]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge branch 'linux-user.next' of git://git.linaro.org/people/pmaydell/qemu-arm
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34
35 //#define DEBUG_KVM
36
37 #ifdef DEBUG_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42 do { } while (0)
43 #endif
44
45 #define MSR_KVM_WALL_CLOCK 0x11
46 #define MSR_KVM_SYSTEM_TIME 0x12
47
48 #ifndef BUS_MCEERR_AR
49 #define BUS_MCEERR_AR 4
50 #endif
51 #ifndef BUS_MCEERR_AO
52 #define BUS_MCEERR_AO 5
53 #endif
54
55 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
56 KVM_CAP_INFO(SET_TSS_ADDR),
57 KVM_CAP_INFO(EXT_CPUID),
58 KVM_CAP_INFO(MP_STATE),
59 KVM_CAP_LAST_INFO
60 };
61
62 static bool has_msr_star;
63 static bool has_msr_hsave_pa;
64 static bool has_msr_tsc_deadline;
65 static bool has_msr_async_pf_en;
66 static bool has_msr_misc_enable;
67 static int lm_capable_kernel;
68
69 bool kvm_allows_irq0_override(void)
70 {
71 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
72 }
73
74 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
75 {
76 struct kvm_cpuid2 *cpuid;
77 int r, size;
78
79 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
80 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
81 cpuid->nent = max;
82 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
83 if (r == 0 && cpuid->nent >= max) {
84 r = -E2BIG;
85 }
86 if (r < 0) {
87 if (r == -E2BIG) {
88 g_free(cpuid);
89 return NULL;
90 } else {
91 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
92 strerror(-r));
93 exit(1);
94 }
95 }
96 return cpuid;
97 }
98
99 struct kvm_para_features {
100 int cap;
101 int feature;
102 } para_features[] = {
103 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
104 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
105 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
106 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
107 { -1, -1 }
108 };
109
110 static int get_para_features(KVMState *s)
111 {
112 int i, features = 0;
113
114 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
115 if (kvm_check_extension(s, para_features[i].cap)) {
116 features |= (1 << para_features[i].feature);
117 }
118 }
119
120 return features;
121 }
122
123
124 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
125 uint32_t index, int reg)
126 {
127 struct kvm_cpuid2 *cpuid;
128 int i, max;
129 uint32_t ret = 0;
130 uint32_t cpuid_1_edx;
131 int has_kvm_features = 0;
132
133 max = 1;
134 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
135 max *= 2;
136 }
137
138 for (i = 0; i < cpuid->nent; ++i) {
139 if (cpuid->entries[i].function == function &&
140 cpuid->entries[i].index == index) {
141 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
142 has_kvm_features = 1;
143 }
144 switch (reg) {
145 case R_EAX:
146 ret = cpuid->entries[i].eax;
147 break;
148 case R_EBX:
149 ret = cpuid->entries[i].ebx;
150 break;
151 case R_ECX:
152 ret = cpuid->entries[i].ecx;
153 break;
154 case R_EDX:
155 ret = cpuid->entries[i].edx;
156 switch (function) {
157 case 1:
158 /* KVM before 2.6.30 misreports the following features */
159 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
160 break;
161 case 0x80000001:
162 /* On Intel, kvm returns cpuid according to the Intel spec,
163 * so add missing bits according to the AMD spec:
164 */
165 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
166 ret |= cpuid_1_edx & 0x183f7ff;
167 break;
168 }
169 break;
170 }
171 }
172 }
173
174 g_free(cpuid);
175
176 /* fallback for older kernels */
177 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
178 ret = get_para_features(s);
179 }
180
181 return ret;
182 }
183
184 typedef struct HWPoisonPage {
185 ram_addr_t ram_addr;
186 QLIST_ENTRY(HWPoisonPage) list;
187 } HWPoisonPage;
188
189 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
190 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
191
192 static void kvm_unpoison_all(void *param)
193 {
194 HWPoisonPage *page, *next_page;
195
196 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
197 QLIST_REMOVE(page, list);
198 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
199 g_free(page);
200 }
201 }
202
203 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
204 {
205 HWPoisonPage *page;
206
207 QLIST_FOREACH(page, &hwpoison_page_list, list) {
208 if (page->ram_addr == ram_addr) {
209 return;
210 }
211 }
212 page = g_malloc(sizeof(HWPoisonPage));
213 page->ram_addr = ram_addr;
214 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
215 }
216
217 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
218 int *max_banks)
219 {
220 int r;
221
222 r = kvm_check_extension(s, KVM_CAP_MCE);
223 if (r > 0) {
224 *max_banks = r;
225 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
226 }
227 return -ENOSYS;
228 }
229
230 static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
231 {
232 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
233 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
234 uint64_t mcg_status = MCG_STATUS_MCIP;
235
236 if (code == BUS_MCEERR_AR) {
237 status |= MCI_STATUS_AR | 0x134;
238 mcg_status |= MCG_STATUS_EIPV;
239 } else {
240 status |= 0xc0;
241 mcg_status |= MCG_STATUS_RIPV;
242 }
243 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
244 (MCM_ADDR_PHYS << 6) | 0xc,
245 cpu_x86_support_mca_broadcast(env) ?
246 MCE_INJECT_BROADCAST : 0);
247 }
248
249 static void hardware_memory_error(void)
250 {
251 fprintf(stderr, "Hardware memory error!\n");
252 exit(1);
253 }
254
255 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
256 {
257 ram_addr_t ram_addr;
258 target_phys_addr_t paddr;
259
260 if ((env->mcg_cap & MCG_SER_P) && addr
261 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
262 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
263 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
264 fprintf(stderr, "Hardware memory error for memory used by "
265 "QEMU itself instead of guest system!\n");
266 /* Hope we are lucky for AO MCE */
267 if (code == BUS_MCEERR_AO) {
268 return 0;
269 } else {
270 hardware_memory_error();
271 }
272 }
273 kvm_hwpoison_page_add(ram_addr);
274 kvm_mce_inject(env, paddr, code);
275 } else {
276 if (code == BUS_MCEERR_AO) {
277 return 0;
278 } else if (code == BUS_MCEERR_AR) {
279 hardware_memory_error();
280 } else {
281 return 1;
282 }
283 }
284 return 0;
285 }
286
287 int kvm_arch_on_sigbus(int code, void *addr)
288 {
289 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
290 ram_addr_t ram_addr;
291 target_phys_addr_t paddr;
292
293 /* Hope we are lucky for AO MCE */
294 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
295 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
296 &paddr)) {
297 fprintf(stderr, "Hardware memory error for memory used by "
298 "QEMU itself instead of guest system!: %p\n", addr);
299 return 0;
300 }
301 kvm_hwpoison_page_add(ram_addr);
302 kvm_mce_inject(first_cpu, paddr, code);
303 } else {
304 if (code == BUS_MCEERR_AO) {
305 return 0;
306 } else if (code == BUS_MCEERR_AR) {
307 hardware_memory_error();
308 } else {
309 return 1;
310 }
311 }
312 return 0;
313 }
314
315 static int kvm_inject_mce_oldstyle(CPUX86State *env)
316 {
317 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
318 unsigned int bank, bank_num = env->mcg_cap & 0xff;
319 struct kvm_x86_mce mce;
320
321 env->exception_injected = -1;
322
323 /*
324 * There must be at least one bank in use if an MCE is pending.
