]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'rth/axp-next' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include <asm/hyperv.h>
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
73
74 bool kvm_allows_irq0_override(void)
75 {
76 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
77 }
78
79 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80 {
81 struct kvm_cpuid2 *cpuid;
82 int r, size;
83
84 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86 cpuid->nent = max;
87 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88 if (r == 0 && cpuid->nent >= max) {
89 r = -E2BIG;
90 }
91 if (r < 0) {
92 if (r == -E2BIG) {
93 g_free(cpuid);
94 return NULL;
95 } else {
96 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97 strerror(-r));
98 exit(1);
99 }
100 }
101 return cpuid;
102 }
103
104 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105 * for all entries.
106 */
107 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108 {
109 struct kvm_cpuid2 *cpuid;
110 int max = 1;
111 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112 max *= 2;
113 }
114 return cpuid;
115 }
116
117 struct kvm_para_features {
118 int cap;
119 int feature;
120 } para_features[] = {
121 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 { -1, -1 }
126 };
127
128 static int get_para_features(KVMState *s)
129 {
130 int i, features = 0;
131
132 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133 if (kvm_check_extension(s, para_features[i].cap)) {
134 features |= (1 << para_features[i].feature);
135 }
136 }
137
138 return features;
139 }
140
141
142 /* Returns the value for a specific register on the cpuid entry
143 */
144 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145 {
146 uint32_t ret = 0;
147 switch (reg) {
148 case R_EAX:
149 ret = entry->eax;
150 break;
151 case R_EBX:
152 ret = entry->ebx;
153 break;
154 case R_ECX:
155 ret = entry->ecx;
156 break;
157 case R_EDX:
158 ret = entry->edx;
159 break;
160 }
161 return ret;
162 }
163
164 /* Find matching entry for function/index on kvm_cpuid2 struct
165 */
166 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167 uint32_t function,
168 uint32_t index)
169 {
170 int i;
171 for (i = 0; i < cpuid->nent; ++i) {
172 if (cpuid->entries[i].function == function &&
173 cpuid->entries[i].index == index) {
174 return &cpuid->entries[i];
175 }
176 }
177 /* not found: */
178 return NULL;
179 }
180
181 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182 uint32_t index, int reg)
183 {
184 struct kvm_cpuid2 *cpuid;
185 uint32_t ret = 0;
186 uint32_t cpuid_1_edx;
187 bool found = false;
188
189 cpuid = get_supported_cpuid(s);
190
191 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192 if (entry) {
193 found = true;
194 ret = cpuid_entry_get_reg(entry, reg);
195 }
196
197 /* Fixups for the data returned by KVM, below */
198
199 if (function == 1 && reg == R_EDX) {
200 /* KVM before 2.6.30 misreports the following features */
201 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202 } else if (function == 1 && reg == R_ECX) {
203 /* We can set the hypervisor flag, even if KVM does not return it on
204 * GET_SUPPORTED_CPUID
205 */
206 ret |= CPUID_EXT_HYPERVISOR;
207 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209 * and the irqchip is in the kernel.
210 */
211 if (kvm_irqchip_in_kernel() &&
212 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
214 }
215
216 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217 * without the in-kernel irqchip
218 */
219 if (!kvm_irqchip_in_kernel()) {
220 ret &= ~CPUID_EXT_X2APIC;
221 }
222 } else if (function == 0x80000001 && reg == R_EDX) {
223 /* On Intel, kvm returns cpuid according to the Intel spec,
224 * so add missing bits according to the AMD spec:
225 */
226 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
228 }
229
230 g_free(cpuid);
231
232 /* fallback for older kernels */
233 if ((function == KVM_CPUID_FEATURES) && !found) {
234 ret = get_para_features(s);
235 }
236
237 return ret;
238 }
239
240 typedef struct HWPoisonPage {
241 ram_addr_t ram_addr;
242 QLIST_ENTRY(HWPoisonPage) list;
243 } HWPoisonPage;
244
245 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247
248 static void kvm_unpoison_all(void *param)
249 {
250 HWPoisonPage *page, *next_page;
251
252 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253 QLIST_REMOVE(page, list);
254 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255 g_free(page);
256 }
257 }
258
259 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 {
261 HWPoisonPage *page;
262
263 QLIST_FOREACH(page, &hwpoison_page_list, list) {
264 if (page->ram_addr == ram_addr) {
265 return;
266 }
267 }
268 page = g_malloc(sizeof(HWPoisonPage));
269 page->ram_addr = ram_addr;
270 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
271 }
272
273 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274 int *max_banks)
275 {
276 int r;
277
278 r = kvm_check_extension(s, KVM_CAP_MCE);
279 if (r > 0) {
280 *max_banks = r;
281 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282 }
283 return -ENOSYS;
284 }
285
286 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287 {
288 CPUX86State *env = &cpu->env;
289 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291 uint64_t mcg_status = MCG_STATUS_MCIP;
292
293 if (code == BUS_MCEERR_AR) {
294 status |= MCI_STATUS_AR | 0x134;
295 mcg_status |= MCG_STATUS_EIPV;
296 } else {
297 status |= 0xc0;
298 mcg_status |= MCG_STATUS_RIPV;
299 }
300 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301 (MCM_ADDR_PHYS << 6) | 0xc,
302 cpu_x86_support_mca_broadcast(env) ?
303 MCE_INJECT_BROADCAST : 0);
304 }
305
306 static void hardware_memory_error(void)
307 {
308 fprintf(stderr, "Hardware memory error!\n");
309 exit(1);
310 }
311
312 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313 {
314 X86CPU *cpu = X86_CPU(c);
315 CPUX86State *env = &cpu->env;
316 ram_addr_t ram_addr;
317 hwaddr paddr;
318
319 if ((env->mcg_cap & MCG_SER_P) && addr
320 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
322 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323 fprintf(stderr, "Hardware memory error for memory used by "
324 "QEMU itself instead of guest system!\n");
325 /* Hope we are lucky for AO MCE */
326 if (code == BUS_MCEERR_AO) {
327 return 0;
328 } else {
329 hardware_memory_error();
330 }
331 }
332 kvm_hwpoison_page_add(ram_addr);
333 kvm_mce_inject(cpu, paddr, code);
334 } else {
335 if (code == BUS_MCEERR_AO) {
336 return 0;
337 } else if (code == BUS_MCEERR_AR) {
338 hardware_memory_error();
339 } else {
340 return 1;
341 }
342 }
343 return 0;
344 }
345
346 int kvm_arch_on_sigbus(int code, void *addr)
347 {
348 X86CPU *cpu = X86_CPU(first_cpu);
349
350 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
351 ram_addr_t ram_addr;
352 hwaddr paddr;
353
354 /* Hope we are lucky for AO MCE */
355 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
356 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
357 addr, &paddr)) {
358 fprintf(stderr, "Hardware memory error for memory used by "
359 "QEMU itself instead of guest system!: %p\n", addr);
360 return 0;
361 }
362 kvm_hwpoison_page_add(ram_addr);
363 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
364 } else {
365 if (code == BUS_MCEERR_AO) {
366 return 0;
367 } else if (code == BUS_MCEERR_AR) {
368 hardware_memory_error();
369 } else {
370 return 1;
371 }
372 }
373 return 0;
374 }
375
376 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
377 {
378 CPUX86State *env = &cpu->env;
379
380 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
381 unsigned int bank, bank_num = env->mcg_cap & 0xff;
382 struct kvm_x86_mce mce;
383
384 env->exception_injected = -1;
385
386 /*
387 * There must be at least one bank in use if an MCE is pending.
388 * Find it and use its values for the event injection.
