]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: x86: Synchronize PAT MSR with the kernel
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
35 //
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66 static bool has_msr_async_pf_en;
67 #endif
68 static int lm_capable_kernel;
69
70 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71 {
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93 }
94
95 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
97 {
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
102
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
106 }
107
108 for (i = 0; i < cpuid->nent; ++i) {
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
131 */
132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
133 ret |= cpuid_1_edx & 0x183f7ff;
134 break;
135 }
136 break;
137 }
138 }
139 }
140
141 qemu_free(cpuid);
142
143 return ret;
144 }
145
146 #ifdef CONFIG_KVM_PARA
147 struct kvm_para_features {
148 int cap;
149 int feature;
150 } para_features[] = {
151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154 #ifdef KVM_CAP_ASYNC_PF
155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
156 #endif
157 { -1, -1 }
158 };
159
160 static int get_para_features(CPUState *env)
161 {
162 int i, features = 0;
163
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
167 }
168 }
169 #ifdef KVM_CAP_ASYNC_PF
170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171 #endif
172 return features;
173 }
174 #endif /* CONFIG_KVM_PARA */
175
176 typedef struct HWPoisonPage {
177 ram_addr_t ram_addr;
178 QLIST_ENTRY(HWPoisonPage) list;
179 } HWPoisonPage;
180
181 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
182 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
183
184 static void kvm_unpoison_all(void *param)
185 {
186 HWPoisonPage *page, *next_page;
187
188 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
189 QLIST_REMOVE(page, list);
190 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
191 qemu_free(page);
192 }
193 }
194
195 #ifdef KVM_CAP_MCE
196 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197 {
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
205 page = qemu_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208 }
209
210 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212 {
213 int r;
214
215 r = kvm_check_extension(s, KVM_CAP_MCE);
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221 }
222
223 static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
224 {
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
228
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
235 }
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
240 }
241 #endif /* KVM_CAP_MCE */
242
243 static void hardware_memory_error(void)
244 {
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
247 }
248
249 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250 {
251 #ifdef KVM_CAP_MCE
252 ram_addr_t ram_addr;
253 target_phys_addr_t paddr;
254
255 if ((env->mcg_cap & MCG_SER_P) && addr
256 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
257 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
258 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
259 &paddr)) {
260 fprintf(stderr, "Hardware memory error for memory used by "
261 "QEMU itself instead of guest system!\n");
262 /* Hope we are lucky for AO MCE */
263 if (code == BUS_MCEERR_AO) {
264 return 0;
265 } else {
266 hardware_memory_error();
267 }
268 }
269 kvm_hwpoison_page_add(ram_addr);
270 kvm_mce_inject(env, paddr, code);
271 } else
272 #endif /* KVM_CAP_MCE */
273 {
274 if (code == BUS_MCEERR_AO) {
275 return 0;
276 } else if (code == BUS_MCEERR_AR) {
277 hardware_memory_error();
278 } else {
279 return 1;
280 }
281 }
282 return 0;
283 }
284
285 int kvm_arch_on_sigbus(int code, void *addr)
286 {
287 #ifdef KVM_CAP_MCE
288 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
289 ram_addr_t ram_addr;
290 target_phys_addr_t paddr;
291
292 /* Hope we are lucky for AO MCE */
293 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
294 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
295 &paddr)) {
296 fprintf(stderr, "Hardware memory error for memory used by "
297 "QEMU itself instead of guest system!: %p\n", addr);
298 return 0;
299 }
300 kvm_hwpoison_page_add(ram_addr);
301 kvm_mce_inject(first_cpu, paddr, code);
302 } else
303 #endif /* KVM_CAP_MCE */
304 {
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else if (code == BUS_MCEERR_AR) {
308 hardware_memory_error();
309 } else {
310 return 1;
311 }
312 }
313 return 0;
314 }
315
316 static int kvm_inject_mce_oldstyle(CPUState *env)
317 {
318 #ifdef KVM_CAP_MCE
319 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
320 unsigned int bank, bank_num = env->mcg_cap & 0xff;
321 struct kvm_x86_mce mce;
322
323 env->exception_injected = -1;
324
325 /*
326 * There must be at least one bank in use if an MCE is pending.
327 * Find it and use its values for the event injection.