325 * Find it and use its values for the event injection.
326 */
327 for (bank = 0; bank < bank_num; bank++) {
328 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
329 break;
330 }
331 }
332 assert(bank < bank_num);
333
334 mce.bank = bank;
335 mce.status = env->mce_banks[bank * 4 + 1];
336 mce.mcg_status = env->mcg_status;
337 mce.addr = env->mce_banks[bank * 4 + 2];
338 mce.misc = env->mce_banks[bank * 4 + 3];
339
340 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
341 }
342 return 0;
343 }
344
345 static void cpu_update_state(void *opaque, int running, RunState state)
346 {
347 CPUX86State *env = opaque;
348
349 if (running) {
350 env->tsc_valid = false;
351 }
352 }
353
354 int kvm_arch_init_vcpu(CPUX86State *env)
355 {
356 struct {
357 struct kvm_cpuid2 cpuid;
358 struct kvm_cpuid_entry2 entries[100];
359 } QEMU_PACKED cpuid_data;
360 KVMState *s = env->kvm_state;
361 uint32_t limit, i, j, cpuid_i;
362 uint32_t unused;
363 struct kvm_cpuid_entry2 *c;
364 uint32_t signature[3];
365 int r;
366
367 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
368
369 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
370 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
371 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
372 env->cpuid_ext_features |= i;
373 if (j && kvm_irqchip_in_kernel() &&
374 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
375 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
376 }
377
378 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
379 0, R_EDX);
380 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
381 0, R_ECX);
382 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
383 0, R_EDX);
384
385 cpuid_i = 0;
386
387 /* Paravirtualization CPUIDs */
388 c = &cpuid_data.entries[cpuid_i++];
389 memset(c, 0, sizeof(*c));
390 c->function = KVM_CPUID_SIGNATURE;
391 if (!hyperv_enabled()) {
392 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
393 c->eax = 0;
394 } else {
395 memcpy(signature, "Microsoft Hv", 12);
396 c->eax = HYPERV_CPUID_MIN;
397 }
398 c->ebx = signature[0];
399 c->ecx = signature[1];
400 c->edx = signature[2];
401
402 c = &cpuid_data.entries[cpuid_i++];
403 memset(c, 0, sizeof(*c));
404 c->function = KVM_CPUID_FEATURES;
405 c->eax = env->cpuid_kvm_features &
406 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
407
408 if (hyperv_enabled()) {
409 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
410 c->eax = signature[0];
411
412 c = &cpuid_data.entries[cpuid_i++];
413 memset(c, 0, sizeof(*c));
414 c->function = HYPERV_CPUID_VERSION;
415 c->eax = 0x00001bbc;
416 c->ebx = 0x00060001;
417
418 c = &cpuid_data.entries[cpuid_i++];
419 memset(c, 0, sizeof(*c));
420 c->function = HYPERV_CPUID_FEATURES;
421 if (hyperv_relaxed_timing_enabled()) {
422 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
423 }
424 if (hyperv_vapic_recommended()) {
425 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
426 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
427 }
428
429 c = &cpuid_data.entries[cpuid_i++];
430 memset(c, 0, sizeof(*c));
431 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
432 if (hyperv_relaxed_timing_enabled()) {
433 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
434 }
435 if (hyperv_vapic_recommended()) {
436 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
437 }
438 c->ebx = hyperv_get_spinlock_retries();
439
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
443 c->eax = 0x40;
444 c->ebx = 0x40;
445
446 c = &cpuid_data.entries[cpuid_i++];
447 memset(c, 0, sizeof(*c));
448 c->function = KVM_CPUID_SIGNATURE_NEXT;
449 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
450 c->eax = 0;
451 c->ebx = signature[0];
452 c->ecx = signature[1];
453 c->edx = signature[2];
454 }
455
456 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
457
458 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
459
460 for (i = 0; i <= limit; i++) {
461 c = &cpuid_data.entries[cpuid_i++];
462
463 switch (i) {
464 case 2: {
465 /* Keep reading function 2 till all the input is received */
466 int times;
467
468 c->function = i;
469 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
470 KVM_CPUID_FLAG_STATE_READ_NEXT;
471 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
472 times = c->eax & 0xff;
473
474 for (j = 1; j < times; ++j) {
475 c = &cpuid_data.entries[cpuid_i++];
476 c->function = i;
477 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
478 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
479 }
480 break;
481 }
482 case 4:
483 case 0xb:
484 case 0xd:
485 for (j = 0; ; j++) {
486 if (i == 0xd && j == 64) {
487 break;
488 }
489 c->function = i;
490 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
491 c->index = j;
492 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
493
494 if (i == 4 && c->eax == 0) {
495 break;
496 }
497 if (i == 0xb && !(c->ecx & 0xff00)) {
498 break;
499 }
500 if (i == 0xd && c->eax == 0) {
501 continue;
502 }
503 c = &cpuid_data.entries[cpuid_i++];
504 }
505 break;
506 default:
507 c->function = i;
508 c->flags = 0;
509 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510 break;
511 }
512 }
513 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
514
515 for (i = 0x80000000; i <= limit; i++) {
516 c = &cpuid_data.entries[cpuid_i++];
517
518 c->function = i;
519 c->flags = 0;
520 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
521 }
522
523 /* Call Centaur's CPUID instructions they are supported. */
524 if (env->cpuid_xlevel2 > 0) {
525 env->cpuid_ext4_features &=
526 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
527 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
528
529 for (i = 0xC0000000; i <= limit; i++) {
530 c = &cpuid_data.entries[cpuid_i++];
531
532 c->function = i;
533 c->flags = 0;
534 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
535 }
536 }
537
538 cpuid_data.cpuid.nent = cpuid_i;
539
540 if (((env->cpuid_version >> 8)&0xF) >= 6
541 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
542 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
543 uint64_t mcg_cap;
544 int banks;
545 int ret;
546
547 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
548 if (ret < 0) {
549 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
550 return ret;
551 }
552
553 if (banks > MCE_BANKS_DEF) {
554 banks = MCE_BANKS_DEF;
555 }
556 mcg_cap &= MCE_CAP_DEF;
557 mcg_cap |= banks;
558 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
559 if (ret < 0) {
560 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
561 return ret;
