]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: kvm_arch_get_supported_cpuid: move R_EDX hack outside of for loop
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 struct kvm_para_features {
102 int cap;
103 int feature;
104 } para_features[] = {
105 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
106 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
107 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
108 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
109 { -1, -1 }
110 };
111
112 static int get_para_features(KVMState *s)
113 {
114 int i, features = 0;
115
116 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
117 if (kvm_check_extension(s, para_features[i].cap)) {
118 features |= (1 << para_features[i].feature);
119 }
120 }
121
122 return features;
123 }
124
125
126 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
127 uint32_t index, int reg)
128 {
129 struct kvm_cpuid2 *cpuid;
130 int i, max;
131 uint32_t ret = 0;
132 uint32_t cpuid_1_edx;
133 int has_kvm_features = 0;
134
135 max = 1;
136 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
137 max *= 2;
138 }
139
140 for (i = 0; i < cpuid->nent; ++i) {
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
143 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
144 has_kvm_features = 1;
145 }
146 switch (reg) {
147 case R_EAX:
148 ret = cpuid->entries[i].eax;
149 break;
150 case R_EBX:
151 ret = cpuid->entries[i].ebx;
152 break;
153 case R_ECX:
154 ret = cpuid->entries[i].ecx;
155 break;
156 case R_EDX:
157 ret = cpuid->entries[i].edx;
158 break;
159 }
160 }
161 }
162
163 /* Fixups for the data returned by KVM, below */
164
165 if (reg == R_EDX) {
166 switch (function) {
167 case 1:
168 /* KVM before 2.6.30 misreports the following features */
169 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
170 break;
171 case 0x80000001:
172 /* On Intel, kvm returns cpuid according to the Intel spec,
173 * so add missing bits according to the AMD spec:
174 */
175 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
176 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
177 break;
178 }
179 }
180
181 g_free(cpuid);
182
183 /* fallback for older kernels */
184 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
185 ret = get_para_features(s);
186 }
187
188 return ret;
189 }
190
191 typedef struct HWPoisonPage {
192 ram_addr_t ram_addr;
193 QLIST_ENTRY(HWPoisonPage) list;
194 } HWPoisonPage;
195
196 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
197 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
198
199 static void kvm_unpoison_all(void *param)
200 {
201 HWPoisonPage *page, *next_page;
202
203 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
204 QLIST_REMOVE(page, list);
205 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
206 g_free(page);
207 }
208 }
209
210 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
211 {
212 HWPoisonPage *page;
213
214 QLIST_FOREACH(page, &hwpoison_page_list, list) {
215 if (page->ram_addr == ram_addr) {
216 return;
217 }
218 }
219 page = g_malloc(sizeof(HWPoisonPage));
220 page->ram_addr = ram_addr;
221 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
222 }
223
224 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225 int *max_banks)
226 {
227 int r;
228
229 r = kvm_check_extension(s, KVM_CAP_MCE);
230 if (r > 0) {
231 *max_banks = r;
232 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
233 }
234 return -ENOSYS;
235 }
236
237 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
238 {
239 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241 uint64_t mcg_status = MCG_STATUS_MCIP;
242
243 if (code == BUS_MCEERR_AR) {
244 status |= MCI_STATUS_AR | 0x134;
245 mcg_status |= MCG_STATUS_EIPV;
246 } else {
247 status |= 0xc0;
248 mcg_status |= MCG_STATUS_RIPV;
249 }
250 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251 (MCM_ADDR_PHYS << 6) | 0xc,
252 cpu_x86_support_mca_broadcast(env) ?
253 MCE_INJECT_BROADCAST : 0);
254 }
255
256 static void hardware_memory_error(void)
257 {
258 fprintf(stderr, "Hardware memory error!\n");
259 exit(1);
260 }
261
262 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
263 {
264 ram_addr_t ram_addr;
265 hwaddr paddr;
266
267 if ((env->mcg_cap & MCG_SER_P) && addr
268 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
269 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
270 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
271 fprintf(stderr, "Hardware memory error for memory used by "
272 "QEMU itself instead of guest system!\n");
273 /* Hope we are lucky for AO MCE */
274 if (code == BUS_MCEERR_AO) {
275 return 0;
276 } else {
277 hardware_memory_error();
278 }
279 }
280 kvm_hwpoison_page_add(ram_addr);
281 kvm_mce_inject(env, paddr, code);
282 } else {
283 if (code == BUS_MCEERR_AO) {
284 return 0;
285 } else if (code == BUS_MCEERR_AR) {
286 hardware_memory_error();
287 } else {
288 return 1;
289 }
290 }
291 return 0;
292 }
293
294 int kvm_arch_on_sigbus(int code, void *addr)
295 {
296 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
297 ram_addr_t ram_addr;
298 hwaddr paddr;
299
300 /* Hope we are lucky for AO MCE */
301 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
302 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
303 &paddr)) {
304 fprintf(stderr, "Hardware memory error for memory used by "
305 "QEMU itself instead of guest system!: %p\n", addr);
306 return 0;
307 }
308 kvm_hwpoison_page_add(ram_addr);
309 kvm_mce_inject(first_cpu, paddr, code);
310 } else {
311 if (code == BUS_MCEERR_AO) {
312 return 0;
313 } else if (code == BUS_MCEERR_AR) {
314 hardware_memory_error();
315 } else {
316 return 1;
317 }
318 }
319 return 0;
320 }
321
322 static int kvm_inject_mce_oldstyle(CPUX86State *env)
323 {
324 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
325 unsigned int bank, bank_num = env->mcg_cap & 0xff;
326 struct kvm_x86_mce mce;
327
328 env->exception_injected = -1;
329
330 /*
331 * There must be at least one bank in use if an MCE is pending.
332 * Find it and use its values for the event injection.