389 */
390 for (bank = 0; bank < bank_num; bank++) {
391 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
392 break;
393 }
394 }
395 assert(bank < bank_num);
396
397 mce.bank = bank;
398 mce.status = env->mce_banks[bank * 4 + 1];
399 mce.mcg_status = env->mcg_status;
400 mce.addr = env->mce_banks[bank * 4 + 2];
401 mce.misc = env->mce_banks[bank * 4 + 3];
402
403 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
404 }
405 return 0;
406 }
407
408 static void cpu_update_state(void *opaque, int running, RunState state)
409 {
410 CPUX86State *env = opaque;
411
412 if (running) {
413 env->tsc_valid = false;
414 }
415 }
416
417 unsigned long kvm_arch_vcpu_id(CPUState *cs)
418 {
419 X86CPU *cpu = X86_CPU(cs);
420 return cpu->env.cpuid_apic_id;
421 }
422
423 #ifndef KVM_CPUID_SIGNATURE_NEXT
424 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
425 #endif
426
427 static bool hyperv_hypercall_available(X86CPU *cpu)
428 {
429 return cpu->hyperv_vapic ||
430 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
431 }
432
433 static bool hyperv_enabled(X86CPU *cpu)
434 {
435 return hyperv_hypercall_available(cpu) ||
436 cpu->hyperv_relaxed_timing;
437 }
438
439 #define KVM_MAX_CPUID_ENTRIES 100
440
441 int kvm_arch_init_vcpu(CPUState *cs)
442 {
443 struct {
444 struct kvm_cpuid2 cpuid;
445 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
446 } QEMU_PACKED cpuid_data;
447 X86CPU *cpu = X86_CPU(cs);
448 CPUX86State *env = &cpu->env;
449 uint32_t limit, i, j, cpuid_i;
450 uint32_t unused;
451 struct kvm_cpuid_entry2 *c;
452 uint32_t signature[3];
453 int r;
454
455 cpuid_i = 0;
456
457 /* Paravirtualization CPUIDs */
458 c = &cpuid_data.entries[cpuid_i++];
459 memset(c, 0, sizeof(*c));
460 c->function = KVM_CPUID_SIGNATURE;
461 if (!hyperv_enabled(cpu)) {
462 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
463 c->eax = 0;
464 } else {
465 memcpy(signature, "Microsoft Hv", 12);
466 c->eax = HYPERV_CPUID_MIN;
467 }
468 c->ebx = signature[0];
469 c->ecx = signature[1];
470 c->edx = signature[2];
471
472 c = &cpuid_data.entries[cpuid_i++];
473 memset(c, 0, sizeof(*c));
474 c->function = KVM_CPUID_FEATURES;
475 c->eax = env->features[FEAT_KVM];
476
477 if (hyperv_enabled(cpu)) {
478 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
479 c->eax = signature[0];
480
481 c = &cpuid_data.entries[cpuid_i++];
482 memset(c, 0, sizeof(*c));
483 c->function = HYPERV_CPUID_VERSION;
484 c->eax = 0x00001bbc;
485 c->ebx = 0x00060001;
486
487 c = &cpuid_data.entries[cpuid_i++];
488 memset(c, 0, sizeof(*c));
489 c->function = HYPERV_CPUID_FEATURES;
490 if (cpu->hyperv_relaxed_timing) {
491 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
492 }
493 if (cpu->hyperv_vapic) {
494 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
495 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
496 }
497
498 c = &cpuid_data.entries[cpuid_i++];
499 memset(c, 0, sizeof(*c));
500 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
501 if (cpu->hyperv_relaxed_timing) {
502 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
503 }
504 if (cpu->hyperv_vapic) {
505 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
506 }
507 c->ebx = cpu->hyperv_spinlock_attempts;
508
509 c = &cpuid_data.entries[cpuid_i++];
510 memset(c, 0, sizeof(*c));
511 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
512 c->eax = 0x40;
513 c->ebx = 0x40;
514
515 c = &cpuid_data.entries[cpuid_i++];
516 memset(c, 0, sizeof(*c));
517 c->function = KVM_CPUID_SIGNATURE_NEXT;
518 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
519 c->eax = 0;
520 c->ebx = signature[0];
521 c->ecx = signature[1];
522 c->edx = signature[2];
523 }
524
525 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
526
527 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
528
529 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
530
531 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
532
533 for (i = 0; i <= limit; i++) {
534 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
535 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
536 abort();
537 }
538 c = &cpuid_data.entries[cpuid_i++];
539
540 switch (i) {
541 case 2: {
542 /* Keep reading function 2 till all the input is received */
543 int times;
544
545 c->function = i;
546 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
547 KVM_CPUID_FLAG_STATE_READ_NEXT;
548 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
549 times = c->eax & 0xff;
550
551 for (j = 1; j < times; ++j) {
552 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
553 fprintf(stderr, "cpuid_data is full, no space for "
554 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
555 abort();
556 }
557 c = &cpuid_data.entries[cpuid_i++];
558 c->function = i;
559 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
560 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
561 }
562 break;
563 }
564 case 4:
565 case 0xb:
566 case 0xd:
567 for (j = 0; ; j++) {
568 if (i == 0xd && j == 64) {
569 break;
570 }
571 c->function = i;
572 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
573 c->index = j;
574 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
575
576 if (i == 4 && c->eax == 0) {
577 break;
578 }
579 if (i == 0xb && !(c->ecx & 0xff00)) {
580 break;
581 }
582 if (i == 0xd && c->eax == 0) {
583 continue;
584 }
585 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
586 fprintf(stderr, "cpuid_data is full, no space for "
587 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
588 abort();
589 }
590 c = &cpuid_data.entries[cpuid_i++];
591 }
592 break;
593 default:
594 c->function = i;
595 c->flags = 0;
596 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
597 break;
598 }
599 }
600 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
601
602 for (i = 0x80000000; i <= limit; i++) {
603 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
604 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
605 abort();
606 }
607 c = &cpuid_data.entries[cpuid_i++];
608
609 c->function = i;
610 c->flags = 0;
611 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
612 }
613
614 /* Call Centaur's CPUID instructions they are supported. */
615 if (env->cpuid_xlevel2 > 0) {
616 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
617
618 for (i = 0xC0000000; i <= limit; i++) {
619 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
620 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
621 abort();
622 }
623 c = &cpuid_data.entries[cpuid_i++];
624
625 c->function = i;
626 c->flags = 0;
627 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
628 }
629 }
630
631 cpuid_data.cpuid.nent = cpuid_i;
632
633 if (((env->cpuid_version >> 8)&0xF) >= 6
634 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
635 (CPUID_MCE | CPUID_MCA)
636 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
637 uint64_t mcg_cap;
638 int banks;
639 int ret;
640
641 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
642 if (ret < 0) {
643 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
644 return ret;
645 }
646
647 if (banks > MCE_BANKS_DEF) {
648 banks = MCE_BANKS_DEF;
649 }
650 mcg_cap &= MCE_CAP_DEF;
651 mcg_cap |= banks;
652 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
653 if (ret < 0) {
654 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
655 return ret;
656 }
657
658 env->mcg_cap = mcg_cap;
659 }
660
661 qemu_add_vm_change_state_handler(cpu_update_state, env);
662
663 cpuid_data.cpuid.padding = 0;
664 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
665 if (r) {
666 return r;
667 }
668
669 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
670 if (r && env->tsc_khz) {
671 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
672 if (r < 0) {
673 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
674 return r;
675 }
676 }
677
678 if (kvm_has_xsave()) {
679 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
680 }
681
682 return 0;
683 }
684
685 void kvm_arch_reset_vcpu(CPUState *cs)
686 {
687 X86CPU *cpu = X86_CPU(cs);
688 CPUX86State *env = &cpu->env;
689
690 env->exception_injected = -1;
691 env->interrupt_injected = -1;
692 env->xcr0 = 1;
693 if (kvm_irqchip_in_kernel()) {
694 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
695 KVM_MP_STATE_UNINITIALIZED;
696 } else {
697 env->mp_state = KVM_MP_STATE_RUNNABLE;
698 }
699 }
700
701 static int kvm_get_supported_msrs(KVMState *s)
702 {
703 static int kvm_supported_msrs;
704 int ret = 0;
705
706 /* first time */
707 if (kvm_supported_msrs == 0) {
708 struct kvm_msr_list msr_list, *kvm_msr_list;
709
710 kvm_supported_msrs = -1;
711
712 /* Obtain MSR list from KVM. These are the MSRs that we must
713 * save/restore */
714 msr_list.nmsrs = 0;
715 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
716 if (ret < 0 && ret != -E2BIG) {
717 return ret;
718 }
719 /* Old kernel modules had a bug and could write beyond the provided
720 memory. Allocate at least a safe amount of 1K. */
721 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
722 msr_list.nmsrs *
723 sizeof(msr_list.indices[0])));
724
725 kvm_msr_list->nmsrs = msr_list.nmsrs;
726 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
727 if (ret >= 0) {
728 int i;
729
730 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
731 if (kvm_msr_list->indices[i] == MSR_STAR) {
732 has_msr_star = true;
733 continue;
734 }
735 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
736 has_msr_hsave_pa = true;
737 continue;
738 }
739 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
740 has_msr_tsc_adjust = true;
741 continue;
742 }
743 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
744 has_msr_tsc_deadline = true;
745 continue;
746 }
747 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
748 has_msr_misc_enable = true;
749 continue;
750 }
751 }
752 }
753
754 g_free(kvm_msr_list);
755 }
756
757 return ret;
758 }
759
760 int kvm_arch_init(KVMState *s)
761 {
762 uint64_t identity_base = 0xfffbc000;
763 uint64_t shadow_mem;
764 int ret;
765 struct utsname utsname;
766
767 ret = kvm_get_supported_msrs(s);
768 if (ret < 0) {
769 return ret;
770 }
771
772 uname(&utsname);
773 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
774
775 /*
776 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
777 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
778 * Since these must be part of guest physical memory, we need to allocate
779 * them, both by setting their start addresses in the kernel and by
780 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
781 *
782 * Older KVM versions may not support setting the identity map base. In
783 * that case we need to stick with the default, i.e. a 256K maximum BIOS
784 * size.