562 }
563
564 env->mcg_cap = mcg_cap;
565 }
566
567 qemu_add_vm_change_state_handler(cpu_update_state, env);
568
569 cpuid_data.cpuid.padding = 0;
570 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
571 if (r) {
572 return r;
573 }
574
575 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
576 if (r && env->tsc_khz) {
577 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
578 if (r < 0) {
579 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
580 return r;
581 }
582 }
583
584 if (kvm_has_xsave()) {
585 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
586 }
587
588 return 0;
589 }
590
591 void kvm_arch_reset_vcpu(CPUX86State *env)
592 {
593 X86CPU *cpu = x86_env_get_cpu(env);
594
595 env->exception_injected = -1;
596 env->interrupt_injected = -1;
597 env->xcr0 = 1;
598 if (kvm_irqchip_in_kernel()) {
599 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
600 KVM_MP_STATE_UNINITIALIZED;
601 } else {
602 env->mp_state = KVM_MP_STATE_RUNNABLE;
603 }
604 }
605
606 static int kvm_get_supported_msrs(KVMState *s)
607 {
608 static int kvm_supported_msrs;
609 int ret = 0;
610
611 /* first time */
612 if (kvm_supported_msrs == 0) {
613 struct kvm_msr_list msr_list, *kvm_msr_list;
614
615 kvm_supported_msrs = -1;
616
617 /* Obtain MSR list from KVM. These are the MSRs that we must
618 * save/restore */
619 msr_list.nmsrs = 0;
620 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
621 if (ret < 0 && ret != -E2BIG) {
622 return ret;
623 }
624 /* Old kernel modules had a bug and could write beyond the provided
625 memory. Allocate at least a safe amount of 1K. */
626 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
627 msr_list.nmsrs *
628 sizeof(msr_list.indices[0])));
629
630 kvm_msr_list->nmsrs = msr_list.nmsrs;
631 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
632 if (ret >= 0) {
633 int i;
634
635 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
636 if (kvm_msr_list->indices[i] == MSR_STAR) {
637 has_msr_star = true;
638 continue;
639 }
640 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
641 has_msr_hsave_pa = true;
642 continue;
643 }
644 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
645 has_msr_tsc_deadline = true;
646 continue;
647 }
648 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
649 has_msr_misc_enable = true;
650 continue;
651 }
652 }
653 }
654
655 g_free(kvm_msr_list);
656 }
657
658 return ret;
659 }
660
661 int kvm_arch_init(KVMState *s)
662 {
663 QemuOptsList *list = qemu_find_opts("machine");
664 uint64_t identity_base = 0xfffbc000;
665 uint64_t shadow_mem;
666 int ret;
667 struct utsname utsname;
668
669 ret = kvm_get_supported_msrs(s);
670 if (ret < 0) {
671 return ret;
672 }
673
674 uname(&utsname);
675 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
676
677 /*
678 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
679 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
680 * Since these must be part of guest physical memory, we need to allocate
681 * them, both by setting their start addresses in the kernel and by
682 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
683 *
684 * Older KVM versions may not support setting the identity map base. In
685 * that case we need to stick with the default, i.e. a 256K maximum BIOS
686 * size.
687 */
688 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
689 /* Allows up to 16M BIOSes. */
690 identity_base = 0xfeffc000;
691
692 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
693 if (ret < 0) {
694 return ret;
695 }
696 }
697
698 /* Set TSS base one page after EPT identity map. */
699 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
700 if (ret < 0) {
701 return ret;
702 }
703
704 /* Tell fw_cfg to notify the BIOS to reserve the range. */
705 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
706 if (ret < 0) {
707 fprintf(stderr, "e820_add_entry() table is full\n");
708 return ret;
709 }
710 qemu_register_reset(kvm_unpoison_all, NULL);
711
712 if (!QTAILQ_EMPTY(&list->head)) {
713 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
714 "kvm_shadow_mem", -1);
715 if (shadow_mem != -1) {
716 shadow_mem /= 4096;
717 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
718 if (ret < 0) {
719 return ret;
720 }
721 }
722 }
723 return 0;
724 }
725
726 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
727 {
728 lhs->selector = rhs->selector;
729 lhs->base = rhs->base;
730 lhs->limit = rhs->limit;
731 lhs->type = 3;
732 lhs->present = 1;
733 lhs->dpl = 3;
734 lhs->db = 0;
735 lhs->s = 1;
736 lhs->l = 0;
737 lhs->g = 0;
738 lhs->avl = 0;
739 lhs->unusable = 0;
740 }
741
742 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
743 {
744 unsigned flags = rhs->flags;
745 lhs->selector = rhs->selector;
746 lhs->base = rhs->base;
747 lhs->limit = rhs->limit;
748 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
749 lhs->present = (flags & DESC_P_MASK) != 0;
750 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
751 lhs->db = (flags >> DESC_B_SHIFT) & 1;
752 lhs->s = (flags & DESC_S_MASK) != 0;
753 lhs->l = (flags >> DESC_L_SHIFT) & 1;
754 lhs->g = (flags & DESC_G_MASK) != 0;
755 lhs->avl = (flags & DESC_AVL_MASK) != 0;
756 lhs->unusable = 0;
757 lhs->padding = 0;
758 }
759
760 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
761 {
762 lhs->selector = rhs->selector;
763 lhs->base = rhs->base;
764 lhs->limit = rhs->limit;
765 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
766 (rhs->present * DESC_P_MASK) |
767 (rhs->dpl << DESC_DPL_SHIFT) |
768 (rhs->db << DESC_B_SHIFT) |
769 (rhs->s * DESC_S_MASK) |
770 (rhs->l << DESC_L_SHIFT) |
771 (rhs->g * DESC_G_MASK) |
772 (rhs->avl * DESC_AVL_MASK);
773 }
774
775 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
776 {
777 if (set) {
778 *kvm_reg = *qemu_reg;
779 } else {
780 *qemu_reg = *kvm_reg;
781 }
782 }
783
784 static int kvm_getput_regs(CPUX86State *env, int set)
785 {
786 struct kvm_regs regs;
787 int ret = 0;
788
789 if (!set) {
790 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
791 if (ret < 0) {
792 return ret;
793 }
794 }
795
796 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
797 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
798 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
799 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
800 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
801 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
802 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
803 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