333 */
334 for (bank = 0; bank < bank_num; bank++) {
335 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
336 break;
337 }
338 }
339 assert(bank < bank_num);
340
341 mce.bank = bank;
342 mce.status = env->mce_banks[bank * 4 + 1];
343 mce.mcg_status = env->mcg_status;
344 mce.addr = env->mce_banks[bank * 4 + 2];
345 mce.misc = env->mce_banks[bank * 4 + 3];
346
347 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
348 }
349 return 0;
350 }
351
352 static void cpu_update_state(void *opaque, int running, RunState state)
353 {
354 CPUX86State *env = opaque;
355
356 if (running) {
357 env->tsc_valid = false;
358 }
359 }
360
361 int kvm_arch_init_vcpu(CPUX86State *env)
362 {
363 struct {
364 struct kvm_cpuid2 cpuid;
365 struct kvm_cpuid_entry2 entries[100];
366 } QEMU_PACKED cpuid_data;
367 KVMState *s = env->kvm_state;
368 uint32_t limit, i, j, cpuid_i;
369 uint32_t unused;
370 struct kvm_cpuid_entry2 *c;
371 uint32_t signature[3];
372 int r;
373
374 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
375
376 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
377 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
378 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
379 env->cpuid_ext_features |= i;
380 if (j && kvm_irqchip_in_kernel() &&
381 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
382 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
383 }
384
385 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
386 0, R_EDX);
387 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
388 0, R_ECX);
389 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
390 0, R_EDX);
391
392 cpuid_i = 0;
393
394 /* Paravirtualization CPUIDs */
395 c = &cpuid_data.entries[cpuid_i++];
396 memset(c, 0, sizeof(*c));
397 c->function = KVM_CPUID_SIGNATURE;
398 if (!hyperv_enabled()) {
399 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
400 c->eax = 0;
401 } else {
402 memcpy(signature, "Microsoft Hv", 12);
403 c->eax = HYPERV_CPUID_MIN;
404 }
405 c->ebx = signature[0];
406 c->ecx = signature[1];
407 c->edx = signature[2];
408
409 c = &cpuid_data.entries[cpuid_i++];
410 memset(c, 0, sizeof(*c));
411 c->function = KVM_CPUID_FEATURES;
412 c->eax = env->cpuid_kvm_features &
413 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
414
415 if (hyperv_enabled()) {
416 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
417 c->eax = signature[0];
418
419 c = &cpuid_data.entries[cpuid_i++];
420 memset(c, 0, sizeof(*c));
421 c->function = HYPERV_CPUID_VERSION;
422 c->eax = 0x00001bbc;
423 c->ebx = 0x00060001;
424
425 c = &cpuid_data.entries[cpuid_i++];
426 memset(c, 0, sizeof(*c));
427 c->function = HYPERV_CPUID_FEATURES;
428 if (hyperv_relaxed_timing_enabled()) {
429 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
430 }
431 if (hyperv_vapic_recommended()) {
432 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
433 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
434 }
435
436 c = &cpuid_data.entries[cpuid_i++];
437 memset(c, 0, sizeof(*c));
438 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
439 if (hyperv_relaxed_timing_enabled()) {
440 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
441 }
442 if (hyperv_vapic_recommended()) {
443 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
444 }
445 c->ebx = hyperv_get_spinlock_retries();
446
447 c = &cpuid_data.entries[cpuid_i++];
448 memset(c, 0, sizeof(*c));
449 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
450 c->eax = 0x40;
451 c->ebx = 0x40;
452
453 c = &cpuid_data.entries[cpuid_i++];
454 memset(c, 0, sizeof(*c));
455 c->function = KVM_CPUID_SIGNATURE_NEXT;
456 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
457 c->eax = 0;
458 c->ebx = signature[0];
459 c->ecx = signature[1];
460 c->edx = signature[2];
461 }
462
463 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
464
465 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
466
467 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
468
469 for (i = 0; i <= limit; i++) {
470 c = &cpuid_data.entries[cpuid_i++];
471
472 switch (i) {
473 case 2: {
474 /* Keep reading function 2 till all the input is received */
475 int times;
476
477 c->function = i;
478 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
479 KVM_CPUID_FLAG_STATE_READ_NEXT;
480 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
481 times = c->eax & 0xff;
482
483 for (j = 1; j < times; ++j) {
484 c = &cpuid_data.entries[cpuid_i++];
485 c->function = i;
486 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
487 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
488 }
489 break;
490 }
491 case 4:
492 case 0xb:
493 case 0xd:
494 for (j = 0; ; j++) {
495 if (i == 0xd && j == 64) {
496 break;
497 }
498 c->function = i;
499 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
500 c->index = j;
501 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
502
503 if (i == 4 && c->eax == 0) {
504 break;
505 }
506 if (i == 0xb && !(c->ecx & 0xff00)) {
507 break;
508 }
509 if (i == 0xd && c->eax == 0) {
510 continue;
511 }
512 c = &cpuid_data.entries[cpuid_i++];
513 }
514 break;
515 default:
516 c->function = i;
517 c->flags = 0;
518 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
519 break;
520 }
521 }
522 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
523
524 for (i = 0x80000000; i <= limit; i++) {
525 c = &cpuid_data.entries[cpuid_i++];
526
527 c->function = i;
528 c->flags = 0;
529 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
530 }
531
532 /* Call Centaur's CPUID instructions they are supported. */
533 if (env->cpuid_xlevel2 > 0) {
534 env->cpuid_ext4_features &=
535 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
536 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
537
538 for (i = 0xC0000000; i <= limit; i++) {
539 c = &cpuid_data.entries[cpuid_i++];
540
541 c->function = i;
542 c->flags = 0;
543 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
544 }
545 }
546
547 cpuid_data.cpuid.nent = cpuid_i;
548
549 if (((env->cpuid_version >> 8)&0xF) >= 6
550 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
551 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
552 uint64_t mcg_cap;
553 int banks;
554 int ret;
555
556 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
557 if (ret < 0) {
558 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
559 return ret;
560 }
561
562 if (banks > MCE_BANKS_DEF) {
563 banks = MCE_BANKS_DEF;
564 }
565 mcg_cap &= MCE_CAP_DEF;
566 mcg_cap |= banks;
567 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
568 if (ret < 0) {
569 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
570 return ret;
571 }
572
573 env->mcg_cap = mcg_cap;
574 }
575
576 qemu_add_vm_change_state_handler(cpu_update_state, env);
577
578 cpuid_data.cpuid.padding = 0;
579 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
580 if (r) {
581 return r;
582 }
583
584 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
585 if (r && env->tsc_khz) {
586 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
587 if (r < 0) {
588 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
589 return r;
590 }
591 }
592
593 if (kvm_has_xsave()) {
594 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
595 }
596
597 return 0;
598 }
599
600 void kvm_arch_reset_vcpu(CPUX86State *env)
601 {
602 X86CPU *cpu = x86_env_get_cpu(env);
603
604 env->exception_injected = -1;
605 env->interrupt_injected = -1;
606 env->xcr0 = 1;
607 if (kvm_irqchip_in_kernel()) {
608 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
609 KVM_MP_STATE_UNINITIALIZED;
610 } else {
611 env->mp_state = KVM_MP_STATE_RUNNABLE;
612 }
613 }
614
615 static int kvm_get_supported_msrs(KVMState *s)
616 {
617 static int kvm_supported_msrs;
618 int ret = 0;
619
620 /* first time */
621 if (kvm_supported_msrs == 0) {
622 struct kvm_msr_list msr_list, *kvm_msr_list;
623
624 kvm_supported_msrs = -1;
625
626 /* Obtain MSR list from KVM. These are the MSRs that we must
627 * save/restore */
628 msr_list.nmsrs = 0;
629 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
630 if (ret < 0 && ret != -E2BIG) {
631 return ret;
632 }
633 /* Old kernel modules had a bug and could write beyond the provided
634 memory. Allocate at least a safe amount of 1K. */
635 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
636 msr_list.nmsrs *
637 sizeof(msr_list.indices[0])));
638
639 kvm_msr_list->nmsrs = msr_list.nmsrs;
640 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
641 if (ret >= 0) {
642 int i;
643
644 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
645 if (kvm_msr_list->indices[i] == MSR_STAR) {
646 has_msr_star = true;
647 continue;
648 }
649 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
650 has_msr_hsave_pa = true;
651 continue;
652 }
653 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
654 has_msr_tsc_deadline = true;
655 continue;
656 }
657 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
658 has_msr_misc_enable = true;
659 continue;
660 }
661 }
662 }
663
664 g_free(kvm_msr_list);
665 }
666
667 return ret;
668 }
669
670 int kvm_arch_init(KVMState *s)
671 {
672 QemuOptsList *list = qemu_find_opts("machine");
673 uint64_t identity_base = 0xfffbc000;
674 uint64_t shadow_mem;
675 int ret;
676 struct utsname utsname;
677
678 ret = kvm_get_supported_msrs(s);
679 if (ret < 0) {
680 return ret;
681 }
682
683 uname(&utsname);
684 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
685
686 /*
687 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
688 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
689 * Since these must be part of guest physical memory, we need to allocate
690 * them, both by setting their start addresses in the kernel and by
691 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
692 *
693 * Older KVM versions may not support setting the identity map base. In
694 * that case we need to stick with the default, i.e. a 256K maximum BIOS
695 * size.