785 */
786 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
787 /* Allows up to 16M BIOSes. */
788 identity_base = 0xfeffc000;
789
790 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
791 if (ret < 0) {
792 return ret;
793 }
794 }
795
796 /* Set TSS base one page after EPT identity map. */
797 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
798 if (ret < 0) {
799 return ret;
800 }
801
802 /* Tell fw_cfg to notify the BIOS to reserve the range. */
803 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
804 if (ret < 0) {
805 fprintf(stderr, "e820_add_entry() table is full\n");
806 return ret;
807 }
808 qemu_register_reset(kvm_unpoison_all, NULL);
809
810 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
811 "kvm_shadow_mem", -1);
812 if (shadow_mem != -1) {
813 shadow_mem /= 4096;
814 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
815 if (ret < 0) {
816 return ret;
817 }
818 }
819 return 0;
820 }
821
822 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
823 {
824 lhs->selector = rhs->selector;
825 lhs->base = rhs->base;
826 lhs->limit = rhs->limit;
827 lhs->type = 3;
828 lhs->present = 1;
829 lhs->dpl = 3;
830 lhs->db = 0;
831 lhs->s = 1;
832 lhs->l = 0;
833 lhs->g = 0;
834 lhs->avl = 0;
835 lhs->unusable = 0;
836 }
837
838 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
839 {
840 unsigned flags = rhs->flags;
841 lhs->selector = rhs->selector;
842 lhs->base = rhs->base;
843 lhs->limit = rhs->limit;
844 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
845 lhs->present = (flags & DESC_P_MASK) != 0;
846 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
847 lhs->db = (flags >> DESC_B_SHIFT) & 1;
848 lhs->s = (flags & DESC_S_MASK) != 0;
849 lhs->l = (flags >> DESC_L_SHIFT) & 1;
850 lhs->g = (flags & DESC_G_MASK) != 0;
851 lhs->avl = (flags & DESC_AVL_MASK) != 0;
852 lhs->unusable = 0;
853 lhs->padding = 0;
854 }
855
856 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
857 {
858 lhs->selector = rhs->selector;
859 lhs->base = rhs->base;
860 lhs->limit = rhs->limit;
861 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
862 (rhs->present * DESC_P_MASK) |
863 (rhs->dpl << DESC_DPL_SHIFT) |
864 (rhs->db << DESC_B_SHIFT) |
865 (rhs->s * DESC_S_MASK) |
866 (rhs->l << DESC_L_SHIFT) |
867 (rhs->g * DESC_G_MASK) |
868 (rhs->avl * DESC_AVL_MASK);
869 }
870
871 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
872 {
873 if (set) {
874 *kvm_reg = *qemu_reg;
875 } else {
876 *qemu_reg = *kvm_reg;
877 }
878 }
879
880 static int kvm_getput_regs(X86CPU *cpu, int set)
881 {
882 CPUX86State *env = &cpu->env;
883 struct kvm_regs regs;
884 int ret = 0;
885
886 if (!set) {
887 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
888 if (ret < 0) {
889 return ret;
890 }
891 }
892
893 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
894 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
895 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
896 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
897 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
898 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
899 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
900 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
901 #ifdef TARGET_X86_64
902 kvm_getput_reg(&regs.r8, &env->regs[8], set);
903 kvm_getput_reg(&regs.r9, &env->regs[9], set);
904 kvm_getput_reg(&regs.r10, &env->regs[10], set);
905 kvm_getput_reg(&regs.r11, &env->regs[11], set);
906 kvm_getput_reg(&regs.r12, &env->regs[12], set);
907 kvm_getput_reg(&regs.r13, &env->regs[13], set);
908 kvm_getput_reg(&regs.r14, &env->regs[14], set);
909 kvm_getput_reg(&regs.r15, &env->regs[15], set);
910 #endif
911
912 kvm_getput_reg(&regs.rflags, &env->eflags, set);
913 kvm_getput_reg(&regs.rip, &env->eip, set);
914
915 if (set) {
916 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
917 }
918
919 return ret;
920 }
921
922 static int kvm_put_fpu(X86CPU *cpu)
923 {
924 CPUX86State *env = &cpu->env;
925 struct kvm_fpu fpu;
926 int i;
927
928 memset(&fpu, 0, sizeof fpu);
929 fpu.fsw = env->fpus & ~(7 << 11);
930 fpu.fsw |= (env->fpstt & 7) << 11;
931 fpu.fcw = env->fpuc;
932 fpu.last_opcode = env->fpop;
933 fpu.last_ip = env->fpip;
934 fpu.last_dp = env->fpdp;
935 for (i = 0; i < 8; ++i) {
936 fpu.ftwx |= (!env->fptags[i]) << i;
937 }
938 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
939 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
940 fpu.mxcsr = env->mxcsr;
941
942 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
943 }
944
945 #define XSAVE_FCW_FSW 0
946 #define XSAVE_FTW_FOP 1
947 #define XSAVE_CWD_RIP 2
948 #define XSAVE_CWD_RDP 4
949 #define XSAVE_MXCSR 6
950 #define XSAVE_ST_SPACE 8
951 #define XSAVE_XMM_SPACE 40
952 #define XSAVE_XSTATE_BV 128
953 #define XSAVE_YMMH_SPACE 144
954
955 static int kvm_put_xsave(X86CPU *cpu)
956 {
957 CPUX86State *env = &cpu->env;
958 struct kvm_xsave* xsave = env->kvm_xsave_buf;
959 uint16_t cwd, swd, twd;
960 int i, r;
961
962 if (!kvm_has_xsave()) {
963 return kvm_put_fpu(cpu);
964 }
965
966 memset(xsave, 0, sizeof(struct kvm_xsave));
967 twd = 0;
968 swd = env->fpus & ~(7 << 11);
969 swd |= (env->fpstt & 7) << 11;
970 cwd = env->fpuc;
971 for (i = 0; i < 8; ++i) {
972 twd |= (!env->fptags[i]) << i;
973 }
974 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
975 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
976 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
977 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
978 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
979 sizeof env->fpregs);
980 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
981 sizeof env->xmm_regs);
982 xsave->region[XSAVE_MXCSR] = env->mxcsr;
983 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
984 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
985 sizeof env->ymmh_regs);
986 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
987 return r;
988 }
989
990 static int kvm_put_xcrs(X86CPU *cpu)
991 {
992 CPUX86State *env = &cpu->env;
993 struct kvm_xcrs xcrs;
994
995 if (!kvm_has_xcrs()) {
996 return 0;
997 }
998
999 xcrs.nr_xcrs = 1;
1000 xcrs.flags = 0;
1001 xcrs.xcrs[0].xcr = 0;
1002 xcrs.xcrs[0].value = env->xcr0;
1003 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1004 }
1005
1006 static int kvm_put_sregs(X86CPU *cpu)
1007 {
1008 CPUX86State *env = &cpu->env;
1009 struct kvm_sregs sregs;
1010
1011 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1012 if (env->interrupt_injected >= 0) {
1013 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1014 (uint64_t)1 << (env->interrupt_injected % 64);
1015 }
1016
1017 if ((env->eflags & VM_MASK)) {
1018 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1019 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1020 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1021 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1022 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1023 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1024 } else {
1025 set_seg(&sregs.cs, &env->segs[R_CS]);
1026 set_seg(&sregs.ds, &env->segs[R_DS]);
1027 set_seg(&sregs.es, &env->segs[R_ES]);
1028 set_seg(&sregs.fs, &env->segs[R_FS]);
1029 set_seg(&sregs.gs, &env->segs[R_GS]);
1030 set_seg(&sregs.ss, &env->segs[R_SS]);