804 #ifdef TARGET_X86_64
805 kvm_getput_reg(&regs.r8, &env->regs[8], set);
806 kvm_getput_reg(&regs.r9, &env->regs[9], set);
807 kvm_getput_reg(&regs.r10, &env->regs[10], set);
808 kvm_getput_reg(&regs.r11, &env->regs[11], set);
809 kvm_getput_reg(&regs.r12, &env->regs[12], set);
810 kvm_getput_reg(&regs.r13, &env->regs[13], set);
811 kvm_getput_reg(&regs.r14, &env->regs[14], set);
812 kvm_getput_reg(&regs.r15, &env->regs[15], set);
813 #endif
814
815 kvm_getput_reg(&regs.rflags, &env->eflags, set);
816 kvm_getput_reg(&regs.rip, &env->eip, set);
817
818 if (set) {
819 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
820 }
821
822 return ret;
823 }
824
825 static int kvm_put_fpu(CPUX86State *env)
826 {
827 struct kvm_fpu fpu;
828 int i;
829
830 memset(&fpu, 0, sizeof fpu);
831 fpu.fsw = env->fpus & ~(7 << 11);
832 fpu.fsw |= (env->fpstt & 7) << 11;
833 fpu.fcw = env->fpuc;
834 fpu.last_opcode = env->fpop;
835 fpu.last_ip = env->fpip;
836 fpu.last_dp = env->fpdp;
837 for (i = 0; i < 8; ++i) {
838 fpu.ftwx |= (!env->fptags[i]) << i;
839 }
840 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
841 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
842 fpu.mxcsr = env->mxcsr;
843
844 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
845 }
846
847 #define XSAVE_FCW_FSW 0
848 #define XSAVE_FTW_FOP 1
849 #define XSAVE_CWD_RIP 2
850 #define XSAVE_CWD_RDP 4
851 #define XSAVE_MXCSR 6
852 #define XSAVE_ST_SPACE 8
853 #define XSAVE_XMM_SPACE 40
854 #define XSAVE_XSTATE_BV 128
855 #define XSAVE_YMMH_SPACE 144
856
857 static int kvm_put_xsave(CPUX86State *env)
858 {
859 struct kvm_xsave* xsave = env->kvm_xsave_buf;
860 uint16_t cwd, swd, twd;
861 int i, r;
862
863 if (!kvm_has_xsave()) {
864 return kvm_put_fpu(env);
865 }
866
867 memset(xsave, 0, sizeof(struct kvm_xsave));
868 twd = 0;
869 swd = env->fpus & ~(7 << 11);
870 swd |= (env->fpstt & 7) << 11;
871 cwd = env->fpuc;
872 for (i = 0; i < 8; ++i) {
873 twd |= (!env->fptags[i]) << i;
874 }
875 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
876 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
877 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
878 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
879 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
880 sizeof env->fpregs);
881 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
882 sizeof env->xmm_regs);
883 xsave->region[XSAVE_MXCSR] = env->mxcsr;
884 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
885 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
886 sizeof env->ymmh_regs);
887 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
888 return r;
889 }
890
891 static int kvm_put_xcrs(CPUX86State *env)
892 {
893 struct kvm_xcrs xcrs;
894
895 if (!kvm_has_xcrs()) {
896 return 0;
897 }
898
899 xcrs.nr_xcrs = 1;
900 xcrs.flags = 0;
901 xcrs.xcrs[0].xcr = 0;
902 xcrs.xcrs[0].value = env->xcr0;
903 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
904 }
905
906 static int kvm_put_sregs(CPUX86State *env)
907 {
908 struct kvm_sregs sregs;
909
910 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
911 if (env->interrupt_injected >= 0) {
912 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
913 (uint64_t)1 << (env->interrupt_injected % 64);
914 }
915
916 if ((env->eflags & VM_MASK)) {
917 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
918 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
919 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
920 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
921 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
922 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
923 } else {
924 set_seg(&sregs.cs, &env->segs[R_CS]);
925 set_seg(&sregs.ds, &env->segs[R_DS]);
926 set_seg(&sregs.es, &env->segs[R_ES]);
927 set_seg(&sregs.fs, &env->segs[R_FS]);
928 set_seg(&sregs.gs, &env->segs[R_GS]);
929 set_seg(&sregs.ss, &env->segs[R_SS]);
930 }
931
932 set_seg(&sregs.tr, &env->tr);
933 set_seg(&sregs.ldt, &env->ldt);
934
935 sregs.idt.limit = env->idt.limit;
936 sregs.idt.base = env->idt.base;
937 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
938 sregs.gdt.limit = env->gdt.limit;
939 sregs.gdt.base = env->gdt.base;
940 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
941
942 sregs.cr0 = env->cr[0];
943 sregs.cr2 = env->cr[2];
944 sregs.cr3 = env->cr[3];
945 sregs.cr4 = env->cr[4];
946
947 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
948 sregs.apic_base = cpu_get_apic_base(env->apic_state);
949
950 sregs.efer = env->efer;
951
952 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
953 }
954
955 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
956 uint32_t index, uint64_t value)
957 {
958 entry->index = index;
959 entry->data = value;
960 }
961
962 static int kvm_put_msrs(CPUX86State *env, int level)
963 {
964 struct {
965 struct kvm_msrs info;
966 struct kvm_msr_entry entries[100];
967 } msr_data;
968 struct kvm_msr_entry *msrs = msr_data.entries;
969 int n = 0;
970
971 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
972 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
973 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
974 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
975 if (has_msr_star) {
976 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
977 }
978 if (has_msr_hsave_pa) {
979 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
980 }
981 if (has_msr_tsc_deadline) {
982 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
983 }
984 if (has_msr_misc_enable) {
985 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
986 env->msr_ia32_misc_enable);
987 }
988 #ifdef TARGET_X86_64
989 if (lm_capable_kernel) {
990 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
991 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
992 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
993 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
994 }
995 #endif
996 if (level == KVM_PUT_FULL_STATE) {
997 /*
998 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
999 * writeback. Until this is fixed, we only write the offset to SMP
1000 * guests after migration, desynchronizing the VCPUs, but avoiding
1001 * huge jump-backs that would occur without any writeback at all.
1002 */
1003 if (smp_cpus == 1 || env->tsc != 0) {
1004 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1005 }
1006 }
1007 /*
1008 * The following paravirtual MSRs have side effects on the guest or are
1009 * too heavy for normal writeback. Limit them to reset or full state
1010 * updates.