328 */
329 for (bank = 0; bank < bank_num; bank++) {
330 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
331 break;
332 }
333 }
334 assert(bank < bank_num);
335
336 mce.bank = bank;
337 mce.status = env->mce_banks[bank * 4 + 1];
338 mce.mcg_status = env->mcg_status;
339 mce.addr = env->mce_banks[bank * 4 + 2];
340 mce.misc = env->mce_banks[bank * 4 + 3];
341
342 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
343 }
344 #endif /* KVM_CAP_MCE */
345 return 0;
346 }
347
348 static void cpu_update_state(void *opaque, int running, int reason)
349 {
350 CPUState *env = opaque;
351
352 if (running) {
353 env->tsc_valid = false;
354 }
355 }
356
357 int kvm_arch_init_vcpu(CPUState *env)
358 {
359 struct {
360 struct kvm_cpuid2 cpuid;
361 struct kvm_cpuid_entry2 entries[100];
362 } __attribute__((packed)) cpuid_data;
363 uint32_t limit, i, j, cpuid_i;
364 uint32_t unused;
365 struct kvm_cpuid_entry2 *c;
366 #ifdef CONFIG_KVM_PARA
367 uint32_t signature[3];
368 #endif
369
370 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
371
372 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
373 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
374 env->cpuid_ext_features |= i;
375
376 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
377 0, R_EDX);
378 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
379 0, R_ECX);
380 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
381 0, R_EDX);
382
383
384 cpuid_i = 0;
385
386 #ifdef CONFIG_KVM_PARA
387 /* Paravirtualization CPUIDs */
388 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
389 c = &cpuid_data.entries[cpuid_i++];
390 memset(c, 0, sizeof(*c));
391 c->function = KVM_CPUID_SIGNATURE;
392 c->eax = 0;
393 c->ebx = signature[0];
394 c->ecx = signature[1];
395 c->edx = signature[2];
396
397 c = &cpuid_data.entries[cpuid_i++];
398 memset(c, 0, sizeof(*c));
399 c->function = KVM_CPUID_FEATURES;
400 c->eax = env->cpuid_kvm_features & get_para_features(env);
401 #endif
402
403 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
404
405 for (i = 0; i <= limit; i++) {
406 c = &cpuid_data.entries[cpuid_i++];
407
408 switch (i) {
409 case 2: {
410 /* Keep reading function 2 till all the input is received */
411 int times;
412
413 c->function = i;
414 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
415 KVM_CPUID_FLAG_STATE_READ_NEXT;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 times = c->eax & 0xff;
418
419 for (j = 1; j < times; ++j) {
420 c = &cpuid_data.entries[cpuid_i++];
421 c->function = i;
422 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
423 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
424 }
425 break;
426 }
427 case 4:
428 case 0xb:
429 case 0xd:
430 for (j = 0; ; j++) {
431 c->function = i;
432 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
433 c->index = j;
434 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
435
436 if (i == 4 && c->eax == 0) {
437 break;
438 }
439 if (i == 0xb && !(c->ecx & 0xff00)) {
440 break;
441 }
442 if (i == 0xd && c->eax == 0) {
443 break;
444 }
445 c = &cpuid_data.entries[cpuid_i++];
446 }
447 break;
448 default:
449 c->function = i;
450 c->flags = 0;
451 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
452 break;
453 }
454 }
455 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
456
457 for (i = 0x80000000; i <= limit; i++) {
458 c = &cpuid_data.entries[cpuid_i++];
459
460 c->function = i;
461 c->flags = 0;
462 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
463 }
464
465 cpuid_data.cpuid.nent = cpuid_i;
466
467 #ifdef KVM_CAP_MCE
468 if (((env->cpuid_version >> 8)&0xF) >= 6
469 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
470 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
471 uint64_t mcg_cap;
472 int banks;
473 int ret;
474
475 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
476 if (ret < 0) {
477 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
478 return ret;
479 }
480
481 if (banks > MCE_BANKS_DEF) {
482 banks = MCE_BANKS_DEF;
483 }
484 mcg_cap &= MCE_CAP_DEF;
485 mcg_cap |= banks;
486 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
487 if (ret < 0) {
488 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
489 return ret;
490 }
491
492 env->mcg_cap = mcg_cap;
493 }
494 #endif
495
496 qemu_add_vm_change_state_handler(cpu_update_state, env);
497
498 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
499 }
500
501 void kvm_arch_reset_vcpu(CPUState *env)
502 {
503 env->exception_injected = -1;
504 env->interrupt_injected = -1;
505 env->xcr0 = 1;
506 if (kvm_irqchip_in_kernel()) {
507 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
508 KVM_MP_STATE_UNINITIALIZED;
509 } else {
510 env->mp_state = KVM_MP_STATE_RUNNABLE;
511 }
512 }
513
514 static int kvm_get_supported_msrs(KVMState *s)
515 {
516 static int kvm_supported_msrs;
517 int ret = 0;
518
519 /* first time */
520 if (kvm_supported_msrs == 0) {
521 struct kvm_msr_list msr_list, *kvm_msr_list;
522
523 kvm_supported_msrs = -1;
524
525 /* Obtain MSR list from KVM. These are the MSRs that we must
526 * save/restore */
527 msr_list.nmsrs = 0;
528 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
529 if (ret < 0 && ret != -E2BIG) {
530 return ret;
531 }
532 /* Old kernel modules had a bug and could write beyond the provided
533 memory. Allocate at least a safe amount of 1K. */
534 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
535 msr_list.nmsrs *
536 sizeof(msr_list.indices[0])));
537
538 kvm_msr_list->nmsrs = msr_list.nmsrs;
539 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
540 if (ret >= 0) {
541 int i;
542
543 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
544 if (kvm_msr_list->indices[i] == MSR_STAR) {
545 has_msr_star = true;
546 continue;
547 }
548 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
549 has_msr_hsave_pa = true;
550 continue;
551 }
552 }
553 }
554
555 free(kvm_msr_list);
556 }
557
558 return ret;
559 }
560
561 int kvm_arch_init(KVMState *s)
562 {
563 uint64_t identity_base = 0xfffbc000;
564 int ret;
565 struct utsname utsname;
566
567 ret = kvm_get_supported_msrs(s);
568 if (ret < 0) {
569 return ret;
570 }
571
572 uname(&utsname);
573 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
574
575 /*
576 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
577 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
578 * Since these must be part of guest physical memory, we need to allocate
579 * them, both by setting their start addresses in the kernel and by
580 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
581 *
582 * Older KVM versions may not support setting the identity map base. In
583 * that case we need to stick with the default, i.e. a 256K maximum BIOS
584 * size.
