]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: convert kvm_ioctl(KVM_CHECK_EXTENSION) to kvm_check_extension()
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 static int lm_capable_kernel;
58
59 #ifdef KVM_CAP_EXT_CPUID
60
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62 {
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
65
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
72 }
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
81 }
82 }
83 return cpuid;
84 }
85
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
88 {
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
93
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
96 }
97
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
101 }
102
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
126 */
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
130 }
131 break;
132 }
133 }
134 }
135
136 qemu_free(cpuid);
137
138 return ret;
139 }
140
141 #else
142
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
145 {
146 return -1U;
147 }
148
149 #endif
150
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
169 };
170
171 static int get_para_features(CPUState *env)
172 {
173 int i, features = 0;
174
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
178 }
179
180 return features;
181 }
182 #endif
183
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
187 {
188 int r;
189
190 r = kvm_check_extension(s, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 }
195 return -ENOSYS;
196 }
197
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199 {
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201 }
202
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204 {
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206 }
207
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209 {
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
212
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
219 }
220
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_exception(CPUState *env)
223 {
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
226 };
227 int r;
228
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 return -1;
232 }
233 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
234 }
235
236 struct kvm_x86_mce_data
237 {
238 CPUState *env;
239 struct kvm_x86_mce *mce;
240 int abort_on_error;
241 };
242
243 static void kvm_do_inject_x86_mce(void *_data)
244 {
245 struct kvm_x86_mce_data *data = _data;
246 int r;
247
248 /* If there is an MCE exception being processed, ignore this SRAO MCE */
249 if ((data->env->mcg_cap & MCG_SER_P) &&
250 !(data->mce->status & MCI_STATUS_AR)) {
251 r = kvm_mce_in_exception(data->env);
252 if (r == -1) {
253 fprintf(stderr, "Failed to get MCE status\n");
254 } else if (r) {
255 return;
256 }
257 }
258
259 r = kvm_set_mce(data->env, data->mce);
260 if (r < 0) {
261 perror("kvm_set_mce FAILED");
262 if (data->abort_on_error) {
263 abort();
264 }
265 }
266 }
267 #endif
268
269 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270 uint64_t mcg_status, uint64_t addr, uint64_t misc,
271 int abort_on_error)
272 {
273 #ifdef KVM_CAP_MCE
274 struct kvm_x86_mce mce = {
275 .bank = bank,
276 .status = status,
277 .mcg_status = mcg_status,
278 .addr = addr,
279 .misc = misc,
280 };
281 struct kvm_x86_mce_data data = {
282 .env = cenv,
283 .mce = &mce,
284 };
285
286 if (!cenv->mcg_cap) {
287 fprintf(stderr, "MCE support is not enabled!\n");
288 return;
289 }
290
291 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
292 #else
293 if (abort_on_error)
294 abort();
295 #endif
296 }
297
298 int kvm_arch_init_vcpu(CPUState *env)
299 {
300 struct {
301 struct kvm_cpuid2 cpuid;
302 struct kvm_cpuid_entry2 entries[100];
303 } __attribute__((packed)) cpuid_data;
304 uint32_t limit, i, j, cpuid_i;
305 uint32_t unused;
306 struct kvm_cpuid_entry2 *c;
307 #ifdef KVM_CPUID_SIGNATURE
308 uint32_t signature[3];
309 #endif
310
311 env->mp_state = KVM_MP_STATE_RUNNABLE;
312
313 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
314
315 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
316 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
317 env->cpuid_ext_features |= i;
318
319 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
320 0, R_EDX);
321 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
322 0, R_ECX);
323 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
324 0, R_EDX);
325
326
327 cpuid_i = 0;
328
329 #ifdef CONFIG_KVM_PARA
330 /* Paravirtualization CPUIDs */
331 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
332 c = &cpuid_data.entries[cpuid_i++];
333 memset(c, 0, sizeof(*c));
334 c->function = KVM_CPUID_SIGNATURE;
335 c->eax = 0;
336 c->ebx = signature[0];
337 c->ecx = signature[1];
338 c->edx = signature[2];
339
340 c = &cpuid_data.entries[cpuid_i++];
341 memset(c, 0, sizeof(*c));
342 c->function = KVM_CPUID_FEATURES;
343 c->eax = env->cpuid_kvm_features & get_para_features(env);
344 #endif
345
346 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
347
348 for (i = 0; i <= limit; i++) {
349 c = &cpuid_data.entries[cpuid_i++];
350
351 switch (i) {
352 case 2: {
353 /* Keep reading function 2 till all the input is received */
354 int times;
355
356 c->function = i;
357 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
358 KVM_CPUID_FLAG_STATE_READ_NEXT;
359 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
360 times = c->eax & 0xff;
361
362 for (j = 1; j < times; ++j) {
363 c = &cpuid_data.entries[cpuid_i++];
364 c->function = i;
365 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
366 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
367 }
368 break;
369 }
370 case 4:
371 case 0xb:
372 case 0xd:
373 for (j = 0; ; j++) {
374 c->function = i;
375 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
376 c->index = j;
377 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
378
379 if (i == 4 && c->eax == 0)
380 break;
381 if (i == 0xb && !(c->ecx & 0xff00))
382 break;
383 if (i == 0xd && c->eax == 0)
384 break;
385
386 c = &cpuid_data.entries[cpuid_i++];
387 }
388 break;
389 default:
390 c->function = i;
391 c->flags = 0;
392 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
393 break;
394 }
395 }
396 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
397
398 for (i = 0x80000000; i <= limit; i++) {
399 c = &cpuid_data.entries[cpuid_i++];
400
401 c->function = i;
402 c->flags = 0;
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
404 }
405
406 cpuid_data.cpuid.nent = cpuid_i;
407
408 #ifdef KVM_CAP_MCE
409 if (((env->cpuid_version >> 8)&0xF) >= 6
410 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
411 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
412 uint64_t mcg_cap;
413 int banks;
414
415 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
416 perror("kvm_get_mce_cap_supported FAILED");
417 else {
418 if (banks > MCE_BANKS_DEF)
419 banks = MCE_BANKS_DEF;
420 mcg_cap &= MCE_CAP_DEF;
421 mcg_cap |= banks;
422 if (kvm_setup_mce(env, &mcg_cap))
423 perror("kvm_setup_mce FAILED");
424 else
425 env->mcg_cap = mcg_cap;
426 }
427 }
428 #endif
429
430 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
431 }
432
433 void kvm_arch_reset_vcpu(CPUState *env)
434 {
435 env->exception_injected = -1;
436 env->interrupt_injected = -1;
437 env->nmi_injected = 0;
438 env->nmi_pending = 0;
439 if (kvm_irqchip_in_kernel()) {
440 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
441 KVM_MP_STATE_UNINITIALIZED;
442 } else {
443 env->mp_state = KVM_MP_STATE_RUNNABLE;
444 }
445 }
446
447 int has_msr_star;
448 int has_msr_hsave_pa;
449
450 static void kvm_supported_msrs(CPUState *env)
451 {
452 static int kvm_supported_msrs;
453 int ret;
454
455 /* first time */
456 if (kvm_supported_msrs == 0) {
457 struct kvm_msr_list msr_list, *kvm_msr_list;
458
459 kvm_supported_msrs = -1;
460
461 /* Obtain MSR list from KVM. These are the MSRs that we must
462 * save/restore */
463 msr_list.nmsrs = 0;
464 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
465 if (ret < 0 && ret != -E2BIG) {
466 return;
467 }
468 /* Old kernel modules had a bug and could write beyond the provided
469 memory. Allocate at least a safe amount of 1K. */
470 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
471 msr_list.nmsrs *
472 sizeof(msr_list.indices[0])));
473
474 kvm_msr_list->nmsrs = msr_list.nmsrs;
475 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
476 if (ret >= 0) {
477 int i;
478
479 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
480 if (kvm_msr_list->indices[i] == MSR_STAR) {
481 has_msr_star = 1;
482 continue;
483 }
484 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
485 has_msr_hsave_pa = 1;
486 continue;
487 }
488 }
489 }
490
491 free(kvm_msr_list);
492 }
493
494 return;
495 }
496
497 static int kvm_has_msr_hsave_pa(CPUState *env)
498 {
499 kvm_supported_msrs(env);
500 return has_msr_hsave_pa;
501 }
502
503 static int kvm_has_msr_star(CPUState *env)
504 {
505 kvm_supported_msrs(env);
506 return has_msr_star;
507 }
508
509 static int kvm_init_identity_map_page(KVMState *s)
510 {
511 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
512 int ret;
513 uint64_t addr = 0xfffbc000;
514
515 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
516 return 0;
517 }
518
519 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
520 if (ret < 0) {
521 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
522 return ret;
523 }
524 #endif
525 return 0;
526 }
527
528 int kvm_arch_init(KVMState *s, int smp_cpus)
529 {
530 int ret;
531
532 struct utsname utsname;
533
534 uname(&utsname);
535 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
536
537 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
538 * directly. In order to use vm86 mode, a TSS is needed. Since this
539 * must be part of guest physical memory, we need to allocate it. Older
540 * versions of KVM just assumed that it would be at the end of physical
541 * memory but that doesn't work with more than 4GB of memory. We simply
542 * refuse to work with those older versions of KVM. */
543 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
544 if (ret <= 0) {
545 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
546 return ret;
547 }
548
549 /* this address is 3 pages before the bios, and the bios should present
550 * as unavaible memory. FIXME, need to ensure the e820 map deals with
551 * this?
552 */
553 /*
554 * Tell fw_cfg to notify the BIOS to reserve the range.
555 */
556 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
557 perror("e820_add_entry() table is full");
558 exit(1);
559 }
560 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
561 if (ret < 0) {
562 return ret;
563 }
564
565 return kvm_init_identity_map_page(s);
566 }
567
568 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
569 {
570 lhs->selector = rhs->selector;
571 lhs->base = rhs->base;
572 lhs->limit = rhs->limit;
573 lhs->type = 3;
574 lhs->present = 1;
575 lhs->dpl = 3;
576 lhs->db = 0;
577 lhs->s = 1;
578 lhs->l = 0;
579 lhs->g = 0;
580 lhs->avl = 0;
581 lhs->unusable = 0;
582 }
583
584 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
585 {
586 unsigned flags = rhs->flags;
587 lhs->selector = rhs->selector;
588 lhs->base = rhs->base;
589 lhs->limit = rhs->limit;
590 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
591 lhs->present = (flags & DESC_P_MASK) != 0;
592 lhs->dpl = rhs->selector & 3;
593 lhs->db = (flags >> DESC_B_SHIFT) & 1;
594 lhs->s = (flags & DESC_S_MASK) != 0;
595 lhs->l = (flags >> DESC_L_SHIFT) & 1;
596 lhs->g = (flags & DESC_G_MASK) != 0;
597 lhs->avl = (flags & DESC_AVL_MASK) != 0;
598 lhs->unusable = 0;
599 }
600
601 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
602 {
603 lhs->selector = rhs->selector;
604 lhs->base = rhs->base;
605 lhs->limit = rhs->limit;
606 lhs->flags =
607 (rhs->type << DESC_TYPE_SHIFT)
608 | (rhs->present * DESC_P_MASK)
609 | (rhs->dpl << DESC_DPL_SHIFT)
610 | (rhs->db << DESC_B_SHIFT)
611 | (rhs->s * DESC_S_MASK)
612 | (rhs->l << DESC_L_SHIFT)
613 | (rhs->g * DESC_G_MASK)
614 | (rhs->avl * DESC_AVL_MASK);
615 }
616
617 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
618 {
619 if (set)
620 *kvm_reg = *qemu_reg;
621 else
622 *qemu_reg = *kvm_reg;
623 }
624
625 static int kvm_getput_regs(CPUState *env, int set)
626 {
627 struct kvm_regs regs;
628 int ret = 0;
629
630 if (!set) {
631 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
632 if (ret < 0)
633 return ret;
634 }
635
636 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
637 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
638 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
639 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
640 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
641 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
642 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
643 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
644 #ifdef TARGET_X86_64
645 kvm_getput_reg(&regs.r8, &env->regs[8], set);
646 kvm_getput_reg(&regs.r9, &env->regs[9], set);
647 kvm_getput_reg(&regs.r10, &env->regs[10], set);
648 kvm_getput_reg(&regs.r11, &env->regs[11], set);
649 kvm_getput_reg(&regs.r12, &env->regs[12], set);
650 kvm_getput_reg(&regs.r13, &env->regs[13], set);
651 kvm_getput_reg(&regs.r14, &env->regs[14], set);
652 kvm_getput_reg(&regs.r15, &env->regs[15], set);
653 #endif
654
655 kvm_getput_reg(&regs.rflags, &env->eflags, set);
656 kvm_getput_reg(&regs.rip, &env->eip, set);
657
658 if (set)
659 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
660
661 return ret;
662 }
663
664 static int kvm_put_fpu(CPUState *env)
665 {
666 struct kvm_fpu fpu;
667 int i;
668
669 memset(&fpu, 0, sizeof fpu);
670 fpu.fsw = env->fpus & ~(7 << 11);
671 fpu.fsw |= (env->fpstt & 7) << 11;
672 fpu.fcw = env->fpuc;
673 for (i = 0; i < 8; ++i)
674 fpu.ftwx |= (!env->fptags[i]) << i;
675 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
676 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
677 fpu.mxcsr = env->mxcsr;
678
679 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
680 }
681
682 #ifdef KVM_CAP_XSAVE
683 #define XSAVE_CWD_RIP 2
684 #define XSAVE_CWD_RDP 4
685 #define XSAVE_MXCSR 6
686 #define XSAVE_ST_SPACE 8
687 #define XSAVE_XMM_SPACE 40
688 #define XSAVE_XSTATE_BV 128
689 #define XSAVE_YMMH_SPACE 144
690 #endif
691
692 static int kvm_put_xsave(CPUState *env)
693 {
694 #ifdef KVM_CAP_XSAVE
695 int i, r;
696 struct kvm_xsave* xsave;
697 uint16_t cwd, swd, twd, fop;
698
699 if (!kvm_has_xsave())
700 return kvm_put_fpu(env);
701
702 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
703 memset(xsave, 0, sizeof(struct kvm_xsave));
704 cwd = swd = twd = fop = 0;
705 swd = env->fpus & ~(7 << 11);
706 swd |= (env->fpstt & 7) << 11;
707 cwd = env->fpuc;
708 for (i = 0; i < 8; ++i)
709 twd |= (!env->fptags[i]) << i;
710 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
711 xsave->region[1] = (uint32_t)(fop << 16) + twd;
712 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
713 sizeof env->fpregs);
714 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
715 sizeof env->xmm_regs);
716 xsave->region[XSAVE_MXCSR] = env->mxcsr;
717 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
718 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
719 sizeof env->ymmh_regs);
720 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
721 qemu_free(xsave);
722 return r;
723 #else
724 return kvm_put_fpu(env);
725 #endif
726 }
727
728 static int kvm_put_xcrs(CPUState *env)
729 {
730 #ifdef KVM_CAP_XCRS
731 struct kvm_xcrs xcrs;
732
733 if (!kvm_has_xcrs())
734 return 0;
735
736 xcrs.nr_xcrs = 1;
737 xcrs.flags = 0;
738 xcrs.xcrs[0].xcr = 0;
739 xcrs.xcrs[0].value = env->xcr0;
740 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
741 #else
742 return 0;
743 #endif
744 }
745
746 static int kvm_put_sregs(CPUState *env)
747 {
748 struct kvm_sregs sregs;
749
750 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
751 if (env->interrupt_injected >= 0) {
752 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
753 (uint64_t)1 << (env->interrupt_injected % 64);
754 }
755
756 if ((env->eflags & VM_MASK)) {
757 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
758 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
759 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
760 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
761 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
762 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
763 } else {
764 set_seg(&sregs.cs, &env->segs[R_CS]);
765 set_seg(&sregs.ds, &env->segs[R_DS]);
766 set_seg(&sregs.es, &env->segs[R_ES]);
767 set_seg(&sregs.fs, &env->segs[R_FS]);
768 set_seg(&sregs.gs, &env->segs[R_GS]);
769 set_seg(&sregs.ss, &env->segs[R_SS]);
770
771 if (env->cr[0] & CR0_PE_MASK) {
772 /* force ss cpl to cs cpl */
773 sregs.ss.selector = (sregs.ss.selector & ~3) |
774 (sregs.cs.selector & 3);
775 sregs.ss.dpl = sregs.ss.selector & 3;
776 }
777 }
778
779 set_seg(&sregs.tr, &env->tr);
780 set_seg(&sregs.ldt, &env->ldt);
781
782 sregs.idt.limit = env->idt.limit;
783 sregs.idt.base = env->idt.base;
784 sregs.gdt.limit = env->gdt.limit;
785 sregs.gdt.base = env->gdt.base;
786
787 sregs.cr0 = env->cr[0];
788 sregs.cr2 = env->cr[2];
789 sregs.cr3 = env->cr[3];
790 sregs.cr4 = env->cr[4];
791
792 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
793 sregs.apic_base = cpu_get_apic_base(env->apic_state);
794
795 sregs.efer = env->efer;
796
797 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
798 }
799
800 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
801 uint32_t index, uint64_t value)
802 {
803 entry->index = index;
804 entry->data = value;
805 }
806
807 static int kvm_put_msrs(CPUState *env, int level)
808 {
809 struct {
810 struct kvm_msrs info;
811 struct kvm_msr_entry entries[100];
812 } msr_data;
813 struct kvm_msr_entry *msrs = msr_data.entries;
814 int n = 0;
815
816 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
817 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
818 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
819 if (kvm_has_msr_star(env))
820 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
821 if (kvm_has_msr_hsave_pa(env))
822 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
823 #ifdef TARGET_X86_64
824 if (lm_capable_kernel) {
825 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
826 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
827 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
828 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
829 }
830 #endif
831 if (level == KVM_PUT_FULL_STATE) {
832 /*
833 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
834 * writeback. Until this is fixed, we only write the offset to SMP
835 * guests after migration, desynchronizing the VCPUs, but avoiding
836 * huge jump-backs that would occur without any writeback at all.
837 */
838 if (smp_cpus == 1 || env->tsc != 0) {
839 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
840 }
841 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
842 env->system_time_msr);
843 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
844 #ifdef KVM_CAP_ASYNC_PF
845 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
846 #endif
847 }
848 #ifdef KVM_CAP_MCE
849 if (env->mcg_cap) {
850 int i;
851 if (level == KVM_PUT_RESET_STATE)
852 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
853 else if (level == KVM_PUT_FULL_STATE) {
854 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
855 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
856 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
857 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
858 }
859 }
860 #endif
861
862 msr_data.info.nmsrs = n;
863
864 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
865
866 }
867
868
869 static int kvm_get_fpu(CPUState *env)
870 {
871 struct kvm_fpu fpu;
872 int i, ret;
873
874 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
875 if (ret < 0)
876 return ret;
877
878 env->fpstt = (fpu.fsw >> 11) & 7;
879 env->fpus = fpu.fsw;
880 env->fpuc = fpu.fcw;
881 for (i = 0; i < 8; ++i)
882 env->fptags[i] = !((fpu.ftwx >> i) & 1);
883 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
884 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
885 env->mxcsr = fpu.mxcsr;
886
887 return 0;
888 }
889
890 static int kvm_get_xsave(CPUState *env)
891 {
892 #ifdef KVM_CAP_XSAVE
893 struct kvm_xsave* xsave;
894 int ret, i;
895 uint16_t cwd, swd, twd, fop;
896
897 if (!kvm_has_xsave())
898 return kvm_get_fpu(env);
899
900 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
901 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
902 if (ret < 0) {
903 qemu_free(xsave);
904 return ret;
905 }
906
907 cwd = (uint16_t)xsave->region[0];
908 swd = (uint16_t)(xsave->region[0] >> 16);
909 twd = (uint16_t)xsave->region[1];
910 fop = (uint16_t)(xsave->region[1] >> 16);
911 env->fpstt = (swd >> 11) & 7;
912 env->fpus = swd;
913 env->fpuc = cwd;
914 for (i = 0; i < 8; ++i)
915 env->fptags[i] = !((twd >> i) & 1);
916 env->mxcsr = xsave->region[XSAVE_MXCSR];
917 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
918 sizeof env->fpregs);
919 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
920 sizeof env->xmm_regs);
921 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
922 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
923 sizeof env->ymmh_regs);
924 qemu_free(xsave);
925 return 0;
926 #else
927 return kvm_get_fpu(env);
928 #endif
929 }
930
931 static int kvm_get_xcrs(CPUState *env)
932 {
933 #ifdef KVM_CAP_XCRS
934 int i, ret;
935 struct kvm_xcrs xcrs;
936
937 if (!kvm_has_xcrs())
938 return 0;
939
940 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
941 if (ret < 0)
942 return ret;
943
944 for (i = 0; i < xcrs.nr_xcrs; i++)
945 /* Only support xcr0 now */
946 if (xcrs.xcrs[0].xcr == 0) {
947 env->xcr0 = xcrs.xcrs[0].value;
948 break;
949 }
950 return 0;
951 #else
952 return 0;
953 #endif
954 }
955
956 static int kvm_get_sregs(CPUState *env)
957 {
958 struct kvm_sregs sregs;
959 uint32_t hflags;
960 int bit, i, ret;
961
962 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
963 if (ret < 0)
964 return ret;
965
966 /* There can only be one pending IRQ set in the bitmap at a time, so try
967 to find it and save its number instead (-1 for none). */
968 env->interrupt_injected = -1;
969 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
970 if (sregs.interrupt_bitmap[i]) {
971 bit = ctz64(sregs.interrupt_bitmap[i]);
972 env->interrupt_injected = i * 64 + bit;
973 break;
974 }
975 }
976
977 get_seg(&env->segs[R_CS], &sregs.cs);
978 get_seg(&env->segs[R_DS], &sregs.ds);
979 get_seg(&env->segs[R_ES], &sregs.es);
980 get_seg(&env->segs[R_FS], &sregs.fs);
981 get_seg(&env->segs[R_GS], &sregs.gs);
982 get_seg(&env->segs[R_SS], &sregs.ss);
983
984 get_seg(&env->tr, &sregs.tr);
985 get_seg(&env->ldt, &sregs.ldt);
986
987 env->idt.limit = sregs.idt.limit;
988 env->idt.base = sregs.idt.base;
989 env->gdt.limit = sregs.gdt.limit;
990 env->gdt.base = sregs.gdt.base;
991
992 env->cr[0] = sregs.cr0;
993 env->cr[2] = sregs.cr2;
994 env->cr[3] = sregs.cr3;
995 env->cr[4] = sregs.cr4;
996
997 cpu_set_apic_base(env->apic_state, sregs.apic_base);
998
999 env->efer = sregs.efer;
1000 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1001
1002 #define HFLAG_COPY_MASK ~( \
1003 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1004 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1005 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1006 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1007
1008
1009
1010 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1011 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1012 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1013 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1014 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1015 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1016 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1017
1018 if (env->efer & MSR_EFER_LMA) {
1019 hflags |= HF_LMA_MASK;
1020 }
1021
1022 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1023 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1024 } else {
1025 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1026 (DESC_B_SHIFT - HF_CS32_SHIFT);
1027 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1028 (DESC_B_SHIFT - HF_SS32_SHIFT);
1029 if (!(env->cr[0] & CR0_PE_MASK) ||
1030 (env->eflags & VM_MASK) ||
1031 !(hflags & HF_CS32_MASK)) {
1032 hflags |= HF_ADDSEG_MASK;
1033 } else {
1034 hflags |= ((env->segs[R_DS].base |
1035 env->segs[R_ES].base |
1036 env->segs[R_SS].base) != 0) <<
1037 HF_ADDSEG_SHIFT;
1038 }
1039 }
1040 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1041
1042 return 0;
1043 }
1044
1045 static int kvm_get_msrs(CPUState *env)
1046 {
1047 struct {
1048 struct kvm_msrs info;
1049 struct kvm_msr_entry entries[100];
1050 } msr_data;
1051 struct kvm_msr_entry *msrs = msr_data.entries;
1052 int ret, i, n;
1053
1054 n = 0;
1055 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1056 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1057 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1058 if (kvm_has_msr_star(env))
1059 msrs[n++].index = MSR_STAR;
1060 if (kvm_has_msr_hsave_pa(env))
1061 msrs[n++].index = MSR_VM_HSAVE_PA;
1062 msrs[n++].index = MSR_IA32_TSC;
1063 #ifdef TARGET_X86_64
1064 if (lm_capable_kernel) {
1065 msrs[n++].index = MSR_CSTAR;
1066 msrs[n++].index = MSR_KERNELGSBASE;
1067 msrs[n++].index = MSR_FMASK;
1068 msrs[n++].index = MSR_LSTAR;
1069 }
1070 #endif
1071 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073 #ifdef KVM_CAP_ASYNC_PF
1074 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1075 #endif
1076
1077 #ifdef KVM_CAP_MCE
1078 if (env->mcg_cap) {
1079 msrs[n++].index = MSR_MCG_STATUS;
1080 msrs[n++].index = MSR_MCG_CTL;
1081 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1082 msrs[n++].index = MSR_MC0_CTL + i;
1083 }
1084 #endif
1085
1086 msr_data.info.nmsrs = n;
1087 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1088 if (ret < 0)
1089 return ret;
1090
1091 for (i = 0; i < ret; i++) {
1092 switch (msrs[i].index) {
1093 case MSR_IA32_SYSENTER_CS:
1094 env->sysenter_cs = msrs[i].data;
1095 break;
1096 case MSR_IA32_SYSENTER_ESP:
1097 env->sysenter_esp = msrs[i].data;
1098 break;
1099 case MSR_IA32_SYSENTER_EIP:
1100 env->sysenter_eip = msrs[i].data;
1101 break;
1102 case MSR_STAR:
1103 env->star = msrs[i].data;
1104 break;
1105 #ifdef TARGET_X86_64
1106 case MSR_CSTAR:
1107 env->cstar = msrs[i].data;
1108 break;
1109 case MSR_KERNELGSBASE:
1110 env->kernelgsbase = msrs[i].data;
1111 break;
1112 case MSR_FMASK:
1113 env->fmask = msrs[i].data;
1114 break;
1115 case MSR_LSTAR:
1116 env->lstar = msrs[i].data;
1117 break;
1118 #endif
1119 case MSR_IA32_TSC:
1120 env->tsc = msrs[i].data;
1121 break;
1122 case MSR_VM_HSAVE_PA:
1123 env->vm_hsave = msrs[i].data;
1124 break;
1125 case MSR_KVM_SYSTEM_TIME:
1126 env->system_time_msr = msrs[i].data;
1127 break;
1128 case MSR_KVM_WALL_CLOCK:
1129 env->wall_clock_msr = msrs[i].data;
1130 break;
1131 #ifdef KVM_CAP_MCE
1132 case MSR_MCG_STATUS:
1133 env->mcg_status = msrs[i].data;
1134 break;
1135 case MSR_MCG_CTL:
1136 env->mcg_ctl = msrs[i].data;
1137 break;
1138 #endif
1139 default:
1140 #ifdef KVM_CAP_MCE
1141 if (msrs[i].index >= MSR_MC0_CTL &&
1142 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1143 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1144 }
1145 #endif
1146 break;
1147 #ifdef KVM_CAP_ASYNC_PF
1148 case MSR_KVM_ASYNC_PF_EN:
1149 env->async_pf_en_msr = msrs[i].data;
1150 break;
1151 #endif
1152 }
1153 }
1154
1155 return 0;
1156 }
1157
1158 static int kvm_put_mp_state(CPUState *env)
1159 {
1160 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1161
1162 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1163 }
1164
1165 static int kvm_get_mp_state(CPUState *env)
1166 {
1167 struct kvm_mp_state mp_state;
1168 int ret;
1169
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1171 if (ret < 0) {
1172 return ret;
1173 }
1174 env->mp_state = mp_state.mp_state;
1175 return 0;
1176 }
1177
1178 static int kvm_put_vcpu_events(CPUState *env, int level)
1179 {
1180 #ifdef KVM_CAP_VCPU_EVENTS
1181 struct kvm_vcpu_events events;
1182
1183 if (!kvm_has_vcpu_events()) {
1184 return 0;
1185 }
1186
1187 events.exception.injected = (env->exception_injected >= 0);
1188 events.exception.nr = env->exception_injected;
1189 events.exception.has_error_code = env->has_error_code;
1190 events.exception.error_code = env->error_code;
1191
1192 events.interrupt.injected = (env->interrupt_injected >= 0);
1193 events.interrupt.nr = env->interrupt_injected;
1194 events.interrupt.soft = env->soft_interrupt;
1195
1196 events.nmi.injected = env->nmi_injected;
1197 events.nmi.pending = env->nmi_pending;
1198 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1199
1200 events.sipi_vector = env->sipi_vector;
1201
1202 events.flags = 0;
1203 if (level >= KVM_PUT_RESET_STATE) {
1204 events.flags |=
1205 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1206 }
1207
1208 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1209 #else
1210 return 0;
1211 #endif
1212 }
1213
1214 static int kvm_get_vcpu_events(CPUState *env)
1215 {
1216 #ifdef KVM_CAP_VCPU_EVENTS
1217 struct kvm_vcpu_events events;
1218 int ret;
1219
1220 if (!kvm_has_vcpu_events()) {
1221 return 0;
1222 }
1223
1224 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1225 if (ret < 0) {
1226 return ret;
1227 }
1228 env->exception_injected =
1229 events.exception.injected ? events.exception.nr : -1;
1230 env->has_error_code = events.exception.has_error_code;
1231 env->error_code = events.exception.error_code;
1232
1233 env->interrupt_injected =
1234 events.interrupt.injected ? events.interrupt.nr : -1;
1235 env->soft_interrupt = events.interrupt.soft;
1236
1237 env->nmi_injected = events.nmi.injected;
1238 env->nmi_pending = events.nmi.pending;
1239 if (events.nmi.masked) {
1240 env->hflags2 |= HF2_NMI_MASK;
1241 } else {
1242 env->hflags2 &= ~HF2_NMI_MASK;
1243 }
1244
1245 env->sipi_vector = events.sipi_vector;
1246 #endif
1247
1248 return 0;
1249 }
1250
1251 static int kvm_guest_debug_workarounds(CPUState *env)
1252 {
1253 int ret = 0;
1254 #ifdef KVM_CAP_SET_GUEST_DEBUG
1255 unsigned long reinject_trap = 0;
1256
1257 if (!kvm_has_vcpu_events()) {
1258 if (env->exception_injected == 1) {
1259 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1260 } else if (env->exception_injected == 3) {
1261 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1262 }
1263 env->exception_injected = -1;
1264 }
1265
1266 /*
1267 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1268 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1269 * by updating the debug state once again if single-stepping is on.
1270 * Another reason to call kvm_update_guest_debug here is a pending debug
1271 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1272 * reinject them via SET_GUEST_DEBUG.
1273 */
1274 if (reinject_trap ||
1275 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1276 ret = kvm_update_guest_debug(env, reinject_trap);
1277 }
1278 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1279 return ret;
1280 }
1281
1282 static int kvm_put_debugregs(CPUState *env)
1283 {
1284 #ifdef KVM_CAP_DEBUGREGS
1285 struct kvm_debugregs dbgregs;
1286 int i;
1287
1288 if (!kvm_has_debugregs()) {
1289 return 0;
1290 }
1291
1292 for (i = 0; i < 4; i++) {
1293 dbgregs.db[i] = env->dr[i];
1294 }
1295 dbgregs.dr6 = env->dr[6];
1296 dbgregs.dr7 = env->dr[7];
1297 dbgregs.flags = 0;
1298
1299 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1300 #else
1301 return 0;
1302 #endif
1303 }
1304
1305 static int kvm_get_debugregs(CPUState *env)
1306 {
1307 #ifdef KVM_CAP_DEBUGREGS
1308 struct kvm_debugregs dbgregs;
1309 int i, ret;
1310
1311 if (!kvm_has_debugregs()) {
1312 return 0;
1313 }
1314
1315 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1316 if (ret < 0) {
1317 return ret;
1318 }
1319 for (i = 0; i < 4; i++) {
1320 env->dr[i] = dbgregs.db[i];
1321 }
1322 env->dr[4] = env->dr[6] = dbgregs.dr6;
1323 env->dr[5] = env->dr[7] = dbgregs.dr7;
1324 #endif
1325
1326 return 0;
1327 }
1328
1329 int kvm_arch_put_registers(CPUState *env, int level)
1330 {
1331 int ret;
1332
1333 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1334
1335 ret = kvm_getput_regs(env, 1);
1336 if (ret < 0)
1337 return ret;
1338
1339 ret = kvm_put_xsave(env);
1340 if (ret < 0)
1341 return ret;
1342
1343 ret = kvm_put_xcrs(env);
1344 if (ret < 0)
1345 return ret;
1346
1347 ret = kvm_put_sregs(env);
1348 if (ret < 0)
1349 return ret;
1350
1351 ret = kvm_put_msrs(env, level);
1352 if (ret < 0)
1353 return ret;
1354
1355 if (level >= KVM_PUT_RESET_STATE) {
1356 ret = kvm_put_mp_state(env);
1357 if (ret < 0)
1358 return ret;
1359 }
1360
1361 ret = kvm_put_vcpu_events(env, level);
1362 if (ret < 0)
1363 return ret;
1364
1365 /* must be last */
1366 ret = kvm_guest_debug_workarounds(env);
1367 if (ret < 0)
1368 return ret;
1369
1370 ret = kvm_put_debugregs(env);
1371 if (ret < 0)
1372 return ret;
1373
1374 return 0;
1375 }
1376
1377 int kvm_arch_get_registers(CPUState *env)
1378 {
1379 int ret;
1380
1381 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1382
1383 ret = kvm_getput_regs(env, 0);
1384 if (ret < 0)
1385 return ret;
1386
1387 ret = kvm_get_xsave(env);
1388 if (ret < 0)
1389 return ret;
1390
1391 ret = kvm_get_xcrs(env);
1392 if (ret < 0)
1393 return ret;
1394
1395 ret = kvm_get_sregs(env);
1396 if (ret < 0)
1397 return ret;
1398
1399 ret = kvm_get_msrs(env);
1400 if (ret < 0)
1401 return ret;
1402
1403 ret = kvm_get_mp_state(env);
1404 if (ret < 0)
1405 return ret;
1406
1407 ret = kvm_get_vcpu_events(env);
1408 if (ret < 0)
1409 return ret;
1410
1411 ret = kvm_get_debugregs(env);
1412 if (ret < 0)
1413 return ret;
1414
1415 return 0;
1416 }
1417
1418 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1419 {
1420 /* Inject NMI */
1421 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1422 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1423 DPRINTF("injected NMI\n");
1424 kvm_vcpu_ioctl(env, KVM_NMI);
1425 }
1426
1427 /* Try to inject an interrupt if the guest can accept it */
1428 if (run->ready_for_interrupt_injection &&
1429 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1430 (env->eflags & IF_MASK)) {
1431 int irq;
1432
1433 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1434 irq = cpu_get_pic_interrupt(env);
1435 if (irq >= 0) {
1436 struct kvm_interrupt intr;
1437 intr.irq = irq;
1438 /* FIXME: errors */
1439 DPRINTF("injected interrupt %d\n", irq);
1440 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1441 }
1442 }
1443
1444 /* If we have an interrupt but the guest is not ready to receive an
1445 * interrupt, request an interrupt window exit. This will
1446 * cause a return to userspace as soon as the guest is ready to
1447 * receive interrupts. */
1448 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1449 run->request_interrupt_window = 1;
1450 else
1451 run->request_interrupt_window = 0;
1452
1453 DPRINTF("setting tpr\n");
1454 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1455
1456 return 0;
1457 }
1458
1459 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1460 {
1461 if (run->if_flag)
1462 env->eflags |= IF_MASK;
1463 else
1464 env->eflags &= ~IF_MASK;
1465
1466 cpu_set_apic_tpr(env->apic_state, run->cr8);
1467 cpu_set_apic_base(env->apic_state, run->apic_base);
1468
1469 return 0;
1470 }
1471
1472 int kvm_arch_process_irqchip_events(CPUState *env)
1473 {
1474 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1475 kvm_cpu_synchronize_state(env);
1476 do_cpu_init(env);
1477 env->exception_index = EXCP_HALTED;
1478 }
1479
1480 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1481 kvm_cpu_synchronize_state(env);
1482 do_cpu_sipi(env);
1483 }
1484
1485 return env->halted;
1486 }
1487
1488 static int kvm_handle_halt(CPUState *env)
1489 {
1490 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1491 (env->eflags & IF_MASK)) &&
1492 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1493 env->halted = 1;
1494 env->exception_index = EXCP_HLT;
1495 return 0;
1496 }
1497
1498 return 1;
1499 }
1500
1501 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1502 {
1503 int ret = 0;
1504
1505 switch (run->exit_reason) {
1506 case KVM_EXIT_HLT:
1507 DPRINTF("handle_hlt\n");
1508 ret = kvm_handle_halt(env);
1509 break;
1510 }
1511
1512 return ret;
1513 }
1514
1515 #ifdef KVM_CAP_SET_GUEST_DEBUG
1516 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1517 {
1518 static const uint8_t int3 = 0xcc;
1519
1520 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1521 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1522 return -EINVAL;
1523 return 0;
1524 }
1525
1526 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1527 {
1528 uint8_t int3;
1529
1530 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1531 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1532 return -EINVAL;
1533 return 0;
1534 }
1535
1536 static struct {
1537 target_ulong addr;
1538 int len;
1539 int type;
1540 } hw_breakpoint[4];
1541
1542 static int nb_hw_breakpoint;
1543
1544 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1545 {
1546 int n;
1547
1548 for (n = 0; n < nb_hw_breakpoint; n++)
1549 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1550 (hw_breakpoint[n].len == len || len == -1))
1551 return n;
1552 return -1;
1553 }
1554
1555 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1556 target_ulong len, int type)
1557 {
1558 switch (type) {
1559 case GDB_BREAKPOINT_HW:
1560 len = 1;
1561 break;
1562 case GDB_WATCHPOINT_WRITE:
1563 case GDB_WATCHPOINT_ACCESS:
1564 switch (len) {
1565 case 1:
1566 break;
1567 case 2:
1568 case 4:
1569 case 8:
1570 if (addr & (len - 1))
1571 return -EINVAL;
1572 break;
1573 default:
1574 return -EINVAL;
1575 }
1576 break;
1577 default:
1578 return -ENOSYS;
1579 }
1580
1581 if (nb_hw_breakpoint == 4)
1582 return -ENOBUFS;
1583
1584 if (find_hw_breakpoint(addr, len, type) >= 0)
1585 return -EEXIST;
1586
1587 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1588 hw_breakpoint[nb_hw_breakpoint].len = len;
1589 hw_breakpoint[nb_hw_breakpoint].type = type;
1590 nb_hw_breakpoint++;
1591
1592 return 0;
1593 }
1594
1595 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1596 target_ulong len, int type)
1597 {
1598 int n;
1599
1600 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1601 if (n < 0)
1602 return -ENOENT;
1603
1604 nb_hw_breakpoint--;
1605 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1606
1607 return 0;
1608 }
1609
1610 void kvm_arch_remove_all_hw_breakpoints(void)
1611 {
1612 nb_hw_breakpoint = 0;
1613 }
1614
1615 static CPUWatchpoint hw_watchpoint;
1616
1617 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1618 {
1619 int handle = 0;
1620 int n;
1621
1622 if (arch_info->exception == 1) {
1623 if (arch_info->dr6 & (1 << 14)) {
1624 if (cpu_single_env->singlestep_enabled)
1625 handle = 1;
1626 } else {
1627 for (n = 0; n < 4; n++)
1628 if (arch_info->dr6 & (1 << n))
1629 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1630 case 0x0:
1631 handle = 1;
1632 break;
1633 case 0x1:
1634 handle = 1;
1635 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1636 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1637 hw_watchpoint.flags = BP_MEM_WRITE;
1638 break;
1639 case 0x3:
1640 handle = 1;
1641 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1642 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1643 hw_watchpoint.flags = BP_MEM_ACCESS;
1644 break;
1645 }
1646 }
1647 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1648 handle = 1;
1649
1650 if (!handle) {
1651 cpu_synchronize_state(cpu_single_env);
1652 assert(cpu_single_env->exception_injected == -1);
1653
1654 cpu_single_env->exception_injected = arch_info->exception;
1655 cpu_single_env->has_error_code = 0;
1656 }
1657
1658 return handle;
1659 }
1660
1661 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1662 {
1663 const uint8_t type_code[] = {
1664 [GDB_BREAKPOINT_HW] = 0x0,
1665 [GDB_WATCHPOINT_WRITE] = 0x1,
1666 [GDB_WATCHPOINT_ACCESS] = 0x3
1667 };
1668 const uint8_t len_code[] = {
1669 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1670 };
1671 int n;
1672
1673 if (kvm_sw_breakpoints_active(env))
1674 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1675
1676 if (nb_hw_breakpoint > 0) {
1677 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1678 dbg->arch.debugreg[7] = 0x0600;
1679 for (n = 0; n < nb_hw_breakpoint; n++) {
1680 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1681 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1682 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1683 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1684 }
1685 }
1686 /* Legal xcr0 for loading */
1687 env->xcr0 = 1;
1688 }
1689 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1690
1691 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1692 {
1693 return !(env->cr[0] & CR0_PE_MASK) ||
1694 ((env->segs[R_CS].selector & 3) != 3);
1695 }
1696
1697 static void hardware_memory_error(void)
1698 {
1699 fprintf(stderr, "Hardware memory error!\n");
1700 exit(1);
1701 }
1702
1703 #ifdef KVM_CAP_MCE
1704 static void kvm_mce_broadcast_rest(CPUState *env)
1705 {
1706 CPUState *cenv;
1707 int family, model, cpuver = env->cpuid_version;
1708
1709 family = (cpuver >> 8) & 0xf;
1710 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1711
1712 /* Broadcast MCA signal for processor version 06H_EH and above */
1713 if ((family == 6 && model >= 14) || family > 6) {
1714 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1715 if (cenv == env) {
1716 continue;
1717 }
1718 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1719 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1720 }
1721 }
1722 }
1723 #endif
1724
1725 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1726 {
1727 #if defined(KVM_CAP_MCE)
1728 struct kvm_x86_mce mce = {
1729 .bank = 9,
1730 };
1731 void *vaddr;
1732 ram_addr_t ram_addr;
1733 target_phys_addr_t paddr;
1734 int r;
1735
1736 if ((env->mcg_cap & MCG_SER_P) && addr
1737 && (code == BUS_MCEERR_AR
1738 || code == BUS_MCEERR_AO)) {
1739 if (code == BUS_MCEERR_AR) {
1740 /* Fake an Intel architectural Data Load SRAR UCR */
1741 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1742 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1743 | MCI_STATUS_AR | 0x134;
1744 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1745 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1746 } else {
1747 /*
1748 * If there is an MCE excpetion being processed, ignore
1749 * this SRAO MCE
1750 */
1751 r = kvm_mce_in_exception(env);
1752 if (r == -1) {
1753 fprintf(stderr, "Failed to get MCE status\n");
1754 } else if (r) {
1755 return 0;
1756 }
1757 /* Fake an Intel architectural Memory scrubbing UCR */
1758 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1759 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1760 | 0xc0;
1761 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1762 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1763 }
1764 vaddr = (void *)addr;
1765 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1766 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1767 fprintf(stderr, "Hardware memory error for memory used by "
1768 "QEMU itself instead of guest system!\n");
1769 /* Hope we are lucky for AO MCE */
1770 if (code == BUS_MCEERR_AO) {
1771 return 0;
1772 } else {
1773 hardware_memory_error();
1774 }
1775 }
1776 mce.addr = paddr;
1777 r = kvm_set_mce(env, &mce);
1778 if (r < 0) {
1779 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1780 abort();
1781 }
1782 kvm_mce_broadcast_rest(env);
1783 } else
1784 #endif
1785 {
1786 if (code == BUS_MCEERR_AO) {
1787 return 0;
1788 } else if (code == BUS_MCEERR_AR) {
1789 hardware_memory_error();
1790 } else {
1791 return 1;
1792 }
1793 }
1794 return 0;
1795 }
1796
1797 int kvm_on_sigbus(int code, void *addr)
1798 {
1799 #if defined(KVM_CAP_MCE)
1800 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1801 uint64_t status;
1802 void *vaddr;
1803 ram_addr_t ram_addr;
1804 target_phys_addr_t paddr;
1805
1806 /* Hope we are lucky for AO MCE */
1807 vaddr = addr;
1808 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1809 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1810 fprintf(stderr, "Hardware memory error for memory used by "
1811 "QEMU itself instead of guest system!: %p\n", addr);
1812 return 0;
1813 }
1814 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1815 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1816 | 0xc0;
1817 kvm_inject_x86_mce(first_cpu, 9, status,
1818 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1819 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1820 kvm_mce_broadcast_rest(first_cpu);
1821 } else
1822 #endif
1823 {
1824 if (code == BUS_MCEERR_AO) {
1825 return 0;
1826 } else if (code == BUS_MCEERR_AR) {
1827 hardware_memory_error();
1828 } else {
1829 return 1;
1830 }
1831 }
1832 return 0;
1833 }