]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: x86: Fix merge artifact of f8d926e9 about mp_state
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27
28 //#define DEBUG_KVM
29
30 #ifdef DEBUG_KVM
31 #define dprintf(fmt, ...) \
32 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
33 #else
34 #define dprintf(fmt, ...) \
35 do { } while (0)
36 #endif
37
38 #ifdef KVM_CAP_EXT_CPUID
39
40 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
41 {
42 struct kvm_cpuid2 *cpuid;
43 int r, size;
44
45 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
46 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
47 cpuid->nent = max;
48 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
49 if (r == 0 && cpuid->nent >= max) {
50 r = -E2BIG;
51 }
52 if (r < 0) {
53 if (r == -E2BIG) {
54 qemu_free(cpuid);
55 return NULL;
56 } else {
57 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
58 strerror(-r));
59 exit(1);
60 }
61 }
62 return cpuid;
63 }
64
65 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
66 {
67 struct kvm_cpuid2 *cpuid;
68 int i, max;
69 uint32_t ret = 0;
70 uint32_t cpuid_1_edx;
71
72 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
73 return -1U;
74 }
75
76 max = 1;
77 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
78 max *= 2;
79 }
80
81 for (i = 0; i < cpuid->nent; ++i) {
82 if (cpuid->entries[i].function == function) {
83 switch (reg) {
84 case R_EAX:
85 ret = cpuid->entries[i].eax;
86 break;
87 case R_EBX:
88 ret = cpuid->entries[i].ebx;
89 break;
90 case R_ECX:
91 ret = cpuid->entries[i].ecx;
92 break;
93 case R_EDX:
94 ret = cpuid->entries[i].edx;
95 if (function == 0x80000001) {
96 /* On Intel, kvm returns cpuid according to the Intel spec,
97 * so add missing bits according to the AMD spec:
98 */
99 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
100 ret |= cpuid_1_edx & 0xdfeff7ff;
101 }
102 break;
103 }
104 }
105 }
106
107 qemu_free(cpuid);
108
109 return ret;
110 }
111
112 #else
113
114 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
115 {
116 return -1U;
117 }
118
119 #endif
120
121 static void kvm_trim_features(uint32_t *features, uint32_t supported)
122 {
123 int i;
124 uint32_t mask;
125
126 for (i = 0; i < 32; ++i) {
127 mask = 1U << i;
128 if ((*features & mask) && !(supported & mask)) {
129 *features &= ~mask;
130 }
131 }
132 }
133
134 int kvm_arch_init_vcpu(CPUState *env)
135 {
136 struct {
137 struct kvm_cpuid2 cpuid;
138 struct kvm_cpuid_entry2 entries[100];
139 } __attribute__((packed)) cpuid_data;
140 uint32_t limit, i, j, cpuid_i;
141 uint32_t unused;
142
143 env->mp_state = KVM_MP_STATE_RUNNABLE;
144
145 kvm_trim_features(&env->cpuid_features,
146 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
147
148 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
149 kvm_trim_features(&env->cpuid_ext_features,
150 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
151 env->cpuid_ext_features |= i;
152
153 kvm_trim_features(&env->cpuid_ext2_features,
154 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
155 kvm_trim_features(&env->cpuid_ext3_features,
156 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
157
158 cpuid_i = 0;
159
160 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
161
162 for (i = 0; i <= limit; i++) {
163 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
164
165 switch (i) {
166 case 2: {
167 /* Keep reading function 2 till all the input is received */
168 int times;
169
170 c->function = i;
171 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
172 KVM_CPUID_FLAG_STATE_READ_NEXT;
173 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
174 times = c->eax & 0xff;
175
176 for (j = 1; j < times; ++j) {
177 c = &cpuid_data.entries[cpuid_i++];
178 c->function = i;
179 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
180 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
181 }
182 break;
183 }
184 case 4:
185 case 0xb:
186 case 0xd:
187 for (j = 0; ; j++) {
188 c->function = i;
189 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
190 c->index = j;
191 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
192
193 if (i == 4 && c->eax == 0)
194 break;
195 if (i == 0xb && !(c->ecx & 0xff00))
196 break;
