);
396
397 mce.bank = bank;
398 mce.status = env->mce_banks[bank * 4 + 1];
399 mce.mcg_status = env->mcg_status;
400 mce.addr = env->mce_banks[bank * 4 + 2];
401 mce.misc = env->mce_banks[bank * 4 + 3];
402
403 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
404 }
405 return 0;
406 }
407
408 static void cpu_update_state(void *opaque, int running, RunState state)
409 {
410 CPUX86State *env = opaque;
411
412 if (running) {
413 env->tsc_valid = false;
414 }
415 }
416
417 unsigned long kvm_arch_vcpu_id(CPUState *cs)
418 {
419 X86CPU *cpu = X86_CPU(cs);
420 return cpu->env.cpuid_apic_id;
421 }
422
423 #define KVM_MAX_CPUID_ENTRIES 100
424
425 int kvm_arch_init_vcpu(CPUState *cs)
426 {
427 struct {
428 struct kvm_cpuid2 cpuid;
429 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
430 } QEMU_PACKED cpuid_data;
431 X86CPU *cpu = X86_CPU(cs);
432 CPUX86State *env = &cpu->env;
433 uint32_t limit, i, j, cpuid_i;
434 uint32_t unused;
435 struct kvm_cpuid_entry2 *c;
436 uint32_t signature[3];
437 int r;
438
439 cpuid_i = 0;
440
441 /* Paravirtualization CPUIDs */
442 c = &cpuid_data.entries[cpuid_i++];
443 memset(c, 0, sizeof(*c));
444 c->function = KVM_CPUID_SIGNATURE;
445 if (!hyperv_enabled()) {
446 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
447 c->eax = 0;
448 } else {
449 memcpy(signature, "Microsoft Hv", 12);
450 c->eax = HYPERV_CPUID_MIN;
451 }
452 c->ebx = signature[0];
453 c->ecx = signature[1];
454 c->edx = signature[2];
455
456 c = &cpuid_data.entries[cpuid_i++];
457 memset(c, 0, sizeof(*c));
458 c->function = KVM_CPUID_FEATURES;
459 c->eax = env->features[FEAT_KVM];
460
461 if (hyperv_enabled()) {
462 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
463 c->eax = signature[0];
464
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_VERSION;
468 c->eax = 0x00001bbc;
469 c->ebx = 0x00060001;
470
471 c = &cpuid_data.entries[cpuid_i++];
472 memset(c, 0, sizeof(*c));
473 c->function = HYPERV_CPUID_FEATURES;
474 if (hyperv_relaxed_timing_enabled()) {
475 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
476 }
477 if (hyperv_vapic_recommended()) {
478 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
479 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
480 }
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
485 if (hyperv_relaxed_timing_enabled()) {
486 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
487 }
488 if (hyperv_vapic_recommended()) {
489 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
490 }
491 c->ebx = hyperv_get_spinlock_retries();
492
493 c = &cpuid_data.entries[cpuid_i++];
494 memset(c, 0, sizeof(*c));
495 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
496 c->eax = 0x40;
497 c->ebx = 0x40;
498
499 c = &cpuid_data.entries[cpuid_i++];
500 memset(c, 0, sizeof(*c));
501 c->function = KVM_CPUID_SIGNATURE_NEXT;
502 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
503 c->eax = 0;
504 c->ebx = signature[0];
505 c->ecx = signature[1];
506 c->edx = signature[2];
507 }
508
509 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
510
511 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
512
513 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
514
515 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
516
517 for (i = 0; i <= limit; i++) {
518 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
519 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
520 abort();
521 }
522 c = &cpuid_data.entries[cpuid_i++];
523
524 switch (i) {
525 case 2: {
526 /* Keep reading function 2 till all the input is received */
527 int times;
528
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
531 KVM_CPUID_FLAG_STATE_READ_NEXT;
532 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
533 times = c->eax & 0xff;
534
535 for (j = 1; j < times; ++j) {
536 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
537 fprintf(stderr, "cpuid_data is full, no space for "
538 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
539 abort();
540 }
541 c = &cpuid_data.entries[cpuid_i++];
542 c->function = i;
543 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
544 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
545 }
546 break;
547 }
548 case 4:
549 case 0xb:
550 case 0xd:
551 for (j = 0; ; j++) {
552 if (i == 0xd && j == 64) {
553 break;
554 }
555 c->function = i;
556 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
557 c->index = j;
558 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
559
560 if (i == 4 && c->eax == 0) {
561 break;
562 }
563 if (i == 0xb && !(c->ecx & 0xff00)) {
564 break;
565 }
566 if (i == 0xd && c->eax == 0) {
567 continue;
568 }
569 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
570 fprintf(stderr, "cpuid_data is full, no space for "
571 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
572 abort();
573 }
574 c = &cpuid_data.entries[cpuid_i++];
575 }
576 break;
577 default:
578 c->function = i;
579 c->flags = 0;
580 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
581 break;
582 }
583 }
584 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
585
586 for (i = 0x80000000; i <= limit; i++) {
587 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
588 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
589 abort();
590 }
591 c = &cpuid_data.entries[cpuid_i++];
592
593 c->function = i;
594 c->flags = 0;
595 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
596 }
597
598 /* Call Centaur's CPUID instructions they are supported. */
599 if (env->cpuid_xlevel2 > 0) {
600 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
601
602 for (i = 0xC0000000; i <= limit; i++) {
603 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
604 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
605 abort();
606 }
607 c = &cpuid_data.entries[cpuid_i++];
608
609 c->function = i;
610 c->flags = 0;
611 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
612 }
613 }
614
615 cpuid_data.cpuid.nent = cpuid_i;
616
617 if (((env->cpuid_version >> 8)&0xF) >= 6
618 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
619 (CPUID_MCE | CPUID_MCA)
620 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
621 uint64_t mcg_cap;
622 int banks;
623 int ret;
624
625 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
626 if (ret < 0) {
627 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
628 return ret;
629 }
630
631 if (banks > MCE_BANKS_DEF) {
632 banks = MCE_BANKS_DEF;
633 }
634 mcg_cap &= MCE_CAP_DEF;
635 mcg_cap |= banks;
636 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
637 if (ret < 0) {
638 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
639 return ret;
640 }
641
642 env->mcg_cap = mcg_cap;
643 }
644
645 qemu_add_vm_change_state_handler(cpu_update_state, env);
646
647 cpuid_data.cpuid.padding = 0;
648 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
649 if (r) {
650 return r;
651 }
652
653 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
654 if (r && env->tsc_khz) {
655 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
656 if (r < 0) {
657 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
658 return r;
659 }
660 }
661
662 if (kvm_has_xsave()) {
663 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
664 }
665
666 return 0;
667 }
668
669 void kvm_arch_reset_vcpu(CPUState *cs)
670 {
671 X86CPU *cpu = X86_CPU(cs);
672 CPUX86State *env = &cpu->env;
673
674 env->exception_injected = -1;
675 env->interrupt_injected = -1;
676 env->xcr0 = 1;
677 if (kvm_irqchip_in_kernel()) {
678 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
679 KVM_MP_STATE_UNINITIALIZED;
680 } else {
681 env->mp_state = KVM_MP_STATE_RUNNABLE;
682 }
683 }
684
685 static int kvm_get_supported_msrs(KVMState *s)
686 {
687 static int kvm_supported_msrs;
688 int ret = 0;
689
690 /* first time */
691 if (kvm_supported_msrs == 0) {
692 struct kvm_msr_list msr_list, *kvm_msr_list;
693
694 kvm_supported_msrs = -1;
695
696 /* Obtain MSR list from KVM. These are the MSRs that we must
697 * save/restore */
698 msr_list.nmsrs = 0;
699 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
700 if (ret < 0 && ret != -E2BIG) {
701 return ret;
702 }
703 /* Old kernel modules had a bug and could write beyond the provided
704 memory. Allocate at least a safe amount of 1K. */
705 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
706 msr_list.nmsrs *
707 sizeof(msr_list.indices[0])));
708
709 kvm_msr_list->nmsrs = msr_list.nmsrs;
710 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
711 if (ret >= 0) {
712 int i;
713
714 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
715 if (kvm_msr_list->indices[i] == MSR_STAR) {
716 has_msr_star = true;
717 continue;
718 }
719 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
720 has_msr_hsave_pa = true;
721 continue;
722 }
723 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
724 has_msr_tsc_adjust = true;
725 continue;
726 }
727 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
728 has_msr_tsc_deadline = true;
729 continue;
730 }
731 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
732 has_msr_misc_enable = true;
733 continue;
734 }
735 }
736 }
737
738 g_free(kvm_msr_list);
739 }
740
741 return ret;
742 }
743
744 int kvm_arch_init(KVMState *s)
745 {
746 QemuOptsList *list = qemu_find_opts("machine");
747 uint64_t identity_base = 0xfffbc000;
748 uint64_t shadow_mem;
749 int ret;
750 struct utsname utsname;
751
752 ret = kvm_get_supported_msrs(s);
753 if (ret < 0) {
754 return ret;
755 }
756
757 uname(&utsname);
758 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
759
760 /*
761 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
762 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
763 * Since these must be part of guest physical memory, we need to allocate
764 * them, both by setting their start addresses in the kernel and by
765 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
766 *
767 * Older KVM versions may not support setting the identity map base. In
768 * that case we need to stick with the default, i.e. a 256K maximum BIOS
769 * size.
770 */
771 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
772 /* Allows up to 16M BIOSes. */
773 identity_base = 0xfeffc000;
774
775 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
776 if (ret < 0) {
777 return ret;
778 }
779 }
780
781 /* Set TSS base one page after EPT identity map. */
782 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
783 if (ret < 0) {
784 return ret;
785 }
786
787 /* Tell fw_cfg to notify the BIOS to reserve the range. */
788 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
789 if (ret < 0) {
790 fprintf(stderr, "e820_add_entry() table is full\n");
791 return ret;
792 }
793 qemu_register_reset(kvm_unpoison_all, NULL);
794
795 if (!QTAILQ_EMPTY(&list->head)) {
796 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
797 "kvm_shadow_mem", -1);
798 if (shadow_mem != -1) {
799 shadow_mem /= 4096;
800 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
801 if (ret < 0) {
802 return ret;
803 }
804 }
805 }
806 return 0;
807 }
808
809 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
810 {
811 lhs->selector = rhs->selector;
812 lhs->base = rhs->base;
813 lhs->limit = rhs->limit;
814 lhs->type = 3;
815 lhs->present = 1;
816 lhs->dpl = 3;
817 lhs->db = 0;
818 lhs->s = 1;
819 lhs->l = 0;
820 lhs->g = 0;
821 lhs->avl = 0;
822 lhs->unusable = 0;
823 }
824
825 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
826 {
827 unsigned flags = rhs->flags;
828 lhs->selector = rhs->selector;
829 lhs->base = rhs->base;
830 lhs->limit = rhs->limit;
831 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
832 lhs->present = (flags & DESC_P_MASK) != 0;
833 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
834 lhs->db = (flags >> DESC_B_SHIFT) & 1;
835 lhs->s = (flags & DESC_S_MASK) != 0;
836 lhs->l = (flags >> DESC_L_SHIFT) & 1;
837 lhs->g = (flags & DESC_G_MASK) != 0;
838 lhs->avl = (flags & DESC_AVL_MASK) != 0;
839 lhs->unusable = 0;
840 lhs->padding = 0;
841 }
842
843 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
844 {
845 lhs->selector = rhs->selector;
846 lhs->base = rhs->base;
847 lhs->limit = rhs->limit;
848 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
849 (rhs->present * DESC_P_MASK) |
850 (rhs->dpl << DESC_DPL_SHIFT) |
851 (rhs->db << DESC_B_SHIFT) |
852 (rhs->s * DESC_S_MASK) |
853 (rhs->l << DESC_L_SHIFT) |
854 (rhs->g * DESC_G_MASK) |
855 (rhs->avl * DESC_AVL_MASK);
856 }
857
858 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
859 {
860 if (set) {
861 *kvm_reg = *qemu_reg;
862 } else {
863 *qemu_reg = *kvm_reg;
864 }
865 }
866
867 static int kvm_getput_regs(X86CPU *cpu, int set)
868 {
869 CPUX86State *env = &cpu->env;
870 struct kvm_regs regs;
871 int ret = 0;
872
873 if (!set) {
874 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
875 if (ret < 0) {
876 return ret;
877 }
878 }
879
880 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
881 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
882 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
883 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
884 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
885 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
886 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
887 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
888 #ifdef TARGET_X86_64
889 kvm_getput_reg(&regs.r8, &env->regs[8], set);
890 kvm_getput_reg(&regs.r9, &env->regs[9], set);
891 kvm_getput_reg(&regs.r10, &env->regs[10], set);
892 kvm_getput_reg(&regs.r11, &env->regs[11], set);
893 kvm_getput_reg(&regs.r12, &env->regs[12], set);
894 kvm_getput_reg(&regs.r13, &env->regs[13], set);
895 kvm_getput_reg(&regs.r14, &env->regs[14], set);
896 kvm_getput_reg(&regs.r15, &env->regs[15], set);
897 #endif
898
899 kvm_getput_reg(&regs.rflags, &env->eflags, set);
900 kvm_getput_reg(&regs.rip, &env->eip, set);
901
902 if (set) {
903 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
904 }
905
906 return ret;
907 }
908
909 static int kvm_put_fpu(X86CPU *cpu)
910 {
911 CPUX86State *env = &cpu->env;
912 struct kvm_fpu fpu;
913 int i;
914
915 memset(&fpu, 0, sizeof fpu);
916 fpu.fsw = env->fpus & ~(7 << 11);
917 fpu.fsw |= (env->fpstt & 7) << 11;
918 fpu.fcw = env->fpuc;
919 fpu.last_opcode = env->fpop;
920 fpu.last_ip = env->fpip;
921 fpu.last_dp = env->fpdp;
922 for (i = 0; i < 8; ++i) {
923 fpu.ftwx |= (!env->fptags[i]) << i;
924 }
925 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
926 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
927 fpu.mxcsr = env->mxcsr;
928
929 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
930 }
931
932 #define XSAVE_FCW_FSW 0
933 #define XSAVE_FTW_FOP 1
934 #define XSAVE_CWD_RIP 2
935 #define XSAVE_CWD_RDP 4
936 #define XSAVE_MXCSR 6
937 #define XSAVE_ST_SPACE 8
938 #define XSAVE_XMM_SPACE 40
939 #define XSAVE_XSTATE_BV 128
940 #define XSAVE_YMMH_SPACE 144
941
942 static int kvm_put_xsave(X86CPU *cpu)
943 {
944 CPUX86State *env = &cpu->env;
945 struct kvm_xsave* xsave = env->kvm_xsave_buf;
946 uint16_t cwd, swd, twd;
947 int i, r;
948
949 if (!kvm_has_xsave()) {
950 return kvm_put_fpu(cpu);
951 }
952
953 memset(xsave, 0, sizeof(struct kvm_xsave));
954 twd = 0;
955 swd = env->fpus & ~(7 << 11);
956 swd |= (env->fpstt & 7) << 11;
957 cwd = env->fpuc;
958 for (i = 0; i < 8; ++i) {
959 twd |= (!env->fptags[i]) << i;
960 }
961 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
962 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
963 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
964 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
965 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
966 sizeof env->fpregs);
967 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
968 sizeof env->xmm_regs);
969 xsave->region[XSAVE_MXCSR] = env->mxcsr;
970 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
971 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
972 sizeof env->ymmh_regs);
973 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
974 return r;
975 }
976
977 static int kvm_put_xcrs(X86CPU *cpu)
978 {
979 CPUX86State *env = &cpu->env;
980 struct kvm_xcrs xcrs;
981
982 if (!kvm_has_xcrs()) {
983 return 0;
984 }
985
986 xcrs.nr_xcrs = 1;
987 xcrs.flags = 0;
988 xcrs.xcrs[0].xcr = 0;
989 xcrs.xcrs[0].value = env->xcr0;
990 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
991 }
992
993 static int kvm_put_sregs(X86CPU *cpu)
994 {
995 CPUX86State *env = &cpu->env;
996 struct kvm_sregs sregs;
997
998 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
999 if (env->interrupt_injected >= 0) {
1000 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1001 (uint64_t)1 << (env->interrupt_injected % 64);
1002 }
1003
1004 if ((env->eflags & VM_MASK)) {
1005 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1006 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1007 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1008 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1009 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1010 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1011 } else {
1012 set_seg(&sregs.cs, &env->segs[R_CS]);
1013 set_seg(&sregs.ds, &env->segs[R_DS]);
1014 set_seg(&sregs.es, &env->segs[R_ES]);
1015 set_seg(&sregs.fs, &env->segs[R_FS]);
1016 set_seg(&sregs.gs, &env->segs[R_GS]);
1017 set_seg(&sregs.ss, &env->segs[R_SS]);
1018 }
1019
1020 set_seg(&sregs.tr, &env->tr);
1021 set_seg(&sregs.ldt, &env->ldt);
1022
1023 sregs.idt.limit = env->idt.limit;
1024 sregs.idt.base = env->idt.base;
1025 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1026 sregs.gdt.limit = env->gdt.limit;
1027 sregs.gdt.base = env->gdt.base;
1028 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1029
1030 sregs.cr0 = env->cr[0];
1031 sregs.cr2 = env->cr[2];
1032 sregs.cr3 = env->cr[3];
1033 sregs.cr4 = env->cr[4];
1034
1035 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1036 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1037
1038 sregs.efer = env->efer;
1039
1040 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1041 }
1042
1043 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1044 uint32_t index, uint64_t value)
1045 {
1046 entry->index = index;
1047 entry->data = value;
1048 }
1049
1050 static int kvm_put_msrs(X86CPU *cpu, int level)
1051 {
1052 CPUX86State *env = &cpu->env;
1053 struct {
1054 struct kvm_msrs info;
1055 struct kvm_msr_entry entries[100];
1056 } msr_data;
1057 struct kvm_msr_entry *msrs = msr_data.entries;
1058 int n = 0;
1059
1060 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1061 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1062 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1063 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1064 if (has_msr_star) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1066 }
1067 if (has_msr_hsave_pa) {
1068 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1069 }
1070 if (has_msr_tsc_adjust) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1072 }
1073 if (has_msr_tsc_deadline) {
1074 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1075 }
1076 if (has_msr_misc_enable) {
1077 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1078 env->msr_ia32_misc_enable);
1079 }
1080 #ifdef TARGET_X86_64
1081 if (lm_capable_kernel) {
1082 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1083 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1084 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1085 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1086 }
1087 #endif
1088 if (level == KVM_PUT_FULL_STATE) {
1089 /*
1090 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1091 * writeback. Until this is fixed, we only write the offset to SMP
1092 * guests after migration, desynchronizing the VCPUs, but avoiding
1093 * huge jump-backs that would occur without any writeback at all.
1094 */
1095 if (smp_cpus == 1 || env->tsc != 0) {
1096 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1097 }
1098 }
1099 /*
1100 * The following paravirtual MSRs have side effects on the guest or are
1101 * too heavy for normal writeback. Limit them to reset or full state
1102 * updates.
1103 */
1104 if (level >= KVM_PUT_RESET_STATE) {
1105 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1106 env->system_time_msr);
1107 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1108 if (has_msr_async_pf_en) {
1109 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1110 env->async_pf_en_msr);
1111 }
1112 if (has_msr_pv_eoi_en) {
1113 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1114 env->pv_eoi_en_msr);
1115 }
1116 if (has_msr_kvm_steal_time) {
1117 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1118 env->steal_time_msr);
1119 }
1120 if (hyperv_hypercall_available()) {
1121 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1122 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1123 }
1124 if (hyperv_vapic_recommended()) {
1125 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1126 }
1127 }
1128 if (env->mcg_cap) {
1129 int i;
1130
1131 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1132 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1133 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1134 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1135 }
1136 }
1137
1138 msr_data.info.nmsrs = n;
1139
1140 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1141
1142 }
1143
1144
1145 static int kvm_get_fpu(X86CPU *cpu)
1146 {
1147 CPUX86State *env = &cpu->env;
1148 struct kvm_fpu fpu;
1149 int i, ret;
1150
1151 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1152 if (ret < 0) {
1153 return ret;
1154 }
1155
1156 env->fpstt = (fpu.fsw >> 11) & 7;
1157 env->fpus = fpu.fsw;
1158 env->fpuc = fpu.fcw;
1159 env->fpop = fpu.last_opcode;
1160 env->fpip = fpu.last_ip;
1161 env->fpdp = fpu.last_dp;
1162 for (i = 0; i < 8; ++i) {
1163 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1164 }
1165 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1166 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1167 env->mxcsr = fpu.mxcsr;
1168
1169 return 0;
1170 }
1171
1172 static int kvm_get_xsave(X86CPU *cpu)
1173 {
1174 CPUX86State *env = &cpu->env;
1175 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1176 int ret, i;
1177 uint16_t cwd, swd, twd;
1178
1179 if (!kvm_has_xsave()) {
1180 return kvm_get_fpu(cpu);
1181 }
1182
1183 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1184 if (ret < 0) {
1185 return ret;
1186 }
1187
1188 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1189 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1190 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1191 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1192 env->fpstt = (swd >> 11) & 7;
1193 env->fpus = swd;
1194 env->fpuc = cwd;
1195 for (i = 0; i < 8; ++i) {
1196 env->fptags[i] = !((twd >> i) & 1);
1197 }
1198 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1199 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1200 env->mxcsr = xsave->region[XSAVE_MXCSR];
1201 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1202 sizeof env->fpregs);
1203 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1204 sizeof env->xmm_regs);
1205 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1206 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1207 sizeof env->ymmh_regs);
1208 return 0;
1209 }
1210
1211 static int kvm_get_xcrs(X86CPU *cpu)
1212 {
1213 CPUX86State *env = &cpu->env;
1214 int i, ret;
1215 struct kvm_xcrs xcrs;
1216
1217 if (!kvm_has_xcrs()) {
1218 return 0;
1219 }
1220
1221 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1222 if (ret < 0) {
1223 return ret;
1224 }
1225
1226 for (i = 0; i < xcrs.nr_xcrs; i++) {
1227 /* Only support xcr0 now */
1228 if (xcrs.xcrs[0].xcr == 0) {
1229 env->xcr0 = xcrs.xcrs[0].value;
1230 break;
1231 }
1232 }
1233 return 0;
1234 }
1235
1236 static int kvm_get_sregs(X86CPU *cpu)
1237 {
1238 CPUX86State *env = &cpu->env;
1239 struct kvm_sregs sregs;
1240 uint32_t hflags;
1241 int bit, i, ret;
1242
1243 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1244 if (ret < 0) {
1245 return ret;
1246 }
1247
1248 /* There can only be one pending IRQ set in the bitmap at a time, so try
1249 to find it and save its number instead (-1 for none). */
1250 env->interrupt_injected = -1;
1251 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1252 if (sregs.interrupt_bitmap[i]) {
1253 bit = ctz64(sregs.interrupt_bitmap[i]);
1254 env->interrupt_injected = i * 64 + bit;
1255 break;
1256 }
1257 }
1258
1259 get_seg(&env->segs[R_CS], &sregs.cs);
1260 get_seg(&env->segs[R_DS], &sregs.ds);
1261 get_seg(&env->segs[R_ES], &sregs.es);
1262 get_seg(&env->segs[R_FS], &sregs.fs);
1263 get_seg(&env->segs[R_GS], &sregs.gs);
1264 get_seg(&env->segs[R_SS], &sregs.ss);
1265
1266 get_seg(&env->tr, &sregs.tr);
1267 get_seg(&env->ldt, &sregs.ldt);
1268
1269 env->idt.limit = sregs.idt.limit;
1270 env->idt.base = sregs.idt.base;
1271 env->gdt.limit = sregs.gdt.limit;
1272 env->gdt.base = sregs.gdt.base;
1273
1274 env->cr[0] = sregs.cr0;
1275 env->cr[2] = sregs.cr2;
1276 env->cr[3] = sregs.cr3;
1277 env->cr[4] = sregs.cr4;
1278
1279 env->efer = sregs.efer;
1280
1281 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1282
1283 #define HFLAG_COPY_MASK \
1284 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1285 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1286 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1287 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1288
1289 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1290 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1291 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1292 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1293 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1294 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1295 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1296
1297 if (env->efer & MSR_EFER_LMA) {
1298 hflags |= HF_LMA_MASK;
1299 }
1300
1301 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1302 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1303 } else {
1304 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1305 (DESC_B_SHIFT - HF_CS32_SHIFT);
1306 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1307 (DESC_B_SHIFT - HF_SS32_SHIFT);
1308 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1309 !(hflags & HF_CS32_MASK)) {
1310 hflags |= HF_ADDSEG_MASK;
1311 } else {
1312 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1313 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1314 }
1315 }
1316 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1317
1318 return 0;
1319 }
1320
1321 static int kvm_get_msrs(X86CPU *cpu)
1322 {
1323 CPUX86State *env = &cpu->env;
1324 struct {
1325 struct kvm_msrs info;
1326 struct kvm_msr_entry entries[100];
1327 } msr_data;
1328 struct kvm_msr_entry *msrs = msr_data.entries;
1329 int ret, i, n;
1330
1331 n = 0;
1332 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1333 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1334 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1335 msrs[n++].index = MSR_PAT;
1336 if (has_msr_star) {
1337 msrs[n++].index = MSR_STAR;
1338 }
1339 if (has_msr_hsave_pa) {
1340 msrs[n++].index = MSR_VM_HSAVE_PA;
1341 }
1342 if (has_msr_tsc_adjust) {
1343 msrs[n++].index = MSR_TSC_ADJUST;
1344 }
1345 if (has_msr_tsc_deadline) {
1346 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1347 }
1348 if (has_msr_misc_enable) {
1349 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1350 }
1351
1352 if (!env->tsc_valid) {
1353 msrs[n++].index = MSR_IA32_TSC;
1354 env->tsc_valid = !runstate_is_running();
1355 }
1356
1357 #ifdef TARGET_X86_64
1358 if (lm_capable_kernel) {
1359 msrs[n++].index = MSR_CSTAR;
1360 msrs[n++].index = MSR_KERNELGSBASE;
1361 msrs[n++].index = MSR_FMASK;
1362 msrs[n++].index = MSR_LSTAR;
1363 }
1364 #endif
1365 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1366 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1367 if (has_msr_async_pf_en) {
1368 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1369 }
1370 if (has_msr_pv_eoi_en) {
1371 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1372 }
1373 if (has_msr_kvm_steal_time) {
1374 msrs[n++].index = MSR_KVM_STEAL_TIME;
1375 }
1376
1377 if (env->mcg_cap) {
1378 msrs[n++].index = MSR_MCG_STATUS;
1379 msrs[n++].index = MSR_MCG_CTL;
1380 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1381 msrs[n++].index = MSR_MC0_CTL + i;
1382 }
1383 }
1384
1385 msr_data.info.nmsrs = n;
1386 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1387 if (ret < 0) {
1388 return ret;
1389 }
1390
1391 for (i = 0; i < ret; i++) {
1392 switch (msrs[i].index) {
1393 case MSR_IA32_SYSENTER_CS:
1394 env->sysenter_cs = msrs[i].data;
1395 break;
1396 case MSR_IA32_SYSENTER_ESP:
1397 env->sysenter_esp = msrs[i].data;
1398 break;
1399 case MSR_IA32_SYSENTER_EIP:
1400 env->sysenter_eip = msrs[i].data;
1401 break;
1402 case MSR_PAT:
1403 env->pat = msrs[i].data;
1404 break;
1405 case MSR_STAR:
1406 env->star = msrs[i].data;
1407 break;
1408 #ifdef TARGET_X86_64
1409 case MSR_CSTAR:
1410 env->cstar = msrs[i].data;
1411 break;
1412 case MSR_KERNELGSBASE:
1413 env->kernelgsbase = msrs[i].data;
1414 break;
1415 case MSR_FMASK:
1416 env->fmask = msrs[i].data;
1417 break;
1418 case MSR_LSTAR:
1419 env->lstar = msrs[i].data;
1420 break;
1421 #endif
1422 case MSR_IA32_TSC:
1423 env->tsc = msrs[i].data;
1424 break;
1425 case MSR_TSC_ADJUST:
1426 env->tsc_adjust = msrs[i].data;
1427 break;
1428 case MSR_IA32_TSCDEADLINE:
1429 env->tsc_deadline = msrs[i].data;
1430 break;
1431 case MSR_VM_HSAVE_PA:
1432 env->vm_hsave = msrs[i].data;
1433 break;
1434 case MSR_KVM_SYSTEM_TIME:
1435 env->system_time_msr = msrs[i].data;
1436 break;
1437 case MSR_KVM_WALL_CLOCK:
1438 env->wall_clock_msr = msrs[i].data;
1439 break;
1440 case MSR_MCG_STATUS:
1441 env->mcg_status = msrs[i].data;
1442 break;
1443 case MSR_MCG_CTL:
1444 env->mcg_ctl = msrs[i].data;
1445 break;
1446 case MSR_IA32_MISC_ENABLE:
1447 env->msr_ia32_misc_enable = msrs[i].data;
1448 break;
1449 default:
1450 if (msrs[i].index >= MSR_MC0_CTL &&
1451 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1452 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1453 }
1454 break;
1455 case MSR_KVM_ASYNC_PF_EN:
1456 env->async_pf_en_msr = msrs[i].data;
1457 break;
1458 case MSR_KVM_PV_EOI_EN:
1459 env->pv_eoi_en_msr = msrs[i].data;
1460 break;
1461 case MSR_KVM_STEAL_TIME:
1462 env->steal_time_msr = msrs[i].data;
1463 break;
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 static int kvm_put_mp_state(X86CPU *cpu)
1471 {
1472 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1473
1474 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1475 }
1476
1477 static int kvm_get_mp_state(X86CPU *cpu)
1478 {
1479 CPUState *cs = CPU(cpu);
1480 CPUX86State *env = &cpu->env;
1481 struct kvm_mp_state mp_state;
1482 int ret;
1483
1484 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1485 if (ret < 0) {
1486 return ret;
1487 }
1488 env->mp_state = mp_state.mp_state;
1489 if (kvm_irqchip_in_kernel()) {
1490 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1491 }
1492 return 0;
1493 }
1494
1495 static int kvm_get_apic(X86CPU *cpu)
1496 {
1497 CPUX86State *env = &cpu->env;
1498 DeviceState *apic = env->apic_state;
1499 struct kvm_lapic_state kapic;
1500 int ret;
1501
1502 if (apic && kvm_irqchip_in_kernel()) {
1503 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1504 if (ret < 0) {
1505 return ret;
1506 }
1507
1508 kvm_get_apic_state(apic, &kapic);
1509 }
1510 return 0;
1511 }
1512
1513 static int kvm_put_apic(X86CPU *cpu)
1514 {
1515 CPUX86State *env = &cpu->env;
1516 DeviceState *apic = env->apic_state;
1517 struct kvm_lapic_state kapic;
1518
1519 if (apic && kvm_irqchip_in_kernel()) {
1520 kvm_put_apic_state(apic, &kapic);
1521
1522 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1523 }
1524 return 0;
1525 }
1526
1527 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1528 {
1529 CPUX86State *env = &cpu->env;
1530 struct kvm_vcpu_events events;
1531
1532 if (!kvm_has_vcpu_events()) {
1533 return 0;
1534 }
1535
1536 events.exception.injected = (env->exception_injected >= 0);
1537 events.exception.nr = env->exception_injected;
1538 events.exception.has_error_code = env->has_error_code;
1539 events.exception.error_code = env->error_code;
1540 events.exception.pad = 0;
1541
1542 events.interrupt.injected = (env->interrupt_injected >= 0);
1543 events.interrupt.nr = env->interrupt_injected;
1544 events.interrupt.soft = env->soft_interrupt;
1545
1546 events.nmi.injected = env->nmi_injected;
1547 events.nmi.pending = env->nmi_pending;
1548 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1549 events.nmi.pad = 0;
1550
1551 events.sipi_vector = env->sipi_vector;
1552
1553 events.flags = 0;
1554 if (level >= KVM_PUT_RESET_STATE) {
1555 events.flags |=
1556 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1557 }
1558
1559 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1560 }
1561
1562 static int kvm_get_vcpu_events(X86CPU *cpu)
1563 {
1564 CPUX86State *env = &cpu->env;
1565 struct kvm_vcpu_events events;
1566 int ret;
1567
1568 if (!kvm_has_vcpu_events()) {
1569 return 0;
1570 }
1571
1572 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1573 if (ret < 0) {
1574 return ret;
1575 }
1576 env->exception_injected =
1577 events.exception.injected ? events.exception.nr : -1;
1578 env->has_error_code = events.exception.has_error_code;
1579 env->error_code = events.exception.error_code;
1580
1581 env->interrupt_injected =
1582 events.interrupt.injected ? events.interrupt.nr : -1;
1583 env->soft_interrupt = events.interrupt.soft;
1584
1585 env->nmi_injected = events.nmi.injected;
1586 env->nmi_pending = events.nmi.pending;
1587 if (events.nmi.masked) {
1588 env->hflags2 |= HF2_NMI_MASK;
1589 } else {
1590 env->hflags2 &= ~HF2_NMI_MASK;
1591 }
1592
1593 env->sipi_vector = events.sipi_vector;
1594
1595 return 0;
1596 }
1597
1598 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1599 {
1600 CPUX86State *env = &cpu->env;
1601 int ret = 0;
1602 unsigned long reinject_trap = 0;
1603
1604 if (!kvm_has_vcpu_events()) {
1605 if (env->exception_injected == 1) {
1606 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1607 } else if (env->exception_injected == 3) {
1608 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1609 }
1610 env->exception_injected = -1;
1611 }
1612
1613 /*
1614 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1615 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1616 * by updating the debug state once again if single-stepping is on.
1617 * Another reason to call kvm_update_guest_debug here is a pending debug
1618 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1619 * reinject them via SET_GUEST_DEBUG.
1620 */
1621 if (reinject_trap ||
1622 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1623 ret = kvm_update_guest_debug(env, reinject_trap);
1624 }
1625 return ret;
1626 }
1627
1628 static int kvm_put_debugregs(X86CPU *cpu)
1629 {
1630 CPUX86State *env = &cpu->env;
1631 struct kvm_debugregs dbgregs;
1632 int i;
1633
1634 if (!kvm_has_debugregs()) {
1635 return 0;
1636 }
1637
1638 for (i = 0; i < 4; i++) {
1639 dbgregs.db[i] = env->dr[i];
1640 }
1641 dbgregs.dr6 = env->dr[6];
1642 dbgregs.dr7 = env->dr[7];
1643 dbgregs.flags = 0;
1644
1645 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1646 }
1647
1648 static int kvm_get_debugregs(X86CPU *cpu)
1649 {
1650 CPUX86State *env = &cpu->env;
1651 struct kvm_debugregs dbgregs;
1652 int i, ret;
1653
1654 if (!kvm_has_debugregs()) {
1655 return 0;
1656 }
1657
1658 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1659 if (ret < 0) {
1660 return ret;
1661 }
1662 for (i = 0; i < 4; i++) {
1663 env->dr[i] = dbgregs.db[i];
1664 }
1665 env->dr[4] = env->dr[6] = dbgregs.dr6;
1666 env->dr[5] = env->dr[7] = dbgregs.dr7;
1667
1668 return 0;
1669 }
1670
1671 int kvm_arch_put_registers(CPUState *cpu, int level)
1672 {
1673 X86CPU *x86_cpu = X86_CPU(cpu);
1674 int ret;
1675
1676 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1677
1678 ret = kvm_getput_regs(x86_cpu, 1);
1679 if (ret < 0) {
1680 return ret;
1681 }
1682 ret = kvm_put_xsave(x86_cpu);
1683 if (ret < 0) {
1684 return ret;
1685 }
1686 ret = kvm_put_xcrs(x86_cpu);
1687 if (ret < 0) {
1688 return ret;
1689 }
1690 ret = kvm_put_sregs(x86_cpu);
1691 if (ret < 0) {
1692 return ret;
1693 }
1694 /* must be before kvm_put_msrs */
1695 ret = kvm_inject_mce_oldstyle(x86_cpu);
1696 if (ret < 0) {
1697 return ret;
1698 }
1699 ret = kvm_put_msrs(x86_cpu, level);
1700 if (ret < 0) {
1701 return ret;
1702 }
1703 if (level >= KVM_PUT_RESET_STATE) {
1704 ret = kvm_put_mp_state(x86_cpu);
1705 if (ret < 0) {
1706 return ret;
1707 }
1708 ret = kvm_put_apic(x86_cpu);
1709 if (ret < 0) {
1710 return ret;
1711 }
1712 }
1713 ret = kvm_put_vcpu_events(x86_cpu, level);
1714 if (ret < 0) {
1715 return ret;
1716 }
1717 ret = kvm_put_debugregs(x86_cpu);
1718 if (ret < 0) {
1719 return ret;
1720 }
1721 /* must be last */
1722 ret = kvm_guest_debug_workarounds(x86_cpu);
1723 if (ret < 0) {
1724 return ret;
1725 }
1726 return 0;
1727 }
1728
1729 int kvm_arch_get_registers(CPUState *cs)
1730 {
1731 X86CPU *cpu = X86_CPU(cs);
1732 int ret;
1733
1734 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1735
1736 ret = kvm_getput_regs(cpu, 0);
1737 if (ret < 0) {
1738 return ret;
1739 }
1740 ret = kvm_get_xsave(cpu);
1741 if (ret < 0) {
1742 return ret;
1743 }
1744 ret = kvm_get_xcrs(cpu);
1745 if (ret < 0) {
1746 return ret;
1747 }
1748 ret = kvm_get_sregs(cpu);
1749 if (ret < 0) {
1750 return ret;
1751 }
1752 ret = kvm_get_msrs(cpu);
1753 if (ret < 0) {
1754 return ret;
1755 }
1756 ret = kvm_get_mp_state(cpu);
1757 if (ret < 0) {
1758 return ret;
1759 }
1760 ret = kvm_get_apic(cpu);
1761 if (ret < 0) {
1762 return ret;
1763 }
1764 ret = kvm_get_vcpu_events(cpu);
1765 if (ret < 0) {
1766 return ret;
1767 }
1768 ret = kvm_get_debugregs(cpu);
1769 if (ret < 0) {
1770 return ret;
1771 }
1772 return 0;
1773 }
1774
1775 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1776 {
1777 X86CPU *x86_cpu = X86_CPU(cpu);
1778 CPUX86State *env = &x86_cpu->env;
1779 int ret;
1780
1781 /* Inject NMI */
1782 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1783 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1784 DPRINTF("injected NMI\n");
1785 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1786 if (ret < 0) {
1787 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1788 strerror(-ret));
1789 }
1790 }
1791
1792 if (!kvm_irqchip_in_kernel()) {
1793 /* Force the VCPU out of its inner loop to process any INIT requests
1794 * or pending TPR access reports. */
1795 if (cpu->interrupt_request &
1796 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1797 cpu->exit_request = 1;
1798 }
1799
1800 /* Try to inject an interrupt if the guest can accept it */
1801 if (run->ready_for_interrupt_injection &&
1802 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1803 (env->eflags & IF_MASK)) {
1804 int irq;
1805
1806 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1807 irq = cpu_get_pic_interrupt(env);
1808 if (irq >= 0) {
1809 struct kvm_interrupt intr;
1810
1811 intr.irq = irq;
1812 DPRINTF("injected interrupt %d\n", irq);
1813 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1814 if (ret < 0) {
1815 fprintf(stderr,
1816 "KVM: injection failed, interrupt lost (%s)\n",
1817 strerror(-ret));
1818 }
1819 }
1820 }
1821
1822 /* If we have an interrupt but the guest is not ready to receive an
1823 * interrupt, request an interrupt window exit. This will
1824 * cause a return to userspace as soon as the guest is ready to
1825 * receive interrupts. */
1826 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1827 run->request_interrupt_window = 1;
1828 } else {
1829 run->request_interrupt_window = 0;
1830 }
1831
1832 DPRINTF("setting tpr\n");
1833 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1834 }
1835 }
1836
1837 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1838 {
1839 X86CPU *x86_cpu = X86_CPU(cpu);
1840 CPUX86State *env = &x86_cpu->env;
1841
1842 if (run->if_flag) {
1843 env->eflags |= IF_MASK;
1844 } else {
1845 env->eflags &= ~IF_MASK;
1846 }
1847 cpu_set_apic_tpr(env->apic_state, run->cr8);
1848 cpu_set_apic_base(env->apic_state, run->apic_base);
1849 }
1850
1851 int kvm_arch_process_async_events(CPUState *cs)
1852 {
1853 X86CPU *cpu = X86_CPU(cs);
1854 CPUX86State *env = &cpu->env;
1855
1856 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1857 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1858 assert(env->mcg_cap);
1859
1860 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1861
1862 kvm_cpu_synchronize_state(cs);
1863
1864 if (env->exception_injected == EXCP08_DBLE) {
1865 /* this means triple fault */
1866 qemu_system_reset_request();
1867 cs->exit_request = 1;
1868 return 0;
1869 }
1870 env->exception_injected = EXCP12_MCHK;
1871 env->has_error_code = 0;
1872
1873 cs->halted = 0;
1874 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1875 env->mp_state = KVM_MP_STATE_RUNNABLE;
1876 }
1877 }
1878
1879 if (kvm_irqchip_in_kernel()) {
1880 return 0;
1881 }
1882
1883 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1884 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1885 apic_poll_irq(env->apic_state);
1886 }
1887 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1888 (env->eflags & IF_MASK)) ||
1889 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1890 cs->halted = 0;
1891 }
1892 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1893 kvm_cpu_synchronize_state(cs);
1894 do_cpu_init(cpu);
1895 }
1896 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1897 kvm_cpu_synchronize_state(cs);
1898 do_cpu_sipi(cpu);
1899 }
1900 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1901 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1902 kvm_cpu_synchronize_state(cs);
1903 apic_handle_tpr_access_report(env->apic_state, env->eip,
1904 env->tpr_access_type);
1905 }
1906
1907 return cs->halted;
1908 }
1909
1910 static int kvm_handle_halt(X86CPU *cpu)
1911 {
1912 CPUState *cs = CPU(cpu);
1913 CPUX86State *env = &cpu->env;
1914
1915 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1916 (env->eflags & IF_MASK)) &&
1917 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1918 cs->halted = 1;
1919 return EXCP_HLT;
1920 }
1921
1922 return 0;
1923 }
1924
1925 static int kvm_handle_tpr_access(X86CPU *cpu)
1926 {
1927 CPUX86State *env = &cpu->env;
1928 CPUState *cs = CPU(cpu);
1929 struct kvm_run *run = cs->kvm_run;
1930
1931 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1932 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1933 : TPR_ACCESS_READ);
1934 return 1;
1935 }
1936
1937 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1938 {
1939 CPUX86State *env = &X86_CPU(cpu)->env;
1940 static const uint8_t int3 = 0xcc;
1941
1942 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1943 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1944 return -EINVAL;
1945 }
1946 return 0;
1947 }
1948
1949 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1950 {
1951 CPUX86State *env = &X86_CPU(cpu)->env;
1952 uint8_t int3;
1953
1954 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1955 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1956 return -EINVAL;
1957 }
1958 return 0;
1959 }
1960
1961 static struct {
1962 target_ulong addr;
1963 int len;
1964 int type;
1965 } hw_breakpoint[4];
1966
1967 static int nb_hw_breakpoint;
1968
1969 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1970 {
1971 int n;
1972
1973 for (n = 0; n < nb_hw_breakpoint; n++) {
1974 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1975 (hw_breakpoint[n].len == len || len == -1)) {
1976 return n;
1977 }
1978 }
1979 return -1;
1980 }
1981
1982 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1983 target_ulong len, int type)
1984 {
1985 switch (type) {
1986 case GDB_BREAKPOINT_HW:
1987 len = 1;
1988 break;
1989 case GDB_WATCHPOINT_WRITE:
1990 case GDB_WATCHPOINT_ACCESS:
1991 switch (len) {
1992 case 1:
1993 break;
1994 case 2:
1995 case 4:
1996 case 8:
1997 if (addr & (len - 1)) {
1998 return -EINVAL;
1999 }
2000 break;
2001 default:
2002 return -EINVAL;
2003 }
2004 break;
2005 default:
2006 return -ENOSYS;
2007 }
2008
2009 if (nb_hw_breakpoint == 4) {
2010 return -ENOBUFS;
2011 }
2012 if (find_hw_breakpoint(addr, len, type) >= 0) {
2013 return -EEXIST;
2014 }
2015 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2016 hw_breakpoint[nb_hw_breakpoint].len = len;
2017 hw_breakpoint[nb_hw_breakpoint].type = type;
2018 nb_hw_breakpoint++;
2019
2020 return 0;
2021 }
2022
2023 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2024 target_ulong len, int type)
2025 {
2026 int n;
2027
2028 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2029 if (n < 0) {
2030 return -ENOENT;
2031 }
2032 nb_hw_breakpoint--;
2033 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2034
2035 return 0;
2036 }
2037
2038 void kvm_arch_remove_all_hw_breakpoints(void)
2039 {
2040 nb_hw_breakpoint = 0;
2041 }
2042
2043 static CPUWatchpoint hw_watchpoint;
2044
2045 static int kvm_handle_debug(X86CPU *cpu,
2046 struct kvm_debug_exit_arch *arch_info)
2047 {
2048 CPUX86State *env = &cpu->env;
2049 int ret = 0;
2050 int n;
2051
2052 if (arch_info->exception == 1) {
2053 if (arch_info->dr6 & (1 << 14)) {
2054 if (env->singlestep_enabled) {
2055 ret = EXCP_DEBUG;
2056 }
2057 } else {
2058 for (n = 0; n < 4; n++) {
2059 if (arch_info->dr6 & (1 << n)) {
2060 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2061 case 0x0:
2062 ret = EXCP_DEBUG;
2063 break;
2064 case 0x1:
2065 ret = EXCP_DEBUG;
2066 env->watchpoint_hit = &hw_watchpoint;
2067 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2068 hw_watchpoint.flags = BP_MEM_WRITE;
2069 break;
2070 case 0x3:
2071 ret = EXCP_DEBUG;
2072 env->watchpoint_hit = &hw_watchpoint;
2073 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2074 hw_watchpoint.flags = BP_MEM_ACCESS;
2075 break;
2076 }
2077 }
2078 }
2079 }
2080 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2081 ret = EXCP_DEBUG;
2082 }
2083 if (ret == 0) {
2084 cpu_synchronize_state(CPU(cpu));
2085 assert(env->exception_injected == -1);
2086
2087 /* pass to guest */
2088 env->exception_injected = arch_info->exception;
2089 env->has_error_code = 0;
2090 }
2091
2092 return ret;
2093 }
2094
2095 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2096 {
2097 const uint8_t type_code[] = {
2098 [GDB_BREAKPOINT_HW] = 0x0,
2099 [GDB_WATCHPOINT_WRITE] = 0x1,
2100 [GDB_WATCHPOINT_ACCESS] = 0x3
2101 };
2102 const uint8_t len_code[] = {
2103 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2104 };
2105 int n;
2106
2107 if (kvm_sw_breakpoints_active(cpu)) {
2108 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2109 }
2110 if (nb_hw_breakpoint > 0) {
2111 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2112 dbg->arch.debugreg[7] = 0x0600;
2113 for (n = 0; n < nb_hw_breakpoint; n++) {
2114 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2115 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2116 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2117 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2118 }
2119 }
2120 }
2121
2122 static bool host_supports_vmx(void)
2123 {
2124 uint32_t ecx, unused;
2125
2126 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2127 return ecx & CPUID_EXT_VMX;
2128 }
2129
2130 #define VMX_INVALID_GUEST_STATE 0x80000021
2131
2132 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2133 {
2134 X86CPU *cpu = X86_CPU(cs);
2135 uint64_t code;
2136 int ret;
2137
2138 switch (run->exit_reason) {
2139 case KVM_EXIT_HLT:
2140 DPRINTF("handle_hlt\n");
2141 ret = kvm_handle_halt(cpu);
2142 break;
2143 case KVM_EXIT_SET_TPR:
2144 ret = 0;
2145 break;
2146 case KVM_EXIT_TPR_ACCESS:
2147 ret = kvm_handle_tpr_access(cpu);
2148 break;
2149 case KVM_EXIT_FAIL_ENTRY:
2150 code = run->fail_entry.hardware_entry_failure_reason;
2151 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2152 code);
2153 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2154 fprintf(stderr,
2155 "\nIf you're running a guest on an Intel machine without "
2156 "unrestricted mode\n"
2157 "support, the failure can be most likely due to the guest "
2158 "entering an invalid\n"
2159 "state for Intel VT. For example, the guest maybe running "
2160 "in big real mode\n"
2161 "which is not supported on less recent Intel processors."
2162 "\n\n");
2163 }
2164 ret = -1;
2165 break;
2166 case KVM_EXIT_EXCEPTION:
2167 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2168 run->ex.exception, run->ex.error_code);
2169 ret = -1;
2170 break;
2171 case KVM_EXIT_DEBUG:
2172 DPRINTF("kvm_exit_debug\n");
2173 ret = kvm_handle_debug(cpu, &run->debug.arch);
2174 break;
2175 default:
2176 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2177 ret = -1;
2178 break;
2179 }
2180
2181 return ret;
2182 }
2183
2184 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2185 {
2186 X86CPU *cpu = X86_CPU(cs);
2187 CPUX86State *env = &cpu->env;
2188
2189 kvm_cpu_synchronize_state(cs);
2190 return !(env->cr[0] & CR0_PE_MASK) ||
2191 ((env->segs[R_CS].selector & 3) != 3);
2192 }
2193
2194 void kvm_arch_init_irq_routing(KVMState *s)
2195 {
2196 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2197 /* If kernel can't do irq routing, interrupt source
2198 * override 0->2 cannot be set up as required by HPET.
2199 * So we have to disable it.
2200 */
2201 no_hpet = 1;
2202 }
2203 /* We know at this point that we're using the in-kernel
2204 * irqchip, so we can use irqfds, and on x86 we know
2205 * we can use msi via irqfd and GSI routing.
2206 */
2207 kvm_irqfds_allowed = true;
2208 kvm_msi_via_irqfd_allowed = true;
2209 kvm_gsi_routing_allowed = true;
2210 }
2211
2212 /* Classic KVM device assignment interface. Will remain x86 only. */
2213 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2214 uint32_t flags, uint32_t *dev_id)
2215 {
2216 struct kvm_assigned_pci_dev dev_data = {
2217 .segnr = dev_addr->domain,
2218 .busnr = dev_addr->bus,
2219 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2220 .flags = flags,
2221 };
2222 int ret;
2223
2224 dev_data.assigned_dev_id =
2225 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2226
2227 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2228 if (ret < 0) {
2229 return ret;
2230 }
2231
2232 *dev_id = dev_data.assigned_dev_id;
2233
2234 return 0;
2235 }
2236
2237 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2238 {
2239 struct kvm_assigned_pci_dev dev_data = {
2240 .assigned_dev_id = dev_id,
2241 };
2242
2243 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2244 }
2245
2246 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2247 uint32_t irq_type, uint32_t guest_irq)
2248 {
2249 struct kvm_assigned_irq assigned_irq = {
2250 .assigned_dev_id = dev_id,
2251 .guest_irq = guest_irq,
2252 .flags = irq_type,
2253 };
2254
2255 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2256 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2257 } else {
2258 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2259 }
2260 }
2261
2262 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2263 uint32_t guest_irq)
2264 {
2265 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2266 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2267
2268 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2269 }
2270
2271 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2272 {
2273 struct kvm_assigned_pci_dev dev_data = {
2274 .assigned_dev_id = dev_id,
2275 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2276 };
2277
2278 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2279 }
2280
2281 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2282 uint32_t type)
2283 {
2284 struct kvm_assigned_irq assigned_irq = {
2285 .assigned_dev_id = dev_id,
2286 .flags = type,
2287 };
2288
2289 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2290 }
2291
2292 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2293 {
2294 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2295 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2296 }
2297
2298 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2299 {
2300 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2301 KVM_DEV_IRQ_GUEST_MSI, virq);
2302 }
2303
2304 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2305 {
2306 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2307 KVM_DEV_IRQ_HOST_MSI);
2308 }
2309
2310 bool kvm_device_msix_supported(KVMState *s)
2311 {
2312 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2313 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2314 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2315 }
2316
2317 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2318 uint32_t nr_vectors)
2319 {
2320 struct kvm_assigned_msix_nr msix_nr = {
2321 .assigned_dev_id = dev_id,
2322 .entry_nr = nr_vectors,
2323 };
2324
2325 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2326 }
2327
2328 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2329 int virq)
2330 {
2331 struct kvm_assigned_msix_entry msix_entry = {
2332 .assigned_dev_id = dev_id,
2333 .gsi = virq,
2334 .entry = vector,
2335 };
2336
2337 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2338 }
2339
2340 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2341 {
2342 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2343 KVM_DEV_IRQ_GUEST_MSIX, 0);
2344 }
2345
2346 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2347 {
2348 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2349 KVM_DEV_IRQ_HOST_MSIX);
2350 }