585 */
586 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
587 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
588 /* Allows up to 16M BIOSes. */
589 identity_base = 0xfeffc000;
590
591 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
592 if (ret < 0) {
593 return ret;
594 }
595 }
596 #endif
597 /* Set TSS base one page after EPT identity map. */
598 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
599 if (ret < 0) {
600 return ret;
601 }
602
603 /* Tell fw_cfg to notify the BIOS to reserve the range. */
604 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
605 if (ret < 0) {
606 fprintf(stderr, "e820_add_entry() table is full\n");
607 return ret;
608 }
609 qemu_register_reset(kvm_unpoison_all, NULL);
610
611 return 0;
612 }
613
614 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
615 {
616 lhs->selector = rhs->selector;
617 lhs->base = rhs->base;
618 lhs->limit = rhs->limit;
619 lhs->type = 3;
620 lhs->present = 1;
621 lhs->dpl = 3;
622 lhs->db = 0;
623 lhs->s = 1;
624 lhs->l = 0;
625 lhs->g = 0;
626 lhs->avl = 0;
627 lhs->unusable = 0;
628 }
629
630 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
631 {
632 unsigned flags = rhs->flags;
633 lhs->selector = rhs->selector;
634 lhs->base = rhs->base;
635 lhs->limit = rhs->limit;
636 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
637 lhs->present = (flags & DESC_P_MASK) != 0;
638 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
639 lhs->db = (flags >> DESC_B_SHIFT) & 1;
640 lhs->s = (flags & DESC_S_MASK) != 0;
641 lhs->l = (flags >> DESC_L_SHIFT) & 1;
642 lhs->g = (flags & DESC_G_MASK) != 0;
643 lhs->avl = (flags & DESC_AVL_MASK) != 0;
644 lhs->unusable = 0;
645 }
646
647 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
648 {
649 lhs->selector = rhs->selector;
650 lhs->base = rhs->base;
651 lhs->limit = rhs->limit;
652 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
653 (rhs->present * DESC_P_MASK) |
654 (rhs->dpl << DESC_DPL_SHIFT) |
655 (rhs->db << DESC_B_SHIFT) |
656 (rhs->s * DESC_S_MASK) |
657 (rhs->l << DESC_L_SHIFT) |
658 (rhs->g * DESC_G_MASK) |
659 (rhs->avl * DESC_AVL_MASK);
660 }
661
662 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
663 {
664 if (set) {
665 *kvm_reg = *qemu_reg;
666 } else {
667 *qemu_reg = *kvm_reg;
668 }
669 }
670
671 static int kvm_getput_regs(CPUState *env, int set)
672 {
673 struct kvm_regs regs;
674 int ret = 0;
675
676 if (!set) {
677 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
678 if (ret < 0) {
679 return ret;
680 }
681 }
682
683 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
684 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
685 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
686 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
687 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
688 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
689 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
690 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
691 #ifdef TARGET_X86_64
692 kvm_getput_reg(&regs.r8, &env->regs[8], set);
693 kvm_getput_reg(&regs.r9, &env->regs[9], set);
694 kvm_getput_reg(&regs.r10, &env->regs[10], set);
695 kvm_getput_reg(&regs.r11, &env->regs[11], set);
696 kvm_getput_reg(&regs.r12, &env->regs[12], set);
697 kvm_getput_reg(&regs.r13, &env->regs[13], set);
698 kvm_getput_reg(&regs.r14, &env->regs[14], set);
699 kvm_getput_reg(&regs.r15, &env->regs[15], set);
700 #endif
701
702 kvm_getput_reg(&regs.rflags, &env->eflags, set);
703 kvm_getput_reg(&regs.rip, &env->eip, set);
704
705 if (set) {
706 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
707 }
708
709 return ret;
710 }
711
712 static int kvm_put_fpu(CPUState *env)
713 {
714 struct kvm_fpu fpu;
715 int i;
716
717 memset(&fpu, 0, sizeof fpu);
718 fpu.fsw = env->fpus & ~(7 << 11);
719 fpu.fsw |= (env->fpstt & 7) << 11;
720 fpu.fcw = env->fpuc;
721 for (i = 0; i < 8; ++i) {
722 fpu.ftwx |= (!env->fptags[i]) << i;
723 }
724 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
725 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
726 fpu.mxcsr = env->mxcsr;
727
728 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
729 }
730
731 #ifdef KVM_CAP_XSAVE
732 #define XSAVE_CWD_RIP 2
733 #define XSAVE_CWD_RDP 4
734 #define XSAVE_MXCSR 6
735 #define XSAVE_ST_SPACE 8
736 #define XSAVE_XMM_SPACE 40
737 #define XSAVE_XSTATE_BV 128
738 #define XSAVE_YMMH_SPACE 144
739 #endif
740
741 static int kvm_put_xsave(CPUState *env)
742 {
743 #ifdef KVM_CAP_XSAVE
744 int i, r;
745 struct kvm_xsave* xsave;
746 uint16_t cwd, swd, twd, fop;
747
748 if (!kvm_has_xsave()) {
749 return kvm_put_fpu(env);
750 }
751
752 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
753 memset(xsave, 0, sizeof(struct kvm_xsave));
754 cwd = swd = twd = fop = 0;
755 swd = env->fpus & ~(7 << 11);
756 swd |= (env->fpstt & 7) << 11;
757 cwd = env->fpuc;
758 for (i = 0; i < 8; ++i) {
759 twd |= (!env->fptags[i]) << i;
760 }
761 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
762 xsave->region[1] = (uint32_t)(fop << 16) + twd;
763 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
764 sizeof env->fpregs);
765 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
766 sizeof env->xmm_regs);
767 xsave->region[XSAVE_MXCSR] = env->mxcsr;
768 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
769 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
770 sizeof env->ymmh_regs);
771 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
772 qemu_free(xsave);
773 return r;
774 #else
775 return kvm_put_fpu(env);
776 #endif
777 }
778
779 static int kvm_put_xcrs(CPUState *env)
780 {
781 #ifdef KVM_CAP_XCRS
782 struct kvm_xcrs xcrs;
783
784 if (!kvm_has_xcrs()) {
785 return 0;
786 }
787
788 xcrs.nr_xcrs = 1;
789 xcrs.flags = 0;
790 xcrs.xcrs[0].xcr = 0;
791 xcrs.xcrs[0].value = env->xcr0;
792 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
793 #else
794 return 0;