696 */
697 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
698 /* Allows up to 16M BIOSes. */
699 identity_base = 0xfeffc000;
700
701 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
702 if (ret < 0) {
703 return ret;
704 }
705 }
706
707 /* Set TSS base one page after EPT identity map. */
708 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
709 if (ret < 0) {
710 return ret;
711 }
712
713 /* Tell fw_cfg to notify the BIOS to reserve the range. */
714 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
715 if (ret < 0) {
716 fprintf(stderr, "e820_add_entry() table is full\n");
717 return ret;
718 }
719 qemu_register_reset(kvm_unpoison_all, NULL);
720
721 if (!QTAILQ_EMPTY(&list->head)) {
722 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
723 "kvm_shadow_mem", -1);
724 if (shadow_mem != -1) {
725 shadow_mem /= 4096;
726 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
727 if (ret < 0) {
728 return ret;
729 }
730 }
731 }
732 return 0;
733 }
734
735 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
736 {
737 lhs->selector = rhs->selector;
738 lhs->base = rhs->base;
739 lhs->limit = rhs->limit;
740 lhs->type = 3;
741 lhs->present = 1;
742 lhs->dpl = 3;
743 lhs->db = 0;
744 lhs->s = 1;
745 lhs->l = 0;
746 lhs->g = 0;
747 lhs->avl = 0;
748 lhs->unusable = 0;
749 }
750
751 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
752 {
753 unsigned flags = rhs->flags;
754 lhs->selector = rhs->selector;
755 lhs->base = rhs->base;
756 lhs->limit = rhs->limit;
757 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
758 lhs->present = (flags & DESC_P_MASK) != 0;
759 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
760 lhs->db = (flags >> DESC_B_SHIFT) & 1;
761 lhs->s = (flags & DESC_S_MASK) != 0;
762 lhs->l = (flags >> DESC_L_SHIFT) & 1;
763 lhs->g = (flags & DESC_G_MASK) != 0;
764 lhs->avl = (flags & DESC_AVL_MASK) != 0;
765 lhs->unusable = 0;
766 lhs->padding = 0;
767 }
768
769 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
770 {
771 lhs->selector = rhs->selector;
772 lhs->base = rhs->base;
773 lhs->limit = rhs->limit;
774 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
775 (rhs->present * DESC_P_MASK) |
776 (rhs->dpl << DESC_DPL_SHIFT) |
777 (rhs->db << DESC_B_SHIFT) |
778 (rhs->s * DESC_S_MASK) |
779 (rhs->l << DESC_L_SHIFT) |
780 (rhs->g * DESC_G_MASK) |
781 (rhs->avl * DESC_AVL_MASK);
782 }
783
784 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
785 {
786 if (set) {
787 *kvm_reg = *qemu_reg;
788 } else {
789 *qemu_reg = *kvm_reg;
790 }
791 }
792
793 static int kvm_getput_regs(CPUX86State *env, int set)
794 {
795 struct kvm_regs regs;
796 int ret = 0;
797
798 if (!set) {
799 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
800 if (ret < 0) {
801 return ret;
802 }
803 }
804
805 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
806 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
807 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
808 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
809 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
810 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
811 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
812 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
813 #ifdef TARGET_X86_64
814 kvm_getput_reg(&regs.r8, &env->regs[8], set);
815 kvm_getput_reg(&regs.r9, &env->regs[9], set);
816 kvm_getput_reg(&regs.r10, &env->regs[10], set);
817 kvm_getput_reg(&regs.r11, &env->regs[11], set);
818 kvm_getput_reg(&regs.r12, &env->regs[12], set);
819 kvm_getput_reg(&regs.r13, &env->regs[13], set);
820 kvm_getput_reg(&regs.r14, &env->regs[14], set);
821 kvm_getput_reg(&regs.r15, &env->regs[15], set);
822 #endif
823
824 kvm_getput_reg(&regs.rflags, &env->eflags, set);
825 kvm_getput_reg(&regs.rip, &env->eip, set);
826
827 if (set) {
828 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
829 }
830
831 return ret;
832 }
833
834 static int kvm_put_fpu(CPUX86State *env)
835 {
836 struct kvm_fpu fpu;
837 int i;
838
839 memset(&fpu, 0, sizeof fpu);
840 fpu.fsw = env->fpus & ~(7 << 11);
841 fpu.fsw |= (env->fpstt & 7) << 11;
842 fpu.fcw = env->fpuc;
843 fpu.last_opcode = env->fpop;
844 fpu.last_ip = env->fpip;
845 fpu.last_dp = env->fpdp;
846 for (i = 0; i < 8; ++i) {
847 fpu.ftwx |= (!env->fptags[i]) << i;
848 }
849 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
850 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
851 fpu.mxcsr = env->mxcsr;
852
853 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
854 }
855
856 #define XSAVE_FCW_FSW 0
857 #define XSAVE_FTW_FOP 1
858 #define XSAVE_CWD_RIP 2
859 #define XSAVE_CWD_RDP 4
860 #define XSAVE_MXCSR 6
861 #define XSAVE_ST_SPACE 8
862 #define XSAVE_XMM_SPACE 40
863 #define XSAVE_XSTATE_BV 128
864 #define XSAVE_YMMH_SPACE 144
865
866 static int kvm_put_xsave(CPUX86State *env)
867 {
868 struct kvm_xsave* xsave = env->kvm_xsave_buf;
869 uint16_t cwd, swd, twd;
870 int i, r;
871
872 if (!kvm_has_xsave()) {
873 return kvm_put_fpu(env);
874 }
875
876 memset(xsave, 0, sizeof(struct kvm_xsave));
877 twd = 0;
878 swd = env->fpus & ~(7 << 11);
879 swd |= (env->fpstt & 7) << 11;
880 cwd = env->fpuc;
881 for (i = 0; i < 8; ++i) {
882 twd |= (!env->fptags[i]) << i;
883 }
884 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
885 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
886 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
887 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
888 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
889 sizeof env->fpregs);
890 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
891 sizeof env->xmm_regs);
892 xsave->region[XSAVE_MXCSR] = env->mxcsr;
893 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
894 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
895 sizeof env->ymmh_regs);
896 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
897 return r;
898 }
899
900 static int kvm_put_xcrs(CPUX86State *env)
901 {
902 struct kvm_xcrs xcrs;
903
904 if (!kvm_has_xcrs()) {
905 return 0;
906 }
907
908 xcrs.nr_xcrs = 1;
909 xcrs.flags = 0;
910 xcrs.xcrs[0].xcr = 0;
911 xcrs.xcrs[0].value = env->xcr0;
912 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
913 }
914
915 static int kvm_put_sregs(CPUX86State *env)
916 {
917 struct kvm_sregs sregs;
918
919 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
920 if (env->interrupt_injected >= 0) {
921 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
922 (uint64_t)1 << (env->interrupt_injected % 64);
923 }
924
925 if ((env->eflags & VM_MASK)) {
926 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
927 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
928 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
929 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
930 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
931 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
932 } else {
933 set_seg(&sregs.cs, &env->segs[R_CS]);
934 set_seg(&sregs.ds, &env->segs[R_DS]);
