]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'stefanha/block' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static int lm_capable_kernel;
72
73 bool kvm_allows_irq0_override(void)
74 {
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 }
77
78 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
79 {
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
82
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
89 }
90 if (r < 0) {
91 if (r == -E2BIG) {
92 g_free(cpuid);
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
98 }
99 }
100 return cpuid;
101 }
102
103 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
105 */
106 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
107 {
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
112 }
113 return cpuid;
114 }
115
116 struct kvm_para_features {
117 int cap;
118 int feature;
119 } para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
124 { -1, -1 }
125 };
126
127 static int get_para_features(KVMState *s)
128 {
129 int i, features = 0;
130
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
132 if (kvm_check_extension(s, para_features[i].cap)) {
133 features |= (1 << para_features[i].feature);
134 }
135 }
136
137 return features;
138 }
139
140
141 /* Returns the value for a specific register on the cpuid entry
142 */
143 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
144 {
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
159 }
160 return ret;
161 }
162
163 /* Find matching entry for function/index on kvm_cpuid2 struct
164 */
165 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
168 {
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
174 }
175 }
176 /* not found: */
177 return NULL;
178 }
179
180 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
181 uint32_t index, int reg)
182 {
183 struct kvm_cpuid2 *cpuid;
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
186 bool found = false;
187
188 cpuid = get_supported_cpuid(s);
189
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
194 }
195
196 /* Fixups for the data returned by KVM, below */
197
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
204 */
205 ret |= CPUID_EXT_HYPERVISOR;
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
209 */
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 }
214
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
217 */
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
220 }
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
224 */
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
227 }
228
229 g_free(cpuid);
230
231 /* fallback for older kernels */
232 if ((function == KVM_CPUID_FEATURES) && !found) {
233 ret = get_para_features(s);
234 }
235
236 return ret;
237 }
238
239 typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242 } HWPoisonPage;
243
244 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
246
247 static void kvm_unpoison_all(void *param)
248 {
249 HWPoisonPage *page, *next_page;
250
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
254 g_free(page);
255 }
256 }
257
258 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
259 {
260 HWPoisonPage *page;
261
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
265 }
266 }
267 page = g_malloc(sizeof(HWPoisonPage));
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270 }
271
272 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
274 {
275 int r;
276
277 r = kvm_check_extension(s, KVM_CAP_MCE);
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
281 }
282 return -ENOSYS;
283 }
284
285 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
286 {
287 CPUX86State *env = &cpu->env;
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
291
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
298 }
299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
303 }
304
305 static void hardware_memory_error(void)
306 {
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
309 }
310
311 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
312 {
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
315 ram_addr_t ram_addr;
316 hwaddr paddr;
317
318 if ((env->mcg_cap & MCG_SER_P) && addr
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
329 }
330 }
331 kvm_hwpoison_page_add(ram_addr);
332 kvm_mce_inject(cpu, paddr, code);
333 } else {
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 int kvm_arch_on_sigbus(int code, void *addr)
346 {
347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
348 ram_addr_t ram_addr;
349 hwaddr paddr;
350
351 /* Hope we are lucky for AO MCE */
352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
358 }
359 kvm_hwpoison_page_add(ram_addr);
360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
361 } else {
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
368 }
369 }
370 return 0;
371 }
372
373 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
374 {
375 CPUX86State *env = &cpu->env;
376
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
380
381 env->exception_injected = -1;
382
383 /*
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
386 */
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
390 }
391 }
392 assert(bank < bank_num);
393
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
399
400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
401 }
402 return 0;
403 }
404
405 static void cpu_update_state(void *opaque, int running, RunState state)
406 {
407 CPUX86State *env = opaque;
408
409 if (running) {
410 env->tsc_valid = false;
411 }
412 }
413
414 int kvm_arch_init_vcpu(CPUState *cs)
415 {
416 struct {
417 struct kvm_cpuid2 cpuid;
418 struct kvm_cpuid_entry2 entries[100];
419 } QEMU_PACKED cpuid_data;
420 X86CPU *cpu = X86_CPU(cs);
421 CPUX86State *env = &cpu->env;
422 uint32_t limit, i, j, cpuid_i;
423 uint32_t unused;
424 struct kvm_cpuid_entry2 *c;
425 uint32_t signature[3];
426 int r;
427
428 cpuid_i = 0;
429
430 /* Paravirtualization CPUIDs */
431 c = &cpuid_data.entries[cpuid_i++];
432 memset(c, 0, sizeof(*c));
433 c->function = KVM_CPUID_SIGNATURE;
434 if (!hyperv_enabled()) {
435 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
436 c->eax = 0;
437 } else {
438 memcpy(signature, "Microsoft Hv", 12);
439 c->eax = HYPERV_CPUID_MIN;
440 }
441 c->ebx = signature[0];
442 c->ecx = signature[1];
443 c->edx = signature[2];
444
445 c = &cpuid_data.entries[cpuid_i++];
446 memset(c, 0, sizeof(*c));
447 c->function = KVM_CPUID_FEATURES;
448 c->eax = env->cpuid_kvm_features;
449
450 if (hyperv_enabled()) {
451 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
452 c->eax = signature[0];
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = HYPERV_CPUID_VERSION;
457 c->eax = 0x00001bbc;
458 c->ebx = 0x00060001;
459
460 c = &cpuid_data.entries[cpuid_i++];
461 memset(c, 0, sizeof(*c));
462 c->function = HYPERV_CPUID_FEATURES;
463 if (hyperv_relaxed_timing_enabled()) {
464 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
465 }
466 if (hyperv_vapic_recommended()) {
467 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
468 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
469 }
470
471 c = &cpuid_data.entries[cpuid_i++];
472 memset(c, 0, sizeof(*c));
473 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
474 if (hyperv_relaxed_timing_enabled()) {
475 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
476 }
477 if (hyperv_vapic_recommended()) {
478 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
479 }
480 c->ebx = hyperv_get_spinlock_retries();
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
485 c->eax = 0x40;
486 c->ebx = 0x40;
487
488 c = &cpuid_data.entries[cpuid_i++];
489 memset(c, 0, sizeof(*c));
490 c->function = KVM_CPUID_SIGNATURE_NEXT;
491 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
492 c->eax = 0;
493 c->ebx = signature[0];
494 c->ecx = signature[1];
495 c->edx = signature[2];
496 }
497
498 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
499
500 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
501
502 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
503
504 for (i = 0; i <= limit; i++) {
505 c = &cpuid_data.entries[cpuid_i++];
506
507 switch (i) {
508 case 2: {
509 /* Keep reading function 2 till all the input is received */
510 int times;
511
512 c->function = i;
513 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
514 KVM_CPUID_FLAG_STATE_READ_NEXT;
515 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
516 times = c->eax & 0xff;
517
518 for (j = 1; j < times; ++j) {
519 c = &cpuid_data.entries[cpuid_i++];
520 c->function = i;
521 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
522 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
523 }
524 break;
525 }
526 case 4:
527 case 0xb:
528 case 0xd:
529 for (j = 0; ; j++) {
530 if (i == 0xd && j == 64) {
531 break;
532 }
533 c->function = i;
534 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
535 c->index = j;
536 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
537
538 if (i == 4 && c->eax == 0) {
539 break;
540 }
541 if (i == 0xb && !(c->ecx & 0xff00)) {
542 break;
543 }
544 if (i == 0xd && c->eax == 0) {
545 continue;
546 }
547 c = &cpuid_data.entries[cpuid_i++];
548 }
549 break;
550 default:
551 c->function = i;
552 c->flags = 0;
553 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
554 break;
555 }
556 }
557 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
558
559 for (i = 0x80000000; i <= limit; i++) {
560 c = &cpuid_data.entries[cpuid_i++];
561
562 c->function = i;
563 c->flags = 0;
564 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
565 }
566
567 /* Call Centaur's CPUID instructions they are supported. */
568 if (env->cpuid_xlevel2 > 0) {
569 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
570
571 for (i = 0xC0000000; i <= limit; i++) {
572 c = &cpuid_data.entries[cpuid_i++];
573
574 c->function = i;
575 c->flags = 0;
576 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
577 }
578 }
579
580 cpuid_data.cpuid.nent = cpuid_i;
581
582 if (((env->cpuid_version >> 8)&0xF) >= 6
583 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
584 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
585 uint64_t mcg_cap;
586 int banks;
587 int ret;
588
589 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
590 if (ret < 0) {
591 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
592 return ret;
593 }
594
595 if (banks > MCE_BANKS_DEF) {
596 banks = MCE_BANKS_DEF;
597 }
598 mcg_cap &= MCE_CAP_DEF;
599 mcg_cap |= banks;
600 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
601 if (ret < 0) {
602 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
603 return ret;
604 }
605
606 env->mcg_cap = mcg_cap;
607 }
608
609 qemu_add_vm_change_state_handler(cpu_update_state, env);
610
611 cpuid_data.cpuid.padding = 0;
612 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
613 if (r) {
614 return r;
615 }
616
617 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
618 if (r && env->tsc_khz) {
619 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
620 if (r < 0) {
621 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
622 return r;
623 }
624 }
625
626 if (kvm_has_xsave()) {
627 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
628 }
629
630 return 0;
631 }
632
633 void kvm_arch_reset_vcpu(CPUState *cs)
634 {
635 X86CPU *cpu = X86_CPU(cs);
636 CPUX86State *env = &cpu->env;
637
638 env->exception_injected = -1;
639 env->interrupt_injected = -1;
640 env->xcr0 = 1;
641 if (kvm_irqchip_in_kernel()) {
642 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
643 KVM_MP_STATE_UNINITIALIZED;
644 } else {
645 env->mp_state = KVM_MP_STATE_RUNNABLE;
646 }
647 }
648
649 static int kvm_get_supported_msrs(KVMState *s)
650 {
651 static int kvm_supported_msrs;
652 int ret = 0;
653
654 /* first time */
655 if (kvm_supported_msrs == 0) {
656 struct kvm_msr_list msr_list, *kvm_msr_list;
657
658 kvm_supported_msrs = -1;
659
660 /* Obtain MSR list from KVM. These are the MSRs that we must
661 * save/restore */
662 msr_list.nmsrs = 0;
663 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
664 if (ret < 0 && ret != -E2BIG) {
665 return ret;
666 }
667 /* Old kernel modules had a bug and could write beyond the provided
668 memory. Allocate at least a safe amount of 1K. */
669 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
670 msr_list.nmsrs *
671 sizeof(msr_list.indices[0])));
672
673 kvm_msr_list->nmsrs = msr_list.nmsrs;
674 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
675 if (ret >= 0) {
676 int i;
677
678 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
679 if (kvm_msr_list->indices[i] == MSR_STAR) {
680 has_msr_star = true;
681 continue;
682 }
683 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
684 has_msr_hsave_pa = true;
685 continue;
686 }
687 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
688 has_msr_tsc_adjust = true;
689 continue;
690 }
691 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
692 has_msr_tsc_deadline = true;
693 continue;
694 }
695 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
696 has_msr_misc_enable = true;
697 continue;
698 }
699 }
700 }
701
702 g_free(kvm_msr_list);
703 }
704
705 return ret;
706 }
707
708 int kvm_arch_init(KVMState *s)
709 {
710 QemuOptsList *list = qemu_find_opts("machine");
711 uint64_t identity_base = 0xfffbc000;
712 uint64_t shadow_mem;
713 int ret;
714 struct utsname utsname;
715
716 ret = kvm_get_supported_msrs(s);
717 if (ret < 0) {
718 return ret;
719 }
720
721 uname(&utsname);
722 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
723
724 /*
725 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
726 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
727 * Since these must be part of guest physical memory, we need to allocate
728 * them, both by setting their start addresses in the kernel and by
729 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
730 *
731 * Older KVM versions may not support setting the identity map base. In
732 * that case we need to stick with the default, i.e. a 256K maximum BIOS
733 * size.
734 */
735 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
736 /* Allows up to 16M BIOSes. */
737 identity_base = 0xfeffc000;
738
739 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
740 if (ret < 0) {
741 return ret;
742 }
743 }
744
745 /* Set TSS base one page after EPT identity map. */
746 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
747 if (ret < 0) {
748 return ret;
749 }
750
751 /* Tell fw_cfg to notify the BIOS to reserve the range. */
752 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
753 if (ret < 0) {
754 fprintf(stderr, "e820_add_entry() table is full\n");
755 return ret;
756 }
757 qemu_register_reset(kvm_unpoison_all, NULL);
758
759 if (!QTAILQ_EMPTY(&list->head)) {
760 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
761 "kvm_shadow_mem", -1);
762 if (shadow_mem != -1) {
763 shadow_mem /= 4096;
764 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
765 if (ret < 0) {
766 return ret;
767 }
768 }
769 }
770 return 0;
771 }
772
773 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
774 {
775 lhs->selector = rhs->selector;
776 lhs->base = rhs->base;
777 lhs->limit = rhs->limit;
778 lhs->type = 3;
779 lhs->present = 1;
780 lhs->dpl = 3;
781 lhs->db = 0;
782 lhs->s = 1;
783 lhs->l = 0;
784 lhs->g = 0;
785 lhs->avl = 0;
786 lhs->unusable = 0;
787 }
788
789 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
790 {
791 unsigned flags = rhs->flags;
792 lhs->selector = rhs->selector;
793 lhs->base = rhs->base;
794 lhs->limit = rhs->limit;
795 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
796 lhs->present = (flags & DESC_P_MASK) != 0;
797 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
798 lhs->db = (flags >> DESC_B_SHIFT) & 1;
799 lhs->s = (flags & DESC_S_MASK) != 0;
800 lhs->l = (flags >> DESC_L_SHIFT) & 1;
801 lhs->g = (flags & DESC_G_MASK) != 0;
802 lhs->avl = (flags & DESC_AVL_MASK) != 0;
803 lhs->unusable = 0;
804 lhs->padding = 0;
805 }
806
807 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
808 {
809 lhs->selector = rhs->selector;
810 lhs->base = rhs->base;
811 lhs->limit = rhs->limit;
812 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
813 (rhs->present * DESC_P_MASK) |
814 (rhs->dpl << DESC_DPL_SHIFT) |
815 (rhs->db << DESC_B_SHIFT) |
816 (rhs->s * DESC_S_MASK) |
817 (rhs->l << DESC_L_SHIFT) |
818 (rhs->g * DESC_G_MASK) |
819 (rhs->avl * DESC_AVL_MASK);
820 }
821
822 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
823 {
824 if (set) {
825 *kvm_reg = *qemu_reg;
826 } else {
827 *qemu_reg = *kvm_reg;
828 }
829 }
830
831 static int kvm_getput_regs(X86CPU *cpu, int set)
832 {
833 CPUX86State *env = &cpu->env;
834 struct kvm_regs regs;
835 int ret = 0;
836
837 if (!set) {
838 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
839 if (ret < 0) {
840 return ret;
841 }
842 }
843
844 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
845 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
846 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
847 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
848 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
849 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
850 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
851 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
852 #ifdef TARGET_X86_64
853 kvm_getput_reg(&regs.r8, &env->regs[8], set);
854 kvm_getput_reg(&regs.r9, &env->regs[9], set);
855 kvm_getput_reg(&regs.r10, &env->regs[10], set);
856 kvm_getput_reg(&regs.r11, &env->regs[11], set);
857 kvm_getput_reg(&regs.r12, &env->regs[12], set);
858 kvm_getput_reg(&regs.r13, &env->regs[13], set);
859 kvm_getput_reg(&regs.r14, &env->regs[14], set);
860 kvm_getput_reg(&regs.r15, &env->regs[15], set);
861 #endif
862
863 kvm_getput_reg(&regs.rflags, &env->eflags, set);
864 kvm_getput_reg(&regs.rip, &env->eip, set);
865
866 if (set) {
867 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
868 }
869
870 return ret;
871 }
872
873 static int kvm_put_fpu(X86CPU *cpu)
874 {
875 CPUX86State *env = &cpu->env;
876 struct kvm_fpu fpu;
877 int i;
878
879 memset(&fpu, 0, sizeof fpu);
880 fpu.fsw = env->fpus & ~(7 << 11);
881 fpu.fsw |= (env->fpstt & 7) << 11;
882 fpu.fcw = env->fpuc;
883 fpu.last_opcode = env->fpop;
884 fpu.last_ip = env->fpip;
885 fpu.last_dp = env->fpdp;
886 for (i = 0; i < 8; ++i) {
887 fpu.ftwx |= (!env->fptags[i]) << i;
888 }
889 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
890 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
891 fpu.mxcsr = env->mxcsr;
892
893 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
894 }
895
896 #define XSAVE_FCW_FSW 0
897 #define XSAVE_FTW_FOP 1
898 #define XSAVE_CWD_RIP 2
899 #define XSAVE_CWD_RDP 4
900 #define XSAVE_MXCSR 6
901 #define XSAVE_ST_SPACE 8
902 #define XSAVE_XMM_SPACE 40
903 #define XSAVE_XSTATE_BV 128
904 #define XSAVE_YMMH_SPACE 144
905
906 static int kvm_put_xsave(X86CPU *cpu)
907 {
908 CPUX86State *env = &cpu->env;
909 struct kvm_xsave* xsave = env->kvm_xsave_buf;
910 uint16_t cwd, swd, twd;
911 int i, r;
912
913 if (!kvm_has_xsave()) {
914 return kvm_put_fpu(cpu);
915 }
916
917 memset(xsave, 0, sizeof(struct kvm_xsave));
918 twd = 0;
919 swd = env->fpus & ~(7 << 11);
920 swd |= (env->fpstt & 7) << 11;
921 cwd = env->fpuc;
922 for (i = 0; i < 8; ++i) {
923 twd |= (!env->fptags[i]) << i;
924 }
925 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
926 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
927 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
928 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
929 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
930 sizeof env->fpregs);
931 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
932 sizeof env->xmm_regs);
933 xsave->region[XSAVE_MXCSR] = env->mxcsr;
934 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
935 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
936 sizeof env->ymmh_regs);
937 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
938 return r;
939 }
940
941 static int kvm_put_xcrs(X86CPU *cpu)
942 {
943 CPUX86State *env = &cpu->env;
944 struct kvm_xcrs xcrs;
945
946 if (!kvm_has_xcrs()) {
947 return 0;
948 }
949
950 xcrs.nr_xcrs = 1;
951 xcrs.flags = 0;
952 xcrs.xcrs[0].xcr = 0;
953 xcrs.xcrs[0].value = env->xcr0;
954 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
955 }
956
957 static int kvm_put_sregs(X86CPU *cpu)
958 {
959 CPUX86State *env = &cpu->env;
960 struct kvm_sregs sregs;
961
962 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
963 if (env->interrupt_injected >= 0) {
964 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
965 (uint64_t)1 << (env->interrupt_injected % 64);
966 }
967
968 if ((env->eflags & VM_MASK)) {
969 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
970 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
971 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
972 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
973 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
974 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
975 } else {
976 set_seg(&sregs.cs, &env->segs[R_CS]);
977 set_seg(&sregs.ds, &env->segs[R_DS]);
978 set_seg(&sregs.es, &env->segs[R_ES]);
979 set_seg(&sregs.fs, &env->segs[R_FS]);
980 set_seg(&sregs.gs, &env->segs[R_GS]);
981 set_seg(&sregs.ss, &env->segs[R_SS]);
982 }
983
984 set_seg(&sregs.tr, &env->tr);
985 set_seg(&sregs.ldt, &env->ldt);
986
987 sregs.idt.limit = env->idt.limit;
988 sregs.idt.base = env->idt.base;
989 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
990 sregs.gdt.limit = env->gdt.limit;
991 sregs.gdt.base = env->gdt.base;
992 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
993
994 sregs.cr0 = env->cr[0];
995 sregs.cr2 = env->cr[2];
996 sregs.cr3 = env->cr[3];
997 sregs.cr4 = env->cr[4];
998
999 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1000 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1001
1002 sregs.efer = env->efer;
1003
1004 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1005 }
1006
1007 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1008 uint32_t index, uint64_t value)
1009 {
1010 entry->index = index;
1011 entry->data = value;
1012 }
1013
1014 static int kvm_put_msrs(X86CPU *cpu, int level)
1015 {
1016 CPUX86State *env = &cpu->env;
1017 struct {
1018 struct kvm_msrs info;
1019 struct kvm_msr_entry entries[100];
1020 } msr_data;
1021 struct kvm_msr_entry *msrs = msr_data.entries;
1022 int n = 0;
1023
1024 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1025 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1026 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1027 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1028 if (has_msr_star) {
1029 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1030 }
1031 if (has_msr_hsave_pa) {
1032 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1033 }
1034 if (has_msr_tsc_adjust) {
1035 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1036 }
1037 if (has_msr_tsc_deadline) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1039 }
1040 if (has_msr_misc_enable) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1042 env->msr_ia32_misc_enable);
1043 }
1044 #ifdef TARGET_X86_64
1045 if (lm_capable_kernel) {
1046 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1047 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1048 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1049 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1050 }
1051 #endif
1052 if (level == KVM_PUT_FULL_STATE) {
1053 /*
1054 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1055 * writeback. Until this is fixed, we only write the offset to SMP
1056 * guests after migration, desynchronizing the VCPUs, but avoiding
1057 * huge jump-backs that would occur without any writeback at all.
1058 */
1059 if (smp_cpus == 1 || env->tsc != 0) {
1060 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1061 }
1062 }
1063 /*
1064 * The following paravirtual MSRs have side effects on the guest or are
1065 * too heavy for normal writeback. Limit them to reset or full state
1066 * updates.
1067 */
1068 if (level >= KVM_PUT_RESET_STATE) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1070 env->system_time_msr);
1071 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1072 if (has_msr_async_pf_en) {
1073 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1074 env->async_pf_en_msr);
1075 }
1076 if (has_msr_pv_eoi_en) {
1077 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1078 env->pv_eoi_en_msr);
1079 }
1080 if (hyperv_hypercall_available()) {
1081 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1082 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1083 }
1084 if (hyperv_vapic_recommended()) {
1085 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1086 }
1087 }
1088 if (env->mcg_cap) {
1089 int i;
1090
1091 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1092 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1093 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1094 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1095 }
1096 }
1097
1098 msr_data.info.nmsrs = n;
1099
1100 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1101
1102 }
1103
1104
1105 static int kvm_get_fpu(X86CPU *cpu)
1106 {
1107 CPUX86State *env = &cpu->env;
1108 struct kvm_fpu fpu;
1109 int i, ret;
1110
1111 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1112 if (ret < 0) {
1113 return ret;
1114 }
1115
1116 env->fpstt = (fpu.fsw >> 11) & 7;
1117 env->fpus = fpu.fsw;
1118 env->fpuc = fpu.fcw;
1119 env->fpop = fpu.last_opcode;
1120 env->fpip = fpu.last_ip;
1121 env->fpdp = fpu.last_dp;
1122 for (i = 0; i < 8; ++i) {
1123 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1124 }
1125 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1126 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1127 env->mxcsr = fpu.mxcsr;
1128
1129 return 0;
1130 }
1131
1132 static int kvm_get_xsave(X86CPU *cpu)
1133 {
1134 CPUX86State *env = &cpu->env;
1135 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1136 int ret, i;
1137 uint16_t cwd, swd, twd;
1138
1139 if (!kvm_has_xsave()) {
1140 return kvm_get_fpu(cpu);
1141 }
1142
1143 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1144 if (ret < 0) {
1145 return ret;
1146 }
1147
1148 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1149 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1150 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1151 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1152 env->fpstt = (swd >> 11) & 7;
1153 env->fpus = swd;
1154 env->fpuc = cwd;
1155 for (i = 0; i < 8; ++i) {
1156 env->fptags[i] = !((twd >> i) & 1);
1157 }
1158 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1159 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1160 env->mxcsr = xsave->region[XSAVE_MXCSR];
1161 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1162 sizeof env->fpregs);
1163 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1164 sizeof env->xmm_regs);
1165 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1166 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1167 sizeof env->ymmh_regs);
1168 return 0;
1169 }
1170
1171 static int kvm_get_xcrs(X86CPU *cpu)
1172 {
1173 CPUX86State *env = &cpu->env;
1174 int i, ret;
1175 struct kvm_xcrs xcrs;
1176
1177 if (!kvm_has_xcrs()) {
1178 return 0;
1179 }
1180
1181 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1182 if (ret < 0) {
1183 return ret;
1184 }
1185
1186 for (i = 0; i < xcrs.nr_xcrs; i++) {
1187 /* Only support xcr0 now */
1188 if (xcrs.xcrs[0].xcr == 0) {
1189 env->xcr0 = xcrs.xcrs[0].value;
1190 break;
1191 }
1192 }
1193 return 0;
1194 }
1195
1196 static int kvm_get_sregs(X86CPU *cpu)
1197 {
1198 CPUX86State *env = &cpu->env;
1199 struct kvm_sregs sregs;
1200 uint32_t hflags;
1201 int bit, i, ret;
1202
1203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1204 if (ret < 0) {
1205 return ret;
1206 }
1207
1208 /* There can only be one pending IRQ set in the bitmap at a time, so try
1209 to find it and save its number instead (-1 for none). */
1210 env->interrupt_injected = -1;
1211 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1212 if (sregs.interrupt_bitmap[i]) {
1213 bit = ctz64(sregs.interrupt_bitmap[i]);
1214 env->interrupt_injected = i * 64 + bit;
1215 break;
1216 }
1217 }
1218
1219 get_seg(&env->segs[R_CS], &sregs.cs);
1220 get_seg(&env->segs[R_DS], &sregs.ds);
1221 get_seg(&env->segs[R_ES], &sregs.es);
1222 get_seg(&env->segs[R_FS], &sregs.fs);
1223 get_seg(&env->segs[R_GS], &sregs.gs);
1224 get_seg(&env->segs[R_SS], &sregs.ss);
1225
1226 get_seg(&env->tr, &sregs.tr);
1227 get_seg(&env->ldt, &sregs.ldt);
1228
1229 env->idt.limit = sregs.idt.limit;
1230 env->idt.base = sregs.idt.base;
1231 env->gdt.limit = sregs.gdt.limit;
1232 env->gdt.base = sregs.gdt.base;
1233
1234 env->cr[0] = sregs.cr0;
1235 env->cr[2] = sregs.cr2;
1236 env->cr[3] = sregs.cr3;
1237 env->cr[4] = sregs.cr4;
1238
1239 env->efer = sregs.efer;
1240
1241 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1242
1243 #define HFLAG_COPY_MASK \
1244 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1245 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1246 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1247 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1248
1249 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1250 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1251 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1252 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1253 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1254 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1255 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1256
1257 if (env->efer & MSR_EFER_LMA) {
1258 hflags |= HF_LMA_MASK;
1259 }
1260
1261 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1262 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1263 } else {
1264 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1265 (DESC_B_SHIFT - HF_CS32_SHIFT);
1266 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1267 (DESC_B_SHIFT - HF_SS32_SHIFT);
1268 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1269 !(hflags & HF_CS32_MASK)) {
1270 hflags |= HF_ADDSEG_MASK;
1271 } else {
1272 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1273 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1274 }
1275 }
1276 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1277
1278 return 0;
1279 }
1280
1281 static int kvm_get_msrs(X86CPU *cpu)
1282 {
1283 CPUX86State *env = &cpu->env;
1284 struct {
1285 struct kvm_msrs info;
1286 struct kvm_msr_entry entries[100];
1287 } msr_data;
1288 struct kvm_msr_entry *msrs = msr_data.entries;
1289 int ret, i, n;
1290
1291 n = 0;
1292 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1293 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1294 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1295 msrs[n++].index = MSR_PAT;
1296 if (has_msr_star) {
1297 msrs[n++].index = MSR_STAR;
1298 }
1299 if (has_msr_hsave_pa) {
1300 msrs[n++].index = MSR_VM_HSAVE_PA;
1301 }
1302 if (has_msr_tsc_adjust) {
1303 msrs[n++].index = MSR_TSC_ADJUST;
1304 }
1305 if (has_msr_tsc_deadline) {
1306 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1307 }
1308 if (has_msr_misc_enable) {
1309 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1310 }
1311
1312 if (!env->tsc_valid) {
1313 msrs[n++].index = MSR_IA32_TSC;
1314 env->tsc_valid = !runstate_is_running();
1315 }
1316
1317 #ifdef TARGET_X86_64
1318 if (lm_capable_kernel) {
1319 msrs[n++].index = MSR_CSTAR;
1320 msrs[n++].index = MSR_KERNELGSBASE;
1321 msrs[n++].index = MSR_FMASK;
1322 msrs[n++].index = MSR_LSTAR;
1323 }
1324 #endif
1325 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1326 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1327 if (has_msr_async_pf_en) {
1328 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1329 }
1330 if (has_msr_pv_eoi_en) {
1331 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1332 }
1333
1334 if (env->mcg_cap) {
1335 msrs[n++].index = MSR_MCG_STATUS;
1336 msrs[n++].index = MSR_MCG_CTL;
1337 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1338 msrs[n++].index = MSR_MC0_CTL + i;
1339 }
1340 }
1341
1342 msr_data.info.nmsrs = n;
1343 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1344 if (ret < 0) {
1345 return ret;
1346 }
1347
1348 for (i = 0; i < ret; i++) {
1349 switch (msrs[i].index) {
1350 case MSR_IA32_SYSENTER_CS:
1351 env->sysenter_cs = msrs[i].data;
1352 break;
1353 case MSR_IA32_SYSENTER_ESP:
1354 env->sysenter_esp = msrs[i].data;
1355 break;
1356 case MSR_IA32_SYSENTER_EIP:
1357 env->sysenter_eip = msrs[i].data;
1358 break;
1359 case MSR_PAT:
1360 env->pat = msrs[i].data;
1361 break;
1362 case MSR_STAR:
1363 env->star = msrs[i].data;
1364 break;
1365 #ifdef TARGET_X86_64
1366 case MSR_CSTAR:
1367 env->cstar = msrs[i].data;
1368 break;
1369 case MSR_KERNELGSBASE:
1370 env->kernelgsbase = msrs[i].data;
1371 break;
1372 case MSR_FMASK:
1373 env->fmask = msrs[i].data;
1374 break;
1375 case MSR_LSTAR:
1376 env->lstar = msrs[i].data;
1377 break;
1378 #endif
1379 case MSR_IA32_TSC:
1380 env->tsc = msrs[i].data;
1381 break;
1382 case MSR_TSC_ADJUST:
1383 env->tsc_adjust = msrs[i].data;
1384 break;
1385 case MSR_IA32_TSCDEADLINE:
1386 env->tsc_deadline = msrs[i].data;
1387 break;
1388 case MSR_VM_HSAVE_PA:
1389 env->vm_hsave = msrs[i].data;
1390 break;
1391 case MSR_KVM_SYSTEM_TIME:
1392 env->system_time_msr = msrs[i].data;
1393 break;
1394 case MSR_KVM_WALL_CLOCK:
1395 env->wall_clock_msr = msrs[i].data;
1396 break;
1397 case MSR_MCG_STATUS:
1398 env->mcg_status = msrs[i].data;
1399 break;
1400 case MSR_MCG_CTL:
1401 env->mcg_ctl = msrs[i].data;
1402 break;
1403 case MSR_IA32_MISC_ENABLE:
1404 env->msr_ia32_misc_enable = msrs[i].data;
1405 break;
1406 default:
1407 if (msrs[i].index >= MSR_MC0_CTL &&
1408 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1409 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1410 }
1411 break;
1412 case MSR_KVM_ASYNC_PF_EN:
1413 env->async_pf_en_msr = msrs[i].data;
1414 break;
1415 case MSR_KVM_PV_EOI_EN:
1416 env->pv_eoi_en_msr = msrs[i].data;
1417 break;
1418 }
1419 }
1420
1421 return 0;
1422 }
1423
1424 static int kvm_put_mp_state(X86CPU *cpu)
1425 {
1426 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1427
1428 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1429 }
1430
1431 static int kvm_get_mp_state(X86CPU *cpu)
1432 {
1433 CPUX86State *env = &cpu->env;
1434 struct kvm_mp_state mp_state;
1435 int ret;
1436
1437 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 env->mp_state = mp_state.mp_state;
1442 if (kvm_irqchip_in_kernel()) {
1443 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1444 }
1445 return 0;
1446 }
1447
1448 static int kvm_get_apic(X86CPU *cpu)
1449 {
1450 CPUX86State *env = &cpu->env;
1451 DeviceState *apic = env->apic_state;
1452 struct kvm_lapic_state kapic;
1453 int ret;
1454
1455 if (apic && kvm_irqchip_in_kernel()) {
1456 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1457 if (ret < 0) {
1458 return ret;
1459 }
1460
1461 kvm_get_apic_state(apic, &kapic);
1462 }
1463 return 0;
1464 }
1465
1466 static int kvm_put_apic(X86CPU *cpu)
1467 {
1468 CPUX86State *env = &cpu->env;
1469 DeviceState *apic = env->apic_state;
1470 struct kvm_lapic_state kapic;
1471
1472 if (apic && kvm_irqchip_in_kernel()) {
1473 kvm_put_apic_state(apic, &kapic);
1474
1475 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1476 }
1477 return 0;
1478 }
1479
1480 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1481 {
1482 CPUX86State *env = &cpu->env;
1483 struct kvm_vcpu_events events;
1484
1485 if (!kvm_has_vcpu_events()) {
1486 return 0;
1487 }
1488
1489 events.exception.injected = (env->exception_injected >= 0);
1490 events.exception.nr = env->exception_injected;
1491 events.exception.has_error_code = env->has_error_code;
1492 events.exception.error_code = env->error_code;
1493 events.exception.pad = 0;
1494
1495 events.interrupt.injected = (env->interrupt_injected >= 0);
1496 events.interrupt.nr = env->interrupt_injected;
1497 events.interrupt.soft = env->soft_interrupt;
1498
1499 events.nmi.injected = env->nmi_injected;
1500 events.nmi.pending = env->nmi_pending;
1501 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1502 events.nmi.pad = 0;
1503
1504 events.sipi_vector = env->sipi_vector;
1505
1506 events.flags = 0;
1507 if (level >= KVM_PUT_RESET_STATE) {
1508 events.flags |=
1509 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1510 }
1511
1512 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1513 }
1514
1515 static int kvm_get_vcpu_events(X86CPU *cpu)
1516 {
1517 CPUX86State *env = &cpu->env;
1518 struct kvm_vcpu_events events;
1519 int ret;
1520
1521 if (!kvm_has_vcpu_events()) {
1522 return 0;
1523 }
1524
1525 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1526 if (ret < 0) {
1527 return ret;
1528 }
1529 env->exception_injected =
1530 events.exception.injected ? events.exception.nr : -1;
1531 env->has_error_code = events.exception.has_error_code;
1532 env->error_code = events.exception.error_code;
1533
1534 env->interrupt_injected =
1535 events.interrupt.injected ? events.interrupt.nr : -1;
1536 env->soft_interrupt = events.interrupt.soft;
1537
1538 env->nmi_injected = events.nmi.injected;
1539 env->nmi_pending = events.nmi.pending;
1540 if (events.nmi.masked) {
1541 env->hflags2 |= HF2_NMI_MASK;
1542 } else {
1543 env->hflags2 &= ~HF2_NMI_MASK;
1544 }
1545
1546 env->sipi_vector = events.sipi_vector;
1547
1548 return 0;
1549 }
1550
1551 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1552 {
1553 CPUX86State *env = &cpu->env;
1554 int ret = 0;
1555 unsigned long reinject_trap = 0;
1556
1557 if (!kvm_has_vcpu_events()) {
1558 if (env->exception_injected == 1) {
1559 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1560 } else if (env->exception_injected == 3) {
1561 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1562 }
1563 env->exception_injected = -1;
1564 }
1565
1566 /*
1567 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1568 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1569 * by updating the debug state once again if single-stepping is on.
1570 * Another reason to call kvm_update_guest_debug here is a pending debug
1571 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1572 * reinject them via SET_GUEST_DEBUG.
1573 */
1574 if (reinject_trap ||
1575 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1576 ret = kvm_update_guest_debug(env, reinject_trap);
1577 }
1578 return ret;
1579 }
1580
1581 static int kvm_put_debugregs(X86CPU *cpu)
1582 {
1583 CPUX86State *env = &cpu->env;
1584 struct kvm_debugregs dbgregs;
1585 int i;
1586
1587 if (!kvm_has_debugregs()) {
1588 return 0;
1589 }
1590
1591 for (i = 0; i < 4; i++) {
1592 dbgregs.db[i] = env->dr[i];
1593 }
1594 dbgregs.dr6 = env->dr[6];
1595 dbgregs.dr7 = env->dr[7];
1596 dbgregs.flags = 0;
1597
1598 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1599 }
1600
1601 static int kvm_get_debugregs(X86CPU *cpu)
1602 {
1603 CPUX86State *env = &cpu->env;
1604 struct kvm_debugregs dbgregs;
1605 int i, ret;
1606
1607 if (!kvm_has_debugregs()) {
1608 return 0;
1609 }
1610
1611 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1612 if (ret < 0) {
1613 return ret;
1614 }
1615 for (i = 0; i < 4; i++) {
1616 env->dr[i] = dbgregs.db[i];
1617 }
1618 env->dr[4] = env->dr[6] = dbgregs.dr6;
1619 env->dr[5] = env->dr[7] = dbgregs.dr7;
1620
1621 return 0;
1622 }
1623
1624 int kvm_arch_put_registers(CPUState *cpu, int level)
1625 {
1626 X86CPU *x86_cpu = X86_CPU(cpu);
1627 int ret;
1628
1629 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1630
1631 ret = kvm_getput_regs(x86_cpu, 1);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 ret = kvm_put_xsave(x86_cpu);
1636 if (ret < 0) {
1637 return ret;
1638 }
1639 ret = kvm_put_xcrs(x86_cpu);
1640 if (ret < 0) {
1641 return ret;
1642 }
1643 ret = kvm_put_sregs(x86_cpu);
1644 if (ret < 0) {
1645 return ret;
1646 }
1647 /* must be before kvm_put_msrs */
1648 ret = kvm_inject_mce_oldstyle(x86_cpu);
1649 if (ret < 0) {
1650 return ret;
1651 }
1652 ret = kvm_put_msrs(x86_cpu, level);
1653 if (ret < 0) {
1654 return ret;
1655 }
1656 if (level >= KVM_PUT_RESET_STATE) {
1657 ret = kvm_put_mp_state(x86_cpu);
1658 if (ret < 0) {
1659 return ret;
1660 }
1661 ret = kvm_put_apic(x86_cpu);
1662 if (ret < 0) {
1663 return ret;
1664 }
1665 }
1666 ret = kvm_put_vcpu_events(x86_cpu, level);
1667 if (ret < 0) {
1668 return ret;
1669 }
1670 ret = kvm_put_debugregs(x86_cpu);
1671 if (ret < 0) {
1672 return ret;
1673 }
1674 /* must be last */
1675 ret = kvm_guest_debug_workarounds(x86_cpu);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 return 0;
1680 }
1681
1682 int kvm_arch_get_registers(CPUState *cs)
1683 {
1684 X86CPU *cpu = X86_CPU(cs);
1685 int ret;
1686
1687 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1688
1689 ret = kvm_getput_regs(cpu, 0);
1690 if (ret < 0) {
1691 return ret;
1692 }
1693 ret = kvm_get_xsave(cpu);
1694 if (ret < 0) {
1695 return ret;
1696 }
1697 ret = kvm_get_xcrs(cpu);
1698 if (ret < 0) {
1699 return ret;
1700 }
1701 ret = kvm_get_sregs(cpu);
1702 if (ret < 0) {
1703 return ret;
1704 }
1705 ret = kvm_get_msrs(cpu);
1706 if (ret < 0) {
1707 return ret;
1708 }
1709 ret = kvm_get_mp_state(cpu);
1710 if (ret < 0) {
1711 return ret;
1712 }
1713 ret = kvm_get_apic(cpu);
1714 if (ret < 0) {
1715 return ret;
1716 }
1717 ret = kvm_get_vcpu_events(cpu);
1718 if (ret < 0) {
1719 return ret;
1720 }
1721 ret = kvm_get_debugregs(cpu);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725 return 0;
1726 }
1727
1728 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1729 {
1730 X86CPU *x86_cpu = X86_CPU(cpu);
1731 CPUX86State *env = &x86_cpu->env;
1732 int ret;
1733
1734 /* Inject NMI */
1735 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1736 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1737 DPRINTF("injected NMI\n");
1738 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1739 if (ret < 0) {
1740 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1741 strerror(-ret));
1742 }
1743 }
1744
1745 if (!kvm_irqchip_in_kernel()) {
1746 /* Force the VCPU out of its inner loop to process any INIT requests
1747 * or pending TPR access reports. */
1748 if (env->interrupt_request &
1749 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1750 env->exit_request = 1;
1751 }
1752
1753 /* Try to inject an interrupt if the guest can accept it */
1754 if (run->ready_for_interrupt_injection &&
1755 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1756 (env->eflags & IF_MASK)) {
1757 int irq;
1758
1759 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1760 irq = cpu_get_pic_interrupt(env);
1761 if (irq >= 0) {
1762 struct kvm_interrupt intr;
1763
1764 intr.irq = irq;
1765 DPRINTF("injected interrupt %d\n", irq);
1766 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1767 if (ret < 0) {
1768 fprintf(stderr,
1769 "KVM: injection failed, interrupt lost (%s)\n",
1770 strerror(-ret));
1771 }
1772 }
1773 }
1774
1775 /* If we have an interrupt but the guest is not ready to receive an
1776 * interrupt, request an interrupt window exit. This will
1777 * cause a return to userspace as soon as the guest is ready to
1778 * receive interrupts. */
1779 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1780 run->request_interrupt_window = 1;
1781 } else {
1782 run->request_interrupt_window = 0;
1783 }
1784
1785 DPRINTF("setting tpr\n");
1786 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1787 }
1788 }
1789
1790 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1791 {
1792 X86CPU *x86_cpu = X86_CPU(cpu);
1793 CPUX86State *env = &x86_cpu->env;
1794
1795 if (run->if_flag) {
1796 env->eflags |= IF_MASK;
1797 } else {
1798 env->eflags &= ~IF_MASK;
1799 }
1800 cpu_set_apic_tpr(env->apic_state, run->cr8);
1801 cpu_set_apic_base(env->apic_state, run->apic_base);
1802 }
1803
1804 int kvm_arch_process_async_events(CPUState *cs)
1805 {
1806 X86CPU *cpu = X86_CPU(cs);
1807 CPUX86State *env = &cpu->env;
1808
1809 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1810 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1811 assert(env->mcg_cap);
1812
1813 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1814
1815 kvm_cpu_synchronize_state(env);
1816
1817 if (env->exception_injected == EXCP08_DBLE) {
1818 /* this means triple fault */
1819 qemu_system_reset_request();
1820 env->exit_request = 1;
1821 return 0;
1822 }
1823 env->exception_injected = EXCP12_MCHK;
1824 env->has_error_code = 0;
1825
1826 env->halted = 0;
1827 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1828 env->mp_state = KVM_MP_STATE_RUNNABLE;
1829 }
1830 }
1831
1832 if (kvm_irqchip_in_kernel()) {
1833 return 0;
1834 }
1835
1836 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1837 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1838 apic_poll_irq(env->apic_state);
1839 }
1840 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1841 (env->eflags & IF_MASK)) ||
1842 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1843 env->halted = 0;
1844 }
1845 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1846 kvm_cpu_synchronize_state(env);
1847 do_cpu_init(cpu);
1848 }
1849 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1850 kvm_cpu_synchronize_state(env);
1851 do_cpu_sipi(cpu);
1852 }
1853 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1854 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1855 kvm_cpu_synchronize_state(env);
1856 apic_handle_tpr_access_report(env->apic_state, env->eip,
1857 env->tpr_access_type);
1858 }
1859
1860 return env->halted;
1861 }
1862
1863 static int kvm_handle_halt(X86CPU *cpu)
1864 {
1865 CPUX86State *env = &cpu->env;
1866
1867 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1868 (env->eflags & IF_MASK)) &&
1869 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1870 env->halted = 1;
1871 return EXCP_HLT;
1872 }
1873
1874 return 0;
1875 }
1876
1877 static int kvm_handle_tpr_access(X86CPU *cpu)
1878 {
1879 CPUX86State *env = &cpu->env;
1880 CPUState *cs = CPU(cpu);
1881 struct kvm_run *run = cs->kvm_run;
1882
1883 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1884 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1885 : TPR_ACCESS_READ);
1886 return 1;
1887 }
1888
1889 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1890 {
1891 CPUX86State *env = &X86_CPU(cpu)->env;
1892 static const uint8_t int3 = 0xcc;
1893
1894 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1895 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1896 return -EINVAL;
1897 }
1898 return 0;
1899 }
1900
1901 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1902 {
1903 CPUX86State *env = &X86_CPU(cpu)->env;
1904 uint8_t int3;
1905
1906 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1907 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1908 return -EINVAL;
1909 }
1910 return 0;
1911 }
1912
1913 static struct {
1914 target_ulong addr;
1915 int len;
1916 int type;
1917 } hw_breakpoint[4];
1918
1919 static int nb_hw_breakpoint;
1920
1921 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1922 {
1923 int n;
1924
1925 for (n = 0; n < nb_hw_breakpoint; n++) {
1926 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1927 (hw_breakpoint[n].len == len || len == -1)) {
1928 return n;
1929 }
1930 }
1931 return -1;
1932 }
1933
1934 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1935 target_ulong len, int type)
1936 {
1937 switch (type) {
1938 case GDB_BREAKPOINT_HW:
1939 len = 1;
1940 break;
1941 case GDB_WATCHPOINT_WRITE:
1942 case GDB_WATCHPOINT_ACCESS:
1943 switch (len) {
1944 case 1:
1945 break;
1946 case 2:
1947 case 4:
1948 case 8:
1949 if (addr & (len - 1)) {
1950 return -EINVAL;
1951 }
1952 break;
1953 default:
1954 return -EINVAL;
1955 }
1956 break;
1957 default:
1958 return -ENOSYS;
1959 }
1960
1961 if (nb_hw_breakpoint == 4) {
1962 return -ENOBUFS;
1963 }
1964 if (find_hw_breakpoint(addr, len, type) >= 0) {
1965 return -EEXIST;
1966 }
1967 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1968 hw_breakpoint[nb_hw_breakpoint].len = len;
1969 hw_breakpoint[nb_hw_breakpoint].type = type;
1970 nb_hw_breakpoint++;
1971
1972 return 0;
1973 }
1974
1975 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1976 target_ulong len, int type)
1977 {
1978 int n;
1979
1980 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1981 if (n < 0) {
1982 return -ENOENT;
1983 }
1984 nb_hw_breakpoint--;
1985 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1986
1987 return 0;
1988 }
1989
1990 void kvm_arch_remove_all_hw_breakpoints(void)
1991 {
1992 nb_hw_breakpoint = 0;
1993 }
1994
1995 static CPUWatchpoint hw_watchpoint;
1996
1997 static int kvm_handle_debug(X86CPU *cpu,
1998 struct kvm_debug_exit_arch *arch_info)
1999 {
2000 CPUX86State *env = &cpu->env;
2001 int ret = 0;
2002 int n;
2003
2004 if (arch_info->exception == 1) {
2005 if (arch_info->dr6 & (1 << 14)) {
2006 if (env->singlestep_enabled) {
2007 ret = EXCP_DEBUG;
2008 }
2009 } else {
2010 for (n = 0; n < 4; n++) {
2011 if (arch_info->dr6 & (1 << n)) {
2012 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2013 case 0x0:
2014 ret = EXCP_DEBUG;
2015 break;
2016 case 0x1:
2017 ret = EXCP_DEBUG;
2018 env->watchpoint_hit = &hw_watchpoint;
2019 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2020 hw_watchpoint.flags = BP_MEM_WRITE;
2021 break;
2022 case 0x3:
2023 ret = EXCP_DEBUG;
2024 env->watchpoint_hit = &hw_watchpoint;
2025 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2026 hw_watchpoint.flags = BP_MEM_ACCESS;
2027 break;
2028 }
2029 }
2030 }
2031 }
2032 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2033 ret = EXCP_DEBUG;
2034 }
2035 if (ret == 0) {
2036 cpu_synchronize_state(env);
2037 assert(env->exception_injected == -1);
2038
2039 /* pass to guest */
2040 env->exception_injected = arch_info->exception;
2041 env->has_error_code = 0;
2042 }
2043
2044 return ret;
2045 }
2046
2047 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2048 {
2049 const uint8_t type_code[] = {
2050 [GDB_BREAKPOINT_HW] = 0x0,
2051 [GDB_WATCHPOINT_WRITE] = 0x1,
2052 [GDB_WATCHPOINT_ACCESS] = 0x3
2053 };
2054 const uint8_t len_code[] = {
2055 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2056 };
2057 int n;
2058
2059 if (kvm_sw_breakpoints_active(cpu)) {
2060 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2061 }
2062 if (nb_hw_breakpoint > 0) {
2063 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2064 dbg->arch.debugreg[7] = 0x0600;
2065 for (n = 0; n < nb_hw_breakpoint; n++) {
2066 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2067 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2068 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2069 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2070 }
2071 }
2072 }
2073
2074 static bool host_supports_vmx(void)
2075 {
2076 uint32_t ecx, unused;
2077
2078 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2079 return ecx & CPUID_EXT_VMX;
2080 }
2081
2082 #define VMX_INVALID_GUEST_STATE 0x80000021
2083
2084 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2085 {
2086 X86CPU *cpu = X86_CPU(cs);
2087 uint64_t code;
2088 int ret;
2089
2090 switch (run->exit_reason) {
2091 case KVM_EXIT_HLT:
2092 DPRINTF("handle_hlt\n");
2093 ret = kvm_handle_halt(cpu);
2094 break;
2095 case KVM_EXIT_SET_TPR:
2096 ret = 0;
2097 break;
2098 case KVM_EXIT_TPR_ACCESS:
2099 ret = kvm_handle_tpr_access(cpu);
2100 break;
2101 case KVM_EXIT_FAIL_ENTRY:
2102 code = run->fail_entry.hardware_entry_failure_reason;
2103 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2104 code);
2105 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2106 fprintf(stderr,
2107 "\nIf you're running a guest on an Intel machine without "
2108 "unrestricted mode\n"
2109 "support, the failure can be most likely due to the guest "
2110 "entering an invalid\n"
2111 "state for Intel VT. For example, the guest maybe running "
2112 "in big real mode\n"
2113 "which is not supported on less recent Intel processors."
2114 "\n\n");
2115 }
2116 ret = -1;
2117 break;
2118 case KVM_EXIT_EXCEPTION:
2119 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2120 run->ex.exception, run->ex.error_code);
2121 ret = -1;
2122 break;
2123 case KVM_EXIT_DEBUG:
2124 DPRINTF("kvm_exit_debug\n");
2125 ret = kvm_handle_debug(cpu, &run->debug.arch);
2126 break;
2127 default:
2128 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2129 ret = -1;
2130 break;
2131 }
2132
2133 return ret;
2134 }
2135
2136 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2137 {
2138 X86CPU *cpu = X86_CPU(cs);
2139 CPUX86State *env = &cpu->env;
2140
2141 kvm_cpu_synchronize_state(env);
2142 return !(env->cr[0] & CR0_PE_MASK) ||
2143 ((env->segs[R_CS].selector & 3) != 3);
2144 }
2145
2146 void kvm_arch_init_irq_routing(KVMState *s)
2147 {
2148 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2149 /* If kernel can't do irq routing, interrupt source
2150 * override 0->2 cannot be set up as required by HPET.
2151 * So we have to disable it.
2152 */
2153 no_hpet = 1;
2154 }
2155 /* We know at this point that we're using the in-kernel
2156 * irqchip, so we can use irqfds, and on x86 we know
2157 * we can use msi via irqfd and GSI routing.
2158 */
2159 kvm_irqfds_allowed = true;
2160 kvm_msi_via_irqfd_allowed = true;
2161 kvm_gsi_routing_allowed = true;
2162 }
2163
2164 /* Classic KVM device assignment interface. Will remain x86 only. */
2165 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2166 uint32_t flags, uint32_t *dev_id)
2167 {
2168 struct kvm_assigned_pci_dev dev_data = {
2169 .segnr = dev_addr->domain,
2170 .busnr = dev_addr->bus,
2171 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2172 .flags = flags,
2173 };
2174 int ret;
2175
2176 dev_data.assigned_dev_id =
2177 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2178
2179 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2180 if (ret < 0) {
2181 return ret;
2182 }
2183
2184 *dev_id = dev_data.assigned_dev_id;
2185
2186 return 0;
2187 }
2188
2189 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2190 {
2191 struct kvm_assigned_pci_dev dev_data = {
2192 .assigned_dev_id = dev_id,
2193 };
2194
2195 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2196 }
2197
2198 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2199 uint32_t irq_type, uint32_t guest_irq)
2200 {
2201 struct kvm_assigned_irq assigned_irq = {
2202 .assigned_dev_id = dev_id,
2203 .guest_irq = guest_irq,
2204 .flags = irq_type,
2205 };
2206
2207 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2208 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2209 } else {
2210 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2211 }
2212 }
2213
2214 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2215 uint32_t guest_irq)
2216 {
2217 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2218 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2219
2220 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2221 }
2222
2223 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2224 {
2225 struct kvm_assigned_pci_dev dev_data = {
2226 .assigned_dev_id = dev_id,
2227 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2228 };
2229
2230 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2231 }
2232
2233 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2234 uint32_t type)
2235 {
2236 struct kvm_assigned_irq assigned_irq = {
2237 .assigned_dev_id = dev_id,
2238 .flags = type,
2239 };
2240
2241 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2242 }
2243
2244 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2245 {
2246 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2247 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2248 }
2249
2250 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2251 {
2252 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2253 KVM_DEV_IRQ_GUEST_MSI, virq);
2254 }
2255
2256 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2257 {
2258 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2259 KVM_DEV_IRQ_HOST_MSI);
2260 }
2261
2262 bool kvm_device_msix_supported(KVMState *s)
2263 {
2264 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2265 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2266 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2267 }
2268
2269 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2270 uint32_t nr_vectors)
2271 {
2272 struct kvm_assigned_msix_nr msix_nr = {
2273 .assigned_dev_id = dev_id,
2274 .entry_nr = nr_vectors,
2275 };
2276
2277 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2278 }
2279
2280 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2281 int virq)
2282 {
2283 struct kvm_assigned_msix_entry msix_entry = {
2284 .assigned_dev_id = dev_id,
2285 .gsi = virq,
2286 .entry = vector,
2287 };
2288
2289 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2290 }
2291
2292 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2293 {
2294 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2295 KVM_DEV_IRQ_GUEST_MSIX, 0);
2296 }
2297
2298 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2299 {
2300 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2301 KVM_DEV_IRQ_HOST_MSIX);
2302 }