1011 */
1012 if (level >= KVM_PUT_RESET_STATE) {
1013 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1014 env->system_time_msr);
1015 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1016 if (has_msr_async_pf_en) {
1017 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1018 env->async_pf_en_msr);
1019 }
1020 if (hyperv_hypercall_available()) {
1021 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1022 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1023 }
1024 if (hyperv_vapic_recommended()) {
1025 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1026 }
1027 }
1028 if (env->mcg_cap) {
1029 int i;
1030
1031 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1032 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1033 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1034 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1035 }
1036 }
1037
1038 msr_data.info.nmsrs = n;
1039
1040 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1041
1042 }
1043
1044
1045 static int kvm_get_fpu(CPUX86State *env)
1046 {
1047 struct kvm_fpu fpu;
1048 int i, ret;
1049
1050 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1051 if (ret < 0) {
1052 return ret;
1053 }
1054
1055 env->fpstt = (fpu.fsw >> 11) & 7;
1056 env->fpus = fpu.fsw;
1057 env->fpuc = fpu.fcw;
1058 env->fpop = fpu.last_opcode;
1059 env->fpip = fpu.last_ip;
1060 env->fpdp = fpu.last_dp;
1061 for (i = 0; i < 8; ++i) {
1062 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1063 }
1064 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1065 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1066 env->mxcsr = fpu.mxcsr;
1067
1068 return 0;
1069 }
1070
1071 static int kvm_get_xsave(CPUX86State *env)
1072 {
1073 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1074 int ret, i;
1075 uint16_t cwd, swd, twd;
1076
1077 if (!kvm_has_xsave()) {
1078 return kvm_get_fpu(env);
1079 }
1080
1081 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1082 if (ret < 0) {
1083 return ret;
1084 }
1085
1086 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1087 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1088 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1089 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1090 env->fpstt = (swd >> 11) & 7;
1091 env->fpus = swd;
1092 env->fpuc = cwd;
1093 for (i = 0; i < 8; ++i) {
1094 env->fptags[i] = !((twd >> i) & 1);
1095 }
1096 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1097 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1098 env->mxcsr = xsave->region[XSAVE_MXCSR];
1099 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1100 sizeof env->fpregs);
1101 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1102 sizeof env->xmm_regs);
1103 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1104 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1105 sizeof env->ymmh_regs);
1106 return 0;
1107 }
1108
1109 static int kvm_get_xcrs(CPUX86State *env)
1110 {
1111 int i, ret;
1112 struct kvm_xcrs xcrs;
1113
1114 if (!kvm_has_xcrs()) {
1115 return 0;
1116 }
1117
1118 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1119 if (ret < 0) {
1120 return ret;
1121 }
1122
1123 for (i = 0; i < xcrs.nr_xcrs; i++) {
1124 /* Only support xcr0 now */
1125 if (xcrs.xcrs[0].xcr == 0) {
1126 env->xcr0 = xcrs.xcrs[0].value;
1127 break;
1128 }
1129 }
1130 return 0;
1131 }
1132
1133 static int kvm_get_sregs(CPUX86State *env)
1134 {
1135 struct kvm_sregs sregs;
1136 uint32_t hflags;
1137 int bit, i, ret;
1138
1139 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1140 if (ret < 0) {
1141 return ret;
1142 }
1143
1144 /* There can only be one pending IRQ set in the bitmap at a time, so try
1145 to find it and save its number instead (-1 for none). */
1146 env->interrupt_injected = -1;
1147 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1148 if (sregs.interrupt_bitmap[i]) {
1149 bit = ctz64(sregs.interrupt_bitmap[i]);
1150 env->interrupt_injected = i * 64 + bit;
1151 break;
1152 }
1153 }
1154
1155 get_seg(&env->segs[R_CS], &sregs.cs);
1156 get_seg(&env->segs[R_DS], &sregs.ds);
1157 get_seg(&env->segs[R_ES], &sregs.es);
1158 get_seg(&env->segs[R_FS], &sregs.fs);
1159 get_seg(&env->segs[R_GS], &sregs.gs);
1160 get_seg(&env->segs[R_SS], &sregs.ss);
1161
1162 get_seg(&env->tr, &sregs.tr);
1163 get_seg(&env->ldt, &sregs.ldt);
1164
1165 env->idt.limit = sregs.idt.limit;
1166 env->idt.base = sregs.idt.base;
1167 env->gdt.limit = sregs.gdt.limit;
1168 env->gdt.base = sregs.gdt.base;
1169
1170 env->cr[0] = sregs.cr0;
1171 env->cr[2] = sregs.cr2;
1172 env->cr[3] = sregs.cr3;
1173 env->cr[4] = sregs.cr4;
1174
1175 env->efer = sregs.efer;
1176
1177 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1178
1179 #define HFLAG_COPY_MASK \
1180 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1181 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1182 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1183 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1184
1185 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1186 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1187 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1188 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1189 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1190 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1191 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1192
1193 if (env->efer & MSR_EFER_LMA) {
1194 hflags |= HF_LMA_MASK;
1195 }
1196
1197 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1198 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1199 } else {
1200 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1201 (DESC_B_SHIFT - HF_CS32_SHIFT);
1202 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1203 (DESC_B_SHIFT - HF_SS32_SHIFT);
1204 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1205 !(hflags & HF_CS32_MASK)) {
1206 hflags |= HF_ADDSEG_MASK;
1207 } else {
1208 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1209 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1210 }
1211 }
1212 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1213
1214 return 0;
1215 }
1216
1217 static int kvm_get_msrs(CPUX86State *env)
1218 {
1219 struct {
1220 struct kvm_msrs info;
1221 struct kvm_msr_entry entries[100];
1222 } msr_data;
1223 struct kvm_msr_entry *msrs = msr_data.entries;
1224 int ret, i, n;
1225
1226 n = 0;
1227 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1228 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1229 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1230 msrs[n++].index = MSR_PAT;
1231 if (has_msr_star) {
1232 msrs[n++].index = MSR_STAR;
1233 }
1234 if (has_msr_hsave_pa) {
1235 msrs[n++].index = MSR_VM_HSAVE_PA;
1236 }
1237 if (has_msr_tsc_deadline) {