935 set_seg(&sregs.es, &env->segs[R_ES]);
936 set_seg(&sregs.fs, &env->segs[R_FS]);
937 set_seg(&sregs.gs, &env->segs[R_GS]);
938 set_seg(&sregs.ss, &env->segs[R_SS]);
939 }
940
941 set_seg(&sregs.tr, &env->tr);
942 set_seg(&sregs.ldt, &env->ldt);
943
944 sregs.idt.limit = env->idt.limit;
945 sregs.idt.base = env->idt.base;
946 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
947 sregs.gdt.limit = env->gdt.limit;
948 sregs.gdt.base = env->gdt.base;
949 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
950
951 sregs.cr0 = env->cr[0];
952 sregs.cr2 = env->cr[2];
953 sregs.cr3 = env->cr[3];
954 sregs.cr4 = env->cr[4];
955
956 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
957 sregs.apic_base = cpu_get_apic_base(env->apic_state);
958
959 sregs.efer = env->efer;
960
961 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
962 }
963
964 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
965 uint32_t index, uint64_t value)
966 {
967 entry->index = index;
968 entry->data = value;
969 }
970
971 static int kvm_put_msrs(CPUX86State *env, int level)
972 {
973 struct {
974 struct kvm_msrs info;
975 struct kvm_msr_entry entries[100];
976 } msr_data;
977 struct kvm_msr_entry *msrs = msr_data.entries;
978 int n = 0;
979
980 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
981 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
982 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
983 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
984 if (has_msr_star) {
985 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
986 }
987 if (has_msr_hsave_pa) {
988 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
989 }
990 if (has_msr_tsc_deadline) {
991 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
992 }
993 if (has_msr_misc_enable) {
994 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
995 env->msr_ia32_misc_enable);
996 }
997 #ifdef TARGET_X86_64
998 if (lm_capable_kernel) {
999 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1000 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1001 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1002 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1003 }
1004 #endif
1005 if (level == KVM_PUT_FULL_STATE) {
1006 /*
1007 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1008 * writeback. Until this is fixed, we only write the offset to SMP
1009 * guests after migration, desynchronizing the VCPUs, but avoiding
1010 * huge jump-backs that would occur without any writeback at all.
1011 */
1012 if (smp_cpus == 1 || env->tsc != 0) {
1013 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1014 }
1015 }
1016 /*
1017 * The following paravirtual MSRs have side effects on the guest or are
1018 * too heavy for normal writeback. Limit them to reset or full state
1019 * updates.
1020 */
1021 if (level >= KVM_PUT_RESET_STATE) {
1022 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1023 env->system_time_msr);
1024 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1025 if (has_msr_async_pf_en) {
1026 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1027 env->async_pf_en_msr);
1028 }
1029 if (has_msr_pv_eoi_en) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1031 env->pv_eoi_en_msr);
1032 }
1033 if (hyperv_hypercall_available()) {
1034 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1035 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1036 }
1037 if (hyperv_vapic_recommended()) {
1038 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1039 }
1040 }
1041 if (env->mcg_cap) {
1042 int i;
1043
1044 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1045 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1046 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1047 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1048 }
1049 }
1050
1051 msr_data.info.nmsrs = n;
1052
1053 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1054
1055 }
1056
1057
1058 static int kvm_get_fpu(CPUX86State *env)
1059 {
1060 struct kvm_fpu fpu;
1061 int i, ret;
1062
1063 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1064 if (ret < 0) {
1065 return ret;
1066 }
1067
1068 env->fpstt = (fpu.fsw >> 11) & 7;
1069 env->fpus = fpu.fsw;
1070 env->fpuc = fpu.fcw;
1071 env->fpop = fpu.last_opcode;
1072 env->fpip = fpu.last_ip;
1073 env->fpdp = fpu.last_dp;
1074 for (i = 0; i < 8; ++i) {
1075 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1076 }
1077 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1078 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1079 env->mxcsr = fpu.mxcsr;
1080
1081 return 0;
1082 }
1083
1084 static int kvm_get_xsave(CPUX86State *env)
1085 {
1086 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1087 int ret, i;
1088 uint16_t cwd, swd, twd;
1089
1090 if (!kvm_has_xsave()) {
1091 return kvm_get_fpu(env);
1092 }
1093
1094 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1095 if (ret < 0) {
1096 return ret;
1097 }
1098
1099 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1100 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1101 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1102 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1103 env->fpstt = (swd >> 11) & 7;
1104 env->fpus = swd;
1105 env->fpuc = cwd;
1106 for (i = 0; i < 8; ++i) {
1107 env->fptags[i] = !((twd >> i) & 1);
1108 }
1109 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1110 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1111 env->mxcsr = xsave->region[XSAVE_MXCSR];
1112 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1113 sizeof env->fpregs);
1114 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1115 sizeof env->xmm_regs);
1116 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1117 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1118 sizeof env->ymmh_regs);
1119 return 0;
1120 }
1121
1122 static int kvm_get_xcrs(CPUX86State *env)
1123 {
1124 int i, ret;
1125 struct kvm_xcrs xcrs;
1126
1127 if (!kvm_has_xcrs()) {
1128 return 0;
1129 }
1130
1131 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1132 if (ret < 0) {
1133 return ret;
1134 }
1135
1136 for (i = 0; i < xcrs.nr_xcrs; i++) {
1137 /* Only support xcr0 now */
1138 if (xcrs.xcrs[0].xcr == 0) {
1139 env->xcr0 = xcrs.xcrs[0].value;
1140 break;
1141 }
1142 }
1143 return 0;
1144 }
1145
1146 static int kvm_get_sregs(CPUX86State *env)
1147 {
1148 struct kvm_sregs sregs;
1149 uint32_t hflags;
1150 int bit, i, ret;
1151
1152 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1153 if (ret < 0) {
1154 return ret;
1155 }
1156
1157 /* There can only be one pending IRQ set in the bitmap at a time, so try
1158 to find it and save its number instead (-1 for none). */
1159 env->interrupt_injected = -1;
1160 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1161 if (sregs.interrupt_bitmap[i]) {
1162 bit = ctz64(sregs.interrupt_bitmap[i]);
1163 env->interrupt_injected = i * 64 + bit;
1164 break;
1165 }
1166 }
1167
1168 get_seg(&env->segs[R_CS], &sregs.cs);
1169 get_seg(&env->segs[R_DS], &sregs.ds);
1170 get_seg(&env->segs[R_ES], &sregs.es);
1171 get_seg(&env->segs[R_FS], &sregs.fs);
1172 get_seg(&env->segs[R_GS], &sregs.gs);
1173 get_seg(&env->segs[R_SS], &sregs.ss);
1174
1175 get_seg(&env->tr, &sregs.tr);
1176 get_seg(&env->ldt, &sregs.ldt);
1177
1178 env->idt.limit = sregs.idt.limit;
1179 env->idt.base = sregs.idt.base;
1180 env->gdt.limit = sregs.gdt.limit;
1181 env->gdt.base = sregs.gdt.base;
1182
1183 env->cr[0] = sregs.cr0;
1184 env->cr[2] = sregs.cr2;
1185 env->cr[3] = sregs.cr3;
1186 env->cr[4] = sregs.cr4;
1187
1188 env->efer = sregs.efer;
1189
1190 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1191
1192 #define HFLAG_COPY_MASK \
1193 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1194 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1195 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1196 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1197
1198 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1199 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1200 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1201 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1202 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1203 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1204 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1205
1206 if (env->efer & MSR_EFER_LMA) {
1207 hflags |= HF_LMA_MASK;
1208 }
1209
1210 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1211 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1212 } else {
1213 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1214 (DESC_B_SHIFT - HF_CS32_SHIFT);
1215 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1216 (DESC_B_SHIFT - HF_SS32_SHIFT);
1217 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1218 !(hflags & HF_CS32_MASK)) {
1219 hflags |= HF_ADDSEG_MASK;
1220 } else {
1221 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1222 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1223 }
1224 }
1225 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1226
1227 return 0;
1228 }
1229
1230 static int kvm_get_msrs(CPUX86State *env)
1231 {
1232 struct {
1233 struct kvm_msrs info;
1234 struct kvm_msr_entry entries[100];
1235 } msr_data;
1236 struct kvm_msr_entry *msrs = msr_data.entries;
1237 int ret, i, n;
1238
1239 n = 0;
1240 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1241 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1242 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1243 msrs[n++].index = MSR_PAT;
1244 if (has_msr_star) {
1245 msrs[n++].index = MSR_STAR;
1246 }
1247 if (has_msr_hsave_pa) {
1248 msrs[n++].index = MSR_VM_HSAVE_PA;
1249 }
1250 if (has_msr_tsc_deadline) {
1251 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1252 }
1253 if (has_msr_misc_enable) {
1254 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1255 }
1256
1257 if (!env->tsc_valid) {
1258 msrs[n++].index = MSR_IA32_TSC;
1259 env->tsc_valid = !runstate_is_running();
1260 }
1261
1262 #ifdef TARGET_X86_64
1263 if (lm_capable_kernel) {
1264 msrs[n++].index = MSR_CSTAR;
1265 msrs[n++].index = MSR_KERNELGSBASE;
1266 msrs[n++].index = MSR_FMASK;
1267 msrs[n++].index = MSR_LSTAR;
1268 }
1269 #endif
1270 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1271 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1272 if (has_msr_async_pf_en) {
1273 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1274 }
1275 if (has_msr_pv_eoi_en) {
1276 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1277 }
1278
1279 if (env->mcg_cap) {
1280 msrs[n++].index = MSR_MCG_STATUS;
1281 msrs[n++].index = MSR_MCG_CTL;
1282 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1283 msrs[n++].index = MSR_MC0_CTL + i;
1284 }
1285 }
1286
1287 msr_data.info.nmsrs = n;
1288 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1289 if (ret < 0) {
1290 return ret;
1291 }
1292
1293 for (i = 0; i < ret; i++) {
1294 switch (msrs[i].index) {
1295 case MSR_IA32_SYSENTER_CS:
1296 env->sysenter_cs = msrs[i].data;
1297 break;
1298 case MSR_IA32_SYSENTER_ESP:
1299 env->sysenter_esp = msrs[i].data;
1300 break;
1301 case MSR_IA32_SYSENTER_EIP:
1302 env->sysenter_eip = msrs[i].data;
1303 break;
1304 case MSR_PAT:
1305 env->pat = msrs[i].data;
1306 break;
1307 case MSR_STAR:
1308 env->star = msrs[i].data;
1309 break;
1310 #ifdef TARGET_X86_64
1311 case MSR_CSTAR:
1312 env->cstar = msrs[i].data;
1313 break;
1314 case MSR_KERNELGSBASE:
1315 env->kernelgsbase = msrs[i].data;
1316 break;
1317 case MSR_FMASK:
1318 env->fmask = msrs[i].data;
1319 break;
1320 case MSR_LSTAR:
1321 env->lstar = msrs[i].data;
1322 break;
1323 #endif
1324 case MSR_IA32_TSC:
1325 env->tsc = msrs[i].data;
1326 break;
1327 case MSR_IA32_TSCDEADLINE:
1328 env->tsc_deadline = msrs[i].data;
1329 break;
1330 case MSR_VM_HSAVE_PA:
1331 env->vm_hsave = msrs[i].data;
1332 break;
1333 case MSR_KVM_SYSTEM_TIME:
1334 env->system_time_msr = msrs[i].data;
1335 break;
1336 case MSR_KVM_WALL_CLOCK:
1337 env->wall_clock_msr = msrs[i].data;
1338 break;
1339 case MSR_MCG_STATUS:
1340 env->mcg_status = msrs[i].data;
1341 break;
1342 case MSR_MCG_CTL:
1343 env->mcg_ctl = msrs[i].data;
1344 break;
1345 case MSR_IA32_MISC_ENABLE:
1346 env->msr_ia32_misc_enable = msrs[i].data;
1347 break;
1348 default:
1349 if (msrs[i].index >= MSR_MC0_CTL &&
1350 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1351 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1352 }
1353 break;
1354 case MSR_KVM_ASYNC_PF_EN:
1355 env->async_pf_en_msr = msrs[i].data;
1356 break;
1357 case MSR_KVM_PV_EOI_EN:
1358 env->pv_eoi_en_msr = msrs[i].data;
1359 break;
1360 }
1361 }
1362
1363 return 0;
1364 }
1365
1366 static int kvm_put_mp_state(CPUX86State *env)
1367 {
1368 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1369
1370 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1371 }
1372
1373 static int kvm_get_mp_state(CPUX86State *env)
1374 {
1375 struct kvm_mp_state mp_state;
1376 int ret;
1377
1378 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1379 if (ret < 0) {
1380 return ret;
1381 }
1382 env->mp_state = mp_state.mp_state;
1383 if (kvm_irqchip_in_kernel()) {
1384 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1385 }
1386 return 0;
1387 }
1388
1389 static int kvm_get_apic(CPUX86State *env)
1390 {
1391 DeviceState *apic = env->apic_state;
1392 struct kvm_lapic_state kapic;
1393 int ret;
1394
1395 if (apic && kvm_irqchip_in_kernel()) {
1396 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1397 if (ret < 0) {
1398 return ret;
1399 }
1400
1401 kvm_get_apic_state(apic, &kapic);
1402 }
1403 return 0;
1404 }
1405
1406 static int kvm_put_apic(CPUX86State *env)
1407 {
1408 DeviceState *apic = env->apic_state;
1409 struct kvm_lapic_state kapic;
1410
1411 if (apic && kvm_irqchip_in_kernel()) {
1412 kvm_put_apic_state(apic, &kapic);
1413
1414 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1415 }
1416 return 0;
1417 }
1418
1419 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1420 {