1031 }
1032
1033 set_seg(&sregs.tr, &env->tr);
1034 set_seg(&sregs.ldt, &env->ldt);
1035
1036 sregs.idt.limit = env->idt.limit;
1037 sregs.idt.base = env->idt.base;
1038 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1039 sregs.gdt.limit = env->gdt.limit;
1040 sregs.gdt.base = env->gdt.base;
1041 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1042
1043 sregs.cr0 = env->cr[0];
1044 sregs.cr2 = env->cr[2];
1045 sregs.cr3 = env->cr[3];
1046 sregs.cr4 = env->cr[4];
1047
1048 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1049 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1050
1051 sregs.efer = env->efer;
1052
1053 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1054 }
1055
1056 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1057 uint32_t index, uint64_t value)
1058 {
1059 entry->index = index;
1060 entry->data = value;
1061 }
1062
1063 static int kvm_put_msrs(X86CPU *cpu, int level)
1064 {
1065 CPUX86State *env = &cpu->env;
1066 struct {
1067 struct kvm_msrs info;
1068 struct kvm_msr_entry entries[100];
1069 } msr_data;
1070 struct kvm_msr_entry *msrs = msr_data.entries;
1071 int n = 0;
1072
1073 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1074 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1075 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1076 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1077 if (has_msr_star) {
1078 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1079 }
1080 if (has_msr_hsave_pa) {
1081 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1082 }
1083 if (has_msr_tsc_adjust) {
1084 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1085 }
1086 if (has_msr_tsc_deadline) {
1087 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1088 }
1089 if (has_msr_misc_enable) {
1090 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1091 env->msr_ia32_misc_enable);
1092 }
1093 #ifdef TARGET_X86_64
1094 if (lm_capable_kernel) {
1095 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1096 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1097 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1098 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1099 }
1100 #endif
1101 if (level == KVM_PUT_FULL_STATE) {
1102 /*
1103 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1104 * writeback. Until this is fixed, we only write the offset to SMP
1105 * guests after migration, desynchronizing the VCPUs, but avoiding
1106 * huge jump-backs that would occur without any writeback at all.
1107 */
1108 if (smp_cpus == 1 || env->tsc != 0) {
1109 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1110 }
1111 }
1112 /*
1113 * The following paravirtual MSRs have side effects on the guest or are
1114 * too heavy for normal writeback. Limit them to reset or full state
1115 * updates.
1116 */
1117 if (level >= KVM_PUT_RESET_STATE) {
1118 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1119 env->system_time_msr);
1120 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1121 if (has_msr_async_pf_en) {
1122 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1123 env->async_pf_en_msr);
1124 }
1125 if (has_msr_pv_eoi_en) {
1126 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1127 env->pv_eoi_en_msr);
1128 }
1129 if (has_msr_kvm_steal_time) {
1130 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1131 env->steal_time_msr);
1132 }
1133 if (hyperv_hypercall_available(cpu)) {
1134 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1135 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1136 }
1137 if (cpu->hyperv_vapic) {
1138 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1139 }
1140 }
1141 if (env->mcg_cap) {
1142 int i;
1143
1144 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1145 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1146 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1147 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1148 }
1149 }
1150
1151 msr_data.info.nmsrs = n;
1152
1153 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1154
1155 }
1156
1157
1158 static int kvm_get_fpu(X86CPU *cpu)
1159 {
1160 CPUX86State *env = &cpu->env;
1161 struct kvm_fpu fpu;
1162 int i, ret;
1163
1164 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1165 if (ret < 0) {
1166 return ret;
1167 }
1168
1169 env->fpstt = (fpu.fsw >> 11) & 7;
1170 env->fpus = fpu.fsw;
1171 env->fpuc = fpu.fcw;
1172 env->fpop = fpu.last_opcode;
1173 env->fpip = fpu.last_ip;
1174 env->fpdp = fpu.last_dp;
1175 for (i = 0; i < 8; ++i) {
1176 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1177 }
1178 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1179 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1180 env->mxcsr = fpu.mxcsr;
1181
1182 return 0;
1183 }
1184
1185 static int kvm_get_xsave(X86CPU *cpu)
1186 {
1187 CPUX86State *env = &cpu->env;
1188 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1189 int ret, i;
1190 uint16_t cwd, swd, twd;
1191
1192 if (!kvm_has_xsave()) {
1193 return kvm_get_fpu(cpu);
1194 }
1195
1196 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1197 if (ret < 0) {
1198 return ret;
1199 }
1200
1201 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1202 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1203 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1204 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1205 env->fpstt = (swd >> 11) & 7;
1206 env->fpus = swd;
1207 env->fpuc = cwd;
1208 for (i = 0; i < 8; ++i) {
1209 env->fptags[i] = !((twd >> i) & 1);
1210 }
1211 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1212 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1213 env->mxcsr = xsave->region[XSAVE_MXCSR];
1214 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1215 sizeof env->fpregs);
1216 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1217 sizeof env->xmm_regs);
1218 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1219 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1220 sizeof env->ymmh_regs);
1221 return 0;
1222 }
1223
1224 static int kvm_get_xcrs(X86CPU *cpu)
1225 {
1226 CPUX86State *env = &cpu->env;
1227 int i, ret;
1228 struct kvm_xcrs xcrs;
1229
1230 if (!kvm_has_xcrs()) {
1231 return 0;
1232 }
1233
1234 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1235 if (ret < 0) {
1236 return ret;
1237 }
1238
1239 for (i = 0; i < xcrs.nr_xcrs; i++) {
1240 /* Only support xcr0 now */
1241 if (xcrs.xcrs[0].xcr == 0) {
1242 env->xcr0 = xcrs.xcrs[0].value;
1243 break;
1244 }
1245 }
1246 return 0;
1247 }
1248
1249 static int kvm_get_sregs(X86CPU *cpu)
1250 {
1251 CPUX86State *env = &cpu->env;
1252 struct kvm_sregs sregs;
1253 uint32_t hflags;
1254 int bit, i, ret;
1255
1256 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1257 if (ret < 0) {
1258 return ret;
1259 }
1260
1261 /* There can only be one pending IRQ set in the bitmap at a time, so try
1262 to find it and save its number instead (-1 for none). */
1263 env->interrupt_injected = -1;
1264 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1265 if (sregs.interrupt_bitmap[i]) {
1266 bit = ctz64(sregs.interrupt_bitmap[i]);
1267 env->interrupt_injected = i * 64 + bit;
1268 break;
1269 }
1270 }
1271
1272 get_seg(&env->segs[R_CS], &sregs.cs);
1273 get_seg(&env->segs[R_DS], &sregs.ds);