795 #endif
796 }
797
798 static int kvm_put_sregs(CPUState *env)
799 {
800 struct kvm_sregs sregs;
801
802 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
803 if (env->interrupt_injected >= 0) {
804 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
805 (uint64_t)1 << (env->interrupt_injected % 64);
806 }
807
808 if ((env->eflags & VM_MASK)) {
809 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
810 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
811 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
812 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
813 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
814 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
815 } else {
816 set_seg(&sregs.cs, &env->segs[R_CS]);
817 set_seg(&sregs.ds, &env->segs[R_DS]);
818 set_seg(&sregs.es, &env->segs[R_ES]);
819 set_seg(&sregs.fs, &env->segs[R_FS]);
820 set_seg(&sregs.gs, &env->segs[R_GS]);
821 set_seg(&sregs.ss, &env->segs[R_SS]);
822 }
823
824 set_seg(&sregs.tr, &env->tr);
825 set_seg(&sregs.ldt, &env->ldt);
826
827 sregs.idt.limit = env->idt.limit;
828 sregs.idt.base = env->idt.base;
829 sregs.gdt.limit = env->gdt.limit;
830 sregs.gdt.base = env->gdt.base;
831
832 sregs.cr0 = env->cr[0];
833 sregs.cr2 = env->cr[2];
834 sregs.cr3 = env->cr[3];
835 sregs.cr4 = env->cr[4];
836
837 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
838 sregs.apic_base = cpu_get_apic_base(env->apic_state);
839
840 sregs.efer = env->efer;
841
842 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
843 }
844
845 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
846 uint32_t index, uint64_t value)
847 {
848 entry->index = index;
849 entry->data = value;
850 }
851
852 static int kvm_put_msrs(CPUState *env, int level)
853 {
854 struct {
855 struct kvm_msrs info;
856 struct kvm_msr_entry entries[100];
857 } msr_data;
858 struct kvm_msr_entry *msrs = msr_data.entries;
859 int n = 0;
860
861 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
862 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
863 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
864 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
865 if (has_msr_star) {
866 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
867 }
868 if (has_msr_hsave_pa) {
869 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
870 }
871 #ifdef TARGET_X86_64
872 if (lm_capable_kernel) {
873 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
874 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
875 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
876 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
877 }
878 #endif
879 if (level == KVM_PUT_FULL_STATE) {
880 /*
881 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
882 * writeback. Until this is fixed, we only write the offset to SMP
883 * guests after migration, desynchronizing the VCPUs, but avoiding
884 * huge jump-backs that would occur without any writeback at all.
885 */
886 if (smp_cpus == 1 || env->tsc != 0) {
887 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
888 }
889 }
890 /*
891 * The following paravirtual MSRs have side effects on the guest or are
892 * too heavy for normal writeback. Limit them to reset or full state
893 * updates.
894 */
895 if (level >= KVM_PUT_RESET_STATE) {
896 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
897 env->system_time_msr);
898 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
899 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
900 if (has_msr_async_pf_en) {
901 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
902 env->async_pf_en_msr);
903 }
904 #endif
905 }
906 #ifdef KVM_CAP_MCE
907 if (env->mcg_cap) {
908 int i;
909
910 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
911 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
912 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
913 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
914 }
915 }
916 #endif
917
918 msr_data.info.nmsrs = n;
919
920 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
921
922 }
923
924
925 static int kvm_get_fpu(CPUState *env)
926 {
927 struct kvm_fpu fpu;
928 int i, ret;
929
930 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
931 if (ret < 0) {
932 return ret;
933 }
934
935 env->fpstt = (fpu.fsw >> 11) & 7;
936 env->fpus = fpu.fsw;
937 env->fpuc = fpu.fcw;
938 for (i = 0; i < 8; ++i) {
939 env->fptags[i] = !((fpu.ftwx >> i) & 1);
940 }
941 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
942 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
943 env->mxcsr = fpu.mxcsr;
944
945 return 0;
946 }
947
948 static int kvm_get_xsave(CPUState *env)
949 {
950 #ifdef KVM_CAP_XSAVE
951 struct kvm_xsave* xsave;
952 int ret, i;
953 uint16_t cwd, swd, twd, fop;
954
955 if (!kvm_has_xsave()) {
956 return kvm_get_fpu(env);
957 }
958
959 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
960 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
961 if (ret < 0) {
962 qemu_free(xsave);
963 return ret;
964 }
965
966 cwd = (uint16_t)xsave->region[0];
967 swd = (uint16_t)(xsave->region[0] >> 16);
968 twd = (uint16_t)xsave->region[1];
969 fop = (uint16_t)(xsave->region[1] >> 16);
970 env->fpstt = (swd >> 11) & 7;
971 env->fpus = swd;
972 env->fpuc = cwd;
973 for (i = 0; i < 8; ++i) {
974 env->fptags[i] = !((twd >> i) & 1);
975 }
976 env->mxcsr = xsave->region[XSAVE_MXCSR];
977 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
978 sizeof env->fpregs);
979 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
980 sizeof env->xmm_regs);
981 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
982 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
983 sizeof env->ymmh_regs);
984 qemu_free(xsave);
985 return 0;
986 #else
987 return kvm_get_fpu(env);
988 #endif
989 }
990
991 static int kvm_get_xcrs(CPUState *env)
992 {
993 #ifdef KVM_CAP_XCRS
994 int i, ret;
995 struct kvm_xcrs xcrs;
996
997 if (!kvm_has_xcrs()) {