197 if (i == 0xd && c->eax == 0)
198 break;
199
200 c = &cpuid_data.entries[cpuid_i++];
201 }
202 break;
203 default:
204 c->function = i;
205 c->flags = 0;
206 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
207 break;
208 }
209 }
210 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
211
212 for (i = 0x80000000; i <= limit; i++) {
213 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
214
215 c->function = i;
216 c->flags = 0;
217 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
218 }
219
220 cpuid_data.cpuid.nent = cpuid_i;
221
222 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
223 }
224
225 void kvm_arch_reset_vcpu(CPUState *env)
226 {
227 env->interrupt_injected = -1;
228 }
229
230 static int kvm_has_msr_star(CPUState *env)
231 {
232 static int has_msr_star;
233 int ret;
234
235 /* first time */
236 if (has_msr_star == 0) {
237 struct kvm_msr_list msr_list, *kvm_msr_list;
238
239 has_msr_star = -1;
240
241 /* Obtain MSR list from KVM. These are the MSRs that we must
242 * save/restore */
243 msr_list.nmsrs = 0;
244 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
245 if (ret < 0)
246 return 0;
247
248 /* Old kernel modules had a bug and could write beyond the provided
249 memory. Allocate at least a safe amount of 1K. */
250 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
251 msr_list.nmsrs *
252 sizeof(msr_list.indices[0])));
253
254 kvm_msr_list->nmsrs = msr_list.nmsrs;
255 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
256 if (ret >= 0) {
257 int i;
258
259 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
260 if (kvm_msr_list->indices[i] == MSR_STAR) {
261 has_msr_star = 1;
262 break;
263 }
264 }
265 }
266
267 free(kvm_msr_list);
268 }
269
270 if (has_msr_star == 1)
271 return 1;
272 return 0;
273 }
274
275 int kvm_arch_init(KVMState *s, int smp_cpus)
276 {
277 int ret;
278
279 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
280 * directly. In order to use vm86 mode, a TSS is needed. Since this
281 * must be part of guest physical memory, we need to allocate it. Older
282 * versions of KVM just assumed that it would be at the end of physical
283 * memory but that doesn't work with more than 4GB of memory. We simply
284 * refuse to work with those older versions of KVM. */
285 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
286 if (ret <= 0) {
287 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
288 return ret;
289 }
290
291 /* this address is 3 pages before the bios, and the bios should present
292 * as unavaible memory. FIXME, need to ensure the e820 map deals with
293 * this?
294 */
295 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
296 }
297
298 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
299 {
300 lhs->selector = rhs->selector;
301 lhs->base = rhs->base;
302 lhs->limit = rhs->limit;
303 lhs->type = 3;
304 lhs->present = 1;
305 lhs->dpl = 3;
306 lhs->db = 0;
307 lhs->s = 1;
308 lhs->l = 0;
309 lhs->g = 0;
310 lhs->avl = 0;
311 lhs->unusable = 0;
312 }
313
314 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
315 {
316 unsigned flags = rhs->flags;
317 lhs->selector = rhs->selector;
318 lhs->base = rhs->base;
319 lhs->limit = rhs->limit;
320 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
321 lhs->present = (flags & DESC_P_MASK) != 0;
322 lhs->dpl = rhs->selector & 3;
323 lhs->db = (flags >> DESC_B_SHIFT) & 1;
324 lhs->s = (flags & DESC_S_MASK) != 0;
325 lhs->l = (flags >> DESC_L_SHIFT) & 1;
326 lhs->g = (flags & DESC_G_MASK) != 0;
327 lhs->avl = (flags & DESC_AVL_MASK) != 0;
328 lhs->unusable = 0;
329 }
330
331 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
332 {
333 lhs->selector = rhs->selector;
334 lhs->base = rhs->base;
335 lhs->limit = rhs->limit;
336 lhs->flags =
337 (rhs->type << DESC_TYPE_SHIFT)
338 | (rhs->present * DESC_P_MASK)
339 | (rhs->dpl << DESC_DPL_SHIFT)
340 | (rhs->db << DESC_B_SHIFT)
341 | (rhs->s * DESC_S_MASK)
342 | (rhs->l << DESC_L_SHIFT)
343 | (rhs->g * DESC_G_MASK)
344 | (rhs->avl * DESC_AVL_MASK);
345 }
346
347 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
348 {
349 if (set)
350 *kvm_reg = *qemu_reg;
351 else
352 *qemu_reg = *kvm_reg;
353 }
354
355 static int kvm_getput_regs(CPUState *env, int set)