1421 struct kvm_vcpu_events events;
1422
1423 if (!kvm_has_vcpu_events()) {
1424 return 0;
1425 }
1426
1427 events.exception.injected = (env->exception_injected >= 0);
1428 events.exception.nr = env->exception_injected;
1429 events.exception.has_error_code = env->has_error_code;
1430 events.exception.error_code = env->error_code;
1431 events.exception.pad = 0;
1432
1433 events.interrupt.injected = (env->interrupt_injected >= 0);
1434 events.interrupt.nr = env->interrupt_injected;
1435 events.interrupt.soft = env->soft_interrupt;
1436
1437 events.nmi.injected = env->nmi_injected;
1438 events.nmi.pending = env->nmi_pending;
1439 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1440 events.nmi.pad = 0;
1441
1442 events.sipi_vector = env->sipi_vector;
1443
1444 events.flags = 0;
1445 if (level >= KVM_PUT_RESET_STATE) {
1446 events.flags |=
1447 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1448 }
1449
1450 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1451 }
1452
1453 static int kvm_get_vcpu_events(CPUX86State *env)
1454 {
1455 struct kvm_vcpu_events events;
1456 int ret;
1457
1458 if (!kvm_has_vcpu_events()) {
1459 return 0;
1460 }
1461
1462 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1463 if (ret < 0) {
1464 return ret;
1465 }
1466 env->exception_injected =
1467 events.exception.injected ? events.exception.nr : -1;
1468 env->has_error_code = events.exception.has_error_code;
1469 env->error_code = events.exception.error_code;
1470
1471 env->interrupt_injected =
1472 events.interrupt.injected ? events.interrupt.nr : -1;
1473 env->soft_interrupt = events.interrupt.soft;
1474
1475 env->nmi_injected = events.nmi.injected;
1476 env->nmi_pending = events.nmi.pending;
1477 if (events.nmi.masked) {
1478 env->hflags2 |= HF2_NMI_MASK;
1479 } else {
1480 env->hflags2 &= ~HF2_NMI_MASK;
1481 }
1482
1483 env->sipi_vector = events.sipi_vector;
1484
1485 return 0;
1486 }
1487
1488 static int kvm_guest_debug_workarounds(CPUX86State *env)
1489 {
1490 int ret = 0;
1491 unsigned long reinject_trap = 0;
1492
1493 if (!kvm_has_vcpu_events()) {
1494 if (env->exception_injected == 1) {
1495 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1496 } else if (env->exception_injected == 3) {
1497 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1498 }
1499 env->exception_injected = -1;
1500 }
1501
1502 /*
1503 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1504 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1505 * by updating the debug state once again if single-stepping is on.
1506 * Another reason to call kvm_update_guest_debug here is a pending debug
1507 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1508 * reinject them via SET_GUEST_DEBUG.
1509 */
1510 if (reinject_trap ||
1511 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1512 ret = kvm_update_guest_debug(env, reinject_trap);
1513 }
1514 return ret;
1515 }
1516
1517 static int kvm_put_debugregs(CPUX86State *env)
1518 {
1519 struct kvm_debugregs dbgregs;
1520 int i;
1521
1522 if (!kvm_has_debugregs()) {
1523 return 0;
1524 }
1525
1526 for (i = 0; i < 4; i++) {
1527 dbgregs.db[i] = env->dr[i];
1528 }
1529 dbgregs.dr6 = env->dr[6];
1530 dbgregs.dr7 = env->dr[7];
1531 dbgregs.flags = 0;
1532
1533 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1534 }
1535
1536 static int kvm_get_debugregs(CPUX86State *env)
1537 {
1538 struct kvm_debugregs dbgregs;
1539 int i, ret;
1540
1541 if (!kvm_has_debugregs()) {
1542 return 0;
1543 }
1544
1545 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1546 if (ret < 0) {
1547 return ret;
1548 }
1549 for (i = 0; i < 4; i++) {
1550 env->dr[i] = dbgregs.db[i];
1551 }
1552 env->dr[4] = env->dr[6] = dbgregs.dr6;
1553 env->dr[5] = env->dr[7] = dbgregs.dr7;
1554
1555 return 0;
1556 }
1557
1558 int kvm_arch_put_registers(CPUX86State *env, int level)
1559 {
1560 int ret;
1561
1562 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1563
1564 ret = kvm_getput_regs(env, 1);
1565 if (ret < 0) {
1566 return ret;
1567 }
1568 ret = kvm_put_xsave(env);
1569 if (ret < 0) {
1570 return ret;
1571 }
1572 ret = kvm_put_xcrs(env);
1573 if (ret < 0) {
1574 return ret;
1575 }
1576 ret = kvm_put_sregs(env);
1577 if (ret < 0) {
1578 return ret;
1579 }
1580 /* must be before kvm_put_msrs */
1581 ret = kvm_inject_mce_oldstyle(env);
1582 if (ret < 0) {
1583 return ret;
1584 }
1585 ret = kvm_put_msrs(env, level);
1586 if (ret < 0) {
1587 return ret;
1588 }
1589 if (level >= KVM_PUT_RESET_STATE) {
1590 ret = kvm_put_mp_state(env);
1591 if (ret < 0) {
1592 return ret;
1593 }
1594 ret = kvm_put_apic(env);
1595 if (ret < 0) {
1596 return ret;
1597 }
1598 }
1599 ret = kvm_put_vcpu_events(env, level);
1600 if (ret < 0) {
1601 return ret;
1602 }
1603 ret = kvm_put_debugregs(env);
1604 if (ret < 0) {
1605 return ret;
1606 }
1607 /* must be last */
1608 ret = kvm_guest_debug_workarounds(env);
1609 if (ret < 0) {
1610 return ret;
1611 }
1612 return 0;
1613 }
1614
1615 int kvm_arch_get_registers(CPUX86State *env)
1616 {
1617 int ret;
1618
1619 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1620
1621 ret = kvm_getput_regs(env, 0);
1622 if (ret < 0) {
1623 return ret;
1624 }
1625 ret = kvm_get_xsave(env);
1626 if (ret < 0) {
1627 return ret;
1628 }
1629 ret = kvm_get_xcrs(env);
1630 if (ret < 0) {
1631 return ret;
1632 }
1633 ret = kvm_get_sregs(env);
1634 if (ret < 0) {
1635 return ret;
1636 }
1637 ret = kvm_get_msrs(env);
1638 if (ret < 0) {
1639 return ret;
1640 }
1641 ret = kvm_get_mp_state(env);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645 ret = kvm_get_apic(env);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649 ret = kvm_get_vcpu_events(env);
1650 if (ret < 0) {
1651 return ret;
1652 }
1653 ret = kvm_get_debugregs(env);
1654 if (ret < 0) {
1655 return ret;
1656 }
1657 return 0;
1658 }
1659
1660 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1661 {
1662 int ret;
1663
1664 /* Inject NMI */
1665 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1666 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1667 DPRINTF("injected NMI\n");
1668 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1669 if (ret < 0) {
1670 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1671 strerror(-ret));
1672 }
1673 }
1674
1675 if (!kvm_irqchip_in_kernel()) {
1676 /* Force the VCPU out of its inner loop to process any INIT requests
1677 * or pending TPR access reports. */
1678 if (env->interrupt_request &
1679 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1680 env->exit_request = 1;
1681 }
1682
1683 /* Try to inject an interrupt if the guest can accept it */
1684 if (run->ready_for_interrupt_injection &&
1685 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1686 (env->eflags & IF_MASK)) {
1687 int irq;
1688
1689 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1690 irq = cpu_get_pic_interrupt(env);
1691 if (irq >= 0) {
1692 struct kvm_interrupt intr;
1693
1694 intr.irq = irq;
1695 DPRINTF("injected interrupt %d\n", irq);
1696 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1697 if (ret < 0) {
1698 fprintf(stderr,
1699 "KVM: injection failed, interrupt lost (%s)\n",
1700 strerror(-ret));
1701 }
1702 }
1703 }
1704
1705 /* If we have an interrupt but the guest is not ready to receive an
1706 * interrupt, request an interrupt window exit. This will
1707 * cause a return to userspace as soon as the guest is ready to
1708 * receive interrupts. */
1709 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1710 run->request_interrupt_window = 1;
1711 } else {
1712 run->request_interrupt_window = 0;
1713 }
1714
1715 DPRINTF("setting tpr\n");
1716 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1717 }
1718 }
1719
1720 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1721 {
1722 if (run->if_flag) {
1723 env->eflags |= IF_MASK;
1724 } else {
1725 env->eflags &= ~IF_MASK;
1726 }
1727 cpu_set_apic_tpr(env->apic_state, run->cr8);
1728 cpu_set_apic_base(env->apic_state, run->apic_base);
1729 }
1730
1731 int kvm_arch_process_async_events(CPUX86State *env)
1732 {
1733 X86CPU *cpu = x86_env_get_cpu(env);
1734
1735 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1736 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1737 assert(env->mcg_cap);
1738
1739 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1740
1741 kvm_cpu_synchronize_state(env);
1742
1743 if (env->exception_injected == EXCP08_DBLE) {
1744 /* this means triple fault */
1745 qemu_system_reset_request();
1746 env->exit_request = 1;
1747 return 0;
1748 }
1749 env->exception_injected = EXCP12_MCHK;
1750 env->has_error_code = 0;
1751
1752 env->halted = 0;
1753 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1754 env->mp_state = KVM_MP_STATE_RUNNABLE;
1755 }
1756 }
1757
1758 if (kvm_irqchip_in_kernel()) {
1759 return 0;
1760 }
1761
1762 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1763 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1764 apic_poll_irq(env->apic_state);
1765 }
1766 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1767 (env->eflags & IF_MASK)) ||
1768 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1769 env->halted = 0;
1770 }
1771 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1772 kvm_cpu_synchronize_state(env);
1773 do_cpu_init(cpu);
1774 }
1775 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1776 kvm_cpu_synchronize_state(env);
1777 do_cpu_sipi(cpu);
1778 }
1779 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1780 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1781 kvm_cpu_synchronize_state(env);
1782 apic_handle_tpr_access_report(env->apic_state, env->eip,
1783 env->tpr_access_type);
1784 }
1785
1786 return env->halted;
1787 }
1788
1789 static int kvm_handle_halt(CPUX86State *env)
1790 {
1791 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1792 (env->eflags & IF_MASK)) &&
1793 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1794 env->halted = 1;
1795 return EXCP_HLT;
1796 }
1797
1798 return 0;
1799 }
1800
1801 static int kvm_handle_tpr_access(CPUX86State *env)
1802 {
1803 struct kvm_run *run = env->kvm_run;
1804
1805 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1806 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1807 : TPR_ACCESS_READ);
1808 return 1;
1809 }
1810
1811 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1812 {
1813 static const uint8_t int3 = 0xcc;
1814
1815 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1816 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1817 return -EINVAL;
1818 }
1819 return 0;
1820 }
1821
1822 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1823 {
1824 uint8_t int3;
1825
1826 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1827 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1828 return -EINVAL;
1829 }
1830 return 0;
1831 }
1832
1833 static struct {
1834 target_ulong addr;
1835 int len;
1836 int type;
1837 } hw_breakpoint[4];
1838
1839 static int nb_hw_breakpoint;
1840
1841 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1842 {
1843 int n;
1844
1845 for (n = 0; n < nb_hw_breakpoint; n++) {
1846 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1847 (hw_breakpoint[n].len == len || len == -1)) {
1848 return n;
1849 }
1850 }
1851 return -1;
1852 }
1853
1854 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1855 target_ulong len, int type)
1856 {
1857 switch (type) {
1858 case GDB_BREAKPOINT_HW:
1859 len = 1;
1860 break;
1861 case GDB_WATCHPOINT_WRITE:
1862 case GDB_WATCHPOINT_ACCESS:
1863 switch (len) {
1864 case 1:
1865 break;
1866 case 2:
1867 case 4:
1868 case 8:
1869 if (addr & (len - 1)) {
1870 return -EINVAL;
1871 }
1872 break;
1873 default:
1874 return -EINVAL;
1875 }
1876 break;
1877 default:
1878 return -ENOSYS;
1879 }
1880
1881 if (nb_hw_breakpoint == 4) {
1882 return -ENOBUFS;
1883 }
1884 if (find_hw_breakpoint(addr, len, type) >= 0) {
1885 return -EEXIST;
1886 }
1887 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1888 hw_breakpoint[nb_hw_breakpoint].len = len;
1889 hw_breakpoint[nb_hw_breakpoint].type = type;
1890 nb_hw_breakpoint++;
1891
1892 return 0;
1893 }
1894
1895 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1896 target_ulong len, int type)
1897 {
1898 int n;
1899
1900 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1901 if (n < 0) {
1902 return -ENOENT;
1903 }
1904 nb_hw_breakpoint--;
1905 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1906
1907 return 0;
1908 }
1909
1910 void kvm_arch_remove_all_hw_breakpoints(void)
1911 {
1912 nb_hw_breakpoint = 0;
1913 }
1914
1915 static CPUWatchpoint hw_watchpoint;
1916
1917 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1918 {
1919 int ret = 0;
1920 int n;
1921
1922 if (arch_info->exception == 1) {
1923 if (arch_info->dr6 & (1 << 14)) {
1924 if (cpu_single_env->singlestep_enabled) {
1925 ret = EXCP_DEBUG;
1926 }
1927 } else {
1928 for (n = 0; n < 4; n++) {
1929 if (arch_info->dr6 & (1 << n)) {
1930 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1931 case 0x0:
1932 ret = EXCP_DEBUG;
1933 break;
1934 case 0x1:
1935 ret = EXCP_DEBUG;
1936 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1937 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1938 hw_watchpoint.flags = BP_MEM_WRITE;
1939 break;
1940 case 0x3:
1941 ret = EXCP_DEBUG;
1942 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1943 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1944 hw_watchpoint.flags = BP_MEM_ACCESS;
1945 break;
1946 }
1947 }
1948 }
1949 }
1950 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1951 ret = EXCP_DEBUG;
1952 }
1953 if (ret == 0) {
1954 cpu_synchronize_state(cpu_single_env);
1955 assert(cpu_single_env->exception_injected == -1);
1956
1957 /* pass to guest */
1958 cpu_single_env->exception_injected = arch_info->exception;
1959 cpu_single_env->has_error_code = 0;
1960 }
1961
1962 return ret;
1963 }
1964
1965 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1966 {
1967 const uint8_t type_code[] = {
1968 [GDB_BREAKPOINT_HW] = 0x0,
1969 [GDB_WATCHPOINT_WRITE] = 0x1,
1970 [GDB_WATCHPOINT_ACCESS] = 0x3
1971 };
1972 const uint8_t len_code[] = {
1973 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1974 };
1975 int n;
1976
1977 if (kvm_sw_breakpoints_active(env)) {
1978 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1979 }
1980 if (nb_hw_breakpoint > 0) {
1981 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1982 dbg->arch.debugreg[7] = 0x0600;
1983 for (n = 0; n < nb_hw_breakpoint; n++) {
1984 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1985 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1986 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1987 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1988 }
1989 }
1990 }
1991
1992 static bool host_supports_vmx(void)
1993 {
1994 uint32_t ecx, unused;
1995
1996 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1997 return ecx & CPUID_EXT_VMX;
1998 }
1999
2000 #define VMX_INVALID_GUEST_STATE 0x80000021
2001
2002 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2003 {
2004 uint64_t code;
2005 int ret;
2006
2007 switch (run->exit_reason) {
2008 case KVM_EXIT_HLT:
2009 DPRINTF("handle_hlt\n");
2010 ret = kvm_handle_halt(env);
2011 break;
2012 case KVM_EXIT_SET_TPR:
2013 ret = 0;
2014 break;
2015 case KVM_EXIT_TPR_ACCESS:
2016 ret = kvm_handle_tpr_access(env);
2017 break;
2018 case KVM_EXIT_FAIL_ENTRY:
2019 code = run->fail_entry.hardware_entry_failure_reason;
2020 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2021 code);
2022 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2023 fprintf(stderr,
2024 "\nIf you're running a guest on an Intel machine without "
2025 "unrestricted mode\n"
2026 "support, the failure can be most likely due to the guest "
2027 "entering an invalid\n"
2028 "state for Intel VT. For example, the guest maybe running "
2029 "in big real mode\n"
2030 "which is not supported on less recent Intel processors."
2031 "\n\n");
2032 }
2033 ret = -1;
2034 break;
2035 case KVM_EXIT_EXCEPTION:
2036 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2037 run->ex.exception, run->ex.error_code);
2038 ret = -1;
2039 break;
2040 case KVM_EXIT_DEBUG:
2041 DPRINTF("kvm_exit_debug\n");
2042 ret = kvm_handle_debug(&run->debug.arch);
2043 break;
2044 default:
2045 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2046 ret = -1;
2047 break;
2048 }
2049
2050 return ret;
2051 }
2052
2053 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2054 {
2055 kvm_cpu_synchronize_state(env);
2056 return !(env->cr[0] & CR0_PE_MASK) ||
2057 ((env->segs[R_CS].selector & 3) != 3);
2058 }
2059
2060 void kvm_arch_init_irq_routing(KVMState *s)
2061 {
2062 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2063 /* If kernel can't do irq routing, interrupt source
2064 * override 0->2 cannot be set up as required by HPET.
2065 * So we have to disable it.
2066 */
2067 no_hpet = 1;
2068 }
2069 /* We know at this point that we're using the in-kernel
2070 * irqchip, so we can use irqfds, and on x86 we know
2071 * we can use msi via irqfd and GSI routing.
2072 */
2073 kvm_irqfds_allowed = true;
2074 kvm_msi_via_irqfd_allowed = true;
2075 kvm_gsi_routing_allowed = true;
2076 }
2077
2078 /* Classic KVM device assignment interface. Will remain x86 only. */
2079 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2080 uint32_t flags, uint32_t *dev_id)
2081 {
2082 struct kvm_assigned_pci_dev dev_data = {
2083 .segnr = dev_addr->domain,
2084 .busnr = dev_addr->bus,
2085 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2086 .flags = flags,
2087 };
2088 int ret;
2089
2090 dev_data.assigned_dev_id =
2091 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2092
2093 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2094 if (ret < 0) {
2095 return ret;
2096 }
2097
2098 *dev_id = dev_data.assigned_dev_id;
2099
2100 return 0;
2101 }
2102
2103 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2104 {
2105 struct kvm_assigned_pci_dev dev_data = {
2106 .assigned_dev_id = dev_id,
2107 };
2108
2109 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2110 }
2111
2112 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2113 uint32_t irq_type, uint32_t guest_irq)
2114 {
2115 struct kvm_assigned_irq assigned_irq = {
2116 .assigned_dev_id = dev_id,
2117 .guest_irq = guest_irq,
2118 .flags = irq_type,
2119 };
2120
2121 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2122 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2123 } else {
2124 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2125 }
2126 }
2127
2128 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2129 uint32_t guest_irq)
2130 {
2131 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2132 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2133
2134 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2135 }
2136
2137 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2138 {
2139 struct kvm_assigned_pci_dev dev_data = {
2140 .assigned_dev_id = dev_id,
2141 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2142 };
2143
2144 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2145 }
2146
2147 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2148 uint32_t type)
2149 {
2150 struct kvm_assigned_irq assigned_irq = {
2151 .assigned_dev_id = dev_id,
2152 .flags = type,
2153 };
2154
2155 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2156 }
2157
2158 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2159 {
2160 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2161 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2162 }
2163
2164 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2165 {
2166 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2167 KVM_DEV_IRQ_GUEST_MSI, virq);
2168 }
2169
2170 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2171 {
2172 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2173 KVM_DEV_IRQ_HOST_MSI);
2174 }
2175
2176 bool kvm_device_msix_supported(KVMState *s)
2177 {
2178 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2179 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2180 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2181 }
2182
2183 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2184 uint32_t nr_vectors)
2185 {
2186 struct kvm_assigned_msix_nr msix_nr = {
2187 .assigned_dev_id = dev_id,
2188 .entry_nr = nr_vectors,
2189 };
2190
2191 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2192 }
2193
2194 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2195 int virq)
2196 {
2197 struct kvm_assigned_msix_entry msix_entry = {
2198 .assigned_dev_id = dev_id,
2199 .gsi = virq,
2200 .entry = vector,
2201 };
2202
2203 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2204 }
2205
2206 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2207 {
2208 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2209 KVM_DEV_IRQ_GUEST_MSIX, 0);
2210 }
2211
2212 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2213 {
2214 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2215 KVM_DEV_IRQ_HOST_MSIX);
2216 }