998 return 0;
999 }
1000
1001 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1002 if (ret < 0) {
1003 return ret;
1004 }
1005
1006 for (i = 0; i < xcrs.nr_xcrs; i++) {
1007 /* Only support xcr0 now */
1008 if (xcrs.xcrs[0].xcr == 0) {
1009 env->xcr0 = xcrs.xcrs[0].value;
1010 break;
1011 }
1012 }
1013 return 0;
1014 #else
1015 return 0;
1016 #endif
1017 }
1018
1019 static int kvm_get_sregs(CPUState *env)
1020 {
1021 struct kvm_sregs sregs;
1022 uint32_t hflags;
1023 int bit, i, ret;
1024
1025 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1026 if (ret < 0) {
1027 return ret;
1028 }
1029
1030 /* There can only be one pending IRQ set in the bitmap at a time, so try
1031 to find it and save its number instead (-1 for none). */
1032 env->interrupt_injected = -1;
1033 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1034 if (sregs.interrupt_bitmap[i]) {
1035 bit = ctz64(sregs.interrupt_bitmap[i]);
1036 env->interrupt_injected = i * 64 + bit;
1037 break;
1038 }
1039 }
1040
1041 get_seg(&env->segs[R_CS], &sregs.cs);
1042 get_seg(&env->segs[R_DS], &sregs.ds);
1043 get_seg(&env->segs[R_ES], &sregs.es);
1044 get_seg(&env->segs[R_FS], &sregs.fs);
1045 get_seg(&env->segs[R_GS], &sregs.gs);
1046 get_seg(&env->segs[R_SS], &sregs.ss);
1047
1048 get_seg(&env->tr, &sregs.tr);
1049 get_seg(&env->ldt, &sregs.ldt);
1050
1051 env->idt.limit = sregs.idt.limit;
1052 env->idt.base = sregs.idt.base;
1053 env->gdt.limit = sregs.gdt.limit;
1054 env->gdt.base = sregs.gdt.base;
1055
1056 env->cr[0] = sregs.cr0;
1057 env->cr[2] = sregs.cr2;
1058 env->cr[3] = sregs.cr3;
1059 env->cr[4] = sregs.cr4;
1060
1061 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1062
1063 env->efer = sregs.efer;
1064 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1065
1066 #define HFLAG_COPY_MASK \
1067 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1068 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1069 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1070 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1071
1072 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1073 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1074 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1075 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1076 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1077 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1078 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1079
1080 if (env->efer & MSR_EFER_LMA) {
1081 hflags |= HF_LMA_MASK;
1082 }
1083
1084 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1085 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1086 } else {
1087 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1088 (DESC_B_SHIFT - HF_CS32_SHIFT);
1089 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1090 (DESC_B_SHIFT - HF_SS32_SHIFT);
1091 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1092 !(hflags & HF_CS32_MASK)) {
1093 hflags |= HF_ADDSEG_MASK;
1094 } else {
1095 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1096 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1097 }
1098 }
1099 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1100
1101 return 0;
1102 }
1103
1104 static int kvm_get_msrs(CPUState *env)
1105 {
1106 struct {
1107 struct kvm_msrs info;
1108 struct kvm_msr_entry entries[100];
1109 } msr_data;
1110 struct kvm_msr_entry *msrs = msr_data.entries;
1111 int ret, i, n;
1112
1113 n = 0;
1114 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1115 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1116 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1117 msrs[n++].index = MSR_PAT;
1118 if (has_msr_star) {
1119 msrs[n++].index = MSR_STAR;
1120 }
1121 if (has_msr_hsave_pa) {
1122 msrs[n++].index = MSR_VM_HSAVE_PA;
1123 }
1124
1125 if (!env->tsc_valid) {
1126 msrs[n++].index = MSR_IA32_TSC;
1127 env->tsc_valid = !vm_running;
1128 }
1129
1130 #ifdef TARGET_X86_64
1131 if (lm_capable_kernel) {
1132 msrs[n++].index = MSR_CSTAR;
1133 msrs[n++].index = MSR_KERNELGSBASE;
1134 msrs[n++].index = MSR_FMASK;
1135 msrs[n++].index = MSR_LSTAR;
1136 }
1137 #endif
1138 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1139 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1140 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1141 if (has_msr_async_pf_en) {
1142 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1143 }
1144 #endif
1145
1146 #ifdef KVM_CAP_MCE
1147 if (env->mcg_cap) {
1148 msrs[n++].index = MSR_MCG_STATUS;
1149 msrs[n++].index = MSR_MCG_CTL;
1150 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1151 msrs[n++].index = MSR_MC0_CTL + i;
1152 }
1153 }
1154 #endif
1155
1156 msr_data.info.nmsrs = n;
1157 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1158 if (ret < 0) {
1159 return ret;
1160 }
1161
1162 for (i = 0; i < ret; i++) {
1163 switch (msrs[i].index) {
1164 case MSR_IA32_SYSENTER_CS:
1165 env->sysenter_cs = msrs[i].data;
1166 break;
1167 case MSR_IA32_SYSENTER_ESP:
1168 env->sysenter_esp = msrs[i].data;
1169 break;
1170 case MSR_IA32_SYSENTER_EIP:
1171 env->sysenter_eip = msrs[i].data;
1172 break;
1173 case MSR_PAT:
1174 env->pat = msrs[i].data;
1175 break;
1176 case MSR_STAR:
1177 env->star = msrs[i].data;
1178 break;
1179 #ifdef TARGET_X86_64
1180 case MSR_CSTAR:
1181 env->cstar = msrs[i].data;
1182 break;
1183 case MSR_KERNELGSBASE:
1184 env->kernelgsbase = msrs[i].data;
1185 break;
1186 case MSR_FMASK:
1187 env->fmask = msrs[i].data;
1188 break;
1189 case MSR_LSTAR:
1190 env->lstar = msrs[i].data;
1191 break;
1192 #endif
1193 case MSR_IA32_TSC:
1194 env->tsc = msrs[i].data;
1195 break;
1196 case MSR_VM_HSAVE_PA:
1197 env->vm_hsave = msrs[i].data;
1198 break;
1199 case MSR_KVM_SYSTEM_TIME:
1200 env->system_time_msr = msrs[i].data;
1201 break;
1202 case MSR_KVM_WALL_CLOCK:
1203 env->wall_clock_msr = msrs[i].data;
1204 break;
1205 #ifdef KVM_CAP_MCE