1238 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1239 }
1240 if (has_msr_misc_enable) {
1241 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1242 }
1243
1244 if (!env->tsc_valid) {
1245 msrs[n++].index = MSR_IA32_TSC;
1246 env->tsc_valid = !runstate_is_running();
1247 }
1248
1249 #ifdef TARGET_X86_64
1250 if (lm_capable_kernel) {
1251 msrs[n++].index = MSR_CSTAR;
1252 msrs[n++].index = MSR_KERNELGSBASE;
1253 msrs[n++].index = MSR_FMASK;
1254 msrs[n++].index = MSR_LSTAR;
1255 }
1256 #endif
1257 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1258 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1259 if (has_msr_async_pf_en) {
1260 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1261 }
1262
1263 if (env->mcg_cap) {
1264 msrs[n++].index = MSR_MCG_STATUS;
1265 msrs[n++].index = MSR_MCG_CTL;
1266 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1267 msrs[n++].index = MSR_MC0_CTL + i;
1268 }
1269 }
1270
1271 msr_data.info.nmsrs = n;
1272 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1273 if (ret < 0) {
1274 return ret;
1275 }
1276
1277 for (i = 0; i < ret; i++) {
1278 switch (msrs[i].index) {
1279 case MSR_IA32_SYSENTER_CS:
1280 env->sysenter_cs = msrs[i].data;
1281 break;
1282 case MSR_IA32_SYSENTER_ESP:
1283 env->sysenter_esp = msrs[i].data;
1284 break;
1285 case MSR_IA32_SYSENTER_EIP:
1286 env->sysenter_eip = msrs[i].data;
1287 break;
1288 case MSR_PAT:
1289 env->pat = msrs[i].data;
1290 break;
1291 case MSR_STAR:
1292 env->star = msrs[i].data;
1293 break;
1294 #ifdef TARGET_X86_64
1295 case MSR_CSTAR:
1296 env->cstar = msrs[i].data;
1297 break;
1298 case MSR_KERNELGSBASE:
1299 env->kernelgsbase = msrs[i].data;
1300 break;
1301 case MSR_FMASK:
1302 env->fmask = msrs[i].data;
1303 break;
1304 case MSR_LSTAR:
1305 env->lstar = msrs[i].data;
1306 break;
1307 #endif
1308 case MSR_IA32_TSC:
1309 env->tsc = msrs[i].data;
1310 break;
1311 case MSR_IA32_TSCDEADLINE:
1312 env->tsc_deadline = msrs[i].data;
1313 break;
1314 case MSR_VM_HSAVE_PA:
1315 env->vm_hsave = msrs[i].data;
1316 break;
1317 case MSR_KVM_SYSTEM_TIME:
1318 env->system_time_msr = msrs[i].data;
1319 break;
1320 case MSR_KVM_WALL_CLOCK:
1321 env->wall_clock_msr = msrs[i].data;
1322 break;
1323 case MSR_MCG_STATUS:
1324 env->mcg_status = msrs[i].data;
1325 break;
1326 case MSR_MCG_CTL:
1327 env->mcg_ctl = msrs[i].data;
1328 break;
1329 case MSR_IA32_MISC_ENABLE:
1330 env->msr_ia32_misc_enable = msrs[i].data;
1331 break;
1332 default:
1333 if (msrs[i].index >= MSR_MC0_CTL &&
1334 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1335 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1336 }
1337 break;
1338 case MSR_KVM_ASYNC_PF_EN:
1339 env->async_pf_en_msr = msrs[i].data;
1340 break;
1341 }
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int kvm_put_mp_state(CPUX86State *env)
1348 {
1349 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1350
1351 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1352 }
1353
1354 static int kvm_get_mp_state(CPUX86State *env)
1355 {
1356 struct kvm_mp_state mp_state;
1357 int ret;
1358
1359 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1360 if (ret < 0) {
1361 return ret;
1362 }
1363 env->mp_state = mp_state.mp_state;
1364 if (kvm_irqchip_in_kernel()) {
1365 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1366 }
1367 return 0;
1368 }
1369
1370 static int kvm_get_apic(CPUX86State *env)
1371 {
1372 DeviceState *apic = env->apic_state;
1373 struct kvm_lapic_state kapic;
1374 int ret;
1375
1376 if (apic && kvm_irqchip_in_kernel()) {
1377 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1378 if (ret < 0) {
1379 return ret;
1380 }
1381
1382 kvm_get_apic_state(apic, &kapic);
1383 }
1384 return 0;
1385 }
1386
1387 static int kvm_put_apic(CPUX86State *env)
1388 {
1389 DeviceState *apic = env->apic_state;
1390 struct kvm_lapic_state kapic;
1391
1392 if (apic && kvm_irqchip_in_kernel()) {
1393 kvm_put_apic_state(apic, &kapic);
1394
1395 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1396 }
1397 return 0;
1398 }
1399
1400 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1401 {
1402 struct kvm_vcpu_events events;
1403
1404 if (!kvm_has_vcpu_events()) {
1405 return 0;
1406 }
1407
1408 events.exception.injected = (env->exception_injected >= 0);
1409 events.exception.nr = env->exception_injected;
1410 events.exception.has_error_code = env->has_error_code;
1411 events.exception.error_code = env->error_code;
1412 events.exception.pad = 0;
1413
1414 events.interrupt.injected = (env->interrupt_injected >= 0);
1415 events.interrupt.nr = env->interrupt_injected;
1416 events.interrupt.soft = env->soft_interrupt;
1417
1418 events.nmi.injected = env->nmi_injected;
1419 events.nmi.pending = env->nmi_pending;
1420 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1421 events.nmi.pad = 0;
1422
1423 events.sipi_vector = env->sipi_vector;
1424
1425 events.flags = 0;
1426 if (level >= KVM_PUT_RESET_STATE) {
1427 events.flags |=
1428 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1429 }
1430
1431 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1432 }
1433
1434 static int kvm_get_vcpu_events(CPUX86State *env)
1435 {
1436 struct kvm_vcpu_events events;
1437 int ret;
1438
1439 if (!kvm_has_vcpu_events()) {
1440 return 0;
1441 }
1442
1443 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447 env->exception_injected =
1448 events.exception.injected ? events.exception.nr : -1;
1449 env->has_error_code = events.exception.has_error_code;
1450 env->error_code = events.exception.error_code;
1451
1452 env->interrupt_injected =
1453 events.interrupt.injected ? events.interrupt.nr : -1;
1454 env->soft_interrupt = events.interrupt.soft;
1455
1456 env->nmi_injected = events.nmi.injected;
1457 env->nmi_pending = events.nmi.pending;
1458 if (events.nmi.masked) {
1459 env->hflags2 |= HF2_NMI_MASK;
1460 } else {
1461 env->hflags2 &= ~HF2_NMI_MASK;
1462 }
1463
1464 env->sipi_vector = events.sipi_vector;
1465
1466 return 0;
1467 }
1468
1469 static int kvm_guest_debug_workarounds(CPUX86State *env)
1470 {
1471 int ret = 0;
1472 unsigned long reinject_trap = 0;
1473
1474 if (!kvm_has_vcpu_events()) {
1475 if (env->exception_injected == 1) {
1476 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1477 } else if (env->exception_injected == 3) {
1478 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1479 }
1480 env->exception_injected = -1;
1481 }
1482
1483 /*
1484 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1485 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1486 * by updating the debug state once again if single-stepping is on.
1487 * Another reason to call kvm_update_guest_debug here is a pending debug
1488 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1489 * reinject them via SET_GUEST_DEBUG.