356 {
357 struct kvm_regs regs;
358 int ret = 0;
359
360 if (!set) {
361 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
362 if (ret < 0)
363 return ret;
364 }
365
366 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
367 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
368 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
369 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
370 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
371 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
372 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
373 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
374 #ifdef TARGET_X86_64
375 kvm_getput_reg(&regs.r8, &env->regs[8], set);
376 kvm_getput_reg(&regs.r9, &env->regs[9], set);
377 kvm_getput_reg(&regs.r10, &env->regs[10], set);
378 kvm_getput_reg(&regs.r11, &env->regs[11], set);
379 kvm_getput_reg(&regs.r12, &env->regs[12], set);
380 kvm_getput_reg(&regs.r13, &env->regs[13], set);
381 kvm_getput_reg(&regs.r14, &env->regs[14], set);
382 kvm_getput_reg(&regs.r15, &env->regs[15], set);
383 #endif
384
385 kvm_getput_reg(&regs.rflags, &env->eflags, set);
386 kvm_getput_reg(&regs.rip, &env->eip, set);
387
388 if (set)
389 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
390
391 return ret;
392 }
393
394 static int kvm_put_fpu(CPUState *env)
395 {
396 struct kvm_fpu fpu;
397 int i;
398
399 memset(&fpu, 0, sizeof fpu);
400 fpu.fsw = env->fpus & ~(7 << 11);
401 fpu.fsw |= (env->fpstt & 7) << 11;
402 fpu.fcw = env->fpuc;
403 for (i = 0; i < 8; ++i)
404 fpu.ftwx |= (!env->fptags[i]) << i;
405 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
406 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
407 fpu.mxcsr = env->mxcsr;
408
409 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
410 }
411
412 static int kvm_put_sregs(CPUState *env)
413 {
414 struct kvm_sregs sregs;
415
416 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
417 if (env->interrupt_injected >= 0) {
418 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
419 (uint64_t)1 << (env->interrupt_injected % 64);
420 }
421
422 if ((env->eflags & VM_MASK)) {
423 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
424 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
425 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
426 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
427 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
428 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
429 } else {
430 set_seg(&sregs.cs, &env->segs[R_CS]);
431 set_seg(&sregs.ds, &env->segs[R_DS]);
432 set_seg(&sregs.es, &env->segs[R_ES]);
433 set_seg(&sregs.fs, &env->segs[R_FS]);
434 set_seg(&sregs.gs, &env->segs[R_GS]);
435 set_seg(&sregs.ss, &env->segs[R_SS]);
436
437 if (env->cr[0] & CR0_PE_MASK) {
438 /* force ss cpl to cs cpl */
439 sregs.ss.selector = (sregs.ss.selector & ~3) |
440 (sregs.cs.selector & 3);
441 sregs.ss.dpl = sregs.ss.selector & 3;
442 }
443 }
444
445 set_seg(&sregs.tr, &env->tr);
446 set_seg(&sregs.ldt, &env->ldt);
447
448 sregs.idt.limit = env->idt.limit;
449 sregs.idt.base = env->idt.base;
450 sregs.gdt.limit = env->gdt.limit;
451 sregs.gdt.base = env->gdt.base;
452
453 sregs.cr0 = env->cr[0];
454 sregs.cr2 = env->cr[2];
455 sregs.cr3 = env->cr[3];
456 sregs.cr4 = env->cr[4];
457
458 sregs.cr8 = cpu_get_apic_tpr(env);
459 sregs.apic_base = cpu_get_apic_base(env);
460
461 sregs.efer = env->efer;
462
463 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
464 }
465
466 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
467 uint32_t index, uint64_t value)
468 {
469 entry->index = index;
470 entry->data = value;
471 }
472
473 static int kvm_put_msrs(CPUState *env)
474 {
475 struct {
476 struct kvm_msrs info;
477 struct kvm_msr_entry entries[100];
478 } msr_data;
479 struct kvm_msr_entry *msrs = msr_data.entries;
480 int n = 0;
481
482 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
483 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
484 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
485 if (kvm_has_msr_star(env))
486 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
487 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