1274 get_seg(&env->segs[R_ES], &sregs.es);
1275 get_seg(&env->segs[R_FS], &sregs.fs);
1276 get_seg(&env->segs[R_GS], &sregs.gs);
1277 get_seg(&env->segs[R_SS], &sregs.ss);
1278
1279 get_seg(&env->tr, &sregs.tr);
1280 get_seg(&env->ldt, &sregs.ldt);
1281
1282 env->idt.limit = sregs.idt.limit;
1283 env->idt.base = sregs.idt.base;
1284 env->gdt.limit = sregs.gdt.limit;
1285 env->gdt.base = sregs.gdt.base;
1286
1287 env->cr[0] = sregs.cr0;
1288 env->cr[2] = sregs.cr2;
1289 env->cr[3] = sregs.cr3;
1290 env->cr[4] = sregs.cr4;
1291
1292 env->efer = sregs.efer;
1293
1294 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1295
1296 #define HFLAG_COPY_MASK \
1297 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1298 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1299 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1300 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1301
1302 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1303 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1304 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1305 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1306 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1307 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1308 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1309
1310 if (env->efer & MSR_EFER_LMA) {
1311 hflags |= HF_LMA_MASK;
1312 }
1313
1314 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1315 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1316 } else {
1317 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1318 (DESC_B_SHIFT - HF_CS32_SHIFT);
1319 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1320 (DESC_B_SHIFT - HF_SS32_SHIFT);
1321 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1322 !(hflags & HF_CS32_MASK)) {
1323 hflags |= HF_ADDSEG_MASK;
1324 } else {
1325 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1326 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1327 }
1328 }
1329 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1330
1331 return 0;
1332 }
1333
1334 static int kvm_get_msrs(X86CPU *cpu)
1335 {
1336 CPUX86State *env = &cpu->env;
1337 struct {
1338 struct kvm_msrs info;
1339 struct kvm_msr_entry entries[100];
1340 } msr_data;
1341 struct kvm_msr_entry *msrs = msr_data.entries;
1342 int ret, i, n;
1343
1344 n = 0;
1345 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1346 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1347 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1348 msrs[n++].index = MSR_PAT;
1349 if (has_msr_star) {
1350 msrs[n++].index = MSR_STAR;
1351 }
1352 if (has_msr_hsave_pa) {
1353 msrs[n++].index = MSR_VM_HSAVE_PA;
1354 }
1355 if (has_msr_tsc_adjust) {
1356 msrs[n++].index = MSR_TSC_ADJUST;
1357 }
1358 if (has_msr_tsc_deadline) {
1359 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1360 }
1361 if (has_msr_misc_enable) {
1362 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1363 }
1364
1365 if (!env->tsc_valid) {
1366 msrs[n++].index = MSR_IA32_TSC;
1367 env->tsc_valid = !runstate_is_running();
1368 }
1369
1370 #ifdef TARGET_X86_64
1371 if (lm_capable_kernel) {
1372 msrs[n++].index = MSR_CSTAR;
1373 msrs[n++].index = MSR_KERNELGSBASE;
1374 msrs[n++].index = MSR_FMASK;
1375 msrs[n++].index = MSR_LSTAR;
1376 }
1377 #endif
1378 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1379 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1380 if (has_msr_async_pf_en) {
1381 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1382 }
1383 if (has_msr_pv_eoi_en) {
1384 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1385 }
1386 if (has_msr_kvm_steal_time) {
1387 msrs[n++].index = MSR_KVM_STEAL_TIME;
1388 }
1389
1390 if (env->mcg_cap) {
1391 msrs[n++].index = MSR_MCG_STATUS;
1392 msrs[n++].index = MSR_MCG_CTL;
1393 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1394 msrs[n++].index = MSR_MC0_CTL + i;
1395 }
1396 }
1397
1398 msr_data.info.nmsrs = n;
1399 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1400 if (ret < 0) {
1401 return ret;
1402 }
1403
1404 for (i = 0; i < ret; i++) {
1405 switch (msrs[i].index) {
1406 case MSR_IA32_SYSENTER_CS:
1407 env->sysenter_cs = msrs[i].data;
1408 break;
1409 case MSR_IA32_SYSENTER_ESP:
1410 env->sysenter_esp = msrs[i].data;
1411 break;
1412 case MSR_IA32_SYSENTER_EIP:
1413 env->sysenter_eip = msrs[i].data;
1414 break;
1415 case MSR_PAT:
1416 env->pat = msrs[i].data;
1417 break;
1418 case MSR_STAR:
1419 env->star = msrs[i].data;
1420 break;
1421 #ifdef TARGET_X86_64
1422 case MSR_CSTAR:
1423 env->cstar = msrs[i].data;
1424 break;
1425 case MSR_KERNELGSBASE:
1426 env->kernelgsbase = msrs[i].data;
1427 break;
1428 case MSR_FMASK:
1429 env->fmask = msrs[i].data;
1430 break;
1431 case MSR_LSTAR:
1432 env->lstar = msrs[i].data;
1433 break;
1434 #endif
1435 case MSR_IA32_TSC:
1436 env->tsc = msrs[i].data;
1437 break;
1438 case MSR_TSC_ADJUST:
1439 env->tsc_adjust = msrs[i].data;
1440 break;
1441 case MSR_IA32_TSCDEADLINE:
1442 env->tsc_deadline = msrs[i].data;
1443 break;
1444 case MSR_VM_HSAVE_PA:
1445 env->vm_hsave = msrs[i].data;
1446 break;
1447 case MSR_KVM_SYSTEM_TIME:
1448 env->system_time_msr = msrs[i].data;
1449 break;
1450 case MSR_KVM_WALL_CLOCK:
1451 env->wall_clock_msr = msrs[i].data;
1452 break;
1453 case MSR_MCG_STATUS:
1454 env->mcg_status = msrs[i].data;
1455 break;
1456 case MSR_MCG_CTL:
1457 env->mcg_ctl = msrs[i].data;
1458 break;
1459 case MSR_IA32_MISC_ENABLE:
1460 env->msr_ia32_misc_enable = msrs[i].data;
1461 break;
1462 default:
1463 if (msrs[i].index >= MSR_MC0_CTL &&
1464 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1465 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1466 }
1467 break;
1468 case MSR_KVM_ASYNC_PF_EN:
1469 env->async_pf_en_msr = msrs[i].data;
1470 break;
1471 case MSR_KVM_PV_EOI_EN:
1472 env->pv_eoi_en_msr = msrs[i].data;
1473 break;
1474 case MSR_KVM_STEAL_TIME:
1475 env->steal_time_msr = msrs[i].data;
1476 break;
1477 }
1478 }
1479
1480 return 0;
1481 }
1482
1483 static int kvm_put_mp_state(X86CPU *cpu)
1484 {
1485 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1486
1487 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1488 }
1489
1490 static int kvm_get_mp_state(X86CPU *cpu)
1491 {
1492 CPUState *cs = CPU(cpu);
1493 CPUX86State *env = &cpu->env;
1494 struct kvm_mp_state mp_state;
1495 int ret;
1496
1497 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1498 if (ret < 0) {
1499 return ret;
1500 }
1501 env->mp_state = mp_state.mp_state;
1502 if (kvm_irqchip_in_kernel()) {
1503 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1504 }
1505 return 0;
1506 }
1507
1508 static int kvm_get_apic(X86CPU *cpu)
1509 {
1510 CPUX86State *env = &cpu->env;
1511 DeviceState *apic = env->apic_state;
1512 struct kvm_lapic_state kapic;
1513 int ret;
1514
1515 if (apic && kvm_irqchip_in_kernel()) {
1516 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1517 if (ret < 0) {
1518 return ret;
1519 }
1520
1521 kvm_get_apic_state(apic, &kapic);
1522 }
1523 return 0;
1524 }
1525
1526 static int kvm_put_apic(X86CPU *cpu)
1527 {
1528 CPUX86State *env = &cpu->env;
1529 DeviceState *apic = env->apic_state;
1530 struct kvm_lapic_state kapic;
1531
1532 if (apic && kvm_irqchip_in_kernel()) {
1533 kvm_put_apic_state(apic, &kapic);
1534
1535 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1536 }
1537 return 0;
1538 }
1539
1540 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1541 {
1542 CPUX86State *env = &cpu->env;
1543 struct kvm_vcpu_events events;
1544
1545 if (!kvm_has_vcpu_events()) {
1546 return 0;
1547 }
1548
1549 events.exception.injected = (env->exception_injected >= 0);
1550 events.exception.nr = env->exception_injected;
1551 events.exception.has_error_code = env->has_error_code;
1552 events.exception.error_code = env->error_code;
1553 events.exception.pad = 0;
1554
1555 events.interrupt.injected = (env->interrupt_injected >= 0);
1556 events.interrupt.nr = env->interrupt_injected;
1557 events.interrupt.soft = env->soft_interrupt;
1558
1559 events.nmi.injected = env->nmi_injected;
1560 events.nmi.pending = env->nmi_pending;
1561 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1562 events.nmi.pad = 0;
1563
1564 events.sipi_vector = env->sipi_vector;
1565
1566 events.flags = 0;
1567 if (level >= KVM_PUT_RESET_STATE) {
1568 events.flags |=
1569 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1570 }
1571
1572 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1573 }
1574
1575 static int kvm_get_vcpu_events(X86CPU *cpu)
1576 {
1577 CPUX86State *env = &cpu->env;
1578 struct kvm_vcpu_events events;
1579 int ret;
1580
1581 if (!kvm_has_vcpu_events()) {
1582 return 0;
1583 }
1584
1585 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1586 if (ret < 0) {
1587 return ret;
1588 }
1589 env->exception_injected =
1590 events.exception.injected ? events.exception.nr : -1;
1591 env->has_error_code = events.exception.has_error_code;
1592 env->error_code = events.exception.error_code;
1593
1594 env->interrupt_injected =
1595 events.interrupt.injected ? events.interrupt.nr : -1;
1596 env->soft_interrupt = events.interrupt.soft;
1597
1598 env->nmi_injected = events.nmi.injected;
1599 env->nmi_pending = events.nmi.pending;
1600 if (events.nmi.masked) {
1601 env->hflags2 |= HF2_NMI_MASK;
1602 } else {
1603 env->hflags2 &= ~HF2_NMI_MASK;
1604 }
1605
1606 env->sipi_vector = events.sipi_vector;
1607
1608 return 0;
1609 }
1610
1611 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1612 {
1613 CPUState *cs = CPU(cpu);
1614 CPUX86State *env = &cpu->env;
1615 int ret = 0;
1616 unsigned long reinject_trap = 0;
1617
1618 if (!kvm_has_vcpu_events()) {
1619 if (env->exception_injected == 1) {
1620 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1621 } else if (env->exception_injected == 3) {
1622 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1623 }
1624 env->exception_injected = -1;
1625 }
1626
1627 /*
1628 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1629 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1630 * by updating the debug state once again if single-stepping is on.
1631 * Another reason to call kvm_update_guest_debug here is a pending debug
1632 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1633 * reinject them via SET_GUEST_DEBUG.
1634 */
1635 if (reinject_trap ||
1636 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
1637 ret = kvm_update_guest_debug(cs, reinject_trap);
1638 }
1639 return ret;
1640 }
1641
1642 static int kvm_put_debugregs(X86CPU *cpu)
1643 {
1644 CPUX86State *env = &cpu->env;
1645 struct kvm_debugregs dbgregs;
1646 int i;
1647
1648 if (!kvm_has_debugregs()) {
1649 return 0;
1650 }
1651
1652 for (i = 0; i < 4; i++) {
1653 dbgregs.db[i] = env->dr[i];
1654 }
1655 dbgregs.dr6 = env->dr[6];
1656 dbgregs.dr7 = env->dr[7];
1657 dbgregs.flags = 0;
1658
1659 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1660 }
1661
1662 static int kvm_get_debugregs(X86CPU *cpu)
1663 {
1664 CPUX86State *env = &cpu->env;
1665 struct kvm_debugregs dbgregs;
1666 int i, ret;
1667
1668 if (!kvm_has_debugregs()) {
1669 return 0;
1670 }
1671
1672 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1673 if (ret < 0) {
1674 return ret;
1675 }
1676 for (i = 0; i < 4; i++) {
1677 env->dr[i] = dbgregs.db[i];
1678 }
1679 env->dr[4] = env->dr[6] = dbgregs.dr6;
1680 env->dr[5] = env->dr[7] = dbgregs.dr7;
1681
1682 return 0;
1683 }
1684
1685 int kvm_arch_put_registers(CPUState *cpu, int level)
1686 {
1687 X86CPU *x86_cpu = X86_CPU(cpu);
1688 int ret;
1689
1690 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1691
1692 ret = kvm_getput_regs(x86_cpu, 1);
1693 if (ret < 0) {
1694 return ret;
1695 }
1696 ret = kvm_put_xsave(x86_cpu);
1697 if (ret < 0) {
1698 return ret;
1699 }
1700 ret = kvm_put_xcrs(x86_cpu);
1701 if (ret < 0) {
1702 return ret;
1703 }
1704 ret = kvm_put_sregs(x86_cpu);
1705 if (ret < 0) {
1706 return ret;
1707 }
1708 /* must be before kvm_put_msrs */
1709 ret = kvm_inject_mce_oldstyle(x86_cpu);
1710 if (ret < 0) {
1711 return ret;
1712 }
1713 ret = kvm_put_msrs(x86_cpu, level);
1714 if (ret < 0) {
1715 return ret;
1716 }
1717 if (level >= KVM_PUT_RESET_STATE) {
1718 ret = kvm_put_mp_state(x86_cpu);
1719 if (ret < 0) {
1720 return ret;
1721 }
1722 ret = kvm_put_apic(x86_cpu);
1723 if (ret < 0) {
1724 return ret;
1725 }
1726 }
1727 ret = kvm_put_vcpu_events(x86_cpu, level);
1728 if (ret < 0) {
1729 return ret;
1730 }
1731 ret = kvm_put_debugregs(x86_cpu);
1732 if (ret < 0) {
1733 return ret;
1734 }
1735 /* must be last */
1736 ret = kvm_guest_debug_workarounds(x86_cpu);
1737 if (ret < 0) {
1738 return ret;
1739 }
1740 return 0;
1741 }
1742
1743 int kvm_arch_get_registers(CPUState *cs)
1744 {
1745 X86CPU *cpu = X86_CPU(cs);
1746 int ret;
1747
1748 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1749
1750 ret = kvm_getput_regs(cpu, 0);
1751 if (ret < 0) {
1752 return ret;
1753 }
1754 ret = kvm_get_xsave(cpu);
1755 if (ret < 0) {
1756 return ret;
1757 }
1758 ret = kvm_get_xcrs(cpu);
1759 if (ret < 0) {
1760 return ret;
1761 }
1762 ret = kvm_get_sregs(cpu);
1763 if (ret < 0) {
1764 return ret;
1765 }
1766 ret = kvm_get_msrs(cpu);
1767 if (ret < 0) {
1768 return ret;
1769 }
1770 ret = kvm_get_mp_state(cpu);
1771 if (ret < 0) {
1772 return ret;
1773 }
1774 ret = kvm_get_apic(cpu);
1775 if (ret < 0) {
1776 return ret;
1777 }
1778 ret = kvm_get_vcpu_events(cpu);
1779 if (ret < 0) {
1780 return ret;
1781 }
1782 ret = kvm_get_debugregs(cpu);
1783 if (ret < 0) {
1784 return ret;
1785 }
1786 return 0;
1787 }
1788
1789 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1790 {
1791 X86CPU *x86_cpu = X86_CPU(cpu);
1792 CPUX86State *env = &x86_cpu->env;
1793 int ret;
1794
1795 /* Inject NMI */
1796 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1797 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1798 DPRINTF("injected NMI\n");
1799 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1800 if (ret < 0) {
1801 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1802 strerror(-ret));
1803 }
1804 }
1805
1806 if (!kvm_irqchip_in_kernel()) {
1807 /* Force the VCPU out of its inner loop to process any INIT requests
1808 * or pending TPR access reports. */
1809 if (cpu->interrupt_request &
1810 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1811 cpu->exit_request = 1;
1812 }
1813
1814 /* Try to inject an interrupt if the guest can accept it */
1815 if (run->ready_for_interrupt_injection &&
1816 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1817 (env->eflags & IF_MASK)) {
1818 int irq;
1819
1820 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1821 irq = cpu_get_pic_interrupt(env);
1822 if (irq >= 0) {
1823 struct kvm_interrupt intr;
1824
1825 intr.irq = irq;
1826 DPRINTF("injected interrupt %d\n", irq);
1827 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1828 if (ret < 0) {
1829 fprintf(stderr,
1830 "KVM: injection failed, interrupt lost (%s)\n",
1831 strerror(-ret));
1832 }
1833 }
1834 }
1835
1836 /* If we have an interrupt but the guest is not ready to receive an
1837 * interrupt, request an interrupt window exit. This will
1838 * cause a return to userspace as soon as the guest is ready to
1839 * receive interrupts. */
1840 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1841 run->request_interrupt_window = 1;
1842 } else {
1843 run->request_interrupt_window = 0;
1844 }
1845
1846 DPRINTF("setting tpr\n");
1847 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1848 }
1849 }
1850
1851 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1852 {
1853 X86CPU *x86_cpu = X86_CPU(cpu);
1854 CPUX86State *env = &x86_cpu->env;
1855
1856 if (run->if_flag) {
1857 env->eflags |= IF_MASK;
1858 } else {
1859 env->eflags &= ~IF_MASK;
1860 }
1861 cpu_set_apic_tpr(env->apic_state, run->cr8);
1862 cpu_set_apic_base(env->apic_state, run->apic_base);
1863 }
1864
1865 int kvm_arch_process_async_events(CPUState *cs)
1866 {
1867 X86CPU *cpu = X86_CPU(cs);
1868 CPUX86State *env = &cpu->env;
1869
1870 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1871 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1872 assert(env->mcg_cap);
1873
1874 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1875
1876 kvm_cpu_synchronize_state(cs);
1877
1878 if (env->exception_injected == EXCP08_DBLE) {
1879 /* this means triple fault */
1880 qemu_system_reset_request();
1881 cs->exit_request = 1;
1882 return 0;
1883 }
1884 env->exception_injected = EXCP12_MCHK;
1885 env->has_error_code = 0;
1886
1887 cs->halted = 0;
1888 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1889 env->mp_state = KVM_MP_STATE_RUNNABLE;
1890 }
1891 }
1892
1893 if (kvm_irqchip_in_kernel()) {
1894 return 0;
1895 }
1896
1897 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1898 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1899 apic_poll_irq(env->apic_state);
1900 }
1901 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1902 (env->eflags & IF_MASK)) ||
1903 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1904 cs->halted = 0;
1905 }
1906 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1907 kvm_cpu_synchronize_state(cs);
1908 do_cpu_init(cpu);
1909 }
1910 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1911 kvm_cpu_synchronize_state(cs);
1912 do_cpu_sipi(cpu);
1913 }
1914 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1915 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1916 kvm_cpu_synchronize_state(cs);
1917 apic_handle_tpr_access_report(env->apic_state, env->eip,
1918 env->tpr_access_type);
1919 }
1920
1921 return cs->halted;
1922 }
1923
1924 static int kvm_handle_halt(X86CPU *cpu)
1925 {
1926 CPUState *cs = CPU(cpu);
1927 CPUX86State *env = &cpu->env;
1928
1929 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1930 (env->eflags & IF_MASK)) &&
1931 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1932 cs->halted = 1;
1933 return EXCP_HLT;
1934 }
1935
1936 return 0;
1937 }
1938
1939 static int kvm_handle_tpr_access(X86CPU *cpu)
1940 {
1941 CPUX86State *env = &cpu->env;
1942 CPUState *cs = CPU(cpu);
1943 struct kvm_run *run = cs->kvm_run;
1944
1945 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1946 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1947 : TPR_ACCESS_READ);
1948 return 1;
1949 }
1950
1951 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1952 {
1953 static const uint8_t int3 = 0xcc;
1954
1955 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1956 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
1957 return -EINVAL;
1958 }
1959 return 0;
1960 }
1961
1962 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1963 {
1964 uint8_t int3;
1965
1966 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1967 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1968 return -EINVAL;
1969 }
1970 return 0;
1971 }
1972
1973 static struct {
1974 target_ulong addr;
1975 int len;
1976 int type;
1977 } hw_breakpoint[4];
1978
1979 static int nb_hw_breakpoint;
1980
1981 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1982 {
1983 int n;
1984
1985 for (n = 0; n < nb_hw_breakpoint; n++) {
1986 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1987 (hw_breakpoint[n].len == len || len == -1)) {
1988 return n;
1989 }
1990 }
1991 return -1;
1992 }
1993
1994 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1995 target_ulong len, int type)
1996 {
1997 switch (type) {
1998 case GDB_BREAKPOINT_HW:
1999 len = 1;
2000 break;
2001 case GDB_WATCHPOINT_WRITE:
2002 case GDB_WATCHPOINT_ACCESS:
2003 switch (len) {
2004 case 1:
2005 break;
2006 case 2:
2007 case 4:
2008 case 8:
2009 if (addr & (len - 1)) {
2010 return -EINVAL;
2011 }
2012 break;
2013 default:
2014 return -EINVAL;
2015 }
2016 break;
2017 default:
2018 return -ENOSYS;
2019 }
2020
2021 if (nb_hw_breakpoint == 4) {
2022 return -ENOBUFS;
2023 }
2024 if (find_hw_breakpoint(addr, len, type) >= 0) {
2025 return -EEXIST;
2026 }
2027 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2028 hw_breakpoint[nb_hw_breakpoint].len = len;
2029 hw_breakpoint[nb_hw_breakpoint].type = type;
2030 nb_hw_breakpoint++;
2031
2032 return 0;
2033 }
2034
2035 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2036 target_ulong len, int type)
2037 {
2038 int n;
2039
2040 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2041 if (n < 0) {
2042 return -ENOENT;
2043 }
2044 nb_hw_breakpoint--;
2045 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2046
2047 return 0;
2048 }
2049
2050 void kvm_arch_remove_all_hw_breakpoints(void)
2051 {
2052 nb_hw_breakpoint = 0;
2053 }
2054
2055 static CPUWatchpoint hw_watchpoint;
2056
2057 static int kvm_handle_debug(X86CPU *cpu,
2058 struct kvm_debug_exit_arch *arch_info)
2059 {
2060 CPUState *cs = CPU(cpu);
2061 CPUX86State *env = &cpu->env;
2062 int ret = 0;
2063 int n;
2064
2065 if (arch_info->exception == 1) {
2066 if (arch_info->dr6 & (1 << 14)) {
2067 if (cs->singlestep_enabled) {
2068 ret = EXCP_DEBUG;
2069 }
2070 } else {
2071 for (n = 0; n < 4; n++) {
2072 if (arch_info->dr6 & (1 << n)) {
2073 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2074 case 0x0:
2075 ret = EXCP_DEBUG;
2076 break;
2077 case 0x1:
2078 ret = EXCP_DEBUG;
2079 env->watchpoint_hit = &hw_watchpoint;
2080 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2081 hw_watchpoint.flags = BP_MEM_WRITE;
2082 break;
2083 case 0x3:
2084 ret = EXCP_DEBUG;
2085 env->watchpoint_hit = &hw_watchpoint;
2086 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2087 hw_watchpoint.flags = BP_MEM_ACCESS;
2088 break;
2089 }
2090 }
2091 }
2092 }
2093 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2094 ret = EXCP_DEBUG;
2095 }
2096 if (ret == 0) {
2097 cpu_synchronize_state(CPU(cpu));
2098 assert(env->exception_injected == -1);
2099
2100 /* pass to guest */
2101 env->exception_injected = arch_info->exception;
2102 env->has_error_code = 0;
2103 }
2104
2105 return ret;
2106 }
2107
2108 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2109 {
2110 const uint8_t type_code[] = {
2111 [GDB_BREAKPOINT_HW] = 0x0,
2112 [GDB_WATCHPOINT_WRITE] = 0x1,
2113 [GDB_WATCHPOINT_ACCESS] = 0x3
2114 };
2115 const uint8_t len_code[] = {
2116 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2117 };
2118 int n;
2119
2120 if (kvm_sw_breakpoints_active(cpu)) {
2121 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2122 }
2123 if (nb_hw_breakpoint > 0) {
2124 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2125 dbg->arch.debugreg[7] = 0x0600;
2126 for (n = 0; n < nb_hw_breakpoint; n++) {
2127 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2128 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2129 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2130 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2131 }
2132 }
2133 }
2134
2135 static bool host_supports_vmx(void)
2136 {
2137 uint32_t ecx, unused;
2138
2139 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2140 return ecx & CPUID_EXT_VMX;
2141 }
2142
2143 #define VMX_INVALID_GUEST_STATE 0x80000021
2144
2145 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2146 {
2147 X86CPU *cpu = X86_CPU(cs);
2148 uint64_t code;
2149 int ret;
2150
2151 switch (run->exit_reason) {
2152 case KVM_EXIT_HLT:
2153 DPRINTF("handle_hlt\n");
2154 ret = kvm_handle_halt(cpu);
2155 break;
2156 case KVM_EXIT_SET_TPR:
2157 ret = 0;
2158 break;
2159 case KVM_EXIT_TPR_ACCESS:
2160 ret = kvm_handle_tpr_access(cpu);
2161 break;
2162 case KVM_EXIT_FAIL_ENTRY:
2163 code = run->fail_entry.hardware_entry_failure_reason;
2164 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2165 code);
2166 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2167 fprintf(stderr,
2168 "\nIf you're running a guest on an Intel machine without "
2169 "unrestricted mode\n"
2170 "support, the failure can be most likely due to the guest "
2171 "entering an invalid\n"
2172 "state for Intel VT. For example, the guest maybe running "
2173 "in big real mode\n"
2174 "which is not supported on less recent Intel processors."
2175 "\n\n");
2176 }
2177 ret = -1;
2178 break;
2179 case KVM_EXIT_EXCEPTION:
2180 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2181 run->ex.exception, run->ex.error_code);
2182 ret = -1;
2183 break;
2184 case KVM_EXIT_DEBUG:
2185 DPRINTF("kvm_exit_debug\n");
2186 ret = kvm_handle_debug(cpu, &run->debug.arch);
2187 break;
2188 default:
2189 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2190 ret = -1;
2191 break;
2192 }
2193
2194 return ret;
2195 }
2196
2197 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2198 {
2199 X86CPU *cpu = X86_CPU(cs);
2200 CPUX86State *env = &cpu->env;
2201
2202 kvm_cpu_synchronize_state(cs);
2203 return !(env->cr[0] & CR0_PE_MASK) ||
2204 ((env->segs[R_CS].selector & 3) != 3);
2205 }
2206
2207 void kvm_arch_init_irq_routing(KVMState *s)
2208 {
2209 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2210 /* If kernel can't do irq routing, interrupt source
2211 * override 0->2 cannot be set up as required by HPET.
2212 * So we have to disable it.
2213 */
2214 no_hpet = 1;
2215 }
2216 /* We know at this point that we're using the in-kernel
2217 * irqchip, so we can use irqfds, and on x86 we know
2218 * we can use msi via irqfd and GSI routing.
2219 */
2220 kvm_irqfds_allowed = true;
2221 kvm_msi_via_irqfd_allowed = true;
2222 kvm_gsi_routing_allowed = true;
2223 }
2224
2225 /* Classic KVM device assignment interface. Will remain x86 only. */
2226 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2227 uint32_t flags, uint32_t *dev_id)
2228 {
2229 struct kvm_assigned_pci_dev dev_data = {
2230 .segnr = dev_addr->domain,
2231 .busnr = dev_addr->bus,
2232 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2233 .flags = flags,
2234 };
2235 int ret;
2236
2237 dev_data.assigned_dev_id =
2238 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2239
2240 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2241 if (ret < 0) {
2242 return ret;
2243 }
2244
2245 *dev_id = dev_data.assigned_dev_id;
2246
2247 return 0;
2248 }
2249
2250 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2251 {
2252 struct kvm_assigned_pci_dev dev_data = {
2253 .assigned_dev_id = dev_id,
2254 };
2255
2256 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2257 }
2258
2259 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2260 uint32_t irq_type, uint32_t guest_irq)
2261 {
2262 struct kvm_assigned_irq assigned_irq = {
2263 .assigned_dev_id = dev_id,
2264 .guest_irq = guest_irq,
2265 .flags = irq_type,
2266 };
2267
2268 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2269 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2270 } else {
2271 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2272 }
2273 }
2274
2275 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2276 uint32_t guest_irq)
2277 {
2278 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2279 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2280
2281 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2282 }
2283
2284 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2285 {
2286 struct kvm_assigned_pci_dev dev_data = {
2287 .assigned_dev_id = dev_id,
2288 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2289 };
2290
2291 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2292 }
2293
2294 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2295 uint32_t type)
2296 {
2297 struct kvm_assigned_irq assigned_irq = {
2298 .assigned_dev_id = dev_id,
2299 .flags = type,
2300 };
2301
2302 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2303 }
2304
2305 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2306 {
2307 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2308 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2309 }
2310
2311 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2312 {
2313 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2314 KVM_DEV_IRQ_GUEST_MSI, virq);
2315 }
2316
2317 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2318 {
2319 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2320 KVM_DEV_IRQ_HOST_MSI);
2321 }
2322
2323 bool kvm_device_msix_supported(KVMState *s)
2324 {
2325 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2326 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2327 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2328 }
2329
2330 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2331 uint32_t nr_vectors)
2332 {
2333 struct kvm_assigned_msix_nr msix_nr = {
2334 .assigned_dev_id = dev_id,
2335 .entry_nr = nr_vectors,
2336 };
2337
2338 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2339 }
2340
2341 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2342 int virq)
2343 {
2344 struct kvm_assigned_msix_entry msix_entry = {
2345 .assigned_dev_id = dev_id,
2346 .gsi = virq,
2347 .entry = vector,
2348 };
2349
2350 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2351 }
2352
2353 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2354 {
2355 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2356 KVM_DEV_IRQ_GUEST_MSIX, 0);
2357 }
2358
2359 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2360 {
2361 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2362 KVM_DEV_IRQ_HOST_MSIX);
2363 }