1490 */
1491 if (reinject_trap ||
1492 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1493 ret = kvm_update_guest_debug(env, reinject_trap);
1494 }
1495 return ret;
1496 }
1497
1498 static int kvm_put_debugregs(CPUX86State *env)
1499 {
1500 struct kvm_debugregs dbgregs;
1501 int i;
1502
1503 if (!kvm_has_debugregs()) {
1504 return 0;
1505 }
1506
1507 for (i = 0; i < 4; i++) {
1508 dbgregs.db[i] = env->dr[i];
1509 }
1510 dbgregs.dr6 = env->dr[6];
1511 dbgregs.dr7 = env->dr[7];
1512 dbgregs.flags = 0;
1513
1514 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1515 }
1516
1517 static int kvm_get_debugregs(CPUX86State *env)
1518 {
1519 struct kvm_debugregs dbgregs;
1520 int i, ret;
1521
1522 if (!kvm_has_debugregs()) {
1523 return 0;
1524 }
1525
1526 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1527 if (ret < 0) {
1528 return ret;
1529 }
1530 for (i = 0; i < 4; i++) {
1531 env->dr[i] = dbgregs.db[i];
1532 }
1533 env->dr[4] = env->dr[6] = dbgregs.dr6;
1534 env->dr[5] = env->dr[7] = dbgregs.dr7;
1535
1536 return 0;
1537 }
1538
1539 int kvm_arch_put_registers(CPUX86State *env, int level)
1540 {
1541 int ret;
1542
1543 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1544
1545 ret = kvm_getput_regs(env, 1);
1546 if (ret < 0) {
1547 return ret;
1548 }
1549 ret = kvm_put_xsave(env);
1550 if (ret < 0) {
1551 return ret;
1552 }
1553 ret = kvm_put_xcrs(env);
1554 if (ret < 0) {
1555 return ret;
1556 }
1557 ret = kvm_put_sregs(env);
1558 if (ret < 0) {
1559 return ret;
1560 }
1561 /* must be before kvm_put_msrs */
1562 ret = kvm_inject_mce_oldstyle(env);
1563 if (ret < 0) {
1564 return ret;
1565 }
1566 ret = kvm_put_msrs(env, level);
1567 if (ret < 0) {
1568 return ret;
1569 }
1570 if (level >= KVM_PUT_RESET_STATE) {
1571 ret = kvm_put_mp_state(env);
1572 if (ret < 0) {
1573 return ret;
1574 }
1575 ret = kvm_put_apic(env);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 }
1580 ret = kvm_put_vcpu_events(env, level);
1581 if (ret < 0) {
1582 return ret;
1583 }
1584 ret = kvm_put_debugregs(env);
1585 if (ret < 0) {
1586 return ret;
1587 }
1588 /* must be last */
1589 ret = kvm_guest_debug_workarounds(env);
1590 if (ret < 0) {
1591 return ret;
1592 }
1593 return 0;
1594 }
1595
1596 int kvm_arch_get_registers(CPUX86State *env)
1597 {
1598 int ret;
1599
1600 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1601
1602 ret = kvm_getput_regs(env, 0);
1603 if (ret < 0) {
1604 return ret;
1605 }
1606 ret = kvm_get_xsave(env);
1607 if (ret < 0) {
1608 return ret;
1609 }
1610 ret = kvm_get_xcrs(env);
1611 if (ret < 0) {
1612 return ret;
1613 }
1614 ret = kvm_get_sregs(env);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 ret = kvm_get_msrs(env);
1619 if (ret < 0) {
1620 return ret;
1621 }
1622 ret = kvm_get_mp_state(env);
1623 if (ret < 0) {
1624 return ret;
1625 }
1626 ret = kvm_get_apic(env);
1627 if (ret < 0) {
1628 return ret;
1629 }
1630 ret = kvm_get_vcpu_events(env);
1631 if (ret < 0) {
1632 return ret;
1633 }
1634 ret = kvm_get_debugregs(env);
1635 if (ret < 0) {
1636 return ret;
1637 }
1638 return 0;
1639 }
1640
1641 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1642 {
1643 int ret;
1644
1645 /* Inject NMI */
1646 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1647 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1648 DPRINTF("injected NMI\n");
1649 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1650 if (ret < 0) {
1651 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1652 strerror(-ret));
1653 }
1654 }
1655
1656 if (!kvm_irqchip_in_kernel()) {
1657 /* Force the VCPU out of its inner loop to process any INIT requests
1658 * or pending TPR access reports. */
1659 if (env->interrupt_request &
1660 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1661 env->exit_request = 1;
1662 }
1663
1664 /* Try to inject an interrupt if the guest can accept it */
1665 if (run->ready_for_interrupt_injection &&
1666 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1667 (env->eflags & IF_MASK)) {
1668 int irq;
1669
1670 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1671 irq = cpu_get_pic_interrupt(env);
1672 if (irq >= 0) {
1673 struct kvm_interrupt intr;
1674
1675 intr.irq = irq;
1676 DPRINTF("injected interrupt %d\n", irq);
1677 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1678 if (ret < 0) {
1679 fprintf(stderr,
1680 "KVM: injection failed, interrupt lost (%s)\n",
1681 strerror(-ret));
1682 }
1683 }
1684 }
1685
1686 /* If we have an interrupt but the guest is not ready to receive an
1687 * interrupt, request an interrupt window exit. This will
1688 * cause a return to userspace as soon as the guest is ready to
1689 * receive interrupts. */
1690 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1691 run->request_interrupt_window = 1;
1692 } else {
1693 run->request_interrupt_window = 0;
1694 }
1695
1696 DPRINTF("setting tpr\n");
1697 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1698 }
1699 }
1700
1701 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1702 {
1703 if (run->if_flag) {
1704 env->eflags |= IF_MASK;
1705 } else {
1706 env->eflags &= ~IF_MASK;
1707 }
1708 cpu_set_apic_tpr(env->apic_state, run->cr8);
1709 cpu_set_apic_base(env->apic_state, run->apic_base);
1710 }
1711
1712 int kvm_arch_process_async_events(CPUX86State *env)
1713 {
1714 X86CPU *cpu = x86_env_get_cpu(env);
1715
1716 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1717 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1718 assert(env->mcg_cap);
1719
1720 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1721
1722 kvm_cpu_synchronize_state(env);
1723
1724 if (env->exception_injected == EXCP08_DBLE) {
1725 /* this means triple fault */
1726 qemu_system_reset_request();
1727 env->exit_request = 1;
1728 return 0;
1729 }
1730 env->exception_injected = EXCP12_MCHK;
1731 env->has_error_code = 0;
1732
1733 env->halted = 0;
1734 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1735 env->mp_state = KVM_MP_STATE_RUNNABLE;
1736 }
1737 }
1738
1739 if (kvm_irqchip_in_kernel()) {
1740 return 0;
1741 }
1742
1743 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1744 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1745 apic_poll_irq(env->apic_state);
1746 }
1747 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1748 (env->eflags & IF_MASK)) ||
1749 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1750 env->halted = 0;
1751 }
1752 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1753 kvm_cpu_synchronize_state(env);
1754 do_cpu_init(cpu);
1755 }
1756 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1757 kvm_cpu_synchronize_state(env);
1758 do_cpu_sipi(cpu);
1759 }
1760 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1761 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1762 kvm_cpu_synchronize_state(env);
1763 apic_handle_tpr_access_report(env->apic_state, env->eip,
1764 env->tpr_access_type);
1765 }
1766
1767 return env->halted;
1768 }
1769
1770 static int kvm_handle_halt(CPUX86State *env)
1771 {
1772 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1773 (env->eflags & IF_MASK)) &&
1774 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1775 env->halted = 1;
1776 return EXCP_HLT;
1777 }