488 #ifdef TARGET_X86_64
489 /* FIXME if lm capable */
490 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
491 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
492 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
493 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
494 #endif
495 msr_data.info.nmsrs = n;
496
497 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
498
499 }
500
501
502 static int kvm_get_fpu(CPUState *env)
503 {
504 struct kvm_fpu fpu;
505 int i, ret;
506
507 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
508 if (ret < 0)
509 return ret;
510
511 env->fpstt = (fpu.fsw >> 11) & 7;
512 env->fpus = fpu.fsw;
513 env->fpuc = fpu.fcw;
514 for (i = 0; i < 8; ++i)
515 env->fptags[i] = !((fpu.ftwx >> i) & 1);
516 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
517 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
518 env->mxcsr = fpu.mxcsr;
519
520 return 0;
521 }
522
523 static int kvm_get_sregs(CPUState *env)
524 {
525 struct kvm_sregs sregs;
526 uint32_t hflags;
527 int bit, i, ret;
528
529 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
530 if (ret < 0)
531 return ret;
532
533 /* There can only be one pending IRQ set in the bitmap at a time, so try
534 to find it and save its number instead (-1 for none). */
535 env->interrupt_injected = -1;
536 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
537 if (sregs.interrupt_bitmap[i]) {
538 bit = ctz64(sregs.interrupt_bitmap[i]);
539 env->interrupt_injected = i * 64 + bit;
540 break;
541 }
542 }
543
544 get_seg(&env->segs[R_CS], &sregs.cs);
545 get_seg(&env->segs[R_DS], &sregs.ds);
546 get_seg(&env->segs[R_ES], &sregs.es);
547 get_seg(&env->segs[R_FS], &sregs.fs);
548 get_seg(&env->segs[R_GS], &sregs.gs);
549 get_seg(&env->segs[R_SS], &sregs.ss);
550
551 get_seg(&env->tr, &sregs.tr);
552 get_seg(&env->ldt, &sregs.ldt);
553
554 env->idt.limit = sregs.idt.limit;
555 env->idt.base = sregs.idt.base;
556 env->gdt.limit = sregs.gdt.limit;
557 env->gdt.base = sregs.gdt.base;
558
559 env->cr[0] = sregs.cr0;
560 env->cr[2] = sregs.cr2;
561 env->cr[3] = sregs.cr3;
562 env->cr[4] = sregs.cr4;
563
564 cpu_set_apic_base(env, sregs.apic_base);
565
566 env->efer = sregs.efer;
567 //cpu_set_apic_tpr(env, sregs.cr8);
568
569 #define HFLAG_COPY_MASK ~( \
570 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
571 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
572 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
573 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
574
575
576
577 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
578 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
579 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
580 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
581 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
582 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
583 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
584
585 if (env->efer & MSR_EFER_LMA) {
586 hflags |= HF_LMA_MASK;
587 }
588
589 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
590 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
591 } else {
592 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
593 (DESC_B_SHIFT - HF_CS32_SHIFT);
594 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
595 (DESC_B_SHIFT - HF_SS32_SHIFT);
596 if (!(env->cr[0] & CR0_PE_MASK) ||
597 (env->eflags & VM_MASK) ||
598 !(hflags & HF_CS32_MASK)) {
599 hflags |= HF_ADDSEG_MASK;
600 } else {
601 hflags |= ((env->segs[R_DS].base |
602 env->segs[R_ES].base |
603 env->segs[R_SS].base) != 0) <<
604 HF_ADDSEG_SHIFT;
605 }
606 }
607 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
608
609 return 0;
610 }
611
612 static int kvm_get_msrs(CPUState *env)
613 {
614 struct {
615 struct kvm_msrs info;
616 struct kvm_msr_entry entries[100];
617 } msr_data;
618 struct kvm_msr_entry *msrs = msr_data.entries;
619 int ret, i, n;
620
621 n = 0;
622 msrs[n++].index = MSR_IA32_SYSENTER_CS;
623 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
624 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
625 if (kvm_has_msr_star(env))
626 msrs[n++].index = MSR_STAR;
627 msrs[n++].index = MSR_IA32_TSC;
628 #ifdef TARGET_X86_64