1206 case MSR_MCG_STATUS:
1207 env->mcg_status = msrs[i].data;
1208 break;
1209 case MSR_MCG_CTL:
1210 env->mcg_ctl = msrs[i].data;
1211 break;
1212 #endif
1213 default:
1214 #ifdef KVM_CAP_MCE
1215 if (msrs[i].index >= MSR_MC0_CTL &&
1216 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1217 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1218 }
1219 #endif
1220 break;
1221 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1222 case MSR_KVM_ASYNC_PF_EN:
1223 env->async_pf_en_msr = msrs[i].data;
1224 break;
1225 #endif
1226 }
1227 }
1228
1229 return 0;
1230 }
1231
1232 static int kvm_put_mp_state(CPUState *env)
1233 {
1234 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1235
1236 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1237 }
1238
1239 static int kvm_get_mp_state(CPUState *env)
1240 {
1241 struct kvm_mp_state mp_state;
1242 int ret;
1243
1244 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1245 if (ret < 0) {
1246 return ret;
1247 }
1248 env->mp_state = mp_state.mp_state;
1249 if (kvm_irqchip_in_kernel()) {
1250 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1251 }
1252 return 0;
1253 }
1254
1255 static int kvm_put_vcpu_events(CPUState *env, int level)
1256 {
1257 #ifdef KVM_CAP_VCPU_EVENTS
1258 struct kvm_vcpu_events events;
1259
1260 if (!kvm_has_vcpu_events()) {
1261 return 0;
1262 }
1263
1264 events.exception.injected = (env->exception_injected >= 0);
1265 events.exception.nr = env->exception_injected;
1266 events.exception.has_error_code = env->has_error_code;
1267 events.exception.error_code = env->error_code;
1268
1269 events.interrupt.injected = (env->interrupt_injected >= 0);
1270 events.interrupt.nr = env->interrupt_injected;
1271 events.interrupt.soft = env->soft_interrupt;
1272
1273 events.nmi.injected = env->nmi_injected;
1274 events.nmi.pending = env->nmi_pending;
1275 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1276
1277 events.sipi_vector = env->sipi_vector;
1278
1279 events.flags = 0;
1280 if (level >= KVM_PUT_RESET_STATE) {
1281 events.flags |=
1282 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1283 }
1284
1285 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1286 #else
1287 return 0;
1288 #endif
1289 }
1290
1291 static int kvm_get_vcpu_events(CPUState *env)
1292 {
1293 #ifdef KVM_CAP_VCPU_EVENTS
1294 struct kvm_vcpu_events events;
1295 int ret;
1296
1297 if (!kvm_has_vcpu_events()) {
1298 return 0;
1299 }
1300
1301 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1302 if (ret < 0) {
1303 return ret;
1304 }
1305 env->exception_injected =
1306 events.exception.injected ? events.exception.nr : -1;
1307 env->has_error_code = events.exception.has_error_code;
1308 env->error_code = events.exception.error_code;
1309
1310 env->interrupt_injected =
1311 events.interrupt.injected ? events.interrupt.nr : -1;
1312 env->soft_interrupt = events.interrupt.soft;
1313
1314 env->nmi_injected = events.nmi.injected;
1315 env->nmi_pending = events.nmi.pending;
1316 if (events.nmi.masked) {
1317 env->hflags2 |= HF2_NMI_MASK;
1318 } else {
1319 env->hflags2 &= ~HF2_NMI_MASK;
1320 }
1321
1322 env->sipi_vector = events.sipi_vector;
1323 #endif
1324
1325 return 0;
1326 }
1327
1328 static int kvm_guest_debug_workarounds(CPUState *env)
1329 {
1330 int ret = 0;
1331 #ifdef KVM_CAP_SET_GUEST_DEBUG
1332 unsigned long reinject_trap = 0;
1333
1334 if (!kvm_has_vcpu_events()) {
1335 if (env->exception_injected == 1) {
1336 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1337 } else if (env->exception_injected == 3) {
1338 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1339 }
1340 env->exception_injected = -1;
1341 }
1342
1343 /*
1344 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1345 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1346 * by updating the debug state once again if single-stepping is on.
1347 * Another reason to call kvm_update_guest_debug here is a pending debug
1348 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1349 * reinject them via SET_GUEST_DEBUG.
1350 */
1351 if (reinject_trap ||
1352 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1353 ret = kvm_update_guest_debug(env, reinject_trap);
1354 }
1355 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1356 return ret;
1357 }
1358
1359 static int kvm_put_debugregs(CPUState *env)
1360 {
1361 #ifdef KVM_CAP_DEBUGREGS
1362 struct kvm_debugregs dbgregs;
1363 int i;
1364
1365 if (!kvm_has_debugregs()) {
1366 return 0;
1367 }
1368
1369 for (i = 0; i < 4; i++) {
1370 dbgregs.db[i] = env->dr[i];
1371 }
1372 dbgregs.dr6 = env->dr[6];
1373 dbgregs.dr7 = env->dr[7];
1374 dbgregs.flags = 0;
1375
1376 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1377 #else
1378 return 0;
1379 #endif
1380 }
1381
1382 static int kvm_get_debugregs(CPUState *env)
1383 {
1384 #ifdef KVM_CAP_DEBUGREGS
1385 struct kvm_debugregs dbgregs;
1386 int i, ret;
1387
1388 if (!kvm_has_debugregs()) {
1389 return 0;
1390 }
1391
1392 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1393 if (ret < 0) {
1394 return ret;
1395 }
1396 for (i = 0; i < 4; i++) {
1397 env->dr[i] = dbgregs.db[i];
1398 }
1399 env->dr[4] = env->dr[6] = dbgregs.dr6;
1400 env->dr[5] = env->dr[7] = dbgregs.dr7;
1401 #endif
1402
1403 return 0;
1404 }
1405
1406 int kvm_arch_put_registers(CPUState *env, int level)
1407 {
1408 int ret;
1409
1410 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1411
1412 ret = kvm_getput_regs(env, 1);
1413 if (ret < 0) {
1414 return ret;
1415 }
1416 ret = kvm_put_xsave(env);
1417 if (ret < 0) {
1418 return ret;
1419 }
1420 ret = kvm_put_xcrs(env);
1421 if (ret < 0) {
1422 return ret;
1423 }
1424 ret = kvm_put_sregs(env);
1425 if (ret < 0) {
1426 return ret;
1427 }
1428 /* must be before kvm_put_msrs */
1429 ret = kvm_inject_mce_oldstyle(env);
1430 if (ret < 0) {
1431 return ret;
1432 }
1433 ret = kvm_put_msrs(env, level);
1434 if (ret < 0) {
1435 return ret;
1436 }
1437 if (level >= KVM_PUT_RESET_STATE) {
1438 ret = kvm_put_mp_state(env);
1439 if (ret < 0) {
1440 return ret;
1441 }
1442 }
1443 ret = kvm_put_vcpu_events(env, level);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447 ret = kvm_put_debugregs(env);
1448 if (ret < 0) {
1449 return ret;
1450 }
1451 /* must be last */
1452 ret = kvm_guest_debug_workarounds(env);
1453 if (ret < 0) {
1454 return ret;
1455 }
1456 return 0;
1457 }
1458
1459 int kvm_arch_get_registers(CPUState *env)
1460 {
1461 int ret;
1462
1463 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1464
1465 ret = kvm_getput_regs(env, 0);
1466 if (ret < 0) {
1467 return ret;
1468 }
1469 ret = kvm_get_xsave(env);
1470 if (ret < 0) {
1471 return ret;
1472 }
1473 ret = kvm_get_xcrs(env);
1474 if (ret < 0) {
1475 return ret;
1476 }
1477 ret = kvm_get_sregs(env);
1478 if (ret < 0) {
1479 return ret;
1480 }
1481 ret = kvm_get_msrs(env);
1482 if (ret < 0) {
1483 return ret;
1484 }
1485 ret = kvm_get_mp_state(env);
1486 if (ret < 0) {
1487 return ret;
1488 }
1489 ret = kvm_get_vcpu_events(env);
1490 if (ret < 0) {
1491 return ret;
1492 }
1493 ret = kvm_get_debugregs(env);
1494 if (ret < 0) {
1495 return ret;
1496 }
1497 return 0;
1498 }
1499
1500 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1501 {
1502 int ret;
1503
1504 /* Inject NMI */
1505 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1506 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1507 DPRINTF("injected NMI\n");
1508 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1509 if (ret < 0) {
1510 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1511 strerror(-ret));
1512 }
1513 }
1514
1515 if (!kvm_irqchip_in_kernel()) {
1516 /* Force the VCPU out of its inner loop to process the INIT request */
1517 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1518 env->exit_request = 1;
1519 }
1520
1521 /* Try to inject an interrupt if the guest can accept it */
1522 if (run->ready_for_interrupt_injection &&
1523 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1524 (env->eflags & IF_MASK)) {
1525 int irq;
1526
1527 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1528 irq = cpu_get_pic_interrupt(env);
1529 if (irq >= 0) {
1530 struct kvm_interrupt intr;
1531
1532 intr.irq = irq;
1533 DPRINTF("injected interrupt %d\n", irq);
1534 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1535 if (ret < 0) {
1536 fprintf(stderr,
1537 "KVM: injection failed, interrupt lost (%s)\n",
1538 strerror(-ret));
1539 }
1540 }
1541 }
1542
1543 /* If we have an interrupt but the guest is not ready to receive an
1544 * interrupt, request an interrupt window exit. This will
1545 * cause a return to userspace as soon as the guest is ready to
1546 * receive interrupts. */
1547 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1548 run->request_interrupt_window = 1;
1549 } else {
1550 run->request_interrupt_window = 0;
1551 }
1552
1553 DPRINTF("setting tpr\n");
1554 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1555 }
1556 }
1557
1558 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1559 {
1560 if (run->if_flag) {
1561 env->eflags |= IF_MASK;
1562 } else {
1563 env->eflags &= ~IF_MASK;
1564 }
1565 cpu_set_apic_tpr(env->apic_state, run->cr8);
1566 cpu_set_apic_base(env->apic_state, run->apic_base);
1567 }
1568
1569 int kvm_arch_process_async_events(CPUState *env)
1570 {
1571 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1572 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1573 assert(env->mcg_cap);
1574
1575 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1576
1577 kvm_cpu_synchronize_state(env);
1578
1579 if (env->exception_injected == EXCP08_DBLE) {
1580 /* this means triple fault */
1581 qemu_system_reset_request();
1582 env->exit_request = 1;
1583 return 0;
1584 }
1585 env->exception_injected = EXCP12_MCHK;
1586 env->has_error_code = 0;
1587
1588 env->halted = 0;
1589 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1590 env->mp_state = KVM_MP_STATE_RUNNABLE;
1591 }
1592 }
1593
1594 if (kvm_irqchip_in_kernel()) {
1595 return 0;
1596 }
1597
1598 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1599 (env->eflags & IF_MASK)) ||
1600 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1601 env->halted = 0;
1602 }
1603 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1604 kvm_cpu_synchronize_state(env);
1605 do_cpu_init(env);
1606 }
1607 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1608 kvm_cpu_synchronize_state(env);
1609 do_cpu_sipi(env);
1610 }
1611
1612 return env->halted;
1613 }
1614
1615 static int kvm_handle_halt(CPUState *env)
1616 {
1617 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1618 (env->eflags & IF_MASK)) &&
1619 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1620 env->halted = 1;
1621 return 0;
1622 }
1623
1624 return 1;
1625 }
1626
1627 static bool host_supports_vmx(void)
1628 {
1629 uint32_t ecx, unused;
1630
1631 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1632 return ecx & CPUID_EXT_VMX;
1633 }
1634
1635 #define VMX_INVALID_GUEST_STATE 0x80000021
1636
1637 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1638 {
1639 uint64_t code;
1640 int ret = 0;
1641
1642 switch (run->exit_reason) {
1643 case KVM_EXIT_HLT:
1644 DPRINTF("handle_hlt\n");
1645 ret = kvm_handle_halt(env);
1646 break;
1647 case KVM_EXIT_SET_TPR:
1648 ret = 1;
1649 break;
1650 case KVM_EXIT_FAIL_ENTRY:
1651 code = run->fail_entry.hardware_entry_failure_reason;
1652 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1653 code);
1654 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1655 fprintf(stderr,
1656 "\nIf you're runnning a guest on an Intel machine without "
1657 "unrestricted mode\n"
1658 "support, the failure can be most likely due to the guest "
1659 "entering an invalid\n"
1660 "state for Intel VT. For example, the guest maybe running "
1661 "in big real mode\n"
1662 "which is not supported on less recent Intel processors."
1663 "\n\n");
1664 }
1665 ret = -1;
1666 break;
1667 case KVM_EXIT_EXCEPTION:
1668 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1669 run->ex.exception, run->ex.error_code);
1670 ret = -1;
1671 break;
1672 default:
1673 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1674 ret = -1;
1675 break;
1676 }
1677
1678 return ret;
1679 }
1680
1681 #ifdef KVM_CAP_SET_GUEST_DEBUG
1682 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1683 {
1684 static const uint8_t int3 = 0xcc;
1685
1686 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1687 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1688 return -EINVAL;
1689 }
1690 return 0;
1691 }
1692
1693 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1694 {
1695 uint8_t int3;
1696
1697 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1698 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1699 return -EINVAL;
1700 }
1701 return 0;
1702 }
1703
1704 static struct {
1705 target_ulong addr;
1706 int len;
1707 int type;
1708 } hw_breakpoint[4];
1709
1710 static int nb_hw_breakpoint;
1711
1712 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1713 {
1714 int n;
1715
1716 for (n = 0; n < nb_hw_breakpoint; n++) {
1717 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1718 (hw_breakpoint[n].len == len || len == -1)) {
1719 return n;
1720 }
1721 }
1722 return -1;
1723 }
1724
1725 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1726 target_ulong len, int type)
1727 {
1728 switch (type) {
1729 case GDB_BREAKPOINT_HW:
1730 len = 1;
1731 break;
1732 case GDB_WATCHPOINT_WRITE:
1733 case GDB_WATCHPOINT_ACCESS:
1734 switch (len) {
1735 case 1:
1736 break;
1737 case 2:
1738 case 4:
1739 case 8:
1740 if (addr & (len - 1)) {
1741 return -EINVAL;
1742 }
1743 break;
1744 default:
1745 return -EINVAL;
1746 }
1747 break;
1748 default:
1749 return -ENOSYS;
1750 }
1751
1752 if (nb_hw_breakpoint == 4) {
1753 return -ENOBUFS;
1754 }
1755 if (find_hw_breakpoint(addr, len, type) >= 0) {
1756 return -EEXIST;
1757 }
1758 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1759 hw_breakpoint[nb_hw_breakpoint].len = len;
1760 hw_breakpoint[nb_hw_breakpoint].type = type;
1761 nb_hw_breakpoint++;
1762
1763 return 0;
1764 }
1765
1766 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1767 target_ulong len, int type)
1768 {
1769 int n;
1770
1771 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1772 if (n < 0) {
1773 return -ENOENT;
1774 }
1775 nb_hw_breakpoint--;
1776 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1777
1778 return 0;
1779 }
1780
1781 void kvm_arch_remove_all_hw_breakpoints(void)
1782 {
1783 nb_hw_breakpoint = 0;
1784 }
1785
1786 static CPUWatchpoint hw_watchpoint;
1787
1788 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1789 {
1790 int handle = 0;
1791 int n;
1792
1793 if (arch_info->exception == 1) {
1794 if (arch_info->dr6 & (1 << 14)) {
1795 if (cpu_single_env->singlestep_enabled) {
1796 handle = 1;
1797 }
1798 } else {
1799 for (n = 0; n < 4; n++) {
1800 if (arch_info->dr6 & (1 << n)) {
1801 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1802 case 0x0:
1803 handle = 1;
1804 break;
1805 case 0x1:
1806 handle = 1;
1807 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1808 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1809 hw_watchpoint.flags = BP_MEM_WRITE;
1810 break;
1811 case 0x3:
1812 handle = 1;
1813 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1814 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1815 hw_watchpoint.flags = BP_MEM_ACCESS;
1816 break;
1817 }
1818 }
1819 }
1820 }
1821 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1822 handle = 1;
1823 }
1824 if (!handle) {
1825 cpu_synchronize_state(cpu_single_env);
1826 assert(cpu_single_env->exception_injected == -1);
1827
1828 cpu_single_env->exception_injected = arch_info->exception;
1829 cpu_single_env->has_error_code = 0;
1830 }
1831
1832 return handle;
1833 }
1834
1835 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1836 {
1837 const uint8_t type_code[] = {
1838 [GDB_BREAKPOINT_HW] = 0x0,
1839 [GDB_WATCHPOINT_WRITE] = 0x1,
1840 [GDB_WATCHPOINT_ACCESS] = 0x3
1841 };
1842 const uint8_t len_code[] = {
1843 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1844 };
1845 int n;
1846
1847 if (kvm_sw_breakpoints_active(env)) {
1848 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1849 }
1850 if (nb_hw_breakpoint > 0) {
1851 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1852 dbg->arch.debugreg[7] = 0x0600;
1853 for (n = 0; n < nb_hw_breakpoint; n++) {
1854 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1855 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1856 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1857 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1858 }
1859 }
1860 }
1861 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1862
1863 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1864 {
1865 return !(env->cr[0] & CR0_PE_MASK) ||
1866 ((env->segs[R_CS].selector & 3) != 3);
1867 }