1778
1779 return 0;
1780 }
1781
1782 static int kvm_handle_tpr_access(CPUX86State *env)
1783 {
1784 struct kvm_run *run = env->kvm_run;
1785
1786 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1787 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1788 : TPR_ACCESS_READ);
1789 return 1;
1790 }
1791
1792 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1793 {
1794 static const uint8_t int3 = 0xcc;
1795
1796 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1797 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1798 return -EINVAL;
1799 }
1800 return 0;
1801 }
1802
1803 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1804 {
1805 uint8_t int3;
1806
1807 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1808 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1809 return -EINVAL;
1810 }
1811 return 0;
1812 }
1813
1814 static struct {
1815 target_ulong addr;
1816 int len;
1817 int type;
1818 } hw_breakpoint[4];
1819
1820 static int nb_hw_breakpoint;
1821
1822 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1823 {
1824 int n;
1825
1826 for (n = 0; n < nb_hw_breakpoint; n++) {
1827 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1828 (hw_breakpoint[n].len == len || len == -1)) {
1829 return n;
1830 }
1831 }
1832 return -1;
1833 }
1834
1835 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1836 target_ulong len, int type)
1837 {
1838 switch (type) {
1839 case GDB_BREAKPOINT_HW:
1840 len = 1;
1841 break;
1842 case GDB_WATCHPOINT_WRITE:
1843 case GDB_WATCHPOINT_ACCESS:
1844 switch (len) {
1845 case 1:
1846 break;
1847 case 2:
1848 case 4:
1849 case 8:
1850 if (addr & (len - 1)) {
1851 return -EINVAL;
1852 }
1853 break;
1854 default:
1855 return -EINVAL;
1856 }
1857 break;
1858 default:
1859 return -ENOSYS;
1860 }
1861
1862 if (nb_hw_breakpoint == 4) {
1863 return -ENOBUFS;
1864 }
1865 if (find_hw_breakpoint(addr, len, type) >= 0) {
1866 return -EEXIST;
1867 }
1868 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1869 hw_breakpoint[nb_hw_breakpoint].len = len;
1870 hw_breakpoint[nb_hw_breakpoint].type = type;
1871 nb_hw_breakpoint++;
1872
1873 return 0;
1874 }
1875
1876 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1877 target_ulong len, int type)
1878 {
1879 int n;
1880
1881 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1882 if (n < 0) {
1883 return -ENOENT;
1884 }
1885 nb_hw_breakpoint--;
1886 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1887
1888 return 0;
1889 }
1890
1891 void kvm_arch_remove_all_hw_breakpoints(void)
1892 {
1893 nb_hw_breakpoint = 0;
1894 }
1895
1896 static CPUWatchpoint hw_watchpoint;
1897
1898 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1899 {
1900 int ret = 0;
1901 int n;
1902
1903 if (arch_info->exception == 1) {
1904 if (arch_info->dr6 & (1 << 14)) {
1905 if (cpu_single_env->singlestep_enabled) {
1906 ret = EXCP_DEBUG;
1907 }
1908 } else {
1909 for (n = 0; n < 4; n++) {
1910 if (arch_info->dr6 & (1 << n)) {
1911 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1912 case 0x0:
1913 ret = EXCP_DEBUG;
1914 break;
1915 case 0x1:
1916 ret = EXCP_DEBUG;
1917 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1918 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1919 hw_watchpoint.flags = BP_MEM_WRITE;
1920 break;
1921 case 0x3:
1922 ret = EXCP_DEBUG;
1923 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1924 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1925 hw_watchpoint.flags = BP_MEM_ACCESS;
1926 break;
1927 }
1928 }
1929 }
1930 }
1931 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1932 ret = EXCP_DEBUG;
1933 }
1934 if (ret == 0) {
1935 cpu_synchronize_state(cpu_single_env);
1936 assert(cpu_single_env->exception_injected == -1);
1937
1938 /* pass to guest */
1939 cpu_single_env->exception_injected = arch_info->exception;
1940 cpu_single_env->has_error_code = 0;
1941 }
1942
1943 return ret;
1944 }
1945
1946 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1947 {
1948 const uint8_t type_code[] = {
1949 [GDB_BREAKPOINT_HW] = 0x0,
1950 [GDB_WATCHPOINT_WRITE] = 0x1,
1951 [GDB_WATCHPOINT_ACCESS] = 0x3
1952 };
1953 const uint8_t len_code[] = {
1954 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1955 };
1956 int n;
1957
1958 if (kvm_sw_breakpoints_active(env)) {
1959 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1960 }
1961 if (nb_hw_breakpoint > 0) {
1962 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1963 dbg->arch.debugreg[7] = 0x0600;
1964 for (n = 0; n < nb_hw_breakpoint; n++) {
1965 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1966 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1967 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1968 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1969 }
1970 }
1971 }
1972
1973 static bool host_supports_vmx(void)
1974 {
1975 uint32_t ecx, unused;
1976
1977 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1978 return ecx & CPUID_EXT_VMX;
1979 }
1980
1981 #define VMX_INVALID_GUEST_STATE 0x80000021
1982
1983 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
1984 {
1985 uint64_t code;
1986 int ret;
1987
1988 switch (run->exit_reason) {
1989 case KVM_EXIT_HLT:
1990 DPRINTF("handle_hlt\n");
1991 ret = kvm_handle_halt(env);
1992 break;
1993 case KVM_EXIT_SET_TPR:
1994 ret = 0;
1995 break;
1996 case KVM_EXIT_TPR_ACCESS:
1997 ret = kvm_handle_tpr_access(env);
1998 break;
1999 case KVM_EXIT_FAIL_ENTRY:
2000 code = run->fail_entry.hardware_entry_failure_reason;
2001 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2002 code);
2003 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2004 fprintf(stderr,
2005 "\nIf you're running a guest on an Intel machine without "
2006 "unrestricted mode\n"
2007 "support, the failure can be most likely due to the guest "
2008 "entering an invalid\n"
2009 "state for Intel VT. For example, the guest maybe running "
2010 "in big real mode\n"
2011 "which is not supported on less recent Intel processors."
2012 "\n\n");
2013 }
2014 ret = -1;
2015 break;
2016 case KVM_EXIT_EXCEPTION:
2017 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2018 run->ex.exception, run->ex.error_code);
2019 ret = -1;
2020 break;
2021 case KVM_EXIT_DEBUG:
2022 DPRINTF("kvm_exit_debug\n");
2023 ret = kvm_handle_debug(&run->debug.arch);
2024 break;
2025 default:
2026 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2027 ret = -1;
2028 break;
2029 }
2030
2031 return ret;
2032 }
2033
2034 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2035 {
2036 kvm_cpu_synchronize_state(env);
2037 return !(env->cr[0] & CR0_PE_MASK) ||
2038 ((env->segs[R_CS].selector & 3) != 3);
2039 }
2040
2041 void kvm_arch_init_irq_routing(KVMState *s)
2042 {
2043 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2044 /* If kernel can't do irq routing, interrupt source
2045 * override 0->2 cannot be set up as required by HPET.
2046 * So we have to disable it.
2047 */
2048 no_hpet = 1;
2049 }
2050 /* We know at this point that we're using the in-kernel
2051 * irqchip, so we can use irqfds, and on x86 we know
2052 * we can use msi via irqfd and GSI routing.
2053 */
2054 kvm_irqfds_allowed = true;
2055 kvm_msi_via_irqfd_allowed = true;
2056 kvm_gsi_routing_allowed = true;
2057 }