629 /* FIXME lm_capable_kernel */
630 msrs[n++].index = MSR_CSTAR;
631 msrs[n++].index = MSR_KERNELGSBASE;
632 msrs[n++].index = MSR_FMASK;
633 msrs[n++].index = MSR_LSTAR;
634 #endif
635 msr_data.info.nmsrs = n;
636 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
637 if (ret < 0)
638 return ret;
639
640 for (i = 0; i < ret; i++) {
641 switch (msrs[i].index) {
642 case MSR_IA32_SYSENTER_CS:
643 env->sysenter_cs = msrs[i].data;
644 break;
645 case MSR_IA32_SYSENTER_ESP:
646 env->sysenter_esp = msrs[i].data;
647 break;
648 case MSR_IA32_SYSENTER_EIP:
649 env->sysenter_eip = msrs[i].data;
650 break;
651 case MSR_STAR:
652 env->star = msrs[i].data;
653 break;
654 #ifdef TARGET_X86_64
655 case MSR_CSTAR:
656 env->cstar = msrs[i].data;
657 break;
658 case MSR_KERNELGSBASE:
659 env->kernelgsbase = msrs[i].data;
660 break;
661 case MSR_FMASK:
662 env->fmask = msrs[i].data;
663 break;
664 case MSR_LSTAR:
665 env->lstar = msrs[i].data;
666 break;
667 #endif
668 case MSR_IA32_TSC:
669 env->tsc = msrs[i].data;
670 break;
671 }
672 }
673
674 return 0;
675 }
676
677 static int kvm_put_mp_state(CPUState *env)
678 {
679 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
680
681 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
682 }
683
684 static int kvm_get_mp_state(CPUState *env)
685 {
686 struct kvm_mp_state mp_state;
687 int ret;
688
689 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
690 if (ret < 0) {
691 return ret;
692 }
693 env->mp_state = mp_state.mp_state;
694 return 0;
695 }
696
697 int kvm_arch_put_registers(CPUState *env)
698 {
699 int ret;
700
701 ret = kvm_getput_regs(env, 1);
702 if (ret < 0)
703 return ret;
704
705 ret = kvm_put_fpu(env);
706 if (ret < 0)
707 return ret;
708
709 ret = kvm_put_sregs(env);
710 if (ret < 0)
711 return ret;
712
713 ret = kvm_put_msrs(env);
714 if (ret < 0)
715 return ret;
716
717 ret = kvm_put_mp_state(env);
718 if (ret < 0)
719 return ret;
720
721 return 0;
722 }
723
724 int kvm_arch_get_registers(CPUState *env)
725 {
726 int ret;
727
728 ret = kvm_getput_regs(env, 0);
729 if (ret < 0)
730 return ret;
731
732 ret = kvm_get_fpu(env);
733 if (ret < 0)
734 return ret;
735
736 ret = kvm_get_sregs(env);
737 if (ret < 0)
738 return ret;
739
740 ret = kvm_get_msrs(env);
741 if (ret < 0)
742 return ret;
743
744 ret = kvm_get_mp_state(env);
745 if (ret < 0)
746 return ret;
747
748 return 0;
749 }
750
751 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
752 {
753 /* Try to inject an interrupt if the guest can accept it */
754 if (run->ready_for_interrupt_injection &&
755 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
756 (env->eflags & IF_MASK)) {
757 int irq;
758
759 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
760 irq = cpu_get_pic_interrupt(env);
761 if (irq >= 0) {
762 struct kvm_interrupt intr;
763 intr.irq = irq;
764 /* FIXME: errors */
765 dprintf("injected interrupt %d\n", irq);
766 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
767 }
768 }
769
770 /* If we have an interrupt but the guest is not ready to receive an
771 * interrupt, request an interrupt window exit. This will
772 * cause a return to userspace as soon as the guest is ready to
773 * receive interrupts. */
774 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
775 run->request_interrupt_window = 1;
776 else
777 run->request_interrupt_window = 0;
778
779 dprintf("setting tpr\n");
780 run->cr8 = cpu_get_apic_tpr(env);
781
782 return 0;
783 }
784
785 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
786 {
787 if (run->if_flag)
788 env->eflags |= IF_MASK;
789 else
790 env->eflags &= ~IF_MASK;
791
792 cpu_set_apic_tpr(env, run->cr8);
793 cpu_set_apic_base(env, run->apic_base);
794
795 return 0;
796 }
797
798 static int kvm_handle_halt(CPUState *env)
799 {
800 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
801 (env->eflags & IF_MASK)) &&
802 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
803 env->halted = 1;
804 env->exception_index = EXCP_HLT;
805 return 0;
806 }
807
808 return 1;
809 }
810
811 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
812 {
813 int ret = 0;
814
815 switch (run->exit_reason) {
816 case KVM_EXIT_HLT:
817 dprintf("handle_hlt\n");
818 ret = kvm_handle_halt(env);
