]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge branch 'master' of git://git.qemu.org/qemu into qom-cpu
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_deadline;
67 static bool has_msr_async_pf_en;
68 static bool has_msr_pv_eoi_en;
69 static bool has_msr_misc_enable;
70 static int lm_capable_kernel;
71
72 bool kvm_allows_irq0_override(void)
73 {
74 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
75 }
76
77 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78 {
79 struct kvm_cpuid2 *cpuid;
80 int r, size;
81
82 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
83 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
84 cpuid->nent = max;
85 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
86 if (r == 0 && cpuid->nent >= max) {
87 r = -E2BIG;
88 }
89 if (r < 0) {
90 if (r == -E2BIG) {
91 g_free(cpuid);
92 return NULL;
93 } else {
94 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
95 strerror(-r));
96 exit(1);
97 }
98 }
99 return cpuid;
100 }
101
102 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
103 * for all entries.
104 */
105 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
106 {
107 struct kvm_cpuid2 *cpuid;
108 int max = 1;
109 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
110 max *= 2;
111 }
112 return cpuid;
113 }
114
115 struct kvm_para_features {
116 int cap;
117 int feature;
118 } para_features[] = {
119 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
120 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
121 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
122 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
123 { -1, -1 }
124 };
125
126 static int get_para_features(KVMState *s)
127 {
128 int i, features = 0;
129
130 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
131 if (kvm_check_extension(s, para_features[i].cap)) {
132 features |= (1 << para_features[i].feature);
133 }
134 }
135
136 return features;
137 }
138
139
140 /* Returns the value for a specific register on the cpuid entry
141 */
142 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
143 {
144 uint32_t ret = 0;
145 switch (reg) {
146 case R_EAX:
147 ret = entry->eax;
148 break;
149 case R_EBX:
150 ret = entry->ebx;
151 break;
152 case R_ECX:
153 ret = entry->ecx;
154 break;
155 case R_EDX:
156 ret = entry->edx;
157 break;
158 }
159 return ret;
160 }
161
162 /* Find matching entry for function/index on kvm_cpuid2 struct
163 */
164 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
165 uint32_t function,
166 uint32_t index)
167 {
168 int i;
169 for (i = 0; i < cpuid->nent; ++i) {
170 if (cpuid->entries[i].function == function &&
171 cpuid->entries[i].index == index) {
172 return &cpuid->entries[i];
173 }
174 }
175 /* not found: */
176 return NULL;
177 }
178
179 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
180 uint32_t index, int reg)
181 {
182 struct kvm_cpuid2 *cpuid;
183 uint32_t ret = 0;
184 uint32_t cpuid_1_edx;
185 bool found = false;
186
187 cpuid = get_supported_cpuid(s);
188
189 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
190 if (entry) {
191 found = true;
192 ret = cpuid_entry_get_reg(entry, reg);
193 }
194
195 /* Fixups for the data returned by KVM, below */
196
197 if (function == 1 && reg == R_EDX) {
198 /* KVM before 2.6.30 misreports the following features */
199 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
200 } else if (function == 1 && reg == R_ECX) {
201 /* We can set the hypervisor flag, even if KVM does not return it on
202 * GET_SUPPORTED_CPUID
203 */
204 ret |= CPUID_EXT_HYPERVISOR;
205 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
206 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
207 * and the irqchip is in the kernel.
208 */
209 if (kvm_irqchip_in_kernel() &&
210 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
211 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
212 }
213
214 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
215 * without the in-kernel irqchip
216 */
217 if (!kvm_irqchip_in_kernel()) {
218 ret &= ~CPUID_EXT_X2APIC;
219 }
220 } else if (function == 0x80000001 && reg == R_EDX) {
221 /* On Intel, kvm returns cpuid according to the Intel spec,
222 * so add missing bits according to the AMD spec:
223 */
224 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
225 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
226 }
227
228 g_free(cpuid);
229
230 /* fallback for older kernels */
231 if ((function == KVM_CPUID_FEATURES) && !found) {
232 ret = get_para_features(s);
233 }
234
235 return ret;
236 }
237
238 typedef struct HWPoisonPage {
239 ram_addr_t ram_addr;
240 QLIST_ENTRY(HWPoisonPage) list;
241 } HWPoisonPage;
242
243 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
244 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
245
246 static void kvm_unpoison_all(void *param)
247 {
248 HWPoisonPage *page, *next_page;
249
250 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
251 QLIST_REMOVE(page, list);
252 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
253 g_free(page);
254 }
255 }
256
257 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
258 {
259 HWPoisonPage *page;
260
261 QLIST_FOREACH(page, &hwpoison_page_list, list) {
262 if (page->ram_addr == ram_addr) {
263 return;
264 }
265 }
266 page = g_malloc(sizeof(HWPoisonPage));
267 page->ram_addr = ram_addr;
268 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
269 }
270
271 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
272 int *max_banks)
273 {
274 int r;
275
276 r = kvm_check_extension(s, KVM_CAP_MCE);
277 if (r > 0) {
278 *max_banks = r;
279 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
280 }
281 return -ENOSYS;
282 }
283
284 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
285 {
286 CPUX86State *env = &cpu->env;
287 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
288 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
289 uint64_t mcg_status = MCG_STATUS_MCIP;
290
291 if (code == BUS_MCEERR_AR) {
292 status |= MCI_STATUS_AR | 0x134;
293 mcg_status |= MCG_STATUS_EIPV;
294 } else {
295 status |= 0xc0;
296 mcg_status |= MCG_STATUS_RIPV;
297 }
298 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
299 (MCM_ADDR_PHYS << 6) | 0xc,
300 cpu_x86_support_mca_broadcast(env) ?
301 MCE_INJECT_BROADCAST : 0);
302 }
303
304 static void hardware_memory_error(void)
305 {
306 fprintf(stderr, "Hardware memory error!\n");
307 exit(1);
308 }
309
310 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
311 {
312 X86CPU *cpu = X86_CPU(c);
313 CPUX86State *env = &cpu->env;
314 ram_addr_t ram_addr;
315 hwaddr paddr;
316
317 if ((env->mcg_cap & MCG_SER_P) && addr
318 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
319 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
320 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
321 fprintf(stderr, "Hardware memory error for memory used by "
322 "QEMU itself instead of guest system!\n");
323 /* Hope we are lucky for AO MCE */
324 if (code == BUS_MCEERR_AO) {
325 return 0;
326 } else {
327 hardware_memory_error();
328 }
329 }
330 kvm_hwpoison_page_add(ram_addr);
331 kvm_mce_inject(cpu, paddr, code);
332 } else {
333 if (code == BUS_MCEERR_AO) {
334 return 0;
335 } else if (code == BUS_MCEERR_AR) {
336 hardware_memory_error();
337 } else {
338 return 1;
339 }
340 }
341 return 0;
342 }
343
344 int kvm_arch_on_sigbus(int code, void *addr)
345 {
346 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
347 ram_addr_t ram_addr;
348 hwaddr paddr;
349
350 /* Hope we are lucky for AO MCE */
351 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
352 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
353 addr, &paddr)) {
354 fprintf(stderr, "Hardware memory error for memory used by "
355 "QEMU itself instead of guest system!: %p\n", addr);
356 return 0;
357 }
358 kvm_hwpoison_page_add(ram_addr);
359 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
360 } else {
361 if (code == BUS_MCEERR_AO) {
362 return 0;
363 } else if (code == BUS_MCEERR_AR) {
364 hardware_memory_error();
365 } else {
366 return 1;
367 }
368 }
369 return 0;
370 }
371
372 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
373 {
374 CPUX86State *env = &cpu->env;
375
376 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
377 unsigned int bank, bank_num = env->mcg_cap & 0xff;
378 struct kvm_x86_mce mce;
379
380 env->exception_injected = -1;
381
382 /*
383 * There must be at least one bank in use if an MCE is pending.
384 * Find it and use its values for the event injection.
385 */
386 for (bank = 0; bank < bank_num; bank++) {
387 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
388 break;
389 }
390 }
391 assert(bank < bank_num);
392
393 mce.bank = bank;
394 mce.status = env->mce_banks[bank * 4 + 1];
395 mce.mcg_status = env->mcg_status;
396 mce.addr = env->mce_banks[bank * 4 + 2];
397 mce.misc = env->mce_banks[bank * 4 + 3];
398
399 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
400 }
401 return 0;
402 }
403
404 static void cpu_update_state(void *opaque, int running, RunState state)
405 {
406 CPUX86State *env = opaque;
407
408 if (running) {
409 env->tsc_valid = false;
410 }
411 }
412
413 int kvm_arch_init_vcpu(CPUState *cs)
414 {
415 struct {
416 struct kvm_cpuid2 cpuid;
417 struct kvm_cpuid_entry2 entries[100];
418 } QEMU_PACKED cpuid_data;
419 X86CPU *cpu = X86_CPU(cs);
420 CPUX86State *env = &cpu->env;
421 uint32_t limit, i, j, cpuid_i;
422 uint32_t unused;
423 struct kvm_cpuid_entry2 *c;
424 uint32_t signature[3];
425 int r;
426
427 cpuid_i = 0;
428
429 /* Paravirtualization CPUIDs */
430 c = &cpuid_data.entries[cpuid_i++];
431 memset(c, 0, sizeof(*c));
432 c->function = KVM_CPUID_SIGNATURE;
433 if (!hyperv_enabled()) {
434 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
435 c->eax = 0;
436 } else {
437 memcpy(signature, "Microsoft Hv", 12);
438 c->eax = HYPERV_CPUID_MIN;
439 }
440 c->ebx = signature[0];
441 c->ecx = signature[1];
442 c->edx = signature[2];
443
444 c = &cpuid_data.entries[cpuid_i++];
445 memset(c, 0, sizeof(*c));
446 c->function = KVM_CPUID_FEATURES;
447 c->eax = env->cpuid_kvm_features;
448
449 if (hyperv_enabled()) {
450 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
451 c->eax = signature[0];
452
453 c = &cpuid_data.entries[cpuid_i++];
454 memset(c, 0, sizeof(*c));
455 c->function = HYPERV_CPUID_VERSION;
456 c->eax = 0x00001bbc;
457 c->ebx = 0x00060001;
458
459 c = &cpuid_data.entries[cpuid_i++];
460 memset(c, 0, sizeof(*c));
461 c->function = HYPERV_CPUID_FEATURES;
462 if (hyperv_relaxed_timing_enabled()) {
463 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
464 }
465 if (hyperv_vapic_recommended()) {
466 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
467 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
468 }
469
470 c = &cpuid_data.entries[cpuid_i++];
471 memset(c, 0, sizeof(*c));
472 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
473 if (hyperv_relaxed_timing_enabled()) {
474 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
475 }
476 if (hyperv_vapic_recommended()) {
477 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
478 }
479 c->ebx = hyperv_get_spinlock_retries();
480
481 c = &cpuid_data.entries[cpuid_i++];
482 memset(c, 0, sizeof(*c));
483 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
484 c->eax = 0x40;
485 c->ebx = 0x40;
486
487 c = &cpuid_data.entries[cpuid_i++];
488 memset(c, 0, sizeof(*c));
489 c->function = KVM_CPUID_SIGNATURE_NEXT;
490 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
491 c->eax = 0;
492 c->ebx = signature[0];
493 c->ecx = signature[1];
494 c->edx = signature[2];
495 }
496
497 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
498
499 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
500
501 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
502
503 for (i = 0; i <= limit; i++) {
504 c = &cpuid_data.entries[cpuid_i++];
505
506 switch (i) {
507 case 2: {
508 /* Keep reading function 2 till all the input is received */
509 int times;
510
511 c->function = i;
512 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
513 KVM_CPUID_FLAG_STATE_READ_NEXT;
514 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
515 times = c->eax & 0xff;
516
517 for (j = 1; j < times; ++j) {
518 c = &cpuid_data.entries[cpuid_i++];
519 c->function = i;
520 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
521 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
522 }
523 break;
524 }
525 case 4:
526 case 0xb:
527 case 0xd:
528 for (j = 0; ; j++) {
529 if (i == 0xd && j == 64) {
530 break;
531 }
532 c->function = i;
533 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
534 c->index = j;
535 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
536
537 if (i == 4 && c->eax == 0) {
538 break;
539 }
540 if (i == 0xb && !(c->ecx & 0xff00)) {
541 break;
542 }
543 if (i == 0xd && c->eax == 0) {
544 continue;
545 }
546 c = &cpuid_data.entries[cpuid_i++];
547 }
548 break;
549 default:
550 c->function = i;
551 c->flags = 0;
552 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
553 break;
554 }
555 }
556 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
557
558 for (i = 0x80000000; i <= limit; i++) {
559 c = &cpuid_data.entries[cpuid_i++];
560
561 c->function = i;
562 c->flags = 0;
563 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
564 }
565
566 /* Call Centaur's CPUID instructions they are supported. */
567 if (env->cpuid_xlevel2 > 0) {
568 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
569
570 for (i = 0xC0000000; i <= limit; i++) {
571 c = &cpuid_data.entries[cpuid_i++];
572
573 c->function = i;
574 c->flags = 0;
575 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
576 }
577 }
578
579 cpuid_data.cpuid.nent = cpuid_i;
580
581 if (((env->cpuid_version >> 8)&0xF) >= 6
582 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
583 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
584 uint64_t mcg_cap;
585 int banks;
586 int ret;
587
588 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
589 if (ret < 0) {
590 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
591 return ret;
592 }
593
594 if (banks > MCE_BANKS_DEF) {
595 banks = MCE_BANKS_DEF;
596 }
597 mcg_cap &= MCE_CAP_DEF;
598 mcg_cap |= banks;
599 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
600 if (ret < 0) {
601 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
602 return ret;
603 }
604
605 env->mcg_cap = mcg_cap;
606 }
607
608 qemu_add_vm_change_state_handler(cpu_update_state, env);
609
610 cpuid_data.cpuid.padding = 0;
611 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
612 if (r) {
613 return r;
614 }
615
616 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
617 if (r && env->tsc_khz) {
618 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
619 if (r < 0) {
620 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
621 return r;
622 }
623 }
624
625 if (kvm_has_xsave()) {
626 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
627 }
628
629 return 0;
630 }
631
632 void kvm_arch_reset_vcpu(CPUState *cs)
633 {
634 X86CPU *cpu = X86_CPU(cs);
635 CPUX86State *env = &cpu->env;
636
637 env->exception_injected = -1;
638 env->interrupt_injected = -1;
639 env->xcr0 = 1;
640 if (kvm_irqchip_in_kernel()) {
641 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
642 KVM_MP_STATE_UNINITIALIZED;
643 } else {
644 env->mp_state = KVM_MP_STATE_RUNNABLE;
645 }
646 }
647
648 static int kvm_get_supported_msrs(KVMState *s)
649 {
650 static int kvm_supported_msrs;
651 int ret = 0;
652
653 /* first time */
654 if (kvm_supported_msrs == 0) {
655 struct kvm_msr_list msr_list, *kvm_msr_list;
656
657 kvm_supported_msrs = -1;
658
659 /* Obtain MSR list from KVM. These are the MSRs that we must
660 * save/restore */
661 msr_list.nmsrs = 0;
662 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
663 if (ret < 0 && ret != -E2BIG) {
664 return ret;
665 }
666 /* Old kernel modules had a bug and could write beyond the provided
667 memory. Allocate at least a safe amount of 1K. */
668 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
669 msr_list.nmsrs *
670 sizeof(msr_list.indices[0])));
671
672 kvm_msr_list->nmsrs = msr_list.nmsrs;
673 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
674 if (ret >= 0) {
675 int i;
676
677 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
678 if (kvm_msr_list->indices[i] == MSR_STAR) {
679 has_msr_star = true;
680 continue;
681 }
682 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
683 has_msr_hsave_pa = true;
684 continue;
685 }
686 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
687 has_msr_tsc_deadline = true;
688 continue;
689 }
690 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
691 has_msr_misc_enable = true;
692 continue;
693 }
694 }
695 }
696
697 g_free(kvm_msr_list);
698 }
699
700 return ret;
701 }
702
703 int kvm_arch_init(KVMState *s)
704 {
705 QemuOptsList *list = qemu_find_opts("machine");
706 uint64_t identity_base = 0xfffbc000;
707 uint64_t shadow_mem;
708 int ret;
709 struct utsname utsname;
710
711 ret = kvm_get_supported_msrs(s);
712 if (ret < 0) {
713 return ret;
714 }
715
716 uname(&utsname);
717 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
718
719 /*
720 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
721 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
722 * Since these must be part of guest physical memory, we need to allocate
723 * them, both by setting their start addresses in the kernel and by
724 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
725 *
726 * Older KVM versions may not support setting the identity map base. In
727 * that case we need to stick with the default, i.e. a 256K maximum BIOS
728 * size.
729 */
730 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
731 /* Allows up to 16M BIOSes. */
732 identity_base = 0xfeffc000;
733
734 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
735 if (ret < 0) {
736 return ret;
737 }
738 }
739
740 /* Set TSS base one page after EPT identity map. */
741 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
742 if (ret < 0) {
743 return ret;
744 }
745
746 /* Tell fw_cfg to notify the BIOS to reserve the range. */
747 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
748 if (ret < 0) {
749 fprintf(stderr, "e820_add_entry() table is full\n");
750 return ret;
751 }
752 qemu_register_reset(kvm_unpoison_all, NULL);
753
754 if (!QTAILQ_EMPTY(&list->head)) {
755 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
756 "kvm_shadow_mem", -1);
757 if (shadow_mem != -1) {
758 shadow_mem /= 4096;
759 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
760 if (ret < 0) {
761 return ret;
762 }
763 }
764 }
765 return 0;
766 }
767
768 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
769 {
770 lhs->selector = rhs->selector;
771 lhs->base = rhs->base;
772 lhs->limit = rhs->limit;
773 lhs->type = 3;
774 lhs->present = 1;
775 lhs->dpl = 3;
776 lhs->db = 0;
777 lhs->s = 1;
778 lhs->l = 0;
779 lhs->g = 0;
780 lhs->avl = 0;
781 lhs->unusable = 0;
782 }
783
784 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
785 {
786 unsigned flags = rhs->flags;
787 lhs->selector = rhs->selector;
788 lhs->base = rhs->base;
789 lhs->limit = rhs->limit;
790 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
791 lhs->present = (flags & DESC_P_MASK) != 0;
792 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
793 lhs->db = (flags >> DESC_B_SHIFT) & 1;
794 lhs->s = (flags & DESC_S_MASK) != 0;
795 lhs->l = (flags >> DESC_L_SHIFT) & 1;
796 lhs->g = (flags & DESC_G_MASK) != 0;
797 lhs->avl = (flags & DESC_AVL_MASK) != 0;
798 lhs->unusable = 0;
799 lhs->padding = 0;
800 }
801
802 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
803 {
804 lhs->selector = rhs->selector;
805 lhs->base = rhs->base;
806 lhs->limit = rhs->limit;
807 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
808 (rhs->present * DESC_P_MASK) |
809 (rhs->dpl << DESC_DPL_SHIFT) |
810 (rhs->db << DESC_B_SHIFT) |
811 (rhs->s * DESC_S_MASK) |
812 (rhs->l << DESC_L_SHIFT) |
813 (rhs->g * DESC_G_MASK) |
814 (rhs->avl * DESC_AVL_MASK);
815 }
816
817 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
818 {
819 if (set) {
820 *kvm_reg = *qemu_reg;
821 } else {
822 *qemu_reg = *kvm_reg;
823 }
824 }
825
826 static int kvm_getput_regs(X86CPU *cpu, int set)
827 {
828 CPUX86State *env = &cpu->env;
829 struct kvm_regs regs;
830 int ret = 0;
831
832 if (!set) {
833 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
834 if (ret < 0) {
835 return ret;
836 }
837 }
838
839 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
840 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
841 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
842 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
843 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
844 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
845 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
846 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
847 #ifdef TARGET_X86_64
848 kvm_getput_reg(&regs.r8, &env->regs[8], set);
849 kvm_getput_reg(&regs.r9, &env->regs[9], set);
850 kvm_getput_reg(&regs.r10, &env->regs[10], set);
851 kvm_getput_reg(&regs.r11, &env->regs[11], set);
852 kvm_getput_reg(&regs.r12, &env->regs[12], set);
853 kvm_getput_reg(&regs.r13, &env->regs[13], set);
854 kvm_getput_reg(&regs.r14, &env->regs[14], set);
855 kvm_getput_reg(&regs.r15, &env->regs[15], set);
856 #endif
857
858 kvm_getput_reg(&regs.rflags, &env->eflags, set);
859 kvm_getput_reg(&regs.rip, &env->eip, set);
860
861 if (set) {
862 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
863 }
864
865 return ret;
866 }
867
868 static int kvm_put_fpu(X86CPU *cpu)
869 {
870 CPUX86State *env = &cpu->env;
871 struct kvm_fpu fpu;
872 int i;
873
874 memset(&fpu, 0, sizeof fpu);
875 fpu.fsw = env->fpus & ~(7 << 11);
876 fpu.fsw |= (env->fpstt & 7) << 11;
877 fpu.fcw = env->fpuc;
878 fpu.last_opcode = env->fpop;
879 fpu.last_ip = env->fpip;
880 fpu.last_dp = env->fpdp;
881 for (i = 0; i < 8; ++i) {
882 fpu.ftwx |= (!env->fptags[i]) << i;
883 }
884 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
885 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
886 fpu.mxcsr = env->mxcsr;
887
888 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
889 }
890
891 #define XSAVE_FCW_FSW 0
892 #define XSAVE_FTW_FOP 1
893 #define XSAVE_CWD_RIP 2
894 #define XSAVE_CWD_RDP 4
895 #define XSAVE_MXCSR 6
896 #define XSAVE_ST_SPACE 8
897 #define XSAVE_XMM_SPACE 40
898 #define XSAVE_XSTATE_BV 128
899 #define XSAVE_YMMH_SPACE 144
900
901 static int kvm_put_xsave(X86CPU *cpu)
902 {
903 CPUX86State *env = &cpu->env;
904 struct kvm_xsave* xsave = env->kvm_xsave_buf;
905 uint16_t cwd, swd, twd;
906 int i, r;
907
908 if (!kvm_has_xsave()) {
909 return kvm_put_fpu(cpu);
910 }
911
912 memset(xsave, 0, sizeof(struct kvm_xsave));
913 twd = 0;
914 swd = env->fpus & ~(7 << 11);
915 swd |= (env->fpstt & 7) << 11;
916 cwd = env->fpuc;
917 for (i = 0; i < 8; ++i) {
918 twd |= (!env->fptags[i]) << i;
919 }
920 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
921 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
922 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
923 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
924 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
925 sizeof env->fpregs);
926 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
927 sizeof env->xmm_regs);
928 xsave->region[XSAVE_MXCSR] = env->mxcsr;
929 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
930 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
931 sizeof env->ymmh_regs);
932 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
933 return r;
934 }
935
936 static int kvm_put_xcrs(X86CPU *cpu)
937 {
938 CPUX86State *env = &cpu->env;
939 struct kvm_xcrs xcrs;
940
941 if (!kvm_has_xcrs()) {
942 return 0;
943 }
944
945 xcrs.nr_xcrs = 1;
946 xcrs.flags = 0;
947 xcrs.xcrs[0].xcr = 0;
948 xcrs.xcrs[0].value = env->xcr0;
949 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
950 }
951
952 static int kvm_put_sregs(X86CPU *cpu)
953 {
954 CPUX86State *env = &cpu->env;
955 struct kvm_sregs sregs;
956
957 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
958 if (env->interrupt_injected >= 0) {
959 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
960 (uint64_t)1 << (env->interrupt_injected % 64);
961 }
962
963 if ((env->eflags & VM_MASK)) {
964 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
965 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
966 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
967 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
968 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
969 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
970 } else {
971 set_seg(&sregs.cs, &env->segs[R_CS]);
972 set_seg(&sregs.ds, &env->segs[R_DS]);
973 set_seg(&sregs.es, &env->segs[R_ES]);
974 set_seg(&sregs.fs, &env->segs[R_FS]);
975 set_seg(&sregs.gs, &env->segs[R_GS]);
976 set_seg(&sregs.ss, &env->segs[R_SS]);
977 }
978
979 set_seg(&sregs.tr, &env->tr);
980 set_seg(&sregs.ldt, &env->ldt);
981
982 sregs.idt.limit = env->idt.limit;
983 sregs.idt.base = env->idt.base;
984 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
985 sregs.gdt.limit = env->gdt.limit;
986 sregs.gdt.base = env->gdt.base;
987 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
988
989 sregs.cr0 = env->cr[0];
990 sregs.cr2 = env->cr[2];
991 sregs.cr3 = env->cr[3];
992 sregs.cr4 = env->cr[4];
993
994 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
995 sregs.apic_base = cpu_get_apic_base(env->apic_state);
996
997 sregs.efer = env->efer;
998
999 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1000 }
1001
1002 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1003 uint32_t index, uint64_t value)
1004 {
1005 entry->index = index;
1006 entry->data = value;
1007 }
1008
1009 static int kvm_put_msrs(X86CPU *cpu, int level)
1010 {
1011 CPUX86State *env = &cpu->env;
1012 struct {
1013 struct kvm_msrs info;
1014 struct kvm_msr_entry entries[100];
1015 } msr_data;
1016 struct kvm_msr_entry *msrs = msr_data.entries;
1017 int n = 0;
1018
1019 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1020 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1022 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1023 if (has_msr_star) {
1024 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1025 }
1026 if (has_msr_hsave_pa) {
1027 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1028 }
1029 if (has_msr_tsc_deadline) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1031 }
1032 if (has_msr_misc_enable) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1034 env->msr_ia32_misc_enable);
1035 }
1036 #ifdef TARGET_X86_64
1037 if (lm_capable_kernel) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1039 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1040 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1041 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1042 }
1043 #endif
1044 if (level == KVM_PUT_FULL_STATE) {
1045 /*
1046 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1047 * writeback. Until this is fixed, we only write the offset to SMP
1048 * guests after migration, desynchronizing the VCPUs, but avoiding
1049 * huge jump-backs that would occur without any writeback at all.
1050 */
1051 if (smp_cpus == 1 || env->tsc != 0) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1053 }
1054 }
1055 /*
1056 * The following paravirtual MSRs have side effects on the guest or are
1057 * too heavy for normal writeback. Limit them to reset or full state
1058 * updates.
1059 */
1060 if (level >= KVM_PUT_RESET_STATE) {
1061 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1062 env->system_time_msr);
1063 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1064 if (has_msr_async_pf_en) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1066 env->async_pf_en_msr);
1067 }
1068 if (has_msr_pv_eoi_en) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1070 env->pv_eoi_en_msr);
1071 }
1072 if (hyperv_hypercall_available()) {
1073 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1074 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1075 }
1076 if (hyperv_vapic_recommended()) {
1077 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1078 }
1079 }
1080 if (env->mcg_cap) {
1081 int i;
1082
1083 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1084 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1085 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1086 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1087 }
1088 }
1089
1090 msr_data.info.nmsrs = n;
1091
1092 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1093
1094 }
1095
1096
1097 static int kvm_get_fpu(X86CPU *cpu)
1098 {
1099 CPUX86State *env = &cpu->env;
1100 struct kvm_fpu fpu;
1101 int i, ret;
1102
1103 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1104 if (ret < 0) {
1105 return ret;
1106 }
1107
1108 env->fpstt = (fpu.fsw >> 11) & 7;
1109 env->fpus = fpu.fsw;
1110 env->fpuc = fpu.fcw;
1111 env->fpop = fpu.last_opcode;
1112 env->fpip = fpu.last_ip;
1113 env->fpdp = fpu.last_dp;
1114 for (i = 0; i < 8; ++i) {
1115 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1116 }
1117 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1118 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1119 env->mxcsr = fpu.mxcsr;
1120
1121 return 0;
1122 }
1123
1124 static int kvm_get_xsave(X86CPU *cpu)
1125 {
1126 CPUX86State *env = &cpu->env;
1127 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1128 int ret, i;
1129 uint16_t cwd, swd, twd;
1130
1131 if (!kvm_has_xsave()) {
1132 return kvm_get_fpu(cpu);
1133 }
1134
1135 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1136 if (ret < 0) {
1137 return ret;
1138 }
1139
1140 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1141 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1142 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1143 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1144 env->fpstt = (swd >> 11) & 7;
1145 env->fpus = swd;
1146 env->fpuc = cwd;
1147 for (i = 0; i < 8; ++i) {
1148 env->fptags[i] = !((twd >> i) & 1);
1149 }
1150 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1151 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1152 env->mxcsr = xsave->region[XSAVE_MXCSR];
1153 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1154 sizeof env->fpregs);
1155 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1156 sizeof env->xmm_regs);
1157 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1158 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1159 sizeof env->ymmh_regs);
1160 return 0;
1161 }
1162
1163 static int kvm_get_xcrs(X86CPU *cpu)
1164 {
1165 CPUX86State *env = &cpu->env;
1166 int i, ret;
1167 struct kvm_xcrs xcrs;
1168
1169 if (!kvm_has_xcrs()) {
1170 return 0;
1171 }
1172
1173 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1174 if (ret < 0) {
1175 return ret;
1176 }
1177
1178 for (i = 0; i < xcrs.nr_xcrs; i++) {
1179 /* Only support xcr0 now */
1180 if (xcrs.xcrs[0].xcr == 0) {
1181 env->xcr0 = xcrs.xcrs[0].value;
1182 break;
1183 }
1184 }
1185 return 0;
1186 }
1187
1188 static int kvm_get_sregs(X86CPU *cpu)
1189 {
1190 CPUX86State *env = &cpu->env;
1191 struct kvm_sregs sregs;
1192 uint32_t hflags;
1193 int bit, i, ret;
1194
1195 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1196 if (ret < 0) {
1197 return ret;
1198 }
1199
1200 /* There can only be one pending IRQ set in the bitmap at a time, so try
1201 to find it and save its number instead (-1 for none). */
1202 env->interrupt_injected = -1;
1203 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1204 if (sregs.interrupt_bitmap[i]) {
1205 bit = ctz64(sregs.interrupt_bitmap[i]);
1206 env->interrupt_injected = i * 64 + bit;
1207 break;
1208 }
1209 }
1210
1211 get_seg(&env->segs[R_CS], &sregs.cs);
1212 get_seg(&env->segs[R_DS], &sregs.ds);
1213 get_seg(&env->segs[R_ES], &sregs.es);
1214 get_seg(&env->segs[R_FS], &sregs.fs);
1215 get_seg(&env->segs[R_GS], &sregs.gs);
1216 get_seg(&env->segs[R_SS], &sregs.ss);
1217
1218 get_seg(&env->tr, &sregs.tr);
1219 get_seg(&env->ldt, &sregs.ldt);
1220
1221 env->idt.limit = sregs.idt.limit;
1222 env->idt.base = sregs.idt.base;
1223 env->gdt.limit = sregs.gdt.limit;
1224 env->gdt.base = sregs.gdt.base;
1225
1226 env->cr[0] = sregs.cr0;
1227 env->cr[2] = sregs.cr2;
1228 env->cr[3] = sregs.cr3;
1229 env->cr[4] = sregs.cr4;
1230
1231 env->efer = sregs.efer;
1232
1233 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1234
1235 #define HFLAG_COPY_MASK \
1236 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1237 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1238 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1239 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1240
1241 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1242 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1243 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1244 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1245 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1246 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1247 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1248
1249 if (env->efer & MSR_EFER_LMA) {
1250 hflags |= HF_LMA_MASK;
1251 }
1252
1253 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1254 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1255 } else {
1256 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1257 (DESC_B_SHIFT - HF_CS32_SHIFT);
1258 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1259 (DESC_B_SHIFT - HF_SS32_SHIFT);
1260 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1261 !(hflags & HF_CS32_MASK)) {
1262 hflags |= HF_ADDSEG_MASK;
1263 } else {
1264 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1265 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1266 }
1267 }
1268 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1269
1270 return 0;
1271 }
1272
1273 static int kvm_get_msrs(X86CPU *cpu)
1274 {
1275 CPUX86State *env = &cpu->env;
1276 struct {
1277 struct kvm_msrs info;
1278 struct kvm_msr_entry entries[100];
1279 } msr_data;
1280 struct kvm_msr_entry *msrs = msr_data.entries;
1281 int ret, i, n;
1282
1283 n = 0;
1284 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1285 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1286 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1287 msrs[n++].index = MSR_PAT;
1288 if (has_msr_star) {
1289 msrs[n++].index = MSR_STAR;
1290 }
1291 if (has_msr_hsave_pa) {
1292 msrs[n++].index = MSR_VM_HSAVE_PA;
1293 }
1294 if (has_msr_tsc_deadline) {
1295 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1296 }
1297 if (has_msr_misc_enable) {
1298 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1299 }
1300
1301 if (!env->tsc_valid) {
1302 msrs[n++].index = MSR_IA32_TSC;
1303 env->tsc_valid = !runstate_is_running();
1304 }
1305
1306 #ifdef TARGET_X86_64
1307 if (lm_capable_kernel) {
1308 msrs[n++].index = MSR_CSTAR;
1309 msrs[n++].index = MSR_KERNELGSBASE;
1310 msrs[n++].index = MSR_FMASK;
1311 msrs[n++].index = MSR_LSTAR;
1312 }
1313 #endif
1314 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1315 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1316 if (has_msr_async_pf_en) {
1317 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1318 }
1319 if (has_msr_pv_eoi_en) {
1320 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1321 }
1322
1323 if (env->mcg_cap) {
1324 msrs[n++].index = MSR_MCG_STATUS;
1325 msrs[n++].index = MSR_MCG_CTL;
1326 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1327 msrs[n++].index = MSR_MC0_CTL + i;
1328 }
1329 }
1330
1331 msr_data.info.nmsrs = n;
1332 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1333 if (ret < 0) {
1334 return ret;
1335 }
1336
1337 for (i = 0; i < ret; i++) {
1338 switch (msrs[i].index) {
1339 case MSR_IA32_SYSENTER_CS:
1340 env->sysenter_cs = msrs[i].data;
1341 break;
1342 case MSR_IA32_SYSENTER_ESP:
1343 env->sysenter_esp = msrs[i].data;
1344 break;
1345 case MSR_IA32_SYSENTER_EIP:
1346 env->sysenter_eip = msrs[i].data;
1347 break;
1348 case MSR_PAT:
1349 env->pat = msrs[i].data;
1350 break;
1351 case MSR_STAR:
1352 env->star = msrs[i].data;
1353 break;
1354 #ifdef TARGET_X86_64
1355 case MSR_CSTAR:
1356 env->cstar = msrs[i].data;
1357 break;
1358 case MSR_KERNELGSBASE:
1359 env->kernelgsbase = msrs[i].data;
1360 break;
1361 case MSR_FMASK:
1362 env->fmask = msrs[i].data;
1363 break;
1364 case MSR_LSTAR:
1365 env->lstar = msrs[i].data;
1366 break;
1367 #endif
1368 case MSR_IA32_TSC:
1369 env->tsc = msrs[i].data;
1370 break;
1371 case MSR_IA32_TSCDEADLINE:
1372 env->tsc_deadline = msrs[i].data;
1373 break;
1374 case MSR_VM_HSAVE_PA:
1375 env->vm_hsave = msrs[i].data;
1376 break;
1377 case MSR_KVM_SYSTEM_TIME:
1378 env->system_time_msr = msrs[i].data;
1379 break;
1380 case MSR_KVM_WALL_CLOCK:
1381 env->wall_clock_msr = msrs[i].data;
1382 break;
1383 case MSR_MCG_STATUS:
1384 env->mcg_status = msrs[i].data;
1385 break;
1386 case MSR_MCG_CTL:
1387 env->mcg_ctl = msrs[i].data;
1388 break;
1389 case MSR_IA32_MISC_ENABLE:
1390 env->msr_ia32_misc_enable = msrs[i].data;
1391 break;
1392 default:
1393 if (msrs[i].index >= MSR_MC0_CTL &&
1394 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1395 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1396 }
1397 break;
1398 case MSR_KVM_ASYNC_PF_EN:
1399 env->async_pf_en_msr = msrs[i].data;
1400 break;
1401 case MSR_KVM_PV_EOI_EN:
1402 env->pv_eoi_en_msr = msrs[i].data;
1403 break;
1404 }
1405 }
1406
1407 return 0;
1408 }
1409
1410 static int kvm_put_mp_state(X86CPU *cpu)
1411 {
1412 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1413
1414 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1415 }
1416
1417 static int kvm_get_mp_state(X86CPU *cpu)
1418 {
1419 CPUX86State *env = &cpu->env;
1420 struct kvm_mp_state mp_state;
1421 int ret;
1422
1423 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1424 if (ret < 0) {
1425 return ret;
1426 }
1427 env->mp_state = mp_state.mp_state;
1428 if (kvm_irqchip_in_kernel()) {
1429 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1430 }
1431 return 0;
1432 }
1433
1434 static int kvm_get_apic(X86CPU *cpu)
1435 {
1436 CPUX86State *env = &cpu->env;
1437 DeviceState *apic = env->apic_state;
1438 struct kvm_lapic_state kapic;
1439 int ret;
1440
1441 if (apic && kvm_irqchip_in_kernel()) {
1442 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1443 if (ret < 0) {
1444 return ret;
1445 }
1446
1447 kvm_get_apic_state(apic, &kapic);
1448 }
1449 return 0;
1450 }
1451
1452 static int kvm_put_apic(X86CPU *cpu)
1453 {
1454 CPUX86State *env = &cpu->env;
1455 DeviceState *apic = env->apic_state;
1456 struct kvm_lapic_state kapic;
1457
1458 if (apic && kvm_irqchip_in_kernel()) {
1459 kvm_put_apic_state(apic, &kapic);
1460
1461 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1462 }
1463 return 0;
1464 }
1465
1466 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1467 {
1468 CPUX86State *env = &cpu->env;
1469 struct kvm_vcpu_events events;
1470
1471 if (!kvm_has_vcpu_events()) {
1472 return 0;
1473 }
1474
1475 events.exception.injected = (env->exception_injected >= 0);
1476 events.exception.nr = env->exception_injected;
1477 events.exception.has_error_code = env->has_error_code;
1478 events.exception.error_code = env->error_code;
1479 events.exception.pad = 0;
1480
1481 events.interrupt.injected = (env->interrupt_injected >= 0);
1482 events.interrupt.nr = env->interrupt_injected;
1483 events.interrupt.soft = env->soft_interrupt;
1484
1485 events.nmi.injected = env->nmi_injected;
1486 events.nmi.pending = env->nmi_pending;
1487 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1488 events.nmi.pad = 0;
1489
1490 events.sipi_vector = env->sipi_vector;
1491
1492 events.flags = 0;
1493 if (level >= KVM_PUT_RESET_STATE) {
1494 events.flags |=
1495 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1496 }
1497
1498 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1499 }
1500
1501 static int kvm_get_vcpu_events(X86CPU *cpu)
1502 {
1503 CPUX86State *env = &cpu->env;
1504 struct kvm_vcpu_events events;
1505 int ret;
1506
1507 if (!kvm_has_vcpu_events()) {
1508 return 0;
1509 }
1510
1511 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1512 if (ret < 0) {
1513 return ret;
1514 }
1515 env->exception_injected =
1516 events.exception.injected ? events.exception.nr : -1;
1517 env->has_error_code = events.exception.has_error_code;
1518 env->error_code = events.exception.error_code;
1519
1520 env->interrupt_injected =
1521 events.interrupt.injected ? events.interrupt.nr : -1;
1522 env->soft_interrupt = events.interrupt.soft;
1523
1524 env->nmi_injected = events.nmi.injected;
1525 env->nmi_pending = events.nmi.pending;
1526 if (events.nmi.masked) {
1527 env->hflags2 |= HF2_NMI_MASK;
1528 } else {
1529 env->hflags2 &= ~HF2_NMI_MASK;
1530 }
1531
1532 env->sipi_vector = events.sipi_vector;
1533
1534 return 0;
1535 }
1536
1537 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1538 {
1539 CPUX86State *env = &cpu->env;
1540 int ret = 0;
1541 unsigned long reinject_trap = 0;
1542
1543 if (!kvm_has_vcpu_events()) {
1544 if (env->exception_injected == 1) {
1545 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1546 } else if (env->exception_injected == 3) {
1547 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1548 }
1549 env->exception_injected = -1;
1550 }
1551
1552 /*
1553 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1554 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1555 * by updating the debug state once again if single-stepping is on.
1556 * Another reason to call kvm_update_guest_debug here is a pending debug
1557 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1558 * reinject them via SET_GUEST_DEBUG.
1559 */
1560 if (reinject_trap ||
1561 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1562 ret = kvm_update_guest_debug(env, reinject_trap);
1563 }
1564 return ret;
1565 }
1566
1567 static int kvm_put_debugregs(X86CPU *cpu)
1568 {
1569 CPUX86State *env = &cpu->env;
1570 struct kvm_debugregs dbgregs;
1571 int i;
1572
1573 if (!kvm_has_debugregs()) {
1574 return 0;
1575 }
1576
1577 for (i = 0; i < 4; i++) {
1578 dbgregs.db[i] = env->dr[i];
1579 }
1580 dbgregs.dr6 = env->dr[6];
1581 dbgregs.dr7 = env->dr[7];
1582 dbgregs.flags = 0;
1583
1584 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1585 }
1586
1587 static int kvm_get_debugregs(X86CPU *cpu)
1588 {
1589 CPUX86State *env = &cpu->env;
1590 struct kvm_debugregs dbgregs;
1591 int i, ret;
1592
1593 if (!kvm_has_debugregs()) {
1594 return 0;
1595 }
1596
1597 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1598 if (ret < 0) {
1599 return ret;
1600 }
1601 for (i = 0; i < 4; i++) {
1602 env->dr[i] = dbgregs.db[i];
1603 }
1604 env->dr[4] = env->dr[6] = dbgregs.dr6;
1605 env->dr[5] = env->dr[7] = dbgregs.dr7;
1606
1607 return 0;
1608 }
1609
1610 int kvm_arch_put_registers(CPUState *cpu, int level)
1611 {
1612 X86CPU *x86_cpu = X86_CPU(cpu);
1613 int ret;
1614
1615 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1616
1617 ret = kvm_getput_regs(x86_cpu, 1);
1618 if (ret < 0) {
1619 return ret;
1620 }
1621 ret = kvm_put_xsave(x86_cpu);
1622 if (ret < 0) {
1623 return ret;
1624 }
1625 ret = kvm_put_xcrs(x86_cpu);
1626 if (ret < 0) {
1627 return ret;
1628 }
1629 ret = kvm_put_sregs(x86_cpu);
1630 if (ret < 0) {
1631 return ret;
1632 }
1633 /* must be before kvm_put_msrs */
1634 ret = kvm_inject_mce_oldstyle(x86_cpu);
1635 if (ret < 0) {
1636 return ret;
1637 }
1638 ret = kvm_put_msrs(x86_cpu, level);
1639 if (ret < 0) {
1640 return ret;
1641 }
1642 if (level >= KVM_PUT_RESET_STATE) {
1643 ret = kvm_put_mp_state(x86_cpu);
1644 if (ret < 0) {
1645 return ret;
1646 }
1647 ret = kvm_put_apic(x86_cpu);
1648 if (ret < 0) {
1649 return ret;
1650 }
1651 }
1652 ret = kvm_put_vcpu_events(x86_cpu, level);
1653 if (ret < 0) {
1654 return ret;
1655 }
1656 ret = kvm_put_debugregs(x86_cpu);
1657 if (ret < 0) {
1658 return ret;
1659 }
1660 /* must be last */
1661 ret = kvm_guest_debug_workarounds(x86_cpu);
1662 if (ret < 0) {
1663 return ret;
1664 }
1665 return 0;
1666 }
1667
1668 int kvm_arch_get_registers(CPUState *cs)
1669 {
1670 X86CPU *cpu = X86_CPU(cs);
1671 int ret;
1672
1673 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1674
1675 ret = kvm_getput_regs(cpu, 0);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 ret = kvm_get_xsave(cpu);
1680 if (ret < 0) {
1681 return ret;
1682 }
1683 ret = kvm_get_xcrs(cpu);
1684 if (ret < 0) {
1685 return ret;
1686 }
1687 ret = kvm_get_sregs(cpu);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 ret = kvm_get_msrs(cpu);
1692 if (ret < 0) {
1693 return ret;
1694 }
1695 ret = kvm_get_mp_state(cpu);
1696 if (ret < 0) {
1697 return ret;
1698 }
1699 ret = kvm_get_apic(cpu);
1700 if (ret < 0) {
1701 return ret;
1702 }
1703 ret = kvm_get_vcpu_events(cpu);
1704 if (ret < 0) {
1705 return ret;
1706 }
1707 ret = kvm_get_debugregs(cpu);
1708 if (ret < 0) {
1709 return ret;
1710 }
1711 return 0;
1712 }
1713
1714 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1715 {
1716 X86CPU *x86_cpu = X86_CPU(cpu);
1717 CPUX86State *env = &x86_cpu->env;
1718 int ret;
1719
1720 /* Inject NMI */
1721 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1722 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1723 DPRINTF("injected NMI\n");
1724 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1725 if (ret < 0) {
1726 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1727 strerror(-ret));
1728 }
1729 }
1730
1731 if (!kvm_irqchip_in_kernel()) {
1732 /* Force the VCPU out of its inner loop to process any INIT requests
1733 * or pending TPR access reports. */
1734 if (env->interrupt_request &
1735 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1736 env->exit_request = 1;
1737 }
1738
1739 /* Try to inject an interrupt if the guest can accept it */
1740 if (run->ready_for_interrupt_injection &&
1741 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1742 (env->eflags & IF_MASK)) {
1743 int irq;
1744
1745 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1746 irq = cpu_get_pic_interrupt(env);
1747 if (irq >= 0) {
1748 struct kvm_interrupt intr;
1749
1750 intr.irq = irq;
1751 DPRINTF("injected interrupt %d\n", irq);
1752 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1753 if (ret < 0) {
1754 fprintf(stderr,
1755 "KVM: injection failed, interrupt lost (%s)\n",
1756 strerror(-ret));
1757 }
1758 }
1759 }
1760
1761 /* If we have an interrupt but the guest is not ready to receive an
1762 * interrupt, request an interrupt window exit. This will
1763 * cause a return to userspace as soon as the guest is ready to
1764 * receive interrupts. */
1765 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1766 run->request_interrupt_window = 1;
1767 } else {
1768 run->request_interrupt_window = 0;
1769 }
1770
1771 DPRINTF("setting tpr\n");
1772 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1773 }
1774 }
1775
1776 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1777 {
1778 X86CPU *x86_cpu = X86_CPU(cpu);
1779 CPUX86State *env = &x86_cpu->env;
1780
1781 if (run->if_flag) {
1782 env->eflags |= IF_MASK;
1783 } else {
1784 env->eflags &= ~IF_MASK;
1785 }
1786 cpu_set_apic_tpr(env->apic_state, run->cr8);
1787 cpu_set_apic_base(env->apic_state, run->apic_base);
1788 }
1789
1790 int kvm_arch_process_async_events(CPUState *cs)
1791 {
1792 X86CPU *cpu = X86_CPU(cs);
1793 CPUX86State *env = &cpu->env;
1794
1795 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1796 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1797 assert(env->mcg_cap);
1798
1799 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1800
1801 kvm_cpu_synchronize_state(env);
1802
1803 if (env->exception_injected == EXCP08_DBLE) {
1804 /* this means triple fault */
1805 qemu_system_reset_request();
1806 env->exit_request = 1;
1807 return 0;
1808 }
1809 env->exception_injected = EXCP12_MCHK;
1810 env->has_error_code = 0;
1811
1812 env->halted = 0;
1813 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1814 env->mp_state = KVM_MP_STATE_RUNNABLE;
1815 }
1816 }
1817
1818 if (kvm_irqchip_in_kernel()) {
1819 return 0;
1820 }
1821
1822 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1823 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1824 apic_poll_irq(env->apic_state);
1825 }
1826 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1827 (env->eflags & IF_MASK)) ||
1828 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1829 env->halted = 0;
1830 }
1831 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1832 kvm_cpu_synchronize_state(env);
1833 do_cpu_init(cpu);
1834 }
1835 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1836 kvm_cpu_synchronize_state(env);
1837 do_cpu_sipi(cpu);
1838 }
1839 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1840 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1841 kvm_cpu_synchronize_state(env);
1842 apic_handle_tpr_access_report(env->apic_state, env->eip,
1843 env->tpr_access_type);
1844 }
1845
1846 return env->halted;
1847 }
1848
1849 static int kvm_handle_halt(X86CPU *cpu)
1850 {
1851 CPUX86State *env = &cpu->env;
1852
1853 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1854 (env->eflags & IF_MASK)) &&
1855 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1856 env->halted = 1;
1857 return EXCP_HLT;
1858 }
1859
1860 return 0;
1861 }
1862
1863 static int kvm_handle_tpr_access(X86CPU *cpu)
1864 {
1865 CPUX86State *env = &cpu->env;
1866 CPUState *cs = CPU(cpu);
1867 struct kvm_run *run = cs->kvm_run;
1868
1869 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1870 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1871 : TPR_ACCESS_READ);
1872 return 1;
1873 }
1874
1875 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1876 {
1877 CPUX86State *env = &X86_CPU(cpu)->env;
1878 static const uint8_t int3 = 0xcc;
1879
1880 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1881 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1882 return -EINVAL;
1883 }
1884 return 0;
1885 }
1886
1887 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1888 {
1889 CPUX86State *env = &X86_CPU(cpu)->env;
1890 uint8_t int3;
1891
1892 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1893 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1894 return -EINVAL;
1895 }
1896 return 0;
1897 }
1898
1899 static struct {
1900 target_ulong addr;
1901 int len;
1902 int type;
1903 } hw_breakpoint[4];
1904
1905 static int nb_hw_breakpoint;
1906
1907 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1908 {
1909 int n;
1910
1911 for (n = 0; n < nb_hw_breakpoint; n++) {
1912 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1913 (hw_breakpoint[n].len == len || len == -1)) {
1914 return n;
1915 }
1916 }
1917 return -1;
1918 }
1919
1920 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1921 target_ulong len, int type)
1922 {
1923 switch (type) {
1924 case GDB_BREAKPOINT_HW:
1925 len = 1;
1926 break;
1927 case GDB_WATCHPOINT_WRITE:
1928 case GDB_WATCHPOINT_ACCESS:
1929 switch (len) {
1930 case 1:
1931 break;
1932 case 2:
1933 case 4:
1934 case 8:
1935 if (addr & (len - 1)) {
1936 return -EINVAL;
1937 }
1938 break;
1939 default:
1940 return -EINVAL;
1941 }
1942 break;
1943 default:
1944 return -ENOSYS;
1945 }
1946
1947 if (nb_hw_breakpoint == 4) {
1948 return -ENOBUFS;
1949 }
1950 if (find_hw_breakpoint(addr, len, type) >= 0) {
1951 return -EEXIST;
1952 }
1953 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1954 hw_breakpoint[nb_hw_breakpoint].len = len;
1955 hw_breakpoint[nb_hw_breakpoint].type = type;
1956 nb_hw_breakpoint++;
1957
1958 return 0;
1959 }
1960
1961 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1962 target_ulong len, int type)
1963 {
1964 int n;
1965
1966 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1967 if (n < 0) {
1968 return -ENOENT;
1969 }
1970 nb_hw_breakpoint--;
1971 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1972
1973 return 0;
1974 }
1975
1976 void kvm_arch_remove_all_hw_breakpoints(void)
1977 {
1978 nb_hw_breakpoint = 0;
1979 }
1980
1981 static CPUWatchpoint hw_watchpoint;
1982
1983 static int kvm_handle_debug(X86CPU *cpu,
1984 struct kvm_debug_exit_arch *arch_info)
1985 {
1986 CPUX86State *env = &cpu->env;
1987 int ret = 0;
1988 int n;
1989
1990 if (arch_info->exception == 1) {
1991 if (arch_info->dr6 & (1 << 14)) {
1992 if (env->singlestep_enabled) {
1993 ret = EXCP_DEBUG;
1994 }
1995 } else {
1996 for (n = 0; n < 4; n++) {
1997 if (arch_info->dr6 & (1 << n)) {
1998 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1999 case 0x0:
2000 ret = EXCP_DEBUG;
2001 break;
2002 case 0x1:
2003 ret = EXCP_DEBUG;
2004 env->watchpoint_hit = &hw_watchpoint;
2005 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2006 hw_watchpoint.flags = BP_MEM_WRITE;
2007 break;
2008 case 0x3:
2009 ret = EXCP_DEBUG;
2010 env->watchpoint_hit = &hw_watchpoint;
2011 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2012 hw_watchpoint.flags = BP_MEM_ACCESS;
2013 break;
2014 }
2015 }
2016 }
2017 }
2018 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2019 ret = EXCP_DEBUG;
2020 }
2021 if (ret == 0) {
2022 cpu_synchronize_state(env);
2023 assert(env->exception_injected == -1);
2024
2025 /* pass to guest */
2026 env->exception_injected = arch_info->exception;
2027 env->has_error_code = 0;
2028 }
2029
2030 return ret;
2031 }
2032
2033 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2034 {
2035 const uint8_t type_code[] = {
2036 [GDB_BREAKPOINT_HW] = 0x0,
2037 [GDB_WATCHPOINT_WRITE] = 0x1,
2038 [GDB_WATCHPOINT_ACCESS] = 0x3
2039 };
2040 const uint8_t len_code[] = {
2041 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2042 };
2043 int n;
2044
2045 if (kvm_sw_breakpoints_active(cpu)) {
2046 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2047 }
2048 if (nb_hw_breakpoint > 0) {
2049 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2050 dbg->arch.debugreg[7] = 0x0600;
2051 for (n = 0; n < nb_hw_breakpoint; n++) {
2052 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2053 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2054 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2055 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2056 }
2057 }
2058 }
2059
2060 static bool host_supports_vmx(void)
2061 {
2062 uint32_t ecx, unused;
2063
2064 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2065 return ecx & CPUID_EXT_VMX;
2066 }
2067
2068 #define VMX_INVALID_GUEST_STATE 0x80000021
2069
2070 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2071 {
2072 X86CPU *cpu = X86_CPU(cs);
2073 uint64_t code;
2074 int ret;
2075
2076 switch (run->exit_reason) {
2077 case KVM_EXIT_HLT:
2078 DPRINTF("handle_hlt\n");
2079 ret = kvm_handle_halt(cpu);
2080 break;
2081 case KVM_EXIT_SET_TPR:
2082 ret = 0;
2083 break;
2084 case KVM_EXIT_TPR_ACCESS:
2085 ret = kvm_handle_tpr_access(cpu);
2086 break;
2087 case KVM_EXIT_FAIL_ENTRY:
2088 code = run->fail_entry.hardware_entry_failure_reason;
2089 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2090 code);
2091 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2092 fprintf(stderr,
2093 "\nIf you're running a guest on an Intel machine without "
2094 "unrestricted mode\n"
2095 "support, the failure can be most likely due to the guest "
2096 "entering an invalid\n"
2097 "state for Intel VT. For example, the guest maybe running "
2098 "in big real mode\n"
2099 "which is not supported on less recent Intel processors."
2100 "\n\n");
2101 }
2102 ret = -1;
2103 break;
2104 case KVM_EXIT_EXCEPTION:
2105 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2106 run->ex.exception, run->ex.error_code);
2107 ret = -1;
2108 break;
2109 case KVM_EXIT_DEBUG:
2110 DPRINTF("kvm_exit_debug\n");
2111 ret = kvm_handle_debug(cpu, &run->debug.arch);
2112 break;
2113 default:
2114 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2115 ret = -1;
2116 break;
2117 }
2118
2119 return ret;
2120 }
2121
2122 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2123 {
2124 X86CPU *cpu = X86_CPU(cs);
2125 CPUX86State *env = &cpu->env;
2126
2127 kvm_cpu_synchronize_state(env);
2128 return !(env->cr[0] & CR0_PE_MASK) ||
2129 ((env->segs[R_CS].selector & 3) != 3);
2130 }
2131
2132 void kvm_arch_init_irq_routing(KVMState *s)
2133 {
2134 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2135 /* If kernel can't do irq routing, interrupt source
2136 * override 0->2 cannot be set up as required by HPET.
2137 * So we have to disable it.
2138 */
2139 no_hpet = 1;
2140 }
2141 /* We know at this point that we're using the in-kernel
2142 * irqchip, so we can use irqfds, and on x86 we know
2143 * we can use msi via irqfd and GSI routing.
2144 */
2145 kvm_irqfds_allowed = true;
2146 kvm_msi_via_irqfd_allowed = true;
2147 kvm_gsi_routing_allowed = true;
2148 }
2149
2150 /* Classic KVM device assignment interface. Will remain x86 only. */
2151 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2152 uint32_t flags, uint32_t *dev_id)
2153 {
2154 struct kvm_assigned_pci_dev dev_data = {
2155 .segnr = dev_addr->domain,
2156 .busnr = dev_addr->bus,
2157 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2158 .flags = flags,
2159 };
2160 int ret;
2161
2162 dev_data.assigned_dev_id =
2163 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2164
2165 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2166 if (ret < 0) {
2167 return ret;
2168 }
2169
2170 *dev_id = dev_data.assigned_dev_id;
2171
2172 return 0;
2173 }
2174
2175 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2176 {
2177 struct kvm_assigned_pci_dev dev_data = {
2178 .assigned_dev_id = dev_id,
2179 };
2180
2181 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2182 }
2183
2184 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2185 uint32_t irq_type, uint32_t guest_irq)
2186 {
2187 struct kvm_assigned_irq assigned_irq = {
2188 .assigned_dev_id = dev_id,
2189 .guest_irq = guest_irq,
2190 .flags = irq_type,
2191 };
2192
2193 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2194 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2195 } else {
2196 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2197 }
2198 }
2199
2200 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2201 uint32_t guest_irq)
2202 {
2203 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2204 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2205
2206 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2207 }
2208
2209 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2210 {
2211 struct kvm_assigned_pci_dev dev_data = {
2212 .assigned_dev_id = dev_id,
2213 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2214 };
2215
2216 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2217 }
2218
2219 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2220 uint32_t type)
2221 {
2222 struct kvm_assigned_irq assigned_irq = {
2223 .assigned_dev_id = dev_id,
2224 .flags = type,
2225 };
2226
2227 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2228 }
2229
2230 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2231 {
2232 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2233 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2234 }
2235
2236 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2237 {
2238 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2239 KVM_DEV_IRQ_GUEST_MSI, virq);
2240 }
2241
2242 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2243 {
2244 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2245 KVM_DEV_IRQ_HOST_MSI);
2246 }
2247
2248 bool kvm_device_msix_supported(KVMState *s)
2249 {
2250 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2251 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2252 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2253 }
2254
2255 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2256 uint32_t nr_vectors)
2257 {
2258 struct kvm_assigned_msix_nr msix_nr = {
2259 .assigned_dev_id = dev_id,
2260 .entry_nr = nr_vectors,
2261 };
2262
2263 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2264 }
2265
2266 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2267 int virq)
2268 {
2269 struct kvm_assigned_msix_entry msix_entry = {
2270 .assigned_dev_id = dev_id,
2271 .gsi = virq,
2272 .entry = vector,
2273 };
2274
2275 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2276 }
2277
2278 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2279 {
2280 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2281 KVM_DEV_IRQ_GUEST_MSIX, 0);
2282 }
2283
2284 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2285 {
2286 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2287 KVM_DEV_IRQ_HOST_MSIX);
2288 }