]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
linux-user: Restore cast to target type in get_user()
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static int lm_capable_kernel;
72
73 bool kvm_allows_irq0_override(void)
74 {
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 }
77
78 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
79 {
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
82
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
89 }
90 if (r < 0) {
91 if (r == -E2BIG) {
92 g_free(cpuid);
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
98 }
99 }
100 return cpuid;
101 }
102
103 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
105 */
106 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
107 {
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
112 }
113 return cpuid;
114 }
115
116 struct kvm_para_features {
117 int cap;
118 int feature;
119 } para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
124 { -1, -1 }
125 };
126
127 static int get_para_features(KVMState *s)
128 {
129 int i, features = 0;
130
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
132 if (kvm_check_extension(s, para_features[i].cap)) {
133 features |= (1 << para_features[i].feature);
134 }
135 }
136
137 return features;
138 }
139
140
141 /* Returns the value for a specific register on the cpuid entry
142 */
143 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
144 {
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
159 }
160 return ret;
161 }
162
163 /* Find matching entry for function/index on kvm_cpuid2 struct
164 */
165 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
168 {
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
174 }
175 }
176 /* not found: */
177 return NULL;
178 }
179
180 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
181 uint32_t index, int reg)
182 {
183 struct kvm_cpuid2 *cpuid;
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
186 bool found = false;
187
188 cpuid = get_supported_cpuid(s);
189
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
194 }
195
196 /* Fixups for the data returned by KVM, below */
197
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
204 */
205 ret |= CPUID_EXT_HYPERVISOR;
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
209 */
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 }
214
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
217 */
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
220 }
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
224 */
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
227 }
228
229 g_free(cpuid);
230
231 /* fallback for older kernels */
232 if ((function == KVM_CPUID_FEATURES) && !found) {
233 ret = get_para_features(s);
234 }
235
236 return ret;
237 }
238
239 typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242 } HWPoisonPage;
243
244 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
246
247 static void kvm_unpoison_all(void *param)
248 {
249 HWPoisonPage *page, *next_page;
250
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
254 g_free(page);
255 }
256 }
257
258 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
259 {
260 HWPoisonPage *page;
261
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
265 }
266 }
267 page = g_malloc(sizeof(HWPoisonPage));
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270 }
271
272 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
274 {
275 int r;
276
277 r = kvm_check_extension(s, KVM_CAP_MCE);
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
281 }
282 return -ENOSYS;
283 }
284
285 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
286 {
287 CPUX86State *env = &cpu->env;
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
291
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
298 }
299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
303 }
304
305 static void hardware_memory_error(void)
306 {
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
309 }
310
311 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
312 {
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
315 ram_addr_t ram_addr;
316 hwaddr paddr;
317
318 if ((env->mcg_cap & MCG_SER_P) && addr
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
329 }
330 }
331 kvm_hwpoison_page_add(ram_addr);
332 kvm_mce_inject(cpu, paddr, code);
333 } else {
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 int kvm_arch_on_sigbus(int code, void *addr)
346 {
347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
348 ram_addr_t ram_addr;
349 hwaddr paddr;
350
351 /* Hope we are lucky for AO MCE */
352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
358 }
359 kvm_hwpoison_page_add(ram_addr);
360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
361 } else {
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
368 }
369 }
370 return 0;
371 }
372
373 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
374 {
375 CPUX86State *env = &cpu->env;
376
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
380
381 env->exception_injected = -1;
382
383 /*
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
386 */
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
390 }
391 }
392 assert(bank < bank_num);
393
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
399
400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
401 }
402 return 0;
403 }
404
405 static void cpu_update_state(void *opaque, int running, RunState state)
406 {
407 CPUX86State *env = opaque;
408
409 if (running) {
410 env->tsc_valid = false;
411 }
412 }
413
414 unsigned long kvm_arch_vcpu_id(CPUState *cs)
415 {
416 X86CPU *cpu = X86_CPU(cs);
417 return cpu->env.cpuid_apic_id;
418 }
419
420 #define KVM_MAX_CPUID_ENTRIES 100
421
422 int kvm_arch_init_vcpu(CPUState *cs)
423 {
424 struct {
425 struct kvm_cpuid2 cpuid;
426 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
427 } QEMU_PACKED cpuid_data;
428 X86CPU *cpu = X86_CPU(cs);
429 CPUX86State *env = &cpu->env;
430 uint32_t limit, i, j, cpuid_i;
431 uint32_t unused;
432 struct kvm_cpuid_entry2 *c;
433 uint32_t signature[3];
434 int r;
435
436 cpuid_i = 0;
437
438 /* Paravirtualization CPUIDs */
439 c = &cpuid_data.entries[cpuid_i++];
440 memset(c, 0, sizeof(*c));
441 c->function = KVM_CPUID_SIGNATURE;
442 if (!hyperv_enabled()) {
443 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
444 c->eax = 0;
445 } else {
446 memcpy(signature, "Microsoft Hv", 12);
447 c->eax = HYPERV_CPUID_MIN;
448 }
449 c->ebx = signature[0];
450 c->ecx = signature[1];
451 c->edx = signature[2];
452
453 c = &cpuid_data.entries[cpuid_i++];
454 memset(c, 0, sizeof(*c));
455 c->function = KVM_CPUID_FEATURES;
456 c->eax = env->cpuid_kvm_features;
457
458 if (hyperv_enabled()) {
459 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
460 c->eax = signature[0];
461
462 c = &cpuid_data.entries[cpuid_i++];
463 memset(c, 0, sizeof(*c));
464 c->function = HYPERV_CPUID_VERSION;
465 c->eax = 0x00001bbc;
466 c->ebx = 0x00060001;
467
468 c = &cpuid_data.entries[cpuid_i++];
469 memset(c, 0, sizeof(*c));
470 c->function = HYPERV_CPUID_FEATURES;
471 if (hyperv_relaxed_timing_enabled()) {
472 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
473 }
474 if (hyperv_vapic_recommended()) {
475 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
476 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
477 }
478
479 c = &cpuid_data.entries[cpuid_i++];
480 memset(c, 0, sizeof(*c));
481 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
482 if (hyperv_relaxed_timing_enabled()) {
483 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
484 }
485 if (hyperv_vapic_recommended()) {
486 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
487 }
488 c->ebx = hyperv_get_spinlock_retries();
489
490 c = &cpuid_data.entries[cpuid_i++];
491 memset(c, 0, sizeof(*c));
492 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
493 c->eax = 0x40;
494 c->ebx = 0x40;
495
496 c = &cpuid_data.entries[cpuid_i++];
497 memset(c, 0, sizeof(*c));
498 c->function = KVM_CPUID_SIGNATURE_NEXT;
499 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
500 c->eax = 0;
501 c->ebx = signature[0];
502 c->ecx = signature[1];
503 c->edx = signature[2];
504 }
505
506 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
507
508 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
509
510 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
511
512 for (i = 0; i <= limit; i++) {
513 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
514 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
515 abort();
516 }
517 c = &cpuid_data.entries[cpuid_i++];
518
519 switch (i) {
520 case 2: {
521 /* Keep reading function 2 till all the input is received */
522 int times;
523
524 c->function = i;
525 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
526 KVM_CPUID_FLAG_STATE_READ_NEXT;
527 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
528 times = c->eax & 0xff;
529
530 for (j = 1; j < times; ++j) {
531 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
532 fprintf(stderr, "cpuid_data is full, no space for "
533 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
534 abort();
535 }
536 c = &cpuid_data.entries[cpuid_i++];
537 c->function = i;
538 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
539 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
540 }
541 break;
542 }
543 case 4:
544 case 0xb:
545 case 0xd:
546 for (j = 0; ; j++) {
547 if (i == 0xd && j == 64) {
548 break;
549 }
550 c->function = i;
551 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
552 c->index = j;
553 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
554
555 if (i == 4 && c->eax == 0) {
556 break;
557 }
558 if (i == 0xb && !(c->ecx & 0xff00)) {
559 break;
560 }
561 if (i == 0xd && c->eax == 0) {
562 continue;
563 }
564 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
565 fprintf(stderr, "cpuid_data is full, no space for "
566 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
567 abort();
568 }
569 c = &cpuid_data.entries[cpuid_i++];
570 }
571 break;
572 default:
573 c->function = i;
574 c->flags = 0;
575 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
576 break;
577 }
578 }
579 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
580
581 for (i = 0x80000000; i <= limit; i++) {
582 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
583 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
584 abort();
585 }
586 c = &cpuid_data.entries[cpuid_i++];
587
588 c->function = i;
589 c->flags = 0;
590 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
591 }
592
593 /* Call Centaur's CPUID instructions they are supported. */
594 if (env->cpuid_xlevel2 > 0) {
595 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
596
597 for (i = 0xC0000000; i <= limit; i++) {
598 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
599 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
600 abort();
601 }
602 c = &cpuid_data.entries[cpuid_i++];
603
604 c->function = i;
605 c->flags = 0;
606 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
607 }
608 }
609
610 cpuid_data.cpuid.nent = cpuid_i;
611
612 if (((env->cpuid_version >> 8)&0xF) >= 6
613 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
614 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
615 uint64_t mcg_cap;
616 int banks;
617 int ret;
618
619 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
620 if (ret < 0) {
621 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
622 return ret;
623 }
624
625 if (banks > MCE_BANKS_DEF) {
626 banks = MCE_BANKS_DEF;
627 }
628 mcg_cap &= MCE_CAP_DEF;
629 mcg_cap |= banks;
630 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
631 if (ret < 0) {
632 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
633 return ret;
634 }
635
636 env->mcg_cap = mcg_cap;
637 }
638
639 qemu_add_vm_change_state_handler(cpu_update_state, env);
640
641 cpuid_data.cpuid.padding = 0;
642 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
643 if (r) {
644 return r;
645 }
646
647 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
648 if (r && env->tsc_khz) {
649 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
650 if (r < 0) {
651 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
652 return r;
653 }
654 }
655
656 if (kvm_has_xsave()) {
657 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
658 }
659
660 return 0;
661 }
662
663 void kvm_arch_reset_vcpu(CPUState *cs)
664 {
665 X86CPU *cpu = X86_CPU(cs);
666 CPUX86State *env = &cpu->env;
667
668 env->exception_injected = -1;
669 env->interrupt_injected = -1;
670 env->xcr0 = 1;
671 if (kvm_irqchip_in_kernel()) {
672 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
673 KVM_MP_STATE_UNINITIALIZED;
674 } else {
675 env->mp_state = KVM_MP_STATE_RUNNABLE;
676 }
677 }
678
679 static int kvm_get_supported_msrs(KVMState *s)
680 {
681 static int kvm_supported_msrs;
682 int ret = 0;
683
684 /* first time */
685 if (kvm_supported_msrs == 0) {
686 struct kvm_msr_list msr_list, *kvm_msr_list;
687
688 kvm_supported_msrs = -1;
689
690 /* Obtain MSR list from KVM. These are the MSRs that we must
691 * save/restore */
692 msr_list.nmsrs = 0;
693 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
694 if (ret < 0 && ret != -E2BIG) {
695 return ret;
696 }
697 /* Old kernel modules had a bug and could write beyond the provided
698 memory. Allocate at least a safe amount of 1K. */
699 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
700 msr_list.nmsrs *
701 sizeof(msr_list.indices[0])));
702
703 kvm_msr_list->nmsrs = msr_list.nmsrs;
704 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
705 if (ret >= 0) {
706 int i;
707
708 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
709 if (kvm_msr_list->indices[i] == MSR_STAR) {
710 has_msr_star = true;
711 continue;
712 }
713 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
714 has_msr_hsave_pa = true;
715 continue;
716 }
717 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
718 has_msr_tsc_adjust = true;
719 continue;
720 }
721 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
722 has_msr_tsc_deadline = true;
723 continue;
724 }
725 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
726 has_msr_misc_enable = true;
727 continue;
728 }
729 }
730 }
731
732 g_free(kvm_msr_list);
733 }
734
735 return ret;
736 }
737
738 int kvm_arch_init(KVMState *s)
739 {
740 QemuOptsList *list = qemu_find_opts("machine");
741 uint64_t identity_base = 0xfffbc000;
742 uint64_t shadow_mem;
743 int ret;
744 struct utsname utsname;
745
746 ret = kvm_get_supported_msrs(s);
747 if (ret < 0) {
748 return ret;
749 }
750
751 uname(&utsname);
752 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
753
754 /*
755 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
756 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
757 * Since these must be part of guest physical memory, we need to allocate
758 * them, both by setting their start addresses in the kernel and by
759 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
760 *
761 * Older KVM versions may not support setting the identity map base. In
762 * that case we need to stick with the default, i.e. a 256K maximum BIOS
763 * size.
764 */
765 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
766 /* Allows up to 16M BIOSes. */
767 identity_base = 0xfeffc000;
768
769 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
770 if (ret < 0) {
771 return ret;
772 }
773 }
774
775 /* Set TSS base one page after EPT identity map. */
776 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
777 if (ret < 0) {
778 return ret;
779 }
780
781 /* Tell fw_cfg to notify the BIOS to reserve the range. */
782 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
783 if (ret < 0) {
784 fprintf(stderr, "e820_add_entry() table is full\n");
785 return ret;
786 }
787 qemu_register_reset(kvm_unpoison_all, NULL);
788
789 if (!QTAILQ_EMPTY(&list->head)) {
790 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
791 "kvm_shadow_mem", -1);
792 if (shadow_mem != -1) {
793 shadow_mem /= 4096;
794 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
795 if (ret < 0) {
796 return ret;
797 }
798 }
799 }
800 return 0;
801 }
802
803 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
804 {
805 lhs->selector = rhs->selector;
806 lhs->base = rhs->base;
807 lhs->limit = rhs->limit;
808 lhs->type = 3;
809 lhs->present = 1;
810 lhs->dpl = 3;
811 lhs->db = 0;
812 lhs->s = 1;
813 lhs->l = 0;
814 lhs->g = 0;
815 lhs->avl = 0;
816 lhs->unusable = 0;
817 }
818
819 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
820 {
821 unsigned flags = rhs->flags;
822 lhs->selector = rhs->selector;
823 lhs->base = rhs->base;
824 lhs->limit = rhs->limit;
825 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
826 lhs->present = (flags & DESC_P_MASK) != 0;
827 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
828 lhs->db = (flags >> DESC_B_SHIFT) & 1;
829 lhs->s = (flags & DESC_S_MASK) != 0;
830 lhs->l = (flags >> DESC_L_SHIFT) & 1;
831 lhs->g = (flags & DESC_G_MASK) != 0;
832 lhs->avl = (flags & DESC_AVL_MASK) != 0;
833 lhs->unusable = 0;
834 lhs->padding = 0;
835 }
836
837 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
838 {
839 lhs->selector = rhs->selector;
840 lhs->base = rhs->base;
841 lhs->limit = rhs->limit;
842 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
843 (rhs->present * DESC_P_MASK) |
844 (rhs->dpl << DESC_DPL_SHIFT) |
845 (rhs->db << DESC_B_SHIFT) |
846 (rhs->s * DESC_S_MASK) |
847 (rhs->l << DESC_L_SHIFT) |
848 (rhs->g * DESC_G_MASK) |
849 (rhs->avl * DESC_AVL_MASK);
850 }
851
852 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
853 {
854 if (set) {
855 *kvm_reg = *qemu_reg;
856 } else {
857 *qemu_reg = *kvm_reg;
858 }
859 }
860
861 static int kvm_getput_regs(X86CPU *cpu, int set)
862 {
863 CPUX86State *env = &cpu->env;
864 struct kvm_regs regs;
865 int ret = 0;
866
867 if (!set) {
868 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
869 if (ret < 0) {
870 return ret;
871 }
872 }
873
874 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
875 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
876 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
877 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
878 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
879 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
880 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
881 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
882 #ifdef TARGET_X86_64
883 kvm_getput_reg(&regs.r8, &env->regs[8], set);
884 kvm_getput_reg(&regs.r9, &env->regs[9], set);
885 kvm_getput_reg(&regs.r10, &env->regs[10], set);
886 kvm_getput_reg(&regs.r11, &env->regs[11], set);
887 kvm_getput_reg(&regs.r12, &env->regs[12], set);
888 kvm_getput_reg(&regs.r13, &env->regs[13], set);
889 kvm_getput_reg(&regs.r14, &env->regs[14], set);
890 kvm_getput_reg(&regs.r15, &env->regs[15], set);
891 #endif
892
893 kvm_getput_reg(&regs.rflags, &env->eflags, set);
894 kvm_getput_reg(&regs.rip, &env->eip, set);
895
896 if (set) {
897 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
898 }
899
900 return ret;
901 }
902
903 static int kvm_put_fpu(X86CPU *cpu)
904 {
905 CPUX86State *env = &cpu->env;
906 struct kvm_fpu fpu;
907 int i;
908
909 memset(&fpu, 0, sizeof fpu);
910 fpu.fsw = env->fpus & ~(7 << 11);
911 fpu.fsw |= (env->fpstt & 7) << 11;
912 fpu.fcw = env->fpuc;
913 fpu.last_opcode = env->fpop;
914 fpu.last_ip = env->fpip;
915 fpu.last_dp = env->fpdp;
916 for (i = 0; i < 8; ++i) {
917 fpu.ftwx |= (!env->fptags[i]) << i;
918 }
919 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
920 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
921 fpu.mxcsr = env->mxcsr;
922
923 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
924 }
925
926 #define XSAVE_FCW_FSW 0
927 #define XSAVE_FTW_FOP 1
928 #define XSAVE_CWD_RIP 2
929 #define XSAVE_CWD_RDP 4
930 #define XSAVE_MXCSR 6
931 #define XSAVE_ST_SPACE 8
932 #define XSAVE_XMM_SPACE 40
933 #define XSAVE_XSTATE_BV 128
934 #define XSAVE_YMMH_SPACE 144
935
936 static int kvm_put_xsave(X86CPU *cpu)
937 {
938 CPUX86State *env = &cpu->env;
939 struct kvm_xsave* xsave = env->kvm_xsave_buf;
940 uint16_t cwd, swd, twd;
941 int i, r;
942
943 if (!kvm_has_xsave()) {
944 return kvm_put_fpu(cpu);
945 }
946
947 memset(xsave, 0, sizeof(struct kvm_xsave));
948 twd = 0;
949 swd = env->fpus & ~(7 << 11);
950 swd |= (env->fpstt & 7) << 11;
951 cwd = env->fpuc;
952 for (i = 0; i < 8; ++i) {
953 twd |= (!env->fptags[i]) << i;
954 }
955 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
956 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
957 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
958 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
959 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
960 sizeof env->fpregs);
961 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
962 sizeof env->xmm_regs);
963 xsave->region[XSAVE_MXCSR] = env->mxcsr;
964 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
965 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
966 sizeof env->ymmh_regs);
967 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
968 return r;
969 }
970
971 static int kvm_put_xcrs(X86CPU *cpu)
972 {
973 CPUX86State *env = &cpu->env;
974 struct kvm_xcrs xcrs;
975
976 if (!kvm_has_xcrs()) {
977 return 0;
978 }
979
980 xcrs.nr_xcrs = 1;
981 xcrs.flags = 0;
982 xcrs.xcrs[0].xcr = 0;
983 xcrs.xcrs[0].value = env->xcr0;
984 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
985 }
986
987 static int kvm_put_sregs(X86CPU *cpu)
988 {
989 CPUX86State *env = &cpu->env;
990 struct kvm_sregs sregs;
991
992 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
993 if (env->interrupt_injected >= 0) {
994 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
995 (uint64_t)1 << (env->interrupt_injected % 64);
996 }
997
998 if ((env->eflags & VM_MASK)) {
999 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1000 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1001 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1002 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1003 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1004 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1005 } else {
1006 set_seg(&sregs.cs, &env->segs[R_CS]);
1007 set_seg(&sregs.ds, &env->segs[R_DS]);
1008 set_seg(&sregs.es, &env->segs[R_ES]);
1009 set_seg(&sregs.fs, &env->segs[R_FS]);
1010 set_seg(&sregs.gs, &env->segs[R_GS]);
1011 set_seg(&sregs.ss, &env->segs[R_SS]);
1012 }
1013
1014 set_seg(&sregs.tr, &env->tr);
1015 set_seg(&sregs.ldt, &env->ldt);
1016
1017 sregs.idt.limit = env->idt.limit;
1018 sregs.idt.base = env->idt.base;
1019 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1020 sregs.gdt.limit = env->gdt.limit;
1021 sregs.gdt.base = env->gdt.base;
1022 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1023
1024 sregs.cr0 = env->cr[0];
1025 sregs.cr2 = env->cr[2];
1026 sregs.cr3 = env->cr[3];
1027 sregs.cr4 = env->cr[4];
1028
1029 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1030 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1031
1032 sregs.efer = env->efer;
1033
1034 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1035 }
1036
1037 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1038 uint32_t index, uint64_t value)
1039 {
1040 entry->index = index;
1041 entry->data = value;
1042 }
1043
1044 static int kvm_put_msrs(X86CPU *cpu, int level)
1045 {
1046 CPUX86State *env = &cpu->env;
1047 struct {
1048 struct kvm_msrs info;
1049 struct kvm_msr_entry entries[100];
1050 } msr_data;
1051 struct kvm_msr_entry *msrs = msr_data.entries;
1052 int n = 0;
1053
1054 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1055 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1056 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1057 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1058 if (has_msr_star) {
1059 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1060 }
1061 if (has_msr_hsave_pa) {
1062 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1063 }
1064 if (has_msr_tsc_adjust) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1066 }
1067 if (has_msr_tsc_deadline) {
1068 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1069 }
1070 if (has_msr_misc_enable) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1072 env->msr_ia32_misc_enable);
1073 }
1074 #ifdef TARGET_X86_64
1075 if (lm_capable_kernel) {
1076 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1077 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1078 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1079 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1080 }
1081 #endif
1082 if (level == KVM_PUT_FULL_STATE) {
1083 /*
1084 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1085 * writeback. Until this is fixed, we only write the offset to SMP
1086 * guests after migration, desynchronizing the VCPUs, but avoiding
1087 * huge jump-backs that would occur without any writeback at all.
1088 */
1089 if (smp_cpus == 1 || env->tsc != 0) {
1090 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1091 }
1092 }
1093 /*
1094 * The following paravirtual MSRs have side effects on the guest or are
1095 * too heavy for normal writeback. Limit them to reset or full state
1096 * updates.
1097 */
1098 if (level >= KVM_PUT_RESET_STATE) {
1099 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1100 env->system_time_msr);
1101 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1102 if (has_msr_async_pf_en) {
1103 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1104 env->async_pf_en_msr);
1105 }
1106 if (has_msr_pv_eoi_en) {
1107 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1108 env->pv_eoi_en_msr);
1109 }
1110 if (hyperv_hypercall_available()) {
1111 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1112 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1113 }
1114 if (hyperv_vapic_recommended()) {
1115 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1116 }
1117 }
1118 if (env->mcg_cap) {
1119 int i;
1120
1121 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1122 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1123 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1124 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1125 }
1126 }
1127
1128 msr_data.info.nmsrs = n;
1129
1130 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1131
1132 }
1133
1134
1135 static int kvm_get_fpu(X86CPU *cpu)
1136 {
1137 CPUX86State *env = &cpu->env;
1138 struct kvm_fpu fpu;
1139 int i, ret;
1140
1141 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1142 if (ret < 0) {
1143 return ret;
1144 }
1145
1146 env->fpstt = (fpu.fsw >> 11) & 7;
1147 env->fpus = fpu.fsw;
1148 env->fpuc = fpu.fcw;
1149 env->fpop = fpu.last_opcode;
1150 env->fpip = fpu.last_ip;
1151 env->fpdp = fpu.last_dp;
1152 for (i = 0; i < 8; ++i) {
1153 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1154 }
1155 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1156 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1157 env->mxcsr = fpu.mxcsr;
1158
1159 return 0;
1160 }
1161
1162 static int kvm_get_xsave(X86CPU *cpu)
1163 {
1164 CPUX86State *env = &cpu->env;
1165 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1166 int ret, i;
1167 uint16_t cwd, swd, twd;
1168
1169 if (!kvm_has_xsave()) {
1170 return kvm_get_fpu(cpu);
1171 }
1172
1173 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1174 if (ret < 0) {
1175 return ret;
1176 }
1177
1178 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1179 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1180 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1181 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1182 env->fpstt = (swd >> 11) & 7;
1183 env->fpus = swd;
1184 env->fpuc = cwd;
1185 for (i = 0; i < 8; ++i) {
1186 env->fptags[i] = !((twd >> i) & 1);
1187 }
1188 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1189 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1190 env->mxcsr = xsave->region[XSAVE_MXCSR];
1191 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1192 sizeof env->fpregs);
1193 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1194 sizeof env->xmm_regs);
1195 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1196 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1197 sizeof env->ymmh_regs);
1198 return 0;
1199 }
1200
1201 static int kvm_get_xcrs(X86CPU *cpu)
1202 {
1203 CPUX86State *env = &cpu->env;
1204 int i, ret;
1205 struct kvm_xcrs xcrs;
1206
1207 if (!kvm_has_xcrs()) {
1208 return 0;
1209 }
1210
1211 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1212 if (ret < 0) {
1213 return ret;
1214 }
1215
1216 for (i = 0; i < xcrs.nr_xcrs; i++) {
1217 /* Only support xcr0 now */
1218 if (xcrs.xcrs[0].xcr == 0) {
1219 env->xcr0 = xcrs.xcrs[0].value;
1220 break;
1221 }
1222 }
1223 return 0;
1224 }
1225
1226 static int kvm_get_sregs(X86CPU *cpu)
1227 {
1228 CPUX86State *env = &cpu->env;
1229 struct kvm_sregs sregs;
1230 uint32_t hflags;
1231 int bit, i, ret;
1232
1233 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1234 if (ret < 0) {
1235 return ret;
1236 }
1237
1238 /* There can only be one pending IRQ set in the bitmap at a time, so try
1239 to find it and save its number instead (-1 for none). */
1240 env->interrupt_injected = -1;
1241 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1242 if (sregs.interrupt_bitmap[i]) {
1243 bit = ctz64(sregs.interrupt_bitmap[i]);
1244 env->interrupt_injected = i * 64 + bit;
1245 break;
1246 }
1247 }
1248
1249 get_seg(&env->segs[R_CS], &sregs.cs);
1250 get_seg(&env->segs[R_DS], &sregs.ds);
1251 get_seg(&env->segs[R_ES], &sregs.es);
1252 get_seg(&env->segs[R_FS], &sregs.fs);
1253 get_seg(&env->segs[R_GS], &sregs.gs);
1254 get_seg(&env->segs[R_SS], &sregs.ss);
1255
1256 get_seg(&env->tr, &sregs.tr);
1257 get_seg(&env->ldt, &sregs.ldt);
1258
1259 env->idt.limit = sregs.idt.limit;
1260 env->idt.base = sregs.idt.base;
1261 env->gdt.limit = sregs.gdt.limit;
1262 env->gdt.base = sregs.gdt.base;
1263
1264 env->cr[0] = sregs.cr0;
1265 env->cr[2] = sregs.cr2;
1266 env->cr[3] = sregs.cr3;
1267 env->cr[4] = sregs.cr4;
1268
1269 env->efer = sregs.efer;
1270
1271 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1272
1273 #define HFLAG_COPY_MASK \
1274 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1275 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1276 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1277 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1278
1279 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1280 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1281 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1282 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1283 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1284 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1285 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1286
1287 if (env->efer & MSR_EFER_LMA) {
1288 hflags |= HF_LMA_MASK;
1289 }
1290
1291 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1292 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1293 } else {
1294 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1295 (DESC_B_SHIFT - HF_CS32_SHIFT);
1296 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1297 (DESC_B_SHIFT - HF_SS32_SHIFT);
1298 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1299 !(hflags & HF_CS32_MASK)) {
1300 hflags |= HF_ADDSEG_MASK;
1301 } else {
1302 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1303 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1304 }
1305 }
1306 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1307
1308 return 0;
1309 }
1310
1311 static int kvm_get_msrs(X86CPU *cpu)
1312 {
1313 CPUX86State *env = &cpu->env;
1314 struct {
1315 struct kvm_msrs info;
1316 struct kvm_msr_entry entries[100];
1317 } msr_data;
1318 struct kvm_msr_entry *msrs = msr_data.entries;
1319 int ret, i, n;
1320
1321 n = 0;
1322 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1323 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1324 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1325 msrs[n++].index = MSR_PAT;
1326 if (has_msr_star) {
1327 msrs[n++].index = MSR_STAR;
1328 }
1329 if (has_msr_hsave_pa) {
1330 msrs[n++].index = MSR_VM_HSAVE_PA;
1331 }
1332 if (has_msr_tsc_adjust) {
1333 msrs[n++].index = MSR_TSC_ADJUST;
1334 }
1335 if (has_msr_tsc_deadline) {
1336 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1337 }
1338 if (has_msr_misc_enable) {
1339 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1340 }
1341
1342 if (!env->tsc_valid) {
1343 msrs[n++].index = MSR_IA32_TSC;
1344 env->tsc_valid = !runstate_is_running();
1345 }
1346
1347 #ifdef TARGET_X86_64
1348 if (lm_capable_kernel) {
1349 msrs[n++].index = MSR_CSTAR;
1350 msrs[n++].index = MSR_KERNELGSBASE;
1351 msrs[n++].index = MSR_FMASK;
1352 msrs[n++].index = MSR_LSTAR;
1353 }
1354 #endif
1355 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1356 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1357 if (has_msr_async_pf_en) {
1358 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1359 }
1360 if (has_msr_pv_eoi_en) {
1361 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1362 }
1363
1364 if (env->mcg_cap) {
1365 msrs[n++].index = MSR_MCG_STATUS;
1366 msrs[n++].index = MSR_MCG_CTL;
1367 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1368 msrs[n++].index = MSR_MC0_CTL + i;
1369 }
1370 }
1371
1372 msr_data.info.nmsrs = n;
1373 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1374 if (ret < 0) {
1375 return ret;
1376 }
1377
1378 for (i = 0; i < ret; i++) {
1379 switch (msrs[i].index) {
1380 case MSR_IA32_SYSENTER_CS:
1381 env->sysenter_cs = msrs[i].data;
1382 break;
1383 case MSR_IA32_SYSENTER_ESP:
1384 env->sysenter_esp = msrs[i].data;
1385 break;
1386 case MSR_IA32_SYSENTER_EIP:
1387 env->sysenter_eip = msrs[i].data;
1388 break;
1389 case MSR_PAT:
1390 env->pat = msrs[i].data;
1391 break;
1392 case MSR_STAR:
1393 env->star = msrs[i].data;
1394 break;
1395 #ifdef TARGET_X86_64
1396 case MSR_CSTAR:
1397 env->cstar = msrs[i].data;
1398 break;
1399 case MSR_KERNELGSBASE:
1400 env->kernelgsbase = msrs[i].data;
1401 break;
1402 case MSR_FMASK:
1403 env->fmask = msrs[i].data;
1404 break;
1405 case MSR_LSTAR:
1406 env->lstar = msrs[i].data;
1407 break;
1408 #endif
1409 case MSR_IA32_TSC:
1410 env->tsc = msrs[i].data;
1411 break;
1412 case MSR_TSC_ADJUST:
1413 env->tsc_adjust = msrs[i].data;
1414 break;
1415 case MSR_IA32_TSCDEADLINE:
1416 env->tsc_deadline = msrs[i].data;
1417 break;
1418 case MSR_VM_HSAVE_PA:
1419 env->vm_hsave = msrs[i].data;
1420 break;
1421 case MSR_KVM_SYSTEM_TIME:
1422 env->system_time_msr = msrs[i].data;
1423 break;
1424 case MSR_KVM_WALL_CLOCK:
1425 env->wall_clock_msr = msrs[i].data;
1426 break;
1427 case MSR_MCG_STATUS:
1428 env->mcg_status = msrs[i].data;
1429 break;
1430 case MSR_MCG_CTL:
1431 env->mcg_ctl = msrs[i].data;
1432 break;
1433 case MSR_IA32_MISC_ENABLE:
1434 env->msr_ia32_misc_enable = msrs[i].data;
1435 break;
1436 default:
1437 if (msrs[i].index >= MSR_MC0_CTL &&
1438 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1439 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1440 }
1441 break;
1442 case MSR_KVM_ASYNC_PF_EN:
1443 env->async_pf_en_msr = msrs[i].data;
1444 break;
1445 case MSR_KVM_PV_EOI_EN:
1446 env->pv_eoi_en_msr = msrs[i].data;
1447 break;
1448 }
1449 }
1450
1451 return 0;
1452 }
1453
1454 static int kvm_put_mp_state(X86CPU *cpu)
1455 {
1456 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1457
1458 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1459 }
1460
1461 static int kvm_get_mp_state(X86CPU *cpu)
1462 {
1463 CPUX86State *env = &cpu->env;
1464 struct kvm_mp_state mp_state;
1465 int ret;
1466
1467 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1468 if (ret < 0) {
1469 return ret;
1470 }
1471 env->mp_state = mp_state.mp_state;
1472 if (kvm_irqchip_in_kernel()) {
1473 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1474 }
1475 return 0;
1476 }
1477
1478 static int kvm_get_apic(X86CPU *cpu)
1479 {
1480 CPUX86State *env = &cpu->env;
1481 DeviceState *apic = env->apic_state;
1482 struct kvm_lapic_state kapic;
1483 int ret;
1484
1485 if (apic && kvm_irqchip_in_kernel()) {
1486 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1487 if (ret < 0) {
1488 return ret;
1489 }
1490
1491 kvm_get_apic_state(apic, &kapic);
1492 }
1493 return 0;
1494 }
1495
1496 static int kvm_put_apic(X86CPU *cpu)
1497 {
1498 CPUX86State *env = &cpu->env;
1499 DeviceState *apic = env->apic_state;
1500 struct kvm_lapic_state kapic;
1501
1502 if (apic && kvm_irqchip_in_kernel()) {
1503 kvm_put_apic_state(apic, &kapic);
1504
1505 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1506 }
1507 return 0;
1508 }
1509
1510 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1511 {
1512 CPUX86State *env = &cpu->env;
1513 struct kvm_vcpu_events events;
1514
1515 if (!kvm_has_vcpu_events()) {
1516 return 0;
1517 }
1518
1519 events.exception.injected = (env->exception_injected >= 0);
1520 events.exception.nr = env->exception_injected;
1521 events.exception.has_error_code = env->has_error_code;
1522 events.exception.error_code = env->error_code;
1523 events.exception.pad = 0;
1524
1525 events.interrupt.injected = (env->interrupt_injected >= 0);
1526 events.interrupt.nr = env->interrupt_injected;
1527 events.interrupt.soft = env->soft_interrupt;
1528
1529 events.nmi.injected = env->nmi_injected;
1530 events.nmi.pending = env->nmi_pending;
1531 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1532 events.nmi.pad = 0;
1533
1534 events.sipi_vector = env->sipi_vector;
1535
1536 events.flags = 0;
1537 if (level >= KVM_PUT_RESET_STATE) {
1538 events.flags |=
1539 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1540 }
1541
1542 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1543 }
1544
1545 static int kvm_get_vcpu_events(X86CPU *cpu)
1546 {
1547 CPUX86State *env = &cpu->env;
1548 struct kvm_vcpu_events events;
1549 int ret;
1550
1551 if (!kvm_has_vcpu_events()) {
1552 return 0;
1553 }
1554
1555 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1556 if (ret < 0) {
1557 return ret;
1558 }
1559 env->exception_injected =
1560 events.exception.injected ? events.exception.nr : -1;
1561 env->has_error_code = events.exception.has_error_code;
1562 env->error_code = events.exception.error_code;
1563
1564 env->interrupt_injected =
1565 events.interrupt.injected ? events.interrupt.nr : -1;
1566 env->soft_interrupt = events.interrupt.soft;
1567
1568 env->nmi_injected = events.nmi.injected;
1569 env->nmi_pending = events.nmi.pending;
1570 if (events.nmi.masked) {
1571 env->hflags2 |= HF2_NMI_MASK;
1572 } else {
1573 env->hflags2 &= ~HF2_NMI_MASK;
1574 }
1575
1576 env->sipi_vector = events.sipi_vector;
1577
1578 return 0;
1579 }
1580
1581 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1582 {
1583 CPUX86State *env = &cpu->env;
1584 int ret = 0;
1585 unsigned long reinject_trap = 0;
1586
1587 if (!kvm_has_vcpu_events()) {
1588 if (env->exception_injected == 1) {
1589 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1590 } else if (env->exception_injected == 3) {
1591 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1592 }
1593 env->exception_injected = -1;
1594 }
1595
1596 /*
1597 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1598 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1599 * by updating the debug state once again if single-stepping is on.
1600 * Another reason to call kvm_update_guest_debug here is a pending debug
1601 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1602 * reinject them via SET_GUEST_DEBUG.
1603 */
1604 if (reinject_trap ||
1605 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1606 ret = kvm_update_guest_debug(env, reinject_trap);
1607 }
1608 return ret;
1609 }
1610
1611 static int kvm_put_debugregs(X86CPU *cpu)
1612 {
1613 CPUX86State *env = &cpu->env;
1614 struct kvm_debugregs dbgregs;
1615 int i;
1616
1617 if (!kvm_has_debugregs()) {
1618 return 0;
1619 }
1620
1621 for (i = 0; i < 4; i++) {
1622 dbgregs.db[i] = env->dr[i];
1623 }
1624 dbgregs.dr6 = env->dr[6];
1625 dbgregs.dr7 = env->dr[7];
1626 dbgregs.flags = 0;
1627
1628 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1629 }
1630
1631 static int kvm_get_debugregs(X86CPU *cpu)
1632 {
1633 CPUX86State *env = &cpu->env;
1634 struct kvm_debugregs dbgregs;
1635 int i, ret;
1636
1637 if (!kvm_has_debugregs()) {
1638 return 0;
1639 }
1640
1641 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645 for (i = 0; i < 4; i++) {
1646 env->dr[i] = dbgregs.db[i];
1647 }
1648 env->dr[4] = env->dr[6] = dbgregs.dr6;
1649 env->dr[5] = env->dr[7] = dbgregs.dr7;
1650
1651 return 0;
1652 }
1653
1654 int kvm_arch_put_registers(CPUState *cpu, int level)
1655 {
1656 X86CPU *x86_cpu = X86_CPU(cpu);
1657 int ret;
1658
1659 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1660
1661 ret = kvm_getput_regs(x86_cpu, 1);
1662 if (ret < 0) {
1663 return ret;
1664 }
1665 ret = kvm_put_xsave(x86_cpu);
1666 if (ret < 0) {
1667 return ret;
1668 }
1669 ret = kvm_put_xcrs(x86_cpu);
1670 if (ret < 0) {
1671 return ret;
1672 }
1673 ret = kvm_put_sregs(x86_cpu);
1674 if (ret < 0) {
1675 return ret;
1676 }
1677 /* must be before kvm_put_msrs */
1678 ret = kvm_inject_mce_oldstyle(x86_cpu);
1679 if (ret < 0) {
1680 return ret;
1681 }
1682 ret = kvm_put_msrs(x86_cpu, level);
1683 if (ret < 0) {
1684 return ret;
1685 }
1686 if (level >= KVM_PUT_RESET_STATE) {
1687 ret = kvm_put_mp_state(x86_cpu);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 ret = kvm_put_apic(x86_cpu);
1692 if (ret < 0) {
1693 return ret;
1694 }
1695 }
1696 ret = kvm_put_vcpu_events(x86_cpu, level);
1697 if (ret < 0) {
1698 return ret;
1699 }
1700 ret = kvm_put_debugregs(x86_cpu);
1701 if (ret < 0) {
1702 return ret;
1703 }
1704 /* must be last */
1705 ret = kvm_guest_debug_workarounds(x86_cpu);
1706 if (ret < 0) {
1707 return ret;
1708 }
1709 return 0;
1710 }
1711
1712 int kvm_arch_get_registers(CPUState *cs)
1713 {
1714 X86CPU *cpu = X86_CPU(cs);
1715 int ret;
1716
1717 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1718
1719 ret = kvm_getput_regs(cpu, 0);
1720 if (ret < 0) {
1721 return ret;
1722 }
1723 ret = kvm_get_xsave(cpu);
1724 if (ret < 0) {
1725 return ret;
1726 }
1727 ret = kvm_get_xcrs(cpu);
1728 if (ret < 0) {
1729 return ret;
1730 }
1731 ret = kvm_get_sregs(cpu);
1732 if (ret < 0) {
1733 return ret;
1734 }
1735 ret = kvm_get_msrs(cpu);
1736 if (ret < 0) {
1737 return ret;
1738 }
1739 ret = kvm_get_mp_state(cpu);
1740 if (ret < 0) {
1741 return ret;
1742 }
1743 ret = kvm_get_apic(cpu);
1744 if (ret < 0) {
1745 return ret;
1746 }
1747 ret = kvm_get_vcpu_events(cpu);
1748 if (ret < 0) {
1749 return ret;
1750 }
1751 ret = kvm_get_debugregs(cpu);
1752 if (ret < 0) {
1753 return ret;
1754 }
1755 return 0;
1756 }
1757
1758 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1759 {
1760 X86CPU *x86_cpu = X86_CPU(cpu);
1761 CPUX86State *env = &x86_cpu->env;
1762 int ret;
1763
1764 /* Inject NMI */
1765 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1766 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1767 DPRINTF("injected NMI\n");
1768 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1769 if (ret < 0) {
1770 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1771 strerror(-ret));
1772 }
1773 }
1774
1775 if (!kvm_irqchip_in_kernel()) {
1776 /* Force the VCPU out of its inner loop to process any INIT requests
1777 * or pending TPR access reports. */
1778 if (env->interrupt_request &
1779 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1780 env->exit_request = 1;
1781 }
1782
1783 /* Try to inject an interrupt if the guest can accept it */
1784 if (run->ready_for_interrupt_injection &&
1785 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1786 (env->eflags & IF_MASK)) {
1787 int irq;
1788
1789 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1790 irq = cpu_get_pic_interrupt(env);
1791 if (irq >= 0) {
1792 struct kvm_interrupt intr;
1793
1794 intr.irq = irq;
1795 DPRINTF("injected interrupt %d\n", irq);
1796 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1797 if (ret < 0) {
1798 fprintf(stderr,
1799 "KVM: injection failed, interrupt lost (%s)\n",
1800 strerror(-ret));
1801 }
1802 }
1803 }
1804
1805 /* If we have an interrupt but the guest is not ready to receive an
1806 * interrupt, request an interrupt window exit. This will
1807 * cause a return to userspace as soon as the guest is ready to
1808 * receive interrupts. */
1809 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1810 run->request_interrupt_window = 1;
1811 } else {
1812 run->request_interrupt_window = 0;
1813 }
1814
1815 DPRINTF("setting tpr\n");
1816 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1817 }
1818 }
1819
1820 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1821 {
1822 X86CPU *x86_cpu = X86_CPU(cpu);
1823 CPUX86State *env = &x86_cpu->env;
1824
1825 if (run->if_flag) {
1826 env->eflags |= IF_MASK;
1827 } else {
1828 env->eflags &= ~IF_MASK;
1829 }
1830 cpu_set_apic_tpr(env->apic_state, run->cr8);
1831 cpu_set_apic_base(env->apic_state, run->apic_base);
1832 }
1833
1834 int kvm_arch_process_async_events(CPUState *cs)
1835 {
1836 X86CPU *cpu = X86_CPU(cs);
1837 CPUX86State *env = &cpu->env;
1838
1839 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1840 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1841 assert(env->mcg_cap);
1842
1843 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1844
1845 kvm_cpu_synchronize_state(env);
1846
1847 if (env->exception_injected == EXCP08_DBLE) {
1848 /* this means triple fault */
1849 qemu_system_reset_request();
1850 env->exit_request = 1;
1851 return 0;
1852 }
1853 env->exception_injected = EXCP12_MCHK;
1854 env->has_error_code = 0;
1855
1856 env->halted = 0;
1857 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1858 env->mp_state = KVM_MP_STATE_RUNNABLE;
1859 }
1860 }
1861
1862 if (kvm_irqchip_in_kernel()) {
1863 return 0;
1864 }
1865
1866 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1867 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1868 apic_poll_irq(env->apic_state);
1869 }
1870 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1871 (env->eflags & IF_MASK)) ||
1872 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1873 env->halted = 0;
1874 }
1875 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1876 kvm_cpu_synchronize_state(env);
1877 do_cpu_init(cpu);
1878 }
1879 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1880 kvm_cpu_synchronize_state(env);
1881 do_cpu_sipi(cpu);
1882 }
1883 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1884 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1885 kvm_cpu_synchronize_state(env);
1886 apic_handle_tpr_access_report(env->apic_state, env->eip,
1887 env->tpr_access_type);
1888 }
1889
1890 return env->halted;
1891 }
1892
1893 static int kvm_handle_halt(X86CPU *cpu)
1894 {
1895 CPUX86State *env = &cpu->env;
1896
1897 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1898 (env->eflags & IF_MASK)) &&
1899 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1900 env->halted = 1;
1901 return EXCP_HLT;
1902 }
1903
1904 return 0;
1905 }
1906
1907 static int kvm_handle_tpr_access(X86CPU *cpu)
1908 {
1909 CPUX86State *env = &cpu->env;
1910 CPUState *cs = CPU(cpu);
1911 struct kvm_run *run = cs->kvm_run;
1912
1913 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1914 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1915 : TPR_ACCESS_READ);
1916 return 1;
1917 }
1918
1919 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1920 {
1921 CPUX86State *env = &X86_CPU(cpu)->env;
1922 static const uint8_t int3 = 0xcc;
1923
1924 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1925 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1926 return -EINVAL;
1927 }
1928 return 0;
1929 }
1930
1931 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1932 {
1933 CPUX86State *env = &X86_CPU(cpu)->env;
1934 uint8_t int3;
1935
1936 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1937 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1938 return -EINVAL;
1939 }
1940 return 0;
1941 }
1942
1943 static struct {
1944 target_ulong addr;
1945 int len;
1946 int type;
1947 } hw_breakpoint[4];
1948
1949 static int nb_hw_breakpoint;
1950
1951 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1952 {
1953 int n;
1954
1955 for (n = 0; n < nb_hw_breakpoint; n++) {
1956 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1957 (hw_breakpoint[n].len == len || len == -1)) {
1958 return n;
1959 }
1960 }
1961 return -1;
1962 }
1963
1964 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1965 target_ulong len, int type)
1966 {
1967 switch (type) {
1968 case GDB_BREAKPOINT_HW:
1969 len = 1;
1970 break;
1971 case GDB_WATCHPOINT_WRITE:
1972 case GDB_WATCHPOINT_ACCESS:
1973 switch (len) {
1974 case 1:
1975 break;
1976 case 2:
1977 case 4:
1978 case 8:
1979 if (addr & (len - 1)) {
1980 return -EINVAL;
1981 }
1982 break;
1983 default:
1984 return -EINVAL;
1985 }
1986 break;
1987 default:
1988 return -ENOSYS;
1989 }
1990
1991 if (nb_hw_breakpoint == 4) {
1992 return -ENOBUFS;
1993 }
1994 if (find_hw_breakpoint(addr, len, type) >= 0) {
1995 return -EEXIST;
1996 }
1997 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1998 hw_breakpoint[nb_hw_breakpoint].len = len;
1999 hw_breakpoint[nb_hw_breakpoint].type = type;
2000 nb_hw_breakpoint++;
2001
2002 return 0;
2003 }
2004
2005 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2006 target_ulong len, int type)
2007 {
2008 int n;
2009
2010 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2011 if (n < 0) {
2012 return -ENOENT;
2013 }
2014 nb_hw_breakpoint--;
2015 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2016
2017 return 0;
2018 }
2019
2020 void kvm_arch_remove_all_hw_breakpoints(void)
2021 {
2022 nb_hw_breakpoint = 0;
2023 }
2024
2025 static CPUWatchpoint hw_watchpoint;
2026
2027 static int kvm_handle_debug(X86CPU *cpu,
2028 struct kvm_debug_exit_arch *arch_info)
2029 {
2030 CPUX86State *env = &cpu->env;
2031 int ret = 0;
2032 int n;
2033
2034 if (arch_info->exception == 1) {
2035 if (arch_info->dr6 & (1 << 14)) {
2036 if (env->singlestep_enabled) {
2037 ret = EXCP_DEBUG;
2038 }
2039 } else {
2040 for (n = 0; n < 4; n++) {
2041 if (arch_info->dr6 & (1 << n)) {
2042 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2043 case 0x0:
2044 ret = EXCP_DEBUG;
2045 break;
2046 case 0x1:
2047 ret = EXCP_DEBUG;
2048 env->watchpoint_hit = &hw_watchpoint;
2049 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2050 hw_watchpoint.flags = BP_MEM_WRITE;
2051 break;
2052 case 0x3:
2053 ret = EXCP_DEBUG;
2054 env->watchpoint_hit = &hw_watchpoint;
2055 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2056 hw_watchpoint.flags = BP_MEM_ACCESS;
2057 break;
2058 }
2059 }
2060 }
2061 }
2062 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2063 ret = EXCP_DEBUG;
2064 }
2065 if (ret == 0) {
2066 cpu_synchronize_state(env);
2067 assert(env->exception_injected == -1);
2068
2069 /* pass to guest */
2070 env->exception_injected = arch_info->exception;
2071 env->has_error_code = 0;
2072 }
2073
2074 return ret;
2075 }
2076
2077 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2078 {
2079 const uint8_t type_code[] = {
2080 [GDB_BREAKPOINT_HW] = 0x0,
2081 [GDB_WATCHPOINT_WRITE] = 0x1,
2082 [GDB_WATCHPOINT_ACCESS] = 0x3
2083 };
2084 const uint8_t len_code[] = {
2085 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2086 };
2087 int n;
2088
2089 if (kvm_sw_breakpoints_active(cpu)) {
2090 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2091 }
2092 if (nb_hw_breakpoint > 0) {
2093 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2094 dbg->arch.debugreg[7] = 0x0600;
2095 for (n = 0; n < nb_hw_breakpoint; n++) {
2096 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2097 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2098 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2099 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2100 }
2101 }
2102 }
2103
2104 static bool host_supports_vmx(void)
2105 {
2106 uint32_t ecx, unused;
2107
2108 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2109 return ecx & CPUID_EXT_VMX;
2110 }
2111
2112 #define VMX_INVALID_GUEST_STATE 0x80000021
2113
2114 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2115 {
2116 X86CPU *cpu = X86_CPU(cs);
2117 uint64_t code;
2118 int ret;
2119
2120 switch (run->exit_reason) {
2121 case KVM_EXIT_HLT:
2122 DPRINTF("handle_hlt\n");
2123 ret = kvm_handle_halt(cpu);
2124 break;
2125 case KVM_EXIT_SET_TPR:
2126 ret = 0;
2127 break;
2128 case KVM_EXIT_TPR_ACCESS:
2129 ret = kvm_handle_tpr_access(cpu);
2130 break;
2131 case KVM_EXIT_FAIL_ENTRY:
2132 code = run->fail_entry.hardware_entry_failure_reason;
2133 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2134 code);
2135 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2136 fprintf(stderr,
2137 "\nIf you're running a guest on an Intel machine without "
2138 "unrestricted mode\n"
2139 "support, the failure can be most likely due to the guest "
2140 "entering an invalid\n"
2141 "state for Intel VT. For example, the guest maybe running "
2142 "in big real mode\n"
2143 "which is not supported on less recent Intel processors."
2144 "\n\n");
2145 }
2146 ret = -1;
2147 break;
2148 case KVM_EXIT_EXCEPTION:
2149 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2150 run->ex.exception, run->ex.error_code);
2151 ret = -1;
2152 break;
2153 case KVM_EXIT_DEBUG:
2154 DPRINTF("kvm_exit_debug\n");
2155 ret = kvm_handle_debug(cpu, &run->debug.arch);
2156 break;
2157 default:
2158 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2159 ret = -1;
2160 break;
2161 }
2162
2163 return ret;
2164 }
2165
2166 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2167 {
2168 X86CPU *cpu = X86_CPU(cs);
2169 CPUX86State *env = &cpu->env;
2170
2171 kvm_cpu_synchronize_state(env);
2172 return !(env->cr[0] & CR0_PE_MASK) ||
2173 ((env->segs[R_CS].selector & 3) != 3);
2174 }
2175
2176 void kvm_arch_init_irq_routing(KVMState *s)
2177 {
2178 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2179 /* If kernel can't do irq routing, interrupt source
2180 * override 0->2 cannot be set up as required by HPET.
2181 * So we have to disable it.
2182 */
2183 no_hpet = 1;
2184 }
2185 /* We know at this point that we're using the in-kernel
2186 * irqchip, so we can use irqfds, and on x86 we know
2187 * we can use msi via irqfd and GSI routing.
2188 */
2189 kvm_irqfds_allowed = true;
2190 kvm_msi_via_irqfd_allowed = true;
2191 kvm_gsi_routing_allowed = true;
2192 }
2193
2194 /* Classic KVM device assignment interface. Will remain x86 only. */
2195 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2196 uint32_t flags, uint32_t *dev_id)
2197 {
2198 struct kvm_assigned_pci_dev dev_data = {
2199 .segnr = dev_addr->domain,
2200 .busnr = dev_addr->bus,
2201 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2202 .flags = flags,
2203 };
2204 int ret;
2205
2206 dev_data.assigned_dev_id =
2207 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2208
2209 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2210 if (ret < 0) {
2211 return ret;
2212 }
2213
2214 *dev_id = dev_data.assigned_dev_id;
2215
2216 return 0;
2217 }
2218
2219 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2220 {
2221 struct kvm_assigned_pci_dev dev_data = {
2222 .assigned_dev_id = dev_id,
2223 };
2224
2225 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2226 }
2227
2228 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2229 uint32_t irq_type, uint32_t guest_irq)
2230 {
2231 struct kvm_assigned_irq assigned_irq = {
2232 .assigned_dev_id = dev_id,
2233 .guest_irq = guest_irq,
2234 .flags = irq_type,
2235 };
2236
2237 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2238 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2239 } else {
2240 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2241 }
2242 }
2243
2244 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2245 uint32_t guest_irq)
2246 {
2247 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2248 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2249
2250 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2251 }
2252
2253 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2254 {
2255 struct kvm_assigned_pci_dev dev_data = {
2256 .assigned_dev_id = dev_id,
2257 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2258 };
2259
2260 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2261 }
2262
2263 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2264 uint32_t type)
2265 {
2266 struct kvm_assigned_irq assigned_irq = {
2267 .assigned_dev_id = dev_id,
2268 .flags = type,
2269 };
2270
2271 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2272 }
2273
2274 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2275 {
2276 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2277 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2278 }
2279
2280 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2281 {
2282 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2283 KVM_DEV_IRQ_GUEST_MSI, virq);
2284 }
2285
2286 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2287 {
2288 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2289 KVM_DEV_IRQ_HOST_MSI);
2290 }
2291
2292 bool kvm_device_msix_supported(KVMState *s)
2293 {
2294 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2295 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2296 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2297 }
2298
2299 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2300 uint32_t nr_vectors)
2301 {
2302 struct kvm_assigned_msix_nr msix_nr = {
2303 .assigned_dev_id = dev_id,
2304 .entry_nr = nr_vectors,
2305 };
2306
2307 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2308 }
2309
2310 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2311 int virq)
2312 {
2313 struct kvm_assigned_msix_entry msix_entry = {
2314 .assigned_dev_id = dev_id,
2315 .gsi = virq,
2316 .entry = vector,
2317 };
2318
2319 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2320 }
2321
2322 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2323 {
2324 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2325 KVM_DEV_IRQ_GUEST_MSIX, 0);
2326 }
2327
2328 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2329 {
2330 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2331 KVM_DEV_IRQ_HOST_MSIX);
2332 }