819 break;
820 }
821
822 return ret;
823 }
824
825 #ifdef KVM_CAP_SET_GUEST_DEBUG
826 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
827 {
828 static const uint8_t int3 = 0xcc;
829
830 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
831 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
832 return -EINVAL;
833 return 0;
834 }
835
836 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
837 {
838 uint8_t int3;
839
840 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
841 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
842 return -EINVAL;
843 return 0;
844 }
845
846 static struct {
847 target_ulong addr;
848 int len;
849 int type;
850 } hw_breakpoint[4];
851
852 static int nb_hw_breakpoint;
853
854 static int find_hw_breakpoint(target_ulong addr, int len, int type)
855 {
856 int n;
857
858 for (n = 0; n < nb_hw_breakpoint; n++)
859 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
860 (hw_breakpoint[n].len == len || len == -1))
861 return n;
862 return -1;
863 }
864
865 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
866 target_ulong len, int type)
867 {
868 switch (type) {
869 case GDB_BREAKPOINT_HW:
870 len = 1;
871 break;
872 case GDB_WATCHPOINT_WRITE:
873 case GDB_WATCHPOINT_ACCESS:
874 switch (len) {
875 case 1:
876 break;
877 case 2:
878 case 4:
879 case 8:
880 if (addr & (len - 1))
881 return -EINVAL;
882 break;
883 default:
884 return -EINVAL;
885 }
886 break;
887 default:
888 return -ENOSYS;
889 }
890
891 if (nb_hw_breakpoint == 4)
892 return -ENOBUFS;
893
894 if (find_hw_breakpoint(addr, len, type) >= 0)
895 return -EEXIST;
896
897 hw_breakpoint[nb_hw_breakpoint].addr = addr;
898 hw_breakpoint[nb_hw_breakpoint].len = len;
899 hw_breakpoint[nb_hw_breakpoint].type = type;
900 nb_hw_breakpoint++;
901
902 return 0;
903 }
904
905 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
906 target_ulong len, int type)
907 {
908 int n;
909
910 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
911 if (n < 0)
912 return -ENOENT;
913
914 nb_hw_breakpoint--;
915 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
916
917 return 0;
918 }
919
920 void kvm_arch_remove_all_hw_breakpoints(void)
921 {
922 nb_hw_breakpoint = 0;
923 }
924
925 static CPUWatchpoint hw_watchpoint;
926
927 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
928 {
929 int handle = 0;
930 int n;
931
932 if (arch_info->exception == 1) {
933 if (arch_info->dr6 & (1 << 14)) {
934 if (cpu_single_env->singlestep_enabled)
935 handle = 1;
936 } else {
937 for (n = 0; n < 4; n++)
938 if (arch_info->dr6 & (1 << n))
939 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
940 case 0x0:
941 handle = 1;
942 break;
943 case 0x1:
944 handle = 1;
945 cpu_single_env->watchpoint_hit = &hw_watchpoint;
946 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
947 hw_watchpoint.flags = BP_MEM_WRITE;
948 break;
949 case 0x3:
950 handle = 1;
951 cpu_single_env->watchpoint_hit = &hw_watchpoint;
952 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
953 hw_watchpoint.flags = BP_MEM_ACCESS;
954 break;
955 }
956 }
957 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
958 handle = 1;
959
960 if (!handle)
961 kvm_update_guest_debug(cpu_single_env,
962 (arch_info->exception == 1) ?
963 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
964
965 return handle;
966 }
967
968 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
969 {
970 const uint8_t type_code[] = {
971 [GDB_BREAKPOINT_HW] = 0x0,
972 [GDB_WATCHPOINT_WRITE] = 0x1,
973 [GDB_WATCHPOINT_ACCESS] = 0x3
974 };
975 const uint8_t len_code[] = {
976 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
977 };
978 int n;
979
980 if (kvm_sw_breakpoints_active(env))
981 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
982
983 if (nb_hw_breakpoint > 0) {
984 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
985 dbg->arch.debugreg[7] = 0x0600;
986 for (n = 0; n < nb_hw_breakpoint; n++) {
987 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
988 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
989 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
990 (len_code[hw_breakpoint[n].len] << (18 + n*4));
991 }
992 }
993 }
994 #endif /* KVM_CAP_SET_GUEST